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Background and Motivation
The Motivating Scenario

Aircraft Robustness of Inner-Loop Control Law to Loss of
Airspeed Information

• Controls “short-period” mode.

• Tracks “load-factor” reference commanded by the pilot or
outer-loop autopilot.

Load factor closely related to normal acceleration.

• Commonly a gain-scheduled proportional-integral control law with
feedback of pitch rate and load factor (“C∗”)

not controlling airspeed, but scheduled by airspeed.

• Constraints? Currently ad-hoc, but LTV-MPC applicable.

What if we no longer have the scheduling information?

• e.g. due to a detected sensor failure
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Background and Motivation
Mathematical Representation

Parameter-Varying State-Space Model

x(k+ 1) = A(θ)x(k) + B(θ)u(k) + d(θ)

yr(k) = Crx(k)

ym(k) = Cx(k)

• θ represents the scheduling information

• When θ is measurable: linear time-varying system

• When θ is not measurable: uncertain system
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Background and Motivation
Objectives

Want to design a controller with the following properties

• Handles multivariable systems

• Respects asymmetric input and output constraints

• Has adequate small-signal closed-loop performance

• Modest computational requirements

• Tracks non-zero setpoints

• Robustness to parametric uncertainty

• Interchangeable with a nominal high performance design
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Background and Motivation
Challenges

Parametric Uncertainty

• Too large to approximate as
additive?

• Looking at “robust” rather
than “adaptive” methods

Computational requirements

• 250 ms sampling time

• Don’t want to solve LMIs
online!

• Don’t want exponentially
growing trees of predictions

Uncertain Equilibrium Pair

• Not regulating to the origin

• Cannot do change of
variables to turn into
regulation to the origin!
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Proposed method
“Reverse Engineering”

Assumption

• A suitable (unconstrained) linear robust controller of an
appropriate form already exists; or

• It is relatively easy to design such a controller.

Uncertain Plant
Robust LTI

Controller (with
integral action)

Reference r

u y

Method

• Transform the baseline into an observer-based controller

• Partition into feedback and feedforward

• Enforce constraints using online optimisation
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Reverse Engineering
Step 0: The baseline controller

The Baseline Control Law

[
xk(k+ 1)

u(k)

]
=

[
I −Cr I
K2 K1 0

] xK(k)
x(k)
r(k)


Since this is an integral control law...

If r(k) and θ are constant, then limk→∞ yr(k) → r(k).

Uncertain Plant
Robust LTI

Controller (with
integral action)

Reference r

u y
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Reverse Engineering
Step 1: Nominal model and disturbance augmentation

Nominal model

[
Â B̂
Ĉ 0

] Â ≈ A(θ)

B̂ ≈ B(θ)

Ĉ = I

Baseline Regulator

[
AK BK
CK DK

] AK = I

BK = −Cr
CK = K2

DK = K1

Disturbance Augmented Model

x =

[
x
w

]
, A =

[
Â I
0 I

]
, B =

[
B̂
0

]
, C =

[
Ĉ 0

]
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Reverse Engineering
Step 2: Reduced-Order observer-based regulator

Baseline regulator re-written in (reduced-order) observer form

z(k+ 1) = Fz(k) + Gy(k) + TBu(k) Observer Dynamics

x̂(k) = H2z(k) + H1y(k) State/Disturbance Estimate

u(k) = Kcx̂(k) + DQ(y(k)− Cx̂(k)) Control Input

Where…
F = AK − TBCK G = BK − TBDK

Kc = CKT+ DKC

DQ satisfies: CK = (Kc − DQC)H2 DK = (Kc − DQC)H1

TA− (AK − TBCK)T− (BK − TBDK)C = 0 NON-UNIQUE[
H1 H2

] [C
T

]
= I NON-UNIQUE
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Reverse Engineering
Step 3: Handling the reference input

Tracking regulator

z(k+ 1) = Fz(k) + Gy(k) + TBu(k) Observer Dynamics

z2(k+ 1) = Fz2(k) + r(k) Prefilter Dynamics

u(k) = Kc(H2z(k) + H1y(k) + H2z2(k))

+ DQ(y− C(H1y(k) + H2z(k)− H2z2(k)))

Uncertain PlantGain K

State/Disturbance
Observer (z)

y

x̂, d̂

Prefilter (z2)
xrefReference r

u
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Reverse Engineering
Step 3: Handling the reference input

Comments so far...

• Uncertainty =⇒ no separation principle

• State disturbance captures uncertain affine term and parameter
uncertainty

• Reproducing the controller, not the closed-loop system: nominal
model does not have to be accurate

• Non-symmetric Riccati equation non-unique (well known)
– Realisation does not affect unconstrained input/output behaviour
– Does affect internal signals

• Degrees of freedom in non-unique H1 and H2 will be used later.
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Reverse Engineering
Step 4: Extracting the target calculator

Now want to transform one step further…

Uncertain PlantGain K

State/Disturbance
Observer

y

x̂

Prefilter

Target
calculator

d̂

Reference r

u

(xs, us)
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Reverse Engineering
Step 4: Extracting the target calculator

Taking the observer-form a step further

x̂ =

[
x̂(k)
ŵ(k)

]
, Kc =

[
Kcx Kcd

]
.

We want to re-write the observer-based control law as:

u(k) = Kcx(x̂(k)− xs(k)) + us(k)

subject to: (Â− I)xs(k) + B̂us(k) = −ŵ(k)

Crxs(k) = rp = Crxref.

where
xref = f(x̂(k), y(k), z2(k))

(Prove by equating terms: see the paper for details!)
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Reverse Engineering
Step 5: Steady-state consistency

Steady state consistency

• Turns out that even though integrating control law is reproduced,
the internal variables are not guaranteed to be consistent, i.e.

lim
k→∞

Crxs(k) ̸= lim
k→∞

Crx(k).

