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Abstract
We explore a method for generalising Pixar semi-sharp creases from the univariate cubic case to arbitrary degree
subdivision curves. Our approach is based on solving simple matrix equations. The resulting schemes allow for
greater flexibility over existing methods, via control vectors. We demonstrate our results on several high-degree
univariate examples and explore analogous methods for subdivision surfaces.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

Subdivision is a popular technique for modelling curves and
surfaces, especially in the context of computer games and
animated films. While other families of schemes exist, the
most popular surface schemes are based on tensor-product
B-splines (Catmull-Clark scheme [CC78]) or box-splines
(Loop’s scheme [Loo87]). Subdivision curves play an im-
portant role, too, as they are found on surfaces as boundary
curves and creases, and bivariate subdivision rules are de-
rived from the underlying univariate rules.

Subdivision curves and surfaces are essentially paramet-
ric objects and efficient evaluation algorithms exist [Sta98].
This then allows for shapes modelled using subdivision to be
used not only in modelling, but also in finite element anal-
ysis [COS00]. As subdivision curves and surfaces are typ-
ically smooth everywhere, creases need to be modelled ex-
plicitly and require modified subdivision rules. In particular
for the case of Catmull-Clark subdivision, this was elegantly
addressed by Pixar in [DKT98], including support for semi-
sharp creases, which appear naturally on real-world objects.

Subdivision schemes have been generalised to support ar-
bitrary degrees [Sta01] in the uniform setting and also to
non-uniform subdivision surfaces [Cas10] using multi-stage
algorithms, motivated, in the latter case, by the desire to
make NURBS and subdivision compatible. However, semi-
sharp creases, an important modelling ingredient, are not, in
general, available for higher degree subdivision shapes.

Building on the method developed in [KSD14b], we iden-

tify a family of univariate schemes that support modelling
with semi-sharp creases and show that the resulting schemes
generalise the odd-degree rules proposed in [Sta01] to arbi-
trary degrees (Sec. 3). Extending the traditional spline for-
mulation by control vectors [KSD14a], we devise a frame-
work for incorporating control vectors in arbitrary degree
subdivision curves that is suited for modelling with semi-
sharp creases (Sec. 4). Based on our univariate results, we
initiate the study of supporting modelling with semi-sharp
creases on arbitrary-degree subdivision surfaces facilitated
by control vectors (Sec. 5). We demonstrate the capabilities
of our method on several univariate and bivariate examples
and we address the limitations and advantages of our ap-
proach (Sec. 6). We start by discussing related work.

2. Related work

Creases on curves and surfaces play an important role in
modelling. Moreover, if we try to fit a smooth shape to
an object with a crease, we will get unwanted undula-
tions [HDD∗94]. A comparison of approaches to modelling
with creases is presented in [KSD14b]. While primarily fo-
cused on the curve case, most results generalise to surfaces.
Tools for handling boundaries and creases on spline sur-
faces include knot insertion, ghost points, and multiple con-
trol points. However, modifying subdivision rules is a su-
perior method, especially in the surface case, as it can be
applied locally and no new control points need to be intro-
duced [KSD14c]. The semi-sharp crease rules proposed by
Pixar [DKT98] are a prime example.
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Nevertheless, Pixar semi-sharp creases are limited to
Catmull-Clark surfaces. A multi-stage approach was in-
troduced by Stam [Sta01]. While Stam’s approach works
for any degree, sharp creases are limited to odd degrees
and, as we show below, the method results into undesir-
able end-conditions. Cashman’s “NURBS-compatible sub-
division” [CADS09, Cas10] allows multiple knot lines, and
thus creases, but they need to run across the whole sur-
face (or form closed loops). Kosinka et al. extend Cash-
man’s method to allow knot lines and creases to be trun-
cated [KSD14c], but the approach is based on knot insertion
and thus introduces unnecessary control points, especially
on higher-degree surfaces.

Other constructions with crease support include NURSS
[SZSS98], the schemes by Müller et al. [MRF06, MFR∗10],
and extended Doo-Sabin subdivision [HW11]. However, all
these constructions are limited to degrees up to three.

A matrix-based approach to creases on arbitrary-degree
subdivision curves was introduced in [KSD14b]. Build-
ing on that we show how to generalise Stam’s odd-degree
sharp creases to arbitrary-degree semi-sharp creases. More-
over, we combine this with control vectors introduced in
[KSD14a] and produce new families of arbitrary-degree
schemes with support for semi-sharp creases.

