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Summary	

	
Human neurodevelopment requires the coordinated expression of thousands of genes, 

exquisitely regulated in both spatial and temporal dimensions, to achieve the proper 

specialization and inter-connectivity of brain regions. Consequently, the dysregulation of 

complex gene networks in the developing brain is believed to underlie many 

neurodevelopmental disorders, such as autism spectrum disorders (ASD). Autism has a 

significant genetic etiology, but there are hundreds of genes implicated, and their functions 

are heterogeneous and complex. Therefore, an understanding of shared molecular and cellular 

pathways underlying the development ASD has remained elusive, hampering attempts to 

develop common diagnostic biomarkers or treatments for this disorder.  

 

I hypothesized that analyzing functional genomics relationships among ASD candidate genes 

during normal human brain development would provide insight into common cellular and 

molecular pathways that are affected in autistic individuals, and may help elucidate how 

hundreds of diverse genes can all be linked to a single clinical phenotype. This thesis 

describes a coordinated set of bioinformatics experiments that first (i) assessed for gene 

expression and co-expression properties among ASD candidates and other non-coding RNAs 

during normal human brain development to discover potential shared mechanisms; and then 

(ii) directly assessed for changes in these pathways in autistic post-mortem brain tissue. 

 

The results demonstrated that when examined in the context of normal human brain gene 

expression during early development, autism candidate genes appear to be strongly related to 

the neurodevelopmental pathways of synaptogenesis, mitochondrial function, glial cytokine 

signaling, and transcription/translation regulation. Furthermore, the known sex bias in ASD 

prevalence appeared to relate to differences in gene expression between the developing brains 

of males and females. Follow up studies in autistic brain tissue confirmed that changes in 

mitochondrial gene expression networks, glial pathways, and gene expression regulatory 

mechanisms are all altered in the brains of autistic individuals. Together, these results show 

that the heterogeneous set of autism candidate genes are related to each other through shared 

transcriptional networks that funnel into common molecular mechanisms, and that these 

mechanisms are aberrant in autistic brains. 
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Chapter	1.	Introduction	
 

The human brain is exceedingly complex, and the mechanisms underlying its development 

and functioning are only beginning to be understood. As a consequence, the etiology 

underlying disorders of neurodevelopment, such as autism spectrum disorder (ASD), remains 

unclear.  However, recent efforts have demonstrated that a significant component of the 

etiology of ASD is genetic, but the exact genetic and molecular mechanisms underlying the 

disorder have proven exceedingly difficult to define.  This is largely because the genetics 

guiding normal human brain development are still not clear, and studies of genes implicated 

in ASD mostly have not considered the unique function of these genes in the specific context 

of human neurodevelopment. 

 

Therefore, in order to more comprehensively understand the genetic etiology of autism 

spectrum disorders, it is critical to understand the function and regulation of autism candidate 

genes during normal human brain development.  To do so requires integrating what has 

previously been discovered about the genetics of autism with what is known about normal 

human neurodevelopmental genomics, as is reviewed in this chapter.  This information can 

then be applied to analyze new datasets of human gene expression during neurodevelopment. 

Furthermore, it is critical that parallel efforts are made to determine what molecular genetic 

mechanisms are aberrant in autistic brain tissue directly, as the overlap of these two lines of 

evidence may help focus on the main inherited genetic etiologies of autism.   

 

Finally, as is shown in this chapter, there is clearly a need to more comprehensively 

understand the expression and regulation of ASD candidate genes during normal human brain 

development, and to determine if the molecular mechanisms they implicate are abnormal in 

autistic brains.  This chapter concludes by describing these major unanswered questions in 

the field of ASD genomics, which are then addressed in the studies described in Chapter 2 

and Chapter 3 of this thesis. 
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1.1 Autism	Spectrum	Disorders	

The autism spectrum disorders are a heterogeneous set of neurodevelopmental syndromes 

defined by impairments in verbal and non-verbal communication, restricted social interaction, 

and the presence of stereotyped patterns of behavior.  The prevalence of ASD is rising, and 

the diagnostic criteria and clinical perspectives on the disorder continue to evolve in parallel. 