• Conditions found on non-unique H1 and H2 to enforce this: must

choose the “correct” pseudoinverse of

[
C
T

]
.

• Tedious algebra: see paper for details.

ECC 2014, Strasbourg, France, Wednesday 25th June 2014, 10:20–10:40



Reverse Engineering
Step 6: Adding the constraints

• Online MPC used to compute additive perturbation to:
1. the reference input to the target calculator;
2. the input applied to the plant.

Uncertain PlantK Σ

State/
Disturbance
Observer

y
x̂

Prefilter MPC

Target
calculator

r∗p rp

d̂

r

u

(xs, us)

v

• Very similar structure to method of Pannocchia (2004).
• Key difference: target calculator and gain are designed from an
existing linear baseline control law
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Reverse Engineering
Step 6: Adding the constraints

Prediction model for augmented plant

[
x(k+ 1)
z(k+ 1)

]
= A(θ)

[
x(k)
z(k)

]
+ B(θ)

[
rp(k)
v(k)

]
+

[
d(θ)
0

]

• v(k) is an additive input perturbation that the MPC manipulates

• rp(k) is a manipulated reference signal

Nominal constraints

• State constraints X
• Input constraints U
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Reverse Engineering
Step 6: Adding the constraints

Control Invariant Set

C ≜
{
(x(k), z(k)) : ∃rp satisfying constraints with v(k) = 0,

such that (x(k+ 1), z(k+ 1)) ∈ C, ∀θ ∈ Θ
}
.

Constrained MPC

When the variable θ is unknown, at each time step the online MPC
formulation can compute v(k) and rp(k) as:

min
rp(k),v(k)

v(k)TRvv(k) + (rp(k)− r∗p(k))
TS(rp(k)− r∗p(k))

subject to u(k) ∈ U, x(k) ∈ X, and

A(θ)

[
x(k)
z(k)

]
+ B(θ)

[
rp(k)
v(k)

]
+

[
d(θ)
0

]
∈ C, ∀θ ∈ Θ.
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Reverse Engineering
(Step 7: Nominal heuristic for non-fault scenario)

Nominal MPC

• When θ is known, a standard “linear-time-varying” MPC approach
can be used to achieve better performance, failing over to the
robust form when a fault occurs.

• Still use the reverse-engineered observer and target calculator

• Enforce the control invariant set constraint at every time step (or
at least the first time step)
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Demonstration
Setup, scenario

Plant Models

• Short-period longitudinal aircraft approximation extracted from
publicly available B747 model

• Inputs in incremental form to allow rate constraints q(k+ 1)
nz(k+ 1)
u(k+ 1)

 = A(θi)

 q(k)
nz(k)
u(k)

+ B(θi)∆u(k) + d(θi)

Flight Points

Speed\Alt 5000 m 7500 m

160 m/s 1

180 m/s 3

260 m/s 2 4

Constraints

• −37Ts ≤ ∆u ≤ 37Ts [deg/s]

• −17 ≤ u ≤ 23 [deg]

• −2 ≤ nz ≤ 1.5 [g]

• −2 ≤ rp ≤ 1.5 [g]

ECC 2014, Strasbourg, France, Wednesday 25th June 2014, 10:20–10:40



Demonstration
Robust baseline

Baseline Control Law

• Designed by augmenting plant with integral of nz tracking error
and applying unconstrained version of RMPC of Kothare 1996:
LMI-based feedback MPC to get a control gain

• Basically min-max LQR with multiple models, with an integrator

• Guaranteed to stabilise unconstrained plant for chosen
realisations.

Reverse Engineering

• Nominal model for observer design: flight point 1.

• Dynamics separation: integrating modes in dynamics of A+ BKc
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Demonstration
Target Calculator Consistency

Mismatched model: arbitrary H1, H2 (inconsistent)

Time /s
0 2 4 6 8

S
ta

te
 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Target
Value

Time /s
0 2 4 6 8

S
ta

te
 2

-0.2

0

0.2

0.4

0.6

0.8

1

Time /s
0 2 4 6 8

S
ta

te
 3

-10

-8

-6

-4

-2

0

Time /s
0 2 4 6 8

In
pu

t 1

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Mismatched model: proposed H1, H2 (consistent)

Time /s
0 2 4 6 8

S
ta

te
 1

0

0.02

0.04

0.06

0.08

0.1

Target
Value

Time /s
0 2 4 6 8

S
ta

te
 2

-0.2

0

0.2

0.4

0.6

0.8

1

Time /s
0 2 4 6 8

S
ta

te
 3

-12

-10

-8

-6

-4

-2

0

Time /s
0 2 4 6 8

In
pu

t 1

-1.5

-1

-0.5

0

0.5

1

1.5

ECC 2014, Strasbourg, France, Wednesday 25th June 2014, 10:20–10:40



Demonstration
Small step response

Baseline
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Demonstration
Robust enforcement of output constraints
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Demonstration
Nominal to Robust Switchover
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Conclusions

Conclusions

• An alternative way to design a constrained controller for tracking
non-zero setpoints that is robust to parametric uncertainty

• Based on “reverse engineering” an existing robust control law
into an observer-target-calculator-gain form

• Constraint handling facilitated by control invariant set

• Applied to flight control example

Future application challenges

• More detailed flight control example

• Complicating factors: sensor/filter dynamics, actuator dynamics

• Scheduling between altitudes

ECC 2014, Strasbourg, France, Wednesday 25th June 2014, 10:20–10:40