3. Creases on subdivision curves

To fix notation and to be able to build on top of previ-
ous work, we briefly recall the approach to creases taken
in [KSD14b]. Our investigations apply to arbitrary degree
subdivision. We also propose a new quintic scheme suitable
for modelling curves with semi-sharp creases and reveal a
link between the methods of [Sta01] and [KSD14b].

3.1. A matrix approach to creases

Denote B = (B0,d(t),B1,d(t), . . .) the vector of uniform B-
splines [dB72] of degree d defined over the knot vector

t = [0, . . . ,0︸ ︷︷ ︸
(d+1)×

,2,4,6,8, . . .].

Note that t = 0 corresponds to a boundary point; crease rules
and basis functions can be obtained from boundary rules and
functions by symmetry. In order to select a subspace of the
space spanned by B, a selection matrix M is used to con-
struct N = BM = (N0,d ,N1,d , . . .), a basis that can still repre-
sent a sharp crease, but with fewer basis functions than in B
for d ≥ 3. This simplifies the resulting subdivision rules and
avoids unnecessary control points otherwise created using,
for example, knot insertion.

Since B is refinable, a subdivision matrix S exists such
that B = bS, where b is the refined basis over the finer knot

vector

τττ = [0, . . . ,0︸ ︷︷ ︸
(d+1)×

,1,2,3,4, . . .].

In addition, N has to be refinable as well, so N = nT for
some subdivision matrix T, where n is the refined version of
N. Moreover, it holds n = bM over τττ.

From the four matrix equations

N = BM, B = bS, N = nT, n = bM (1)

and the fact that b forms a basis it follows that

SM = MT. (2)

For a fixed degree d, S is known; it is the subdivision ma-
trix for B-splines at a knot of multiplicity d + 1. Thus, (2)
needs to be solved for M and T; this yields a system of bilin-
ear equations. This approach can be applied to higher degree
schemes, including even degrees; see [KSD14b] for details.

For example in the case of cubics, the Pixar (infinitely
sharp) crease rule is one solution of (2) with

M3 =



1 0 0
2
3

1
3 0

0 1 0
0 0 1

. . .


,T3 =

1
8



8 0 0 0
4 4 0 0
1 6 1 0
0 4 4 0

. . .


.

(3)

The rows in bold in T3 correspond to regular subdivision
stencils not influenced by the crease. Only the first sten-
cil (row) of T3 is different; all the other stencils are regu-
lar. This gives the smooth rule [1,6,1]/8 and the sharp rule
[8]/8 = [1] for new vertex points as described in [DKT98].
New edge points are always computed using [4,4]/8. For the
semi-sharp generalisation, each original vertex is associated
with a sharpness value, s, which indicates how many times
the sharp rule is used for that vertex before switching to the
smooth rule as subdivision proceeds. This results in semi-
sharp creases. Non-integer values of s can also be supported
by linear interpolation. This is the univariate version of Pixar
semi-sharp creases [DKT98].

We note that this approach (Eq. (2)) resembles the lofting
method of Schaefer et al. [SWZ04] (see their Eq. (1)). How-
ever, we focus on creating new subdivision rules at bound-
aries and creases, while they consider lofting and interpola-
tion. The difference is most evident in matrix M: in [SWZ04]
it is a known change-of-basis matrix but here it is an un-
known subspace-selection matrix.

3.2. Semi-sharp rules for higher degrees

In order to generalise this to higher degrees, we need to be
able to switch between the sharp rule and the smooth rule.
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However, because stencils get larger with degree and more
of them become irregular near creases, a different approach
needs to be taken. We explore two options. First, one can use
the multi-stage approach of Stam [Sta01]. Second, one can
adapt the approach taken in [KSD14b] by breaking some of
the rules imposed therein. As we show below, both options
give the same answer in the case of odd degrees.

3.2.1. Quintics

The matrix equation (2) leads in the quintic case to three
different subdivision matrices; see Section 4.2 in [KSD14b].
However, the first three stencils are not regular in any of the
three cases. This fact complicates implementation, but more
importantly it prevents the direct use of the (semi-)sharp ap-
proach from the cubic case, because the sharp rule influences
points other than the sharp control point itself; in particular
two adjacent sharp control points require special treatment.

We therefore investigate ways to modify stencils to obtain
only few irregular ones in T by breaking some of the condi-
tions imposed on M and/or T in Section 3 of [KSD14b]. In
particular, we can relax only conditions (M3) and (T3) from
[KSD14b] to obtain larger solution spaces without compro-
mising the integrity of the approach.

For d = 5, we relax M and T (omitting
. . .) to

M5 =


1 0 0

m1 m2 1−m1−m2
m3 m4 1−m3−m4

0 m5 1−m5

0 0 1

 ,

T5 =
1
32


32 0 0 0
t1 t2 32− t1− t2 0
6 20 6 0
1 15 15 1

 ,

(4)

where the elements in bold red violate conditions (M3) and
(T3) from [KSD14b], respectively. This then leads, via (2),
to a linear system with the unique solution

M5 =


1 0 0
49
60

1
6

1
60

9
20

1
2

1
20

0 4
5

1
5

0 0 1

 ,T5 =
1
32


32 0 0 0
17 14 1 0
6 20 6 0
1 15 15 1

 .

(5)
Note that already the third stencil in T5 is regular. The spec-
trum of T5 is (1, 1

2 ,
1
8 ,

1
32 ,0,0, . . .) and the subdominant un-

normalised right eigenvector reads v1 = (0,1,2,3,4,5,6,7).
In other words, the natural configuration at t = 0 is linear,
giving a good distribution of points near creases and end-
points as subdivision proceeds. The end-conditions for the

Figure 1: The letter G designed using our quintic scheme
governed by T5. Note that the scheme properly handles any
configuration of control points marked as sharp (green). The
control polygon after one subdivision step is shown in grey.

corresponding spline curve c(t) = ∑
n−1
i=0 Ni,5(t)Pi are

c(0) = P0,

c′(0) = 1
12 (−11P0 +10P1 +P2),

c′′(0) = 0.
(6)

Note that P2 influences the first derivative at t = 0 and thus
the tangent there. This behaviour is typically regarded as
problematic. However, since the weight of P2 in c′(0) is
relatively small, the tangent of c at t = 0 does not deviate
far from P0P1. This issue is partially redeemed by the fact
that the stencils (rows) in T5 go back to the uniform quin-
tic stencils [6,20,6]/32 and [1,15,15,1]/32 almost imme-
diately, in contrast to the quintic solutions given in Section
4.2 of [KSD14b] where the first six stencils are all irregu-
lar. Consequently, the scheme given by T5 is easy to imple-
ment using stencils. Adjacent crease points, however, need
special care: the new control point introduced between two
crease points in the first subdivision step has to use the sten-
cil [16,16]/32 to ensure symmetry (Fig. 1). An example with
semi-sharp creases on a quintic spline is shown in Fig. 2.

To fix the issue with the end-conditions in (6), one can
show different control points to the user from those that are
used internally. In the particular case of T5, one can keep
P1 internally, but replace it with P̃1 = (10P1 +P2)/11 for
the user (Fig. 3). The inverse transform is then simply P1 =
(11P̃1−P2)/10. An alternative would be to project P1 onto
the line given by P0, P̃1 and use the foot point instead of P̃1,
thus minimising the adjustment of P1 required.

Interestingly, one can express this quintic solution using
ghost points [LB07, KSD14b]. It can be verified that setting
P−1 = 2P0−P1 and P−2 = 2P0−P2 gives the same quintic
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Figure 2: A degree 5 subdivision curve given by T5 in
(5) with semi-sharp creases with s ∈ {0,1,2,3,∞} (grey to
red) for the three internal vertices marked as sharp (green).
Boundary vertices are handled as infinitely sharp. Note that
the scheme deals with consecutive sharp control points. Five
sets of three basis functions at a crease are shown at the
bottom, ranging from smooth (s = 0; in grey) to (infinitely)
sharp (s =∞; in red).

basis (Fig. 3). Further, one can verify that T5 results from T3
by applying the smoothing rule [1,2,1]/4 (the first element
is kept fixed) of [Sta01] to it. Therefore, Stam’s scheme and
our quintic scheme (5) with creases are equivalent.