Although the majority of individuals with ASD will not have an identifiable cause, almost 

25% of cases have genetic lesions (Huguet et al. 2013).  The rapidly improving ability to 

identify genetic mutations because of advances in next generation DNA sequencing, coupled 

with previous epidemiological studies demonstrating high heritability of ASD, have led to 

many recent attempts to identify causative genetic mutations underlying the ASD phenotype.  

However, although hundreds of mutations have been identified to date, they either are rare 

variants affecting only a handful of ASD patients, or are common variants in the general 

population with only a small effect size on the risk for ASD (Devlin and Scherer 2012). 

Furthermore, the genes implicated thus far are heterogeneous in their structure and function, 

hampering attempts to understand shared molecular mechanisms among all ASD patients; an 

understanding that is crucial for the development of targeted diagnostics and therapies. 

Therefore, a major unmet need in the field of ASD research—and the main goal of this 

work—is to integrate the heterogeneous genetic findings in ASD in order to begin to 

understand common molecular and cellular pathways that are perturbed in patients with the 

disorder.  

 

Clinical	Phenotype	and	Incidence	

Autism was first described seventy years ago by the American child psychiatrist Leo Kanner 

(Kanner 1943). While originally reported by Kanner as an isolated syndrome with the core 

components being ‘obsessive insistence on the preservation of sameness’ and ‘autistic 

aloneness,’ autism was considered mainly as a childhood form of schizophrenia for more than 

thirty years (Eisenberg and Kanner 1955). Autism was first formally recognized as its own 

clinical diagnostic entity in 1980 (American Psychiatric Association, DSM-III, 1980), 

defined as encompassing three essential features: impairment in communication, lack of 

interest in other people, and ‘bizarre’ behaviors. Since that time, the criteria required to 

obtain a diagnosis of ASD, and its relation to other similar disorders such as Asperger’s and 

Rett syndrome, have changed multiple times—reflecting both the clinical heterogeneity of the 

disorder and the poor understanding of its underlying pathophysiology.   
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The most recent definition of ASD recognizes abnormalities in two clinical domains: ‘social 

and communication defects’ and ‘fixed interests and repetitive behaviors’ (American 

Psychiatric Association, DSM-V, 2013). All of the following three symptoms describing 

persistent deficits in social interaction and communication must be present for a diagnosis of 

ASD to be made: (i) problems reciprocating social or emotional interaction, inability to 

initiate an interaction, and problems with shared attention or sharing of emotions and interests 

with others; (ii) problems maintaining relationships and problems adjusting to different social 

expectations; and (iii) nonverbal communication problems such as abnormal eye contact, 

posture, facial expressions, tone of voice and gestures, as well as an inability to understand 

these. Additionally, these interaction/ communication deficits cannot be better accounted for 

by general developmental delay. Two of the four following symptoms related to restricted 

and repetitive behavior must also be present: (i) stereotyped or repetitive speech, motor 

movements, or use of objects; (ii) excessive adherence to routines, ritualized patters of verbal 

or nonverbal behavior, or excessive resistance to change; (iii) highly restricted interests that 

are abnormal in intensity or focus; and (iv) hyper- or hypo-reactivity to sensory input or 

unusual interest in sensory aspects of the environment. 

 

Furthermore, the severity of each symptom must be defined based on the level of support 

required for that symptom, in an attempt to more thoroughly capture the ‘spectrum’ nature of 

the disease. In all cases, symptoms must have been present in early childhood (even if 

initially unrecognized); although they may not become fully manifest until later in life when 

social demands exceed capacities. The symptoms must impair everyday functioning, and 

cannot be better described by another Diagnostic and Statistical Manual of Mental Disorders-

5th Edition (DSM-5) diagnosis. 

 

Autism spectrum disorders are one of the most common neurodevelopmental problems 

affecting children in the Western world.  The most recent estimates have shown that ASD 

affects between 1 in 88 children (Centers for Disease Control and Prevention (CDC) 2012) 

and perhaps as many as 1 in 50 (Blumberg et al. 2013) depending on the methodology 

employed. This represents a staggering 1.17%-2% of all children. Boys are at least four times 

more likely to receive a diagnosis of ASD as compared to girls (CDC 2012), and this ratio 

increases significantly when only mildly affected children are considered (Gilberg et al. 

2006). Furthermore, prevalence estimates have been increasing substantially in recent 
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years—form 1 in 150 children in the year 2000—although it is unclear to what extent this 

represents a true biological increase or is a result of expanding diagnostic criteria and better 

clinical recognition of the disorder (Fombonne 2009).  

 

The costs associated with autism are similarly great.  Economically, direct and indirect 

medical costs are estimated to be nearly £2 million pounds person over his or her lifetime, or 

more than £21 billion pounds per year for all people with ASD (Moldin and Rubenstein 

2006). Perhaps more importantly, the emotional toll placed on parents and caregivers of 

children with autism is immense, unrelenting, and has a serious impact on family 

relationships (Rao and Beidel 2009), marriages (Benson and Kersh 2011), and couples’ future 

reproductive decisions (Selkirk et al. 2009). 

 

Consequently, it is of upmost urgency to patients with ASD, their caregivers, and society at 

large that the underlying cause(s) of the disorder are understood. Doing so will enable the 

development of better, more specific diagnostic tests that can recognize ASD earlier in life, 

which has been shown to be important to improve long-term outcomes (Howlin et al. 2009), 

provide parents with an explanation for their child’s symptoms, and may eventually enable 

the development of targeted therapeutics.  Moreover, by understanding the mechanisms that 

lead to the altered higher cognitive functioning seen in patients with ASD, the field of human 

neuroscience as a whole can be advanced, as it will provide insights into the genetic and 

molecular basis of higher cognition. 

 

However, the underlying pathophysiology of autism spectrum disorders has long been a 

mystery. Various hypothesis ranging from psychosocial abnormalities to environmental 

insults have been purported, yet it was not until twin and sibling epidemiological studies were 

undertaken in the 1980s that the strong heritability of ASD began to be realized. 

Subsequently, a large amount of work has firmly established a significant genetic component 

to ASD’s etiology. 

 

Genetic	Etiology	

Evidence for a strong heritable risk of ASD was initially described in twin and sibling 

epidemiological studies of autism (Folstein and Rutter 1977), and has since been firmly 

established through multiple genetic approaches (Berg and Geschwind 2012; Geschwind 
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2011). It was first recognized that the risk of having a second child with autism was higher in 

families that already had one child with ASD than was the risk of having a child with ASD in 

the general population.  Originally this recurrence risk was estimated to be 5% (compared 

with approximately 1% in the general population), although more recent estimates suggest it 

may be as high as 20% (Ozonoff et al. 2011). Following these initial observations, the first 

twin studies in ASD demonstrated a concordance rate approaching 90% in monozygotic 

twins and 10% in dizygotic twins (Bailey et al. 1995; Steffenburg et al. 1989; Smalley et al. 

1988; Ritvo et al. 1989).  Subsequently, larger studies have shown the dizygotic concordance 

rate to be greater than 20% (Hallmayer et al. 2011). 

 

These observations, coupled with the identification of causative genetic mutations in 

monogenic disorders with autism as a component, such as Fragile X and Rett syndromes 

(Amir et al. 1999; Pieretti et al. 1991), led to an ongoing effort to identify genetic causes of 

‘idiopathic’ ASD using a number of genomic approaches. As the technology behind these 

approaches has improved, the ability to identify mutations with incredibly sensitivity and 

genomic resolution has resulted in over 200 genetic loci implicated in ASD to date (Freitag 

2007; Anney et al. 2010; Holt et al. 2010). However, as more genes and loci are identified, it 

is becoming increasingly clear that the genomic architecture of ASD is incredibly 

heterogeneous and complex, necessitating a functional integration in order to decipher 

common molecular mechanisms underlying ASD. 

 

Genomic	Architecture	of	ASD	

The identification of genomic loci and individual genes disrupted in patients with ASD has 

progressed in tandem with the rapid development of sensitive genomic tools. Initially, 

microscopically-visible chromosomal aberrations were observed in patients with ASD who 

received karyotyping analysis. These case reports were variable, but a number of loci were 

repeatedly implicated, including 7q11, 15q11-13, and 22q11.2 (Vorstman et al. 2006)—

regions already associated with syndromes that had autistic symptoms as a component, and 

known to contain a number of critical neurodevelopmental genes and some of the first 

identified functional non-coding RNAs (Mabb et al. 2011; Szafranski et al. 2010). 

 

Subsequently, the development of microarray technology such as comparative genomic 

hybridization (CGH, Alkan et al. 2011), allowed the unbiased assessment of copy-number 
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variation (CNV) across the whole genome at a resolution of as low as 100 kilobases. The first 

of these analysis indicated that individuals with ASD had 10-20 times the number of CNVs 

as controls (Jacquemont et al. 2006; Sebat et al. 2007). Numerous studies have since used 

CGH or similar approaches to follow up and improve upon these initial reports with larger 

and more homogenous patient populations, with thousands of individuals with ASD having 

been analyzed to date (Christian et al. 2008; Cooper et al. 2011; Gilman et al. 2011; Glessner 

et al. 2009; Itsara et al. 2010; Marshall et al. 2008; Pinto et al. 2010; Sanders et al. 2011; 

Szatmari et al. 2007; Huguet et al. 2013). These studies have consistently demonstrated that 

individuals with ASD have more CNVs than non-related controls. Furthermore, studies 

employing a family cohort model have been able to compare individuals with ASD to their 

parents and unaffected siblings, which has revealed that de novo mutations in particular are 

more frequent in children with ASD.  

 

Functionally, it was also shown that larger CNVs (i.e. affecting more genes) are associated 

with decreased cognition (Girirajan et al. 2012), and that females with ASD tend to have 

larger CNVs than males with ASD (Itsara et al. 2010; Sanders et al. 2011), suggesting they 

are somehow more ‘genetically tolerant’ of these disruptions. Moreover, some of the 

identified loci result in nearly opposite phenotypes depending on whether they are duplicated 

or deleted (Jacquemont et al. 2011). Taken together, these functional CNV findings suggest 

that identification of the genes in these regions is not sufficient to understand the mechanisms 

underlying autism, as it appears that a finely-regulated dosage of each gene is necessary to 

avoid neurodevelopmental problems such as ASD. 

 

Despite the progress made with CGH arrays, the findings from these studies only identified 

CNVs in 5-15% of individuals with ASD, suggesting that other types of mutations must be 

operant in ASD as well. However, investigations at higher genomic resolution were 

traditionally limited to specific candidate genes until the recent advent of next-generation 

sequencing technologies. Since then, seven exome sequencing studies have been completed 

in ASD, encompassing more than 1,000 affected individuals (Klei et al. 2012; Kong et al. 

2012; Neale et al. 2012; O’Roak et al. 2011; O’Roak et al. 2012a; O’Roak et al. 2012b; 

Sanders et al. 2012). In addition to identifying a number of high-confidence ASD candidate 

genes (likely representing 5-10% of ASD cases), these studies provided two other more broad 

insights into the functional genomics of ASD that are particularly motivational to the work 
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describe in this thesis.  First, with the exception of a few identified genes, there was very little 

replication of ASD candidates among the studies.  This suggest that common variants (i.e. 

those accounting for greater than 1% of cases) are unlikely to play a major role in ASD 

pathogenesis, confirming similar prior findings from genome-wide association studies and 

linkage analysis that failed to identified many replicable loci (Szatmari et al. 2007; Wang et 

al. 2009; Weiss et al. 2009). Consequently, it has been predicted that up to 1,000 genes may 

be found to be associated with ASