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ABSTRACT 

 

Characterising a species’ geographical extent is central to many conservation assessments, 

including those of the IUCN Red List of Threatened Species. The IUCN recommends that 

extent of occurrence (EOO) to be quantified by drawing a minimum convex polygon (MCP) 

around known or inferred presence localities. EOO calculated from verified specimens is 

commonly used in Red List assessments when other data are scarce, as is the case for many 

threatened plant species. Yet rarely do these estimates incorporate inferred localities from 

species distribution models (SDMs). A key impediment stems from uncertainty about how 

SDM predictions relate to EOO. Here we address this issue by comparing the EOOs 

estimated from specimen localities with EOOs derived from SDMs for plant species 

occurring in Costa Rica and Panama. We first analyse 20 plant species, with well-known and 

well-sampled distributions, and train SDMs to subsamples of the data and assess how well 

the SDM-derived MCPs predict both the MCPs of the subsamples and the MCPs of the 

complete dataset. We find that when sample sizes are small (5 or 10 samples) the SDM-

derived MCPs are actually closer to the complete dataset than to the MCPs of the subsamples, 

both in terms of EOO and geographically. This occurs when using a probability threshold 

based on maximum geographical similarity between the SDM-derived MCP and the 

subsample MCP; other threshold methods performed less well. For the species with less well-

known distributions, the SDM-derived EOOs correlate strongly with, but tend to be larger 

than, EOOs estimated by point data. This implies that a SDM-derived EOO may be more 

representative of the full EOO than that drawn around known localities. Our findings reveal 

situations in which SDMs provide useful information that complements the IUCN Red 

Listing process. 
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1 INTRODUCTION 
 

The International Union for Conservation of Nature (IUCN) Red List Categories are 

internationally recognised as the standard for assessments of species extinction risk (Butchart 

et al. 2005; Mace et al. 2008) and are instrumental in analyses of biodiversity change (Baillie 

et al. 2008; Butchart et al. 2004; Rodrigues et al. 2006). The IUCN sets formal criteria for 

Red List assessments, based on a considerable body of population theory (Mace et al. 2008), 

to standardise them across diverse taxa (criteria A-E; IUCN 2013).  

 

The extent to which risks from threatening factors are spread geographically is a 

central component of assessing extinction risk (Purvis et al. 2000) and, thus, of Red List 

assessments - with ‘extent of occurrence’ (EOO) being one widely accepted measure (Gaston 

1991). The EOO is defined by IUCN (2013) as the area that lies within the outermost limits 

of known or inferred locations. Importantly, EOO is not intended to be an estimate of the 

amount of occupied or potential habitat nor a general measure of a taxon’s range (IUCN 

2013); instead it measures the overall geographic spread of the localities at which the species 

is found (Gaston and Fuller 2009). EOO is most often measured as a minimum convex 

polygon (MCP) around the known species locations (MCP; IUCN 2013). Although MCP is 

the standard method for estimating EOO, and the one used in this study, it is one of several 

possible methods, each of which present their own particular strengths and biases. For 

example, the alpha-hull has been suggested as a more appropiate measure when a species has 

a disjunct or concave distribution, or when estimating trends in species ranges (Burgman and 

Fox 2003). Interpreting the EOO, however quantified, is relatively straightforward when 

there is confidence that the known locations of a species represent its full geographical 

spread. This is what we term as a “well sampled” species in this paper. Most species, 

however, are not well sampled, meaning that the MCP drawn around the known locations 

may represent only a proportion of its geographic range. For these, it seems reasonable to 

attempt to infer the species range to estimate the EOO. The use of inferred ranges for 

calculating EOO is explicitly stated in the IUCN Red List Guidelines: “sites can be inferred 

from presence of known appropriate habitat, but where the species has not yet been searched 

for.” (IUCN 2013, pg 35). Inferring extinction risk in Red List assessments is commonly 

conducted using Population Viability Analysis (PVA), but usually relies on posessing 

sufficient information about the species in question in order to make accurate estimates 

(Brook et al. 2000; Coulson et al. 2001). When species are poorly sampled there is usually 

insufficient information to conduct such analyses. This raises the question whether other 

inference methods can be usefully applied to predict other components of Red List 

assessments, such as EOO, for poorly sampled species. 

 

Species distribution models (SDMs; also known as bioclimatic models or ecological 

niche models) have become the most popular method for inferring distributions from 

observational data. Recent studies have used SDMs to estimate species ranges and occupied 

areas for the purposes of informing IUCN Red List assessments (e.g. Cardoso et al. 2011; 

Jiménez-Alfaro et al. 2012; Papes and Gaubert 2007; Pena et al. 2014; Sergio et al. 2007). 

These focus on small numbers of plant species within national boundaries. However, to date 

it has been unclear whether SDMs can make informative estimates of the EOO of a species 

when it is poorly sampled. Analyses of a larger number of species across a wider geographic 

area are needed in order to address how informative SDM predictions might be for the Red 

Listing process (Brummitt et al. 2008).  
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How could SDM predictions inform EOO estimates for poorly sampled species? A 

traditional approach to predicting a species’ distribution would involve training SDMs by 

correlating species presences and absences with environmental variables and then using those 

correlations (the model) to predict the probability of a species presence across a landscape. 

For many species, like all of those considered in this paper, there only exists data on 

presences, with data on recorded absences not available. For such species SDMs can only 

predict the relative probability of occurrence across a landscape (see Merow et al 2013 for 

details). A number of important considerations should be taken before such an approach can 

be considered suitable for predicting the EOO. Correlative models are typically applied 

assuming that the species-environment relationships are not likely to dramatically change 

over the time frame of interest (i.e. the species distribution has reached some form of 

equilibrium), and this is will not be valid in all cases. Environmental variables should also be 

carefully chosen such that the predicted distribution relates to likely occupied areas rather 

than areas potentially suitable.  It is widely recognised that characteristics of 

presence/absence data, such as sampling bias, the specific set of environmental variables 

chosen, and the modelling technique used all influence the accuracy of the resulting SDM 

predictions (Elith and Leathwick 2009). 

After a fitted SDM has been judged to be of sufficient quality, there remains the 

decision about how to determine an appropriate threshold probability of occurrence to 

discriminate between predicted presence and absence locations and so estimate the size of the 

geographic area occupied by the species. Traditionally, threshold probabilities are chosen in a 

way that maximizes the discrimination of sites with known presences from the rest of the 

landscape, or from locations with known absences (Franklin 2009; Liu et al. 2005; Liu et al. 

2013).  The studies of Liu et al. (2005) and Liu et al. (2013) performed systematic 

assessments of the consequences and value of different methods for choosing threshold 

probabilities. For example, in their study of thresholding methods for SDMs built using 

presence-only data, Liu et al. (2013) found that the commonly applied approach of 

maximising the sum of the sensitivity and specificity of the SDM resulted in predicted 

distributions that were more accurate than alternative methods when assessed using a number 

of different performance metrics.  However, a consequence of using such methods to predict 

species distributions is that they typically result in a species being predicted as absent in some 

locations where it is known to occur. An approach to remedy this is to opt for the minimum 

training presence threshold (MTP; also termed lowest presence threshold; Pearson et al. 

