

Reverse Engineered MPC for Tracking with Systems That Become Uncertain

Edward N. Hartley (edward.hartley@eng.cam.ac.uk) Jan M. Maciejowski (jmm@eng.cam.ac.uk)

European Control Conference 2014, Strasbourg, France Wednesday 25th June 2014, 10:20–10:40

Cambridge University Engineering Department

Aircraft Robustness of Inner-Loop Control Law to Loss of Airspeed Information

- Controls "short-period" mode.
- Tracks "load-factor" reference commanded by the pilot or outer-loop autopilot.

Load factor closely related to normal acceleration.

- Commonly a gain-scheduled proportional-integral control law with feedback of pitch rate and load factor ("C*∗* ") *not controlling airspeed, but scheduled by airspeed*.
- Constraints? Currently ad-hoc, but LTV-MPC applicable.

What if we no longer have the scheduling information?

• e.g. due to a detected sensor failure

Background and Motivation

The Motivating Scenario

Background and Motivation

The Motivating Scenario

Parameter-Varying State-Space Model

$$
x(k + 1) = A(\theta)x(k) + B(\theta)u(k) + d(\theta)
$$

\n
$$
y_r(k) = C_r x(k)
$$

\n
$$
y_m(k) = Cx(k)
$$

- θ represents the scheduling information
- When *θ* is measurable: linear time-varying system
- When θ is not measurable: uncertain system

Want to design a controller with the following properties

- Handles multivariable systems
- Respects asymmetric input and output constraints
- Has adequate small-signal closed-loop performance
- Modest computational requirements
- **Tracks non-zero setpoints**
- **Robustness to parametric uncertainty**
- **Interchangeable with a nominal high performance design**

Parametric Uncertainty

- Too large to approximate as additive?
- Looking at "robust" rather than "adaptive" methods

Computational requirements

• 250 ms sampling time

NIVERSITY OF

- Don't want to solve LMIs online!
- Don't want exponentially growing trees of predictions

Uncertain Equilibrium Pair

- Not regulating to the origin
- Cannot do change of variables to turn into regulation to the origin!

Assumption

- A suitable (unconstrained) linear robust controller of an appropriate form already exists; or
- It is relatively easy to design such a controller.

Method

NIVERSITY OF

- Transform the baseline into an observer-based controller
- Partition into feedback and feedforward
- Enforce constraints using online optimisation

Reverse Engineering Step 0: The baseline controller

The Baseline Control Law

$$
\left[\frac{x_k(k+1)}{u(k)}\right] = \left[\frac{I}{K_2} \middle| \frac{-C_r}{K_1} \right] \left[\frac{x_k(k)}{x(k)}\right]
$$

Since this is an integral control law...

If $r(k)$ and θ are constant, then $\lim_{k\to\infty} y_r(k) \to r(k)$.

Disturbance Augmented Model

$$
\overline{x} = \begin{bmatrix} x \\ w \end{bmatrix}, \quad \overline{A} = \begin{bmatrix} \hat{A} & I \\ 0 & I \end{bmatrix}, \quad \overline{B} = \begin{bmatrix} \hat{B} \\ 0 \end{bmatrix}, \quad \overline{C} = \begin{bmatrix} \hat{C} & 0 \end{bmatrix}
$$

Baseline regulator re-written in (reduced-order) observer form

 $\overline{z}(k+1) = F\overline{z}(k) + G\overline{y}(k) + T\overline{B}\overline{u}(k)$ Observer Dynamics $\hat{\overline{x}}(k) = H_2 \overline{z}(k) + H_1 \overline{y}(k)$ State/Disturbance Estimate $\overline{u}(k) = K_c \hat{\overline{x}}(k) + D_o(\overline{y}(k) - \overline{C} \hat{\overline{x}}(k))$ Control Input

Where…

 $F = A_K - T\overline{B}C_K$ *G* = $B_K - T\overline{B}D_K$ $K_c = C_c T + D_c \overline{C}$ D_{Ω} satisfies: $C_K = (K_c - D_0 \overline{C})H_2$ $D_K = (K_c - D_0 \overline{C})H_1$ $T\overline{A} - (A_K - T\overline{B}C_K)T - (B_K - T\overline{B}D_K)\overline{C} = 0$ **NON-UNIQUE** $\begin{bmatrix} H_1 & H_2 \end{bmatrix} \begin{bmatrix} \overline{C} \\ \overline{C} \end{bmatrix}$ *T*] = *I* **NON-UNIQUE**

Reverse Engineering Step 3: Handling the reference input

Tracking regulator

 $\overline{z}(k+1) = F\overline{z}(k) + G\overline{y}(k) + T\overline{B}\overline{u}(k)$ Observer Dynamics $\overline{z}_2(k+1) = F\overline{z}_2(k) + r(k)$ Prefilter Dynamics $\overline{u}(k) = K_c(H_2\overline{z}(k) + H_1\overline{y}(k) + H_2\overline{z}_2(k))$ + $D_0(\overline{y} - \overline{C}(H_1\overline{y}(k) + H_2\overline{z}(k) - H_2\overline{z}_2(k)))$

Comments so far...

- Uncertainty =*⇒* no separation principle
- State disturbance captures uncertain affine term and parameter uncertainty
- Reproducing the controller, not the closed-loop system: nominal model does not have to be accurate
- Non-symmetric Riccati equation non-unique (well known)
	- Realisation does not affect unconstrained input/output behaviour
	- Does affect internal signals
- Degrees of freedom in non-unique H_1 and H_2 will be used later.

Reverse Engineering Step 4: Extracting the target calculator

Now want to transform one step further…

Reverse Engineering Step 4: Extracting the target calculator

Taking the observer-form a step further

$$
\hat{\overline{x}} = \begin{bmatrix} \hat{x}(k) \\ \hat{w}(k) \end{bmatrix}, \quad K_c = \begin{bmatrix} K_{cx} & K_{cd} \end{bmatrix}.
$$

We want to re-write the observer-based control law as:

$$
\overline{u}(k) = K_{cx}(\hat{x}(k) - x_s(k)) + u_s(k)
$$

subject to:
$$
(\hat{A} - I)x_s(k) + \hat{B}u_s(k) = -\hat{w}(k)
$$

$$
C_r x_s(k) = r_p = C_r x_{\text{ref}}.
$$

where

$$
x_{\rm ref} = f(\hat{x}(k), y(k), \overline{z}_2(k))
$$

(Prove by equating terms: see the paper for details!) *ECC 2014, Strasbourg, France, Wednesday 25th June 2014, 10:20–10:40*

Steady state consistency

• Turns out that even though integrating control law is reproduced, the internal variables are not guaranteed to be consistent, i.e.

$$
\lim_{k\to\infty}C_r x_s(k)\neq \lim_{k\to\infty}C_r x(k).
$$

- Conditions found on non-unique H_1 and H_2 to enforce this: must choose the "correct" pseudoinverse of [*C T*] .
- Tedious algebra: see paper for details.

NIVERSITY OF

- Online MPC used to compute additive perturbation to:
	- 1. the reference input to the target calculator;
	- 2. the input applied to the plant.

- Very similar structure to method of Pannocchia (2004).
- Key difference: target calculator and gain are designed from an existing linear baseline control law

Prediction model for augmented plant

$$
\begin{bmatrix} x(k+1) \\ \bar{z}(k+1) \end{bmatrix} = \mathcal{A}(\theta) \begin{bmatrix} x(k) \\ \bar{z}(k) \end{bmatrix} + \mathcal{B}(\theta) \begin{bmatrix} r_{\rho}(k) \\ v(k) \end{bmatrix} + \begin{bmatrix} \mathbf{d}(\theta) \\ 0 \end{bmatrix}
$$

- $v(k)$ is an additive input perturbation that the MPC manipulates
- $r_p(k)$ is a manipulated reference signal

Nominal constraints

- State constraints X
- Input constraints $\mathbb U$

Control Invariant Set

 $\mathcal{C} \triangleq$ {($\mathsf{x}(k), \overline{\mathsf{z}}(k)$) : $\exists r_p$ satisfying constraints with $\mathsf{v}(k) = 0$ *,* such that $(x(k + 1), \overline{z}(k + 1)) \in \mathcal{C}, \quad \forall \theta \in \Theta$.

Constrained MPC

When the variable θ is unknown, at each time step the online MPC formulation can compute $v(k)$ and $r_p(k)$ as:

$$
\min_{r_p(k),v(k)} v(k)^T R_v v(k) + (r_p(k) - r_p^*(k))^T S(r_p(k) - r_p^*(k))
$$

subject to $u(k) \in \mathbb{U}$, $x(k) \in \mathbb{X}$, and

$$
\mathcal{A}(\theta)\begin{bmatrix} x(k) \\ \overline{z}(k) \end{bmatrix} + \mathcal{B}(\theta)\begin{bmatrix} r_{\rho}(k) \\ v(k) \end{bmatrix} + \begin{bmatrix} \mathbf{d}(\theta) \\ 0 \end{bmatrix} \in \mathcal{C}, \, \forall \theta \in \Theta.
$$

Nominal MPC

- When *θ* is known, a standard "linear-time-varying" MPC approach can be used to achieve better performance, failing over to the robust form when a fault occurs.
- Still use the reverse-engineered observer and target calculator
- Enforce the control invariant set constraint at every time step (or at least the first time step)

Plant Models

- Short-period longitudinal aircraft approximation extracted from publicly available B747 model
- Inputs in incremental form to allow rate constraints

$$
\begin{bmatrix} q(k+1) \\ n_z(k+1) \\ u(k+1) \end{bmatrix} = A(\theta_i) \begin{bmatrix} q(k) \\ n_z(k) \\ u(k) \end{bmatrix} + B(\theta_i) \Delta u(k) + d(\theta_i)
$$

Flight Points

Constraints

- *−*37*T^s ≤* ∆*^u ≤* 37*T^s* [deg/s]
- *−*17 *≤ ^u ≤* 23 [deg]
- *−*2 *≤ ⁿ^z ≤* 1*.*5 [g]
- *−*2 *≤ ^r^p ≤* 1*.*5 [g]

Baseline Control Law

- Designed by augmenting plant with integral of *n^z* tracking error and applying unconstrained version of RMPC of Kothare 1996: LMI-based feedback MPC to get a control gain
- Basically min-max LQR with multiple models, with an integrator
- Guaranteed to stabilise unconstrained plant for chosen realisations.

Reverse Engineering

- Nominal model for observer design: flight point 1.
- Dynamics separation: integrating modes in dynamics of $\overline{A} + \overline{B}K_c$

Mismatched model: arbitrary H_1 , H_2 (inconsistent)

Mismatched model: proposed H_1 , H_2 (consistent)

Demonstration Robust enforcement of output constraints

Demonstration Nominal to Robust Switchover

Conclusions

Conclusions

- An alternative way to design a constrained controller for **tracking non-zero setpoints** that is robust to **parametric uncertainty**
- Based on "**reverse engineering**" an existing robust control law into an observer-target-calculator-gain form
- **Constraint handling** facilitated by control invariant set
- Applied to flight control example

Future application challenges

- More detailed flight control example
- Complicating factors: sensor/filter dynamics, actuator dynamics
- Scheduling between altitudes