3.2.2. A modified quintic scheme

We explore one more idea. Turning back to (5) and the
fact that handling neighbouring creases requires the stencil
[16,16]/32 brings us to the modified matrix

T̄5 =
1
32


32 0 0 0
16 16 0 0
6 20 6 0
1 15 15 1
0 6 20 6

 . (7)

This quintic scheme handles any configuration of creases
easily and the (one directional) tangent at a boundary point
(crease) is given by only two control points, as typically re-
quired in modelling. On the other hand, since T̄5 is not a so-
lution of (2), the resulting curve consists of infinitely many
quintic pieces joined with C4 continuity in the neighbour-
hoods of boundaries and creases. An example is shown in
Fig. 4. This scheme is easy to implement, including support
for semi-sharp creases, and thus more suitable for applica-
tions in modelling and graphics than the scheme given in (5).

The behaviour of this modified scheme resembles that of

P0

P1

P̃1

P2

P12

P11P10

P13 P14

Figure 3: A comparison of end-conditions in the quintic
case. The red curve and basis functions are given by (29)
in [KSD14b]; cf. Fig. 5 therein. The corresponding smooth
curve with no internal points marked as sharp is shown in
grey as reference. The curve and basis functions given by T5
in (5) are shown in blue. Note the difference between the red
and blue tangents (dashed lines) at P0. The tangent of the
blue curve can be forced to be given by the first two control
points by displaying P̃1 instead of the original control point
P1 to the user. The points P13 and P14 are ghost points.

subdivision surfaces near extraordinary points and can be
considered inferior to the scheme given in (5). However,
Stam’s approach [Sta98] to evaluating subdivision surfaces
still applies and thus the subdivision scheme given by T̄5 can
be used in finite element analysis as well.

3.2.3. Degrees 7 and higher

Proceeding similarly for d = 7, one arrives at

M7 =



1 0 0 0
1109
1260

7
72

1
45

1
2520

269
420

7
24

1
15

1
840

32
105

113
210

16
105

1
210

0 25
42

8
21

1
42

0 0 6
7

1
7

0 0 0 1


(8)

and

T7 =
1

128


128 0 0 0 0
72 48 8 0 0
30 69 28 1 0
8 56 56 8 0
1 28 70 28 1

 . (9)

The fourth stencil of T7 is regular, in contrast to the tenth
stencil in the solution presented in [KSD14b] being the first
regular one. The spectrum of T7 is (1, 1

2 ,
1
8 ,

1
32 ,

1
128 ,0,0, . . .)
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Figure 4: A modified quintic spline with semi-sharp creases
governed by T̄5; cf. Fig. 2.

and the natural configuration at t = 0 is linear. The end-
conditions are

c(0) = P0,

c′(0) = 1
360 (−302P0 +245P1 +56P2 +P3),

c′′(0) = 0.
(10)

Note that four control points influence the tangent at t = 0.
By displaying P̃1 = (245P1+56P2+P3)/302 instead of P1,
the effect of the extra two control points on the tangent at
t = 0 can (as in the quintic case) be hidden from the user.

As with the degree five scheme above, one can use ghost
points again. Their positions are given by P−i = 2P0−Pi,
i = 1,2,3. And again, T7 can be obtained from T5 by the
smoothing rule [1,2,1]/4. We have checked that both these
properties generalise for odd degrees up to 17 with i =
1,2, . . . ,(d− 1)/2. It is therefore reasonable to expect that
they hold for arbitrary odd degrees. While Stam’s method
for creases is limited to odd degrees, the matrix approach
works for arbitrary degrees. For example, when d = 4, we
obtain

M4 =


1 0 0 0
2
3

1
4

1
12 0

0 3
4

1
4 0

0 0 1 0

 ,T4 =
1
16


16 0 0 0
10 5 1 0
2 9 5 0
0 5 10 1

 .

We remark that the matrix approach can be used to de-
termine whether a scheme described by T leads to piece-
wise polynomial curves over the knot vector of B. Since S
is known, then for a given T the system SM = MT yields a
system of linear equations. If there exists a solution to this
system, T produces piece-wise polynomial limit curves; see
also Section 20 of [Sab10]. One example, with a positive an-
swer, is the above mentioned family of odd degree schemes
with creases developed by Stam [Sta01]. This polynomial
nature of Stam’s creases was previously unknown.

We now turn our attention to the use of control vectors
to model semi-sharp creases on arbitrary-degree subdivision
curves, as that avoids some of the problems encountered
above and offers greater modelling flexibility.

4. Control vectors for subdivision curves

In [KSD14a], the traditional concept of splines based on
control points is extended to include control vectors as well.
More precisely, in the univariate case the general form is

c(t) =
n

∑
i=1

Bi(t)Pi +
m

∑
j=1

C j(t)V j, (11)

where Pi are control points, but V j are understood as control
vectors. In the same paper, it is also shown that this con-
struction can be used to generalise Pixar semi-sharp rules by
using uniform cubic B-splines for Bi(t) and specific combi-
nations of cubic B-splines for C j governed by control vec-
tors. As demonstrated in [KSD14a], control vectors present
a new paradigm which offers greater modelling flexibility
and is particularly well suited for modelling with semi-sharp
creases. True multiresolution editing is supported because
control vectors can be expressed in local adapted frames
[FB88, KSD14a]. We emphasise that this goes beyond what
Pixar and Stam’s schemes offer.

We now generalise the cubic construction of [KSD14a]
to support any degree subdivision with semi-sharp creases
associated with control vectors. The approach is again based
on matrices, but the ingredients are slightly different.

The basis B is now formed using B-splines of degree d

B =
(
. . . ,B−2,d(t),B−1,d(t),B0,d(t),B1,d(t),B2,d(t), . . .

)
centred around t = 0, the crease, over the knot vector

t = (. . . ,−4,−2,0, . . . ,0︸ ︷︷ ︸
d×

,2,4, . . .).

The refined basis defined over τττ = t/2 is denoted b with
B = bS as before. The new basis N we seek is composed
of uniform B-splines Ni,d defined over the knot vector u =
(. . . ,−4,−2,0,2,4, . . .) plus an extra ‘crease’ basis function
N̂d , i.e.,

N = (. . . ,N−2,d ,N−1,d ,N0,d , N̂d ,N1,d ,N2,d , . . .).

The uniform B-splines are associated with control points
and are thus able to represent any uniform spline, while the
crease function is associated with a control vector. Since N
spans a subspace of that spanned by B, we have N = BM
and n = bM. To ensure refinability of N, a subdivision ma-
trix T must exist such that N = nT. Putting it all together,
we again obtain that (2) has to hold. Due to the fact that
the support width of a degree d uniform B-spline is d + 1,
we only need to consider finite matrices of the following
sizes (rows × columns): S(2d+1)×(2d+1), T(d+3)×(d+3), and
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M(2d+1)×(d+3). The remaining portions of the matrices con-
sist of uniform subdivision rules in the cases of S and T, and
of unit matrices in the case of M.

Let us take a closer look at the structure of the matrices
involved. The subdivision matrix S is known and can be ob-
tained using e.g. the Oslo algorithm [CLR80]. In the cubic
case, the important portion of the matrix for our purposes is

S3 =
1
8



1 11
2

3
2 0 0 0 0

0 2 6 0 0 0 0
0 0 4 4 0 0 0
0 0 0 8 0 0 0
0 0 0 4 4 0 0
0 0 0 0 6 2 0
0 0 0 0 3

2
11
2 1


. (12)

The matrix T is the subdivision matrix for uniform B-
splines of degree d augmented by an extra row and column
to accommodate N̂d . The extra column contains unknown
parameters ti, i = 1, . . . ,d + 3, which form the subdivision
mask for N̂d . The extra row contains only zeros since N̂d is
the only crease function, except for the element shared with
the extra column. In the cubic case,

T3 =
1
8



1 6 1 t1 0 0
0 4 4 t2 0 0
0 1 6 t3 1 0
0 0 0 t4 0 0
0 0 4 t2 4 0
0 0 1 t1 6 1


(13)

with the extra row and column delimited by lines. Note that
due to symmetry, the number of parameters is reduced from
6 to 4, and from d +3 to bd/2c+3 for general degree d.

Finally, we treat M. It is the subspace selection matrix
from the B-spline basis defined over t to the uniform basis
over u augmented by N̂d . It can thus be obtained by using
knot insertion, up to the extra column corresponding to N̂d .
The extra column contains unknown parameters m j . Due to
symmetry, support widths of B-splines, and the fact that the
central element of the extra column is equal to 1 as B0,d is
the only non-zero function in B at t = 0, the number of un-
knowns is equal to bd/2c. In the cubic case,

M3 =



1 0 0 0 0 0
0 1 0 0 0 0
0 1

3
2
3 m1 0 0

0 1
6

2
3 1 1

6 0
0 0 2

3 m1
1
3 0

0 0 0 0 1 0
0 0 0 0 0 1


(14)

with the extra column corresponding to N̂d delimited by
lines.

d = 2

2
2

2 /4

d = 3

4
/86

d = 4

8
/1612

7
12
7

60
7

60
7

N̂2

N̂3

N̂4

Figure 5: Refinable crease functions N̂d (red). For each de-
gree, top rows show the original crease function and bottom
rows show their refined version along with the uniform B-
splines in N that contribute to the subdivision mask of N̂d .

As in [KSD14b], the matrix equation SM = MT yields a
system of bilinear equations in terms of the unknowns ti and
m j. While this system would give valid solutions, we im-
pose further conditions to simplify it. First, we seek a crease
function of minimal support. This reduces the number of m j
to bd/2c−1. Second, since N̂d has to contain a sharp crease
(i.e., N̂d has to be C0 at t = 0), we discard solutions for which
m j = 1 for any j = 1, . . . ,bd/2c−1. We consider only solu-
tions satisfying both these conditions.

For d = 3 we obtain only one solution: m1 = t1 = t2 = 0,
t3 = 6, t4 = 4. As expected, the resulting N0

4 is the cubic B-
spline defined over (−1,0,0,0,1); cf. Fig. 7 in [KSD14a].

For general d, the system SM = MT leads (via a Gröb-
ner basis computation) to a single polynomial equation of
degree bd/2c, all other equations are linear. The number of
(real) solutions is bd/2c, but only one satisfies all our re-
quirements. The support width of the resulting N̂d is 2bd/2c
and crease functions of smaller supports refinable with re-
spect to B∪N do not exist. We tested that these results hold
up to degree 17, and we conjecture that they generalise to
arbitrary degree d.

A Maple script that includes the implementation of the
algorithm, which takes an arbitrary degree as input and out-
puts the unique solution, is provided in the supplementary
material. The matrices M and T for degrees up to 7 are also
included.

The crease functions N̂d and their subdivision masks, i.e.,
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the extra column of T, for degrees 2 to 4 are shown in Fig. 5.
A degree 5 example is shown in Fig. 6. For the user in-
terface, we find it natural to anchor start points of control
vectors with limit points (red dots). The end points of con-
trol vectors are set to the corresponding control points in the
case of odd degree schemes. In the cubic case, this directly
generalises Pixar semi-sharp creases, as shown in [KSD14a].
As observed in [Sta01], creases in even degree schemes are
not so natural. Therefore, we initialise control vector magni-
tudes to zero when d is even. A degree 4 example is shown
in Fig. 7.

In contrast to other methods, including ghost points, knot
insertion, and the crease rules developed in [KSD14b], our
approach uses only two basis functions (up to translation)
for any degree d ≥ 2: the uniform B-spline and the crease
function N̂d . Thus, only two masks are required to imple-
ment the scheme using control vectors: the uniform B-spline
mask and the mask for N̂d , i.e., the extra column in T. These
are summarised in Table 1 for degrees up to 7.

Furthermore, our approach holds the following properties:

• Linear independence of basis functions. This follows from
the fact that the only functions used are shifts of the uni-
form B-spline and the crease function N̂d .
• Any d ≥ 2 is supported, including even degrees.
• Full polynomial reproduction and approximation power.

This is provided by the underlying uniform B-spline basis.
This is not the case for the Pixar method [DKT98] and
Stam’s approach [Sta01].

These features imply that our approach is more general and
more flexible than the methods of [DKT98, Sta01].

As we aim to extend the cubic scheme to the surface case
in the next section, we show the cubic stencils in Fig. 8.

5. Control vectors for subdivision surfaces

Our results from Section 4 generalise straightforwardly to
tensor product surfaces. The underlying surface is a standard
tensor-product B-spline surface and control vectors are then
associated with tensor products of Bi(t) and C j(t) from (11).
Consequently, (11) becomes

s(u,v) = ∑
n
i=1 ∑

m
j=1 Bi(u)B j(v)Pi, j +Bi(u)C j(v)Ui, j+

Ci(u)B j(v)Vi, j +Ci(u)C j(v)Xi, j,
(15)

where Pi, j form a rectangular array of control points. Vec-
tors Ui, j control local creases in the u-direction, Vi, j in the
v-direction, and Xi, j control crossing creases. The associ-
ated types of basis functions in the bicubic case are shown
in Fig. 9. However, we emphasise that this construction
works for surfaces of general bi-degree d1× d2. Moreover,
each control vector is associated with a sharpness value, ini-
tialised to zero; see Fig. 10.