(2007) that predicts all observations of a species as present (Pearson et al. 2007; Thorn et al. 

2009). However, this can lead to predicted presences occurring over a much wider 

geographic range of localities than occur in reality (Bean et al. 2012) – an unhelpful over-

prediction when IUCN Red List assessments should follow the precautionary principle and 

assign the most threatened category plausible (pg 35, IUCN 2013), although this over-

prediction proved helpful in the study of Pearson et al. (2007), who used them to identify 

unknown populations or unknown species. 

 In this study, we take a different approach. Instead of choosing a threshold based on a 

model’s discriminatory ability (the standard approach), we determine it by maximizing – 

across all probability thresholds – the geographical similarity between the MCP drawn 
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around the known presence localities and an MCP drawn around presences predicted by the 

SDM (SDM-derived MCPs). Initial investigations using small subsamples from a well-

sampled species revealed that the EOOs of the resulting SDM-derived MCPs were 

consistently close to that drawn around all of the samples (rather than just the subsamples). 

We therefore tested our method on 20 plant species for which the EOO is considered well 

known, due to extensive sampling. This allows us to implement the approach on subsamples 

of the known occurrence data for each species (as low as just five known presence localities, 

a situation common in threatened species) and assess the extent to which the SDM-derived 

MCPs matched the MCPs of the complete dataset and the extent to which the EOOs of those 

MCPs were similar. Remarkably, we find that, for the majority of our species, the SDM-

derived MCPs are actually closer to the MCPs measured from the complete dataset (the 

“true” range – noting that it is almost never known perfectly) than they are to the MCPs 

measured from the subsets of data used for model training, and this consequently results in 

better estimates of the EOO, especially when sample sizes are small. This indicates that, for 

these taxa in this geographical area, the SDM-derived MCPs are often more informative for 

estimating EOO for a Red List assessment than the available data alone are when sample 

sizes are small. This is the main novel finding from our work. We then extend these findings 

to 30 less well-known species on the IUCN Red List, and assess how the inferred EOOs 

could influence existing Red List assessments for these species. 

2 DATA AND METHODS 

2.1 Occurrence data 

 

Our occurrence datasets comprise presence-only specimen data from the Royal Botanic 

Gardens, Kew (RBG Kew) and the Natural History Museum, London (NHM), supplemented 

by additional online specimen data, collated over the period 2006-2011. All occurrence data 

were for plant species from Central America. We identified 20 species for which their 

distributions can be said to be both well-known and well represented by a relatively large 

number (between 54 and 246) of recorded presence localities, from a variety of taxonomic 

families and life forms. We refer to these as the “well-known species” (see Appendix 1 for 

details). Distributions of species in this area are known to change their distribution extents 

over interglacial cycles (Graham 2010) although we assume that their present natural 

distribution is close to being in equilibrium with their environment. More recently 

anthropogenic disturbances have greatly altered tropical landscapes (Hansen et al. 2008), 

hence affecting species’ distributions. However, for the purposes of this study we assume that 

such effects have not yet dramatically influenced the EOO of the species (we discuss this 

assumption below).  

 

We also selected 30 species for which full IUCN Red List assessments have recently 

been conducted by staff at RBG Kew and NHM (Appendix 1); six were assessed as being of 

conservation concern. We refer to these as “SRLI species” because the occurrence data for 

these came from the plant component of the Sampled Red List Index (SRLI), an indicator to 

measure the current rate of loss of biodiversity by tracking trends in the conservation status of 
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a randomly-selected sample of species (see details in: Baillie et al. 2008; Brummitt et al. 

2008). We focused on monocotyledonous (monocot) and pteridophyte (fern) SRLI species 

occurring in (but not necessarily endemic to) Costa Rica and Panama, which are within the 

Mesoamerica biodiversity hotspot (Myers et al. 2000). Many species in this region are poorly 

represented in the world’s herbaria, so limited knowledge of their true distribution exists; 

nonetheless, conservation assessments are urgently needed for these and thousands of species 

like them. The problems in this region are thus typical of conservation assessments more 

widely. 

2.2 Environmental Variables 

 

Different sets of environmental data layers were selected for each of the major groups of 

plant species: monocots, dicots and ferns. All variables had a 30 arc second (~1km at the 

Equator) spatial resolution (see Appendix 2 for details). These were selected from the 

Worldclim database, version 1.4 (http://www.worldclim.org; Hijmans et al. 2005) and from 

the Consultative Group for International Agricultural Research Consortium for Spatial 

Information (CGIAR-CSI; http://www.cgiar-csi.org). Their selection was based on a 

combination of correlation, principal components and cluster analyses (Syfert et al. 2013) to 

minimise the correlation between the layers, and expert judgement based on the ecology of 

the taxa. This selection led to the initial pool of 24 different candidate environmental 

variables being reduced to between 5 and 6 environmental variables, depending on the 

taxonomic group being modelled (Appendix 2). We note that none of the chosen 

environmental variables explicitly account for biotic interactions (e.g. dispersal or 

competition) or historical constraints, which are known to be important in determining where 

some species occur (Gaston and Fuller 2009), and the lack of these factors could lead to an 

overestimation in the SDM EOO (Marcer et al. 2013). However, we do not have enough 

biological knowledge about any of our chosen species to account for these factors, a typical 

situation when assessing the conservation status of many plant species. 

2.3 Species Distribution Modelling  

 

We used MaxEnt software to build species distribution models (Version 3.3.3; (Phillips et al. 

2006; see also Elith et al. 2011 for details; Phillips and Dudik 2008) because it performs well 

with presence-only data, even with low numbers of known presence localities (Elith et al. 

2006; Hernandez et al. 2006; Pearson et al. 2007). We adopted the default regularisation 

parameters but restricted MaxEnt to using only linear and quadratic functional forms, 

constraining it to producing relatively simple models that do not over-fit  the training data 

(Merow et al. 2013; Syfert et al. 2013). In a previous study (Syfert et al., 2013) and in 

preliminary investigations to this study, we found that this approach generates useful 

predictive models for a range of species, even when they have very different numbers of data 

samples. Sampling bias was controlled for by including a sampling bias dataset (Phillips et al. 

2009) constructed from all georeferenced plant occurrence data from the GBIF data portal 

and from the SRLI project. The spatial extent considered for each species was the area 

containing the presence data plus a 200 km buffer, following VanDerWal et al. (2009). 

Experimentation with species of contrasting known range sizes led us to conclude that this 

buffer struck a good balance between allowing for a wide range of background localities 



 

7 
 

outside the known species range, without excessively compromising the ability of the models 

to predict finer scale spatial variation in the species’ probability of occurrence (VanDerWal et 

al. 2009). This also meant that for most species the spatial extent over which SDMs were 

applied extended from the Pacific coast to the Atlantic coast for most of Central America and 

only limited the predicted extent in the northern and southern limits of the species range. 

2.4 Analytical methods 

 

Minimum convex polygons (MCPs) were calculated using the adehabitat package (Calenge 

2006) within the statistical software R (version 2.11; R Development Core Team 2010). 

Calculating MCPs for SDM predictions requires choosing a threshold value at which to 

discriminate predicted presences from absences. MCPs were calculated for each species using 

the Minimum Training Presence (MTP) threshold: the largest probability of occurrence 

threshold that includes all of the training presence data (Phillips et al. 2006). In addition, 

MCPs were calculated for each species at all logistic-converted threshold probabilities from 

0.05 to 1 in steps of 0.05, to compare MCPs for two methods: similarity in area, and 

similarity in geographical space (see Figure 1 for details). The latter was assessed as a 

measure of geographical overlap using the Jaccard Similarity Index (JSI; Araújo et al. 2005; 

Sangermano and Eastman 2012): 

JSI = C/(A+B-C),      (Equation 1) 

where A is the area of one MCP, B the area of the other MCP, and C is their area of overlap. 

JSI values of 1 indicate complete congruence in range and 0 indicates no overlap between the 

MCP from known presences and the SDM-derived MCP (Figure 1c). For all comparisons 

between MCPs of known presences and of SDM predictions we searched for the threshold 

probability of presence that gave the most similarity in area (Figure 1b) and in geographical 

space (maxJSI; Figure 1d). This approach is different from previous studies in which the area 

of the pixels predicted as present were simply added together to estimate the EOO (e.g. Gauto 

et al. 2011; Pena et al. 2014; Sergio et al. 2007). Instead, here we draw an MCP around the 

predicted presences, which additionally contains predicted absences within its range, and use 

that to estimate the EOO (Figure 1).  

 

 Random subsampling was used to assess SDM performance against randomly 

withheld data, except when models were trained to subsamples of the well-known species. 

When species had greater than 10 presence localities we fitted SDMs 10 times, each time 

with a random 20% reserved for model evaluation (Franklin 2009). A leave-one-out method 

was performed for species with sample sizes below 10 (Pearson et al. 2007). The area under 

the curve (AUC) in a receiver operating characteristic (ROC) plot was used to assess the 

model’s ability to discriminate between presence localities and other localities in the 

environment (Franklin 2009), where an AUC value of 1.0 indicates perfect discrimination 

ability and a value of 0.5 or less indicates a prediction no better than random (although the 

maximum discrimination ability for presence only data is less than 1.0; see Phillips et al. 

2006). 
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2.5 Assessments using data on well-known species 

We randomly generated subsamples of 5, 10, 20, and 30 data points for each of the well-

known species, with 5 replicates each  (in the Discussion we also include examples of where 

spatially biased subsamples were used instead of random subsamples). These sizes were 

chosen to be analogous to those of the SRLI species. Our analyses then consisted of making 

the following comparisons for each species: 

 

1) Comparing MCPs of the SDM predictions (SDMs trained to the subsamples, termed 

SDM-derived MCPs) to the MCPs of the subsampled localities (termed subsample 

MCPs); 

2) Comparing MCPs of the SDM predictions (as identified above) to the MCPs of all 

localities (termed full-sample MCPs); 

3) Comparing the MCPs of the subsampled localities (subsample MCPs) to the MCPs of 

all localities (full-sample MCPs). 

3 RESULTS 

3.1 Well-known species: model accuracy and thresholds 

 

All of the SDMs trained to the complete dataset for each well-known species discriminate 

well between localities with and without presences (mean test AUC = 0.872, values from 0.7 

to 0.9 indicate moderate predictive performance (Appendix 2; Franklin 2009).  The EOOs of 

the SDM-derived MCPs at different threshold methods are highly correlated with the EOOs 

of the full-sample MCPs (Appendix 3a). However, when the MTP cut-off is applied, SDMs 

greatly over-predicted the EOO of the full-sample MCPs. Specifically, the EOO derived 

using the MTP threshold is on average more than 5 times larger and can be up to 10 times 

larger than the full-sample MCP (Appendix 3a; see Appendix 4 for examples). In 

comparison, the maximum geographical similarity threshold leads to predicted EOOs of the 

SDM-derived MCPs that are closer to the EOOs of the full-sample MCPs (Appendix 3a). 

Although the similarity in area threshold also leads to the EOO of the SDM-derived MCPs 

being close to the to the full-sample MCPs (as one would expect; Appendix 3a), it 

occasionally predicted larger areas than were estimated by the full-sample MCP (e.g. two 

model replicates for Cyathea fulva, one model replicate for Cyathea schiedeana and 

Hymenophyllum consanguineum). This is because the similarity in area method relies on the 

two areas becoming equal at some threshold probability whereas in some cases the highest 

probabilities of occurrence in the models included pixels that occur over a larger extent than 

the full-sample MCP.  

 

By definition, the SDM-derived MCPs based on the MTP cut-off include all presence 

data. The maximum geographical similarity threshold generally includes a high percentage of 

presences (>80% in every case), while the similarity in area threshold is more variable 

(Appendix 3b).  Therefore, applying a geographical similarity threshold provides an estimate 

of the full-sample MCP that is more consistently reliable in capturing a higher proportion of 

presence data. For this reason, we focus the rest of our results below on the SDM-derived 
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MCPs using the geographical similarity threshold. The threshold at maximum geographical 

similarity between the SDM-derived MCP and that of the full-sample MCP varies widely 

between the 20 species, from 0.4 (Elaphoglossum furfuraceum) to 0.8 (C. fulva; Figure 2e). 

3.2 Inference from small sample sizes: subsampling data for well-known species  
At subsample sizes of 5 and 10, the SDM-derived MCPs at the maximum geographical 

similarity threshold are geographically closer to the full-sample MCPs (Figure 2a & b, blue) 

than the subsample MCPs are to the full-sample MCPs (Figure 2a & b, black), and are also 

closer to the full-sample MCPs (Figure 2f & g, blue) than they are to the subsample MCPs 

(Figure 2f & g, red). SDM-derived MCPs from larger subsample sizes tend to have higher 

geographical similarity than do those from smaller subsample sizes when compared to either 

the subsample or the full-sample MCPs (Figure 2). This was expected on the basis that more 

samples provide a more representative training dataset of the environments associated with 

species presences, leading to better models.   

 

The low geographical similarity between the SDM-derived MCPs and the subsample 

MCPs at subsample sizes of 5 and 10 (5 samples, median maxJSI= 0.15; 10 samples, median 

maxJSI= 0.27) occurs because larger MCPs are predicted than the subsample MCPs. For 

most species, those larger predicted areas lie predominantly within the full-sample MCPs 

(Appendix 5): subsample sizes of 5 and 10 have over 65% of the models with a proportion of 

0.75 or more of SDM-derived MCPs within the full-sample MCP. Geographical similarity 

increased as subsample size increased and the proportion of the SDM-derived MCPs lying 

within the full-sample MCPs also increased slightly (20 samples, median maxJSI= 0.47, 0.72; 

30 samples, median maxJSI= 0.43, 0.74). 

 

The EOOs of the SDM-derived MCPs at the maximum geographical similarity 

threshold are significantly closer to the EOOs of the full-sample MCPs than the EOOs of the 

subsample MCPs at all subsample sizes (Figure 3; paired sample t-test, p < 0.001), although 

the improvement in the estimated EOO is notably larger at sample sizes of 5 and 10 (Figure 

3a,b). In addition the EOOs of the SDM-derived MCPs are relatively insensitive on average 

to the sample sizes used to train the SDMs (Figure 3 and Appendix 6). 

3.3 SRLI species 

 

The EOOs of the SDM-derived MCPs correlate significantly with the EOOs of the SRLI 

MCPs at the maximum geographical similarity (R²= 0.925, p < 0.001; Figure 4) but data for 

the well-known species in Figure 4 tend to lie closer to the one-to-one line than those for the 

SRLI species. This is similar to what is found with the analysis of small sample sizes from 

the well-known species (Appendix 7a-d) where the EOOs of the SDM-derived MCPs tend to 

over predict the subsample MCPs when using small subsets of the data, even though the 

EOOs of those MCPs were actually closer to the EOOs of the full-sample MCPs (Figure 4). 

The slope of this relationship is not different from the one-to-one slope (standardized major 

axis analysis (SMA; Warton et al. 2012); R²=0.027, slope = 1.007, upper slope CI= 0.906 and 

lower slope CI= 1.120), indicating that the tendency for the SDM-derived MCPs to be larger 

than the SRLI sample MCPs does not vary with the area size being predicted.   
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 SDM-derived MCPs for the SRLI species show a range of maximum geographic 

similarity (i.e. maxJSI) with the SRLI MCPs (median maxJSI = 0.43, minimum = 0.12 

maximum = 0.733) similar to that found for the well-known species, and no relationship with 

sample size and AUC values. However, unlike the well-known species, the SDMs trained to 

the data for SRLI species vary considerably in AUC values (Appendix 1). 

3.4 Case studies: species with small sample sizes assessed for the Sampled Red 

List Index for Plants 

 

We focus on two SRLI species with small sample sizes: Ctenitis chiriquiana (5 occurrences) 

and Brachionidium dressleri (10 occurrences). These are assessed as IUCN threatened 

categories Endangered and Vulnerable, respectively, through assessments carried out for the 

SRLI for Plants project (Figure 5; Brummitt et al. 2008). Model discrimination ability varied 

between the two species, while the maximum geographical similarity (maxJSI) was low: 

Brachionidium dressleri (mean test AUC= 0.936, maxJSI= 0.269); Ctenitis chiriquiana 

(mean test AUC=0.771, maxJSI=0.240). The low geographical similarity occurs because 

areas larger than the MCP derived from the data are predicted (Figure 5); this is similar to 

what is observed when using subsamples of data for species with well-known distributions, 

where the SDM-derived MCPs more accurately reflect the true range of the species (Figure 5, 

Appendix 4b,d). For example, compare these results with those for subsamples of two well-

known species: Polystichum concinnum (subsample size 5) and Anthurium watermaliense 

(subsample size 10).  For both species, although more distinctly for A. watermaliense, larger 

EOOs were predicted by the SDM than the area estimated from the subsample MCP; the 

maxJSI was higher when the SDM-derived MCP was compared to the full-sample MCP 

(Figure 5c & d) than to the subsample MCP (Figure 5e & f). This is representative of our 

subsampling analysis more generally.  For both of the SRLI species the areas of the SDM-

derived MCPs lie within the Vulnerable category (5,000 km² < EOO < 20,000 km²), although 

C. chiriquiana was assessed in the Endangered category (100 km² < EOO < 5,000 km²).   

4 DISCUSSION  

The IUCN recommends a data-driven assessment of species’ conservation status (IUCN 

2013), although either the known or inferred sites of occurrence could be used to calculate 

EOO. Our results here demonstrate that, for plant species in Central America, the EOOs 

estimated from SDMs can be more representative of known EOOs than those derived solely 

from a small number of specimens (Figure 3). Moreover, our approach to constrain the SDM 

predictions to the geographic shape of the point-based EOO appears to provide a conservative 

approach to identifying potentially suitable environments where a species might occur but has 

yet to be found. SDMs offer the opportunity to increase the objectivity of these assessments 

by providing quantitative range estimates based on the relationship between species and their 

environment (Sangermano and Eastman 2012). Hence, IUCN conservation assessments could 

benefit from the inclusion of SDMs as objective information without possibly subjective 

biases from experts (Fourcade et al. 2013). However, it is likely that conservation 

assessments could benefit the most by employing SDMs in conjunction with expert 

judgement (Marcer et al. 2013).  
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4.1 Estimating EOO derived from SDMs 

 

Our conclusions are drawn from plant species from several higher taxonomic groups (dicots, 

monocots and ferns), occurring over a restricted geographical area (Central and South 

America). These were chosen because we have particular interest in assessing the 

conservation status of plant species from this area, rather than aiming to be more general. It is 

therefore possible that our method works particularly well for these data and here we discuss 

reasons for why our insights might not extend more generally. 

 

In our case, the areas of environmental conditions similar to those in which the 

species has been observed appear to be good predictors of where the species is also likely to 

occur.  This may not always be true: species may not occupy the entire niche space revealed 

by correlative SDMs as a consequence of biotic factors (e.g. dispersal limitation, 

competition), disturbance effects (e.g. hurricanes) or anthropogenic effects (e.g. 

deforestation) not included in the model fitting process (Elith and Leathwick 2009). 

Additionally, the SDM approach we have taken here does not explicitly take into account 

non-equilibrium species dynamics. While we believe this is a reasonable assumption for the 

plant species in this study, it could generate misleading predictions for species that are 

rapidly expanding or contracting in their ranges. Conversely, nor do the Red List Criteria 

explicitly take into account non-equilibrium dynamics as assessments of conservation status 

are based on a snapshot of a dynamic process of species’ range-formation. We may have been 

fortunate that our predictions of range extent using limited abiotic data enabled reliable 

predictions of the EOO for our species in which historical factors and dispersal limitation 

were not essential for their range extents (Gaston and Fuller 2009). However, for other 

species this approach may lead to the predicted EOO overestimating the true EOO; this 

would obviously be undesirable in cases where the species is actually more threatened than 

the method implies, risking underestimating the Red List Category. When the EOO is 

overestimated by the SDM, the EOO derived from the point-based MCP should be reported 

in a conservation assessment, although the EOO overestimate from a carefully constructed 

SDM could provide an ecologically-based inference of possible important variables missing 

from the models, such as historical processes (Marcer et al. 2013). 

 

Our predictions were also made assuming that the species environment relationship 

has reached some form of equilibrium (Austin 2002). The assumption is often made with 

large-scale distribution modeling in which the underlying biology is poorly known (Austin 

2002; Guisan and Zimmermann 2000). This assumption might be particularly problematic for 

species that have experienced rapid changes in their environmental niche space, such as 

threatened species that have already experienced dramatic reductions in their geographic 

range, or mobile species that have only been observed in a restricted part of their 

environmental space. This again would lead to the EOO being overestimated. Unfortunately 

it is impossible to use presence only data alone to identify whether this might be the case. It 

therefore seems possible that the additional environmentally suitable areas predicted by our 

method may not accurately reflect where the species is also likely to occur, leading to the 

inferred EOO being overestimated, again an undesirable result in the Red List assessment 

process.  
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 Surprisingly, our approach provides informative predictions for species known only 

from very few collections (5-10 specimens), supporting previous studies that have also shown 

the potential usefulness of models derived from small sample sizes (Hernandez et al. 2006; 

Pearson et al. 2007; Thorn et al. 2009). This might again be because our chosen species 

reliably occupy clear regions of environmental space. However, it might also be because 

EOO is relatively easy to predict accurately: errors made in predicting the precise locations 

and areas of specific localities are not as important as whether the overall extent of 

environmentally suitable areas are predicted well.    

4.2 Applying SDMs to Red Lists assessments 
Many threatened plant species are known from only a few localities (< 15), and their 

Red List assessments are often based on a small number of collections (Rivers et al. 2011). 

Our results indicate that under such circumstances, the inferred EOOs can provide useful 

additional information about how much larger the actual EOO could be, and where it is likely 

to extend geographically. For example, in the case of our two example SRLI species, C. 

chiriquiana and B. dressleri, the EOOs of the SDM-derived MCP would imply that their 

distributions are likely to be larger than that indicated by the data. These examples show the 

potential to strengthen our confidence that these species are likely to have restricted ranges 

occurring along an ecological gradient; in this case the suitable environments coincide with 

the presence of cloud forests in the Talamanca Mountains. We concur that identifying 

potentially suitable environmental conditions for the species provides greater value for 

inferring the ecology of poorly-known species. These predictions could clearly be useful to 

guide future field expeditions and/or be important information for reassessments (Pearson et 

al. 2007). The predictions also imply that on the basis of the inferred EOO, the IUCN ratings 

of these species should be Vulnerable rather than Endangered (Figure 5). Accepting such a 

revision on the basis of this study would perhaps contradict the precautionary principle; 

however, this information may be useful when prioritising species within conservation 

categories for attention: one might choose to investigate or protect an observed and inferred 

Critically Endangered species rather than one that is observed to be Critically Endangered but 

is robustly inferred to be Vulnerable. 

 

Our method might also be used to highlight data points that require further 

investigation for possible errors or inaccuracies in taxonomy or locality. This could be 

assessed by further investigating why high habitat suitability is associated with points outside 

the known range (in the case of discovering potential unknown populations (Guisan et al. 

2006) or for reintroduction activities (Thorn et al. 2009)), or why some presence localities 

have particularly low probabilities associated with them (in the case of checking the accuracy 

of data points). 

4.3 Insights to Methods 
 

Our analysis of the SRLI species produced a number of situations in which the model 

discrimination ability was low (AUC< 0.7, Appendix 1). If we were attempting to gain 

insights into the EOO of those species we would normally try to improve the model further, 

at least to obtain a sufficiently high discriminatory power for the model to be useful (e.g. 

AUC > 0.7, Franklin 2009). Our models trained with the full-sample data for the well-known 

species always had consistently high predictive performance, measured as AUC (Appendix 

1); however, the maximum geographic similarity varied (Figure 2). This is due to the model 

predicting presence data well, but not including some known localities in the modelled range 

when a particular threshold is applied (examples are shown for SRLI species in Appendix 8, 
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but we obtained similar results for some of the well-known species). The fact that the 

geographical similarity between the SDM predicted EOOs and that of the well-known species 

was rarely >80% (Figure 2), and often much less, indicates that many of our models made a 

>20% commission error in predicting the species geographic extent. It is therefore important 

to consider, in addition the model’s discrimination ability, whether the predicted range at 

maximum geographical similarity does indeed include a high proportion of known presence 

localities, or a high proportion of the area bounded by these presence localities. 

 

Occasionally, SDM-derived MCPs predicted for SRLI species had spatial predictions 

that included localities at the very edges of the study extent (e.g. Appendix 8a). In such 

situations it is difficult to know whether the SDM is over-predicting the EOO or whether the 

study extent (a 200km buffer around the point location data) does not include the entire 

species range: ecological and biological expertise, or further field investigations, is needed to 

judge which of these is more likely. However, limiting the geographic extent of the 

background data relative to the species presence data (VanDerWal et al. 2009) appears to 

have avoided this situation for the majority of our species. Although it is possible that our 

chosen buffer size may not have been suitable for all species, as we only performed 

preliminary tests on a selection of species with contrasting known geographic extents, our 

background selection approach did allow us to conduct essentially the same analysis across a 

wide range of species with different numbers of collections and different geographic extents. 

We therefore recommend this approach in future analyses. A potential modification might be 

to replace the fixed 200km buffer with one that is scaled by the degree of separation between 

known presence localities, e.g. mean inter-point distance, or greatest distance between any 

pair of known localities. 

 

We used random subsets of the well-known species data to represent the distributions 

of less well-known species. However, this does not represent scenarios in which the known 

localities represent a geographically biased subset of the true distribution (e.g. if localities 

had only been recorded during an expedition to one particular country even through the 

species distribution spanned several countries). In Appendix 9 we present the results of a 

preliminary investigation into the sensitivity of our findings to using geographically-biased 

subsets of our data (10 samples each). As we found with the random subsets, on average the 

EOO of the SDM is closer to that of the true EOO than the geographically biased subsample 

(comparing Appendix 9b to Appendix 9c). Moreover, the SDM EOO tends to provide a 

conservative estimate of the true EOO (Appendix 9b), although a minority of the SDM 

estimates are actually larger than the true EOO – an over-prediction that would preferably be 

avoided when making IUCN assessments. Overall however these preliminary results imply 

that our findings are also robust to geographic sampling bias. 

 

Although we would hope that a high proportion of known presence localities would 

be included in the inferred EOO, we advise caution in using a probability threshold that 

includes all known localities (the MTP threshold) in SDM predictions; in our case this clearly 

over-predicted the MCPs (Appendix 3a). Our observation of over-prediction when using the 

MTP threshold corroborates with one recent study (Bean et al. 2012) but contrasts with two 

others (Pearson et al. 2007; Thorn et al. 2009).  Pearson et al. (2007)  found over-prediction 
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was a useful feature in which they were interested in the overall predicted distribution (rather 

than EOO) to identify potentially new species populations and Thorn et al. (2009) focused on 

smaller study extents, Indonesian islands, and highlight the over-predictions as potential 

reintroduction zones for threatened species. For our study, in the majority of cases we find 

that setting a threshold based on maximum geographical similarity strikes an appropriate 

balance between including a high proportion of presence localities in the predicted range (a 

particular concern for predicting rare species, Williams et al. 2009) but not predicting an 

excessively large EOO relative to the EOO estimated from point data. Based on our results, 

the EOO of the SDM-predicted MCP using the maximum geographical similarity threshold 

does not tend to over-predict the EOO of the full-sample MCP. Similarly, Sangermano & 

Eastman (2012) found maxJSI to be an effective threshold method for refining range maps.  

 

We adopted an approach using MaxEnt for the purposes of this study in which we 

have found to work well for a range of species, and this approach includes adopting the 

default regularisation parameters but limiting MaxEnt to using linear and quadratic features 

only (see Methods). However applying SDMs to inform the Red Listing process should 

always carefully consider the appropriateness and effects of the chosen SDM methods and 

their settings (Merow at al. 2013), such as exploring the effects of adopting different 

regularisation parameters in MaxEnt (e.g. Elith et al. 2010) or employing different SDM 

methods entirely.  

4.4 Conclusion 

Estimates of EOO underpin most Red List assessments under IUCN Criterion B, as accurate 

population estimates are hardly ever available for plant species. In such cases, verifiable and 

geo-referenced herbarium specimens usually represent the best available data for 

conservation assessment purposes (Brummitt et al. 2008; Rivers et al. 2011). IUCN 

guidelines suggest that minimum, maximum and best estimates of EOOs are recorded in 

cases where there is uncertainty (IUCN 2013); this creates a role for SDMs in species 

conservation assessments because they can be used to estimate what the EOO might be under 

different assumptions. In particular, recent studies give support to the role of SDMs in  

estimating EOO to assist in assessing species’ conservation status when data are limited 

(Pena et al. 2014) or when species are rare (Marcer et al. 2013). In a recent paper 

investigating the role of SDMs to guide conservation decisions, Guisan et al. (2013) stress the 

need for SDMs to be developed through practice-oriented case studies. Our case study of 

plants from the neotropics provides a feasible approach towards applying SDMs to 

conservation assessments that has the potential to be cost effective for megadiverse regions 

with high rates of habitat loss. However, while the methods we propose here work for the 

selected plant species, more extensive taxonomically- and geographically-extensive testing of 

SDMs, as well as tests using modelled artificial species with prescribed ecological and life 

history characteristics, are needed before this approach can be recommended for general 

application to the Red Listing process.   

 

Challenges remain in identifying guidelines so that SDMs are used appropriately in order 

that they usefully inform conservation assessments. For example, using SDMs as 

supplementary information could aid in the understanding of whether a species has a 
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restricted range, whether potential distributions indicate additional suitable localities for the 

species and can be used to guide future surveys, or perhaps for the reassessment process. In 

addition it is essential that assessors evaluate the conservation implications of commission 

and omission errors, especially to avoid underestimating the extinction risk of a species. 

However, based on the results of this study we conclude with some general findings and 

possible approaches for incorporating SDMs into Red List assessments: 

 

 Control for sampling bias (Kramer-Schadt et al. 2013; Merow et al. 2013; Syfert et al. 

2013) and consider background extent (e.g. apply an appropriate buffer to define a 

suitable extent; VanDerWal et al. 2009); this is imperative.  

o The SDM might not be informative when the predictions go to the edge of the 

study extent; it is likely that the full geographic spread has not been fully 

considered (e.g Appendix 8a) 

 

 Evaluate whether the model has reasonable discriminatory power in order to be useful 

(e.g. AUC > 0.7, Franklin 2009).  

o The SDM might not be informative when the SDM test or training AUC is 

below 0.70, which indicates that the model poorly predicts its own data (e.g 

Appendix 8a) 

o If relevant, investigate why high probabilities might be associated with points 

outside the known range, or why some known presence localities have 

particularly low probabilities associated with them. The SDM might not be 

informative if these discrepancies cannot be explained. 

 

 Evaluate the maximum geographical similarity (maxJSI); lower values indicate that 

the degree of overlap between point-based and SDM-derived EOOs is small and 

highlight whether the low value represents an informative or unrealistic degree of 

overlap.  

o The SDM might not be informative when the geographical overlap extends far 

beyond the point-based EOO (e.g Appendix 8a). 

 

 Evaluate whether the predicted range at maximum geographical similarity includes a 

high proportion of known presence localities, or a high proportion of the area bounded 

by these presence localities. 

o The SDM might not be informative when only a small fraction of the point-

based EOO is captured by the SDM-derived EOO (e.g Appendix 8b). 

 

 Evaluate if the results could be used to help target future survey efforts 

o In such cases, the predicted distribution rather than the predicted MCP is more 

likely to be useful (e.g. Appendix 4a and Pearson et al. 2007). 
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Figure 1. a) Map showing the point data MCP and the SDM-derived MCP overlaid on a 

presence/absence map as inferred from the SDM with a threshold based on maximum 

geographical similarity (in this example, 0.65); b) comparing similarity of area (range size) 

the point data MCP to MCPs predicted by species distribution modelling across a range of 

probability thresholds (which are used to convert modelled continuous probabilities into 

predictions of presence and absence); c) Jaccard Similarity Index: C/(A+B-C) in which A= 

area of SDM-derived MCP, B= area of point data MCP, and C= area of overlap;  d) by 

comparing geographical similarity across multiple probability thresholds, the maximum 

similarity between the SDM-derived MCP and point data MCP is obtained (maxJSI). 
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Figure 2. Comparisons of the maximum geographical similarity (maxJSI; see Figure 1 for 

explanation) between sample MCPs and SDM-derived MCPs for 20 species with well-known 

distributions using different subsample sizes; (a-d): maxJSI of SDM-derived MCP with full-

sample MCP (blue) and maxJSI of subsample MCP with full-sample MCP (black); (f-i): 

maxJSI of subsample SDM-derived MCP with subsample MCP (red) and subsample SDM-

derived MCP with full-sample MCP (blue). Error bars indicate the minimum and maximum 

maxJSI from 5 replicates.  e) corresponds to comparisons for SDMs fitted using all locality 

data for that species. AVERAGE is the average of the average, maximum and minimum 

values for the 20 species. 
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Figure 3. The relationship between the EOO of the full-sample MCP to the EOOs of the 

SDM-derived MCP (grey diamonds) and subsample MCP (dark grey squares) for each 

subsampling group. The relationship between the full-sample MCP and SDM-derived MCP is 

also shown (open black circles). 
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Figure 4. The relationship between the EOO of full-sample MCPs and SDM-derived MCPs, 

where the SDM was thresholded to maximize geographical similarity for each species. The 

threshold at which a species is defined as endangered (< 5,000 km²) and vulnerable (< 20,000 

km²) according to IUCN criterion B are shown. Area of full-sample MCPs (log10 km²) at the 

maximum geographical similarity for SRLI species and the SDM-derived MCP (log10 km²) 

are significantly correlated (p-value < 0.001); the slope of this relationship is not different 

from the one-to-one slope (SMA; R²=0.027, slope = 1.007).  
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Figure 5. SRLI sample MCPs superimposed on presence/absence maps from which 

maximum geographical similarity occurs for SRLI case studies with a small number of 

occurrences (a and b). Selected well-known species with comparative results to the SRLI 

species in which the SDM-derived MCP larger than the subsample MCP (c and d) but is 

actually within the full-sample MCP (e-f). 
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Supplementary Material 

Appendix 1 

Model performance for species with well-known distributions and species from the Species 

Red List Index (SRLI) database; training AUC (area under the curve) refers to the AUC 

assessed on the data used to train the models and test AUC refers to the AUC based on data 

that were withheld from training (see Methods in the main manuscript for details. 

 

Species (d=dicot; f=fern; m= monocot) 
Sample 

size 

Training  AUC 

(±SD) 

Test AUC 

(±SD) 

Species with well-known distributions         

Werauhia ororiensis (m) 54 0.938  ± 0.006 0.954  ± 0.025 

Chamaedorea palmeriana (m) 55 0.930  ± 0.006 0.915  ± 0.030 

Epidendrum parkinsonianum (m) 61 0.871  ± 0.013 0.847  ± 0.037 

Geonoma edulis (m) 68 0.867  ± 0.009 0.853  ± 0.044 

Polystichum concinnum (f) 75 0.953  ± 0.003 0.948  ± 0.008 

Polypodium macrolepis (f) 78 0.972  ± 0.003 0.969  ± 0.013 

Odontosoria gymnogrammoides (f) 79 0.862  ± 0.009 0.838  ± 0.038 

Quercus costaricensis (d) 90 0.979  ± 0.001 0.978  ± 0.007 

Anthurium watermaliense (m) 99 0.868  ± 0.007 0.857  ± 0.033 

Diplazium urticifolium (f) 99 0.890  ± 0.006 0.877  ± 0.034 

Cyathea schiedeana (f) 103 0.782  ± 0.013 0.745  ± 0.041 

Ilex pallida (d) 103 0.927  ± 0.005 0.925  ± 0.024 

Elaphoglossum furfuraceum (f) 111 0.949  ± 0.006 0.951  ± 0.031 

Anthurium ranchoanum (m) 112 0.909  ± 0.005 0.893  ± 0.022 

Cyathea fulva (f) 120 0.855  ± 0.003 0.853  ± 0.016 

Hymenophyllum consanguineum (f) 137 0.867  ± 0.007 0.847  ± 0.023 

Dieffenbachia tonduzii (d) 161 0.789  ± 0.005 0.784  ± 0.020 

Topobea pittieri (m) 161 0.862  ± 0.005 0.847  ± 0.017 

Mollinedia viridiflora (d) 180 0.799  ± 0.010 0.780  ± 0.021 

Geonoma interrupta (m) 246 0.788  ± 0.004 0.775  ± 0.029 

Red List species               

Ctenitis chiriquiana (f)* 5 0.889  ± 0.01 0.771  ± 0.218 

Olyra standleyi (m) 5 0.78  ± 0.05 0.533  ± 0.323 

Barbosella geminata (m)* 6 0.904  ± 0.02 0.881  ± 0.121 



 

26 
 

 

*Species of conservation concern 

 
 

Acianthera hondurensis (m)* 8 0.82  ± 0.03 0.791  ± 0.218 

Vriesea camptoclada (m)* 9 0.779  ± 0.03 0.666  ± 0.268 

Brachionidium dressleri (m)* 10 0.947  ± 0 0.936  ± 0.026 

Guzmania sibundoyorum (m) 12 0.748  ± 0.04 0.628  ± 0.168 

Trichopilia turialbae (m) 17 0.86  ± 0.02 0.767  ± 0.103 

Telipogon biolleyi (m)* 17 0.835  ± 0.03 0.737  ± 0.08 

Terpsichore alfarii (f) 18 0.861  ± 0.02 0.79  ± 0.118 

Polytaenium chlorosporum (f) 21 0.899  ± 0.01 0.875  ± 0.029 

Platystele minimiflora (m) 21 0.691  ± 0.07 0.614  ± 0.111 

Pleurothallis rowleei (m) 23 0.88  ± 0.02 0.871  ± 0.095 

Anthurium alatipedunculatum (m) 24 0.945  ± 0 0.94  ± 0.02 

Trichopilia marginata (m) 24 0.846  ± 0.02 0.683  ± 0.059 

Marattia interposita (f) 27 0.882  ± 0.01 0.862  ± 0.034 

Palmorchis trilobulata (m) 27 0.798  ± 0.03 0.653  ± 0.066 

Brassia verrucosa (m) 30 0.727  ± 0.01 0.687  ± 0.029 

Pleopeltis fructuosa (f) 32 0.925  ± 0.01 0.922  ± 0.025 

Cyathea williamsii (f) 33 0.894  ± 0.01 0.925  ± 0.041 

Maxillaria hedwigiae (m) 33 0.806  ± 0.01 0.696  ± 0.061 

Cnemidaria cocleana (f) 34 0.857  ± 0.03 0.847  ± 0.031 

Pitcairnia nigra (m) 37 0.839  ± 0.02 0.872  ± 0.074 

Polypodium friedrichsthalianum (f) 42 0.891  ± 0 0.89  ± 0.026 

Terpsichore atroviridis (f) 49 0.905  ± 0.01 0.892  ± 0.069 

Zygophlebia sectifrons (f) 56 0.934  ± 0.01 0.919  ± 0.025 

Elaphoglossum moranii (f) 57 0.887  ± 0.01 0.897  ± 0.024 

Polypodium ursipes (f) 66 0.937  ± 0 0.936  ± 0.019 

Danaea wendlandii (f) 78 0.878  ± 0.01 0.87  ± 0.021 

Elaphoglossum longicrure (f) 86 0.741  ± 0.01 0.717  ± 0.049 
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Appendix 2 

Detailed Methods 

Environmental Variables 
 

Correlative distribution models for plant species typically incorporate data on nutrients (soil), 

water availability (precipitation/ evaporation), light (radiation) and temperature (Franklin 

2009, Guisan and Zimmermann 2000).  Good quality data on soil nutrients and solar radiation 

were not available for the large study extents we considered (ranging from as far north as 

Mexico to as far south as central Bolivia) and so we restricted our choice of environmental 

variables to climate and water availability data.  