In order to support arbitrary manifold topology and semi-
sharp creases, we now turn our attention to extending the

Figure 6: The letter P created using our quintic scheme with
semi-sharp creases controlled by vectors. The default setting
of control vectors as differences between corresponding con-
trol points and limit points has been used in this example,
but the user is free to modify that and to use various levels
of sharpness independently.

Figure 7: A degree four spline with semi-sharp creases via
control vectors. The red points are limit points. Creases are
created when the control vector has non-zero length and its
sharpness is non-zero.
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Table 1: A table of masks for uniform B-splines Bd and the
crease functions N̂d for d = 2, . . . ,7. Since the contribution
of N̂d to its refined copy is always equal to 1/2 (see Fig. 5,
red), it is not included for clarity. Thus, all the listed mask
contributions are to the scaled and translated copies of Bd .

d = 2 B2 [1,3,3,1]/4
N̂2 [2,2]/4

d = 3 B3 [1,4,6,4,1]/8
N̂3 [6]/8

d = 4 B4 [1,5,10,10,5,1]/16
N̂4 [ 12

7 , 60
7 , 60

7 , 12
7 ]/16

d = 5 B5 [1,6,15,20,15,6,1]/32
N̂5 [ 30

7 , 180
7 , 30

7 ]/32
d = 6 B6 [1,7,21,35,35,21,7,1]/64

N̂6 [ 360
239 ,

2520
239 , 8640

239 , 8640
239 , 2520

239 , 360
239 ]/64

d = 7 B7 [1,8,28,56,70,56,28,8,1]/128
N̂7 [ 840

239 ,
6720
239 , 25200

239 , 6720
239 , 840

239 ]/128

1 16

6

4 4

Figure 8: Unnormalised cubic stencils for subdivision with
control vectors. White points represent old vertices, black
points mark new points after a refinement step. The top num-
bers (black) are contributions of control points, the lower 6
in red is the contribution from the corresponding control vec-
tor. All weights need to be normalised by 1/8. The contribu-
tion of a control vector to its new vector is 1/2 (not shown).
Left: New vertex-point rule. Right: New edge-point rule.

B3(u)N̂3(v)

B3(u)B3(v)

N̂3(u)N̂3(v)

Figure 9: Three shapes of bicubic basis functions. The
fourth one, N̂3(u)B3(v), is a rotated version of B3(u)N̂3(v).

s = 1s = 2s = 3s =∞

Figure 10: Crease basis functions of various sharpness val-
ues s. Front row: N̂3(u)N̂3(v). Back row: N̂3(u)B3(v).

Figure 11: Two examples of degree 5 subdivision sur-
faces with creases. Left: Sharp and semi-sharp creases on
a cuboid model. Right: A vanishing crease created by a con-
trol vector associated with N5(u)N̂5(v).

tensor product setting to subdivision surfaces. While higher
(and especially odd) degrees could be considered (simple
biquintic examples are shown in Fig. 11), we focus on the
case of Catmull-Clark subdivision surfaces [CC78] (d = 3)
and add support for control vectors to them.

Given a pure quadrilateral mesh, we generalise the uni-
variate cubic stencils of Fig. 8 to the bivariate case. For ver-
tices that are not extraordinary, we simply form tensor prod-
ucts of the univariate stencils. This gives rules for computing
new vertex-, edge-, and face-points and vectors; see Fig. 12.

It remains to treat boundaries and extraordinary vertices
(EVs), i.e., vertices where the valency is different from four
and where the stencils of Fig. 12 do not apply. As our (semi-
sharp) creases offer full approximation power and cubic re-
production (neither of which is offered by Pixar creases) in
regular regions, it would be advantageous to maintain this
property at boundaries as well. This can be achieved by us-
ing Bézier edge conditions obtained via multiple knots. This,
however, puts constraints on positions of EVs: they cannot
appear in the two-ring neighbourhoods of boundary curves.
An alternative is to use sharp rules or ghost points. This al-
lows EVs at boundaries, but reduces polynomial reproduc-
tion and approximation power.