 

 We aimed to select between 5 and 10 variables that were ecologically relevant for 

each plant group (Elith and Leathwick 2009). Hierarchical clustering, principal components 

and Pearson correlation analyses were used to select a subset of environmental variables to 

reduce the degree of multicollinearity (Franklin 2009), and resulted in the selection of 

different sets of environmental variables for each plant group (monocotyledonous plants, 

dicotyledonous plants and ferns). Environmental variables selected for the monocot species 

were: the annual temperature range (the difference between the warmest and coldest months), 

the ratio of annual actual evapotranspiration to annual potential evapotranspiration 

(AET/PET), the minimum temperature of the coldest month, and the precipitation of the 

coldest, driest and warmest quarters (three month period); fern species: the annual 

precipitation, AET, water deficit (calculated as PET- AET; Stephenson 1998), the minimum 

temperature of the coldest month, and the precipitation of the coldest and warmest quarters; 

dicots: AET, annual temperature range, precipitation of the coldest quarter, water deficit, and 

precipitation seasonality.  

 

Annual precipitation has long been recognized as a major determinant of species’ 

distributions (Woodward and Williams 1987).  The species’ tolerance to drought and cold 

temperatures are characterized as water deficit and minimum temperature, respectively. AET 

is the amount of water loss given existing evaporative energy in a system and the available 

water provided by precipitation and storage in the soil (Frank and Inouye 1994), while 

AET/PET is the index of humidity (Thuiller et al. 2006), which estimates the drought stress 

as evaporative demand that cannot be satisfied due to limited water supply. Precipitation of 

the coldest and warmest quarters and precipitation of the driest quarter differentiates the 

length of the dry season between the Pacific and Atlantic slopes, thus discriminating a 

species’ sensitivity to the duration of minimal precipitation. Similarly, precipitation 

seasonality can differentiate the length of the dry season between the slopes if many other 

precipitation variables are highly correlated. 

MaxEnt 
 

MaxEnt is among the best-performing of the different presence-only correlative SDM 

approaches available (Elith et al. 2006, Mateo et al. 2010, Williams et al. 2009).  Sampling 

bias can seriously influence the predictive accuracy of SDMs and several methods have been 

proposed to deal with the issue. Phillips et al. (2009) proposed generating pseudo-absences 

from a large dataset that has a bias similar to the occurrence data, and we have shown this 

approach allows more accurate predictions than sampling pseudo-absences from random 

locations within the study area (Syfert et al. 2013). We applied this approach here by 
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obtaining all available georeferenced plant occurrence data for Central and South America 

available through the GBIF data portal (www.GBIF.org) as well as the data on plant species 

assessed for the SRLI project (~2.6 million records in total, as of July 2010). The spatial 

extent of the area modelled also influences model performance (Peterson et al. 2011). In our 

case, species ranges varied from small ranges contained with Costa Rica and Panama to much 

larger ranges, for instance, extending from Nicaragua to Venezuela. Hence, we built models 

with varied extents, fitting to the species ranges to allow for a biologically meaningful fit 

between a species occurrence and the associated environmental variables. We choose a 200 

km buffer around the presence data of each species, which follows a similar approach to Van 

Derwal et al. (2009), in which they found this to be the most favourable distance for 

generating pseudo-absences from occurrence data in tropical Australia. 
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Appendix 3 
 
 

 
The relationship between the EOO of the SDM-derived MCP and the EOO of the full-

sample MCP for three threshold methods: minimum training presence (MTP), maximum 

geographical similarity (maxJSI) and similarity in area; (b) the proportion of presences 

predicted present using each threshold method. 
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Appendix 4 
 
 
 

 
Comparison of threshold methods for two examples of well-known species. Blue polygons 

are MCPs based on locality data (full-sample), green polygons are SDM-derived MCPs, 

black areas denote predicted presences and grey areas are predicted absences. In both 

examples, the SDM-derived MCP based on the MTP threshold is considerably larger than the 

MCP estimated from the locality data (full-sample). In contrast the SDM-derive MCP from 

the maxJSI threshold is only marginally larger than the MCP estimated from the locality data.  
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Appendix 5 
 

 
Proportion of SDM-derived MCPs (trained with subsampled data) within full-sample MCP.  

(a) 66% of the models are within 0.75 proportion of the full-sample MCP; (b)  72% of the 

models are within 0.75 proportion of the full-sample MCP; (c) 72% of the models are within 

0.75 proportion of the full-sample MCP; (d) 74% of the models are within 0.75 proportion of 

the full-sample MCP. 
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Appendix 6 

 
The relationship between the EOO of the full-sample MCP (each species averaged from 5 

model replicates) to the EOO of the SDM-derived MCP (a) and subsample MCP (b) for each 

subsampling group. The relationship between the full-sample MCP and SDM-derived MCP is 

also shown (open black circles). 
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Appendix 7 
 
 

 
The relationship between the EOO of subsample MCPs (log scale, km²) and SDM-derived 

MCPs (log scale, km²) based on the threshold at which maximum geographical similarity 

occurs for each subsampling group of species with well-known distributions (grey diamonds, 

significantly correlated ( p-value <0.001) for all subsampling groups). The relationship 

between the area of full-sample MCP (i.e. complete dataset) and SDM-derived MCP is also 

shown (open black circles). The slope of these relationships between the area of subsample 

MCPs and SDM-derived MCPs is not different from the one-to-one slope for sample sizes, 5, 

20 and 30 (SMA; R²= 0.202, slope = 1.09, R²= 0.314, slope = 1.05, R²= 0.413, slope = 1.07, 

respectively), but the relationship is different from the one-to-one slope for sample size 10 

(SMA; R²= 0.5673, slope = 1.17, p-value < 0.05). 
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Appendix 8 
 

 

 
Two examples of  SRLI species with a low number of occurrences and low geographical 

simiarity values. (a) predictions tend to follow a distinct ecological gradient and also go to the 

edge of the study extent; (b) a small proporation of locality data is included in SDM-derived 

MCP. 
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Appendix 9 
 

We performed a preliminary investigation into the accuracy of SDM estimated EOOs when 

using geographically biased subsets of data. For this investigation we used the species with 

well-known distributions. Occurrence data for all species were partitioned into four bins 

using regional watershed boundaries. We chose watershed boundaries to represent the sort of 

geographical feature that might limit the range over which species are searched for while still 

allowing us to partition the data and leave a reasonable number of samples with which to 

train SDMs. Within each geographically biased group, 10 data points were randomly sampled 

and MaxEnt models were built using 10 data points without replication (these numbers 

selected after the insights of the other analyses in this paper). Otherwise, the modelling 

method used was identical to that used elsewhere in our paper. We only used 8 out of the 20 

well-known species because only these could be divided into the watershed boundaries whilst 

leaving 10 data points with which to train SDMs.  
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EOO comparison with MaxEnt models built from geographically biased subsets; a) example 

of how species data were partitioned into four groups based on watershed boundaries; b) the 

relationship between the EOO of the full-sample MCP (log scale, km²)  to the EOO of the 

MCP (log scale, km²)  estimated from SDMs; c) the relationship between the EOO of the full-

sample MCP (log scale, km²)  to the EOO of the geographically biased subsample (log scale, 

km²)  estimated from SDMs. 

 

 

(b) 

(c) 