Control vectors are not attached to extraordinary vertices,
and so the regular vertex-point stencil (Fig. 12, top left)
is replaced with the Catmull-Clark stencil for EVs. To al-
low control vectors at EVs, and thus to support creases run-
ning smoothly across extraordinary points, one would need
to modify the natural configuration and characteristic map
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1 16

1 16

6 636

44

2424

44

6 636

6

6

36 36
2424

1616

1616

4 424
24

1616

P U

V X

Figure 12: Unnormalised bicubic stencils for control points
and control vectors. Top row: Stencils for new vertex-, edge-
and face-points. Bottom left: Stencil for new vertex con-
trol vector (the prolonged ellipses show the direction of the
crease). Bottom centre: Stencil for new edge control vector.
Bottom right: Our graphical notation for stencils. Contribu-
tions from P points (black) (i.e, the regular bicubic stencils)
are shown in upper left relatively to old control points. Con-
tributions from U (red) and V (blue) types of vectors are off-
set to upper right and lower left, respectively. Contributions
of X (green) are offset to lower right. All weights should be
normalised by 1/64. Vertical control stencils (not shown) are
the obvious analogues of the horizontal ones. The contribu-
tion of X to its refined version (not shown) is 1/4.

[PR08] of the surface there. Our current solution is to al-
low for Pixar semi-sharp rules to be combined with our
control vector rules. The affected stencils are then modified
accordingly: new vertex and edge stencils are replaced by
Pixar (semi-sharp) crease, dart, and corner rules [DKT98],
as appropriate. An example of this synergy, including sev-
eral multiresolution edits via control vectors and various
sharpness values, is shown in Fig. 13 and in the supplemen-
tary video. Another example, created without Pixar rules, is
shown in Fig. 14.

6. Discussion and future work

Traditional approximating splines hold the convex hull prop-
erty as the corresponding basis functions partition unity and
are non-negative. When control vectors are added (as e.g. in
(11) and (15)), this property is lost. However, as the mag-
nitudes of control vectors can be assumed to be bounded, it
should be possible to design a more general enclosure (Sec-
tion 13 of [Sab10]) using Minkowski sums or similar opera-
tions. Although convex hulls are important for interrogation,
we do not see the lack of them as an issue for modelling or
analysis.

As mentioned above, to be able to support creases through
extraordinary points requires a modification of the natural

Figure 13: A model with creases created using both semi-
sharp Pixar rules (indicated by arrows) and our semi-
sharp crease rules via control vectors (all other creases). A
Gaussian curvature plot is also included, showing that our
creases maintain the quality of the underlying surface.

Figure 14: A triple torus model (left; Catmull-Clark sur-
face) with creases added via control vectors (right).

configuration of the surface. Such investigation is beyond
the scope of this paper.

In principle, it should be possible to generalise our method
for creating (semi-sharp) creases to non-uniform subdivi-
sion. This would require an extension of the multi-stage al-
gorithm designed in [CADS09, Cas10].

An interesting question is whether our method can be also
applied to subdivision schemes based on box-splines, for ex-
ample Loop subdivision [Loo87]. While box-splines do not
natively support multiple knots, it should be possible to as-
sociate control vectors attached to control points with piece-
wise quartic splines with creases.

We reiterate that since crease functions (such as N̂d) are
only added on top of the underlying blending functions (sub-
division splines), polynomial reproduction and approxima-
tion power is not reduced in our method, compared to the
creases developed in [Sta01, DKT98].
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Figure 15: A brick model with a crease. Left: Our result;
Right: Result with Pixar crease rules. Note the flat portion of
the crease created by Pixar crease rules. Our approach pro-
duces a fairer crease curve with better curvature behaviour
of the surface (bottom).

We compare Pixar and our creases in Fig. 15. As univari-
ate Pixar crease rules create points with (one-sided) zero cur-
vature [KSD14b], the surface has superior behaviour in the
neighbourhood of our crease compared to Pixar creases.

7. Conclusion

We have devised methods for applying (semi-sharp) creases
to curves and surfaces defined by subdivision schemes based
on B-splines. Our approach generalises to arbitrary degree
subdivision (including even degrees) and offers greater flex-
ibility over existing methods via control vectors. As exam-
ples of our approach, we have demonstrated a new quin-
tic scheme suitable for modelling curves with semi-sharp
creases and demonstrated modifications to cubic surface
subdivision that allow true multi-resolution editing and go
beyond what Pixar and Stam’s schemes offer.
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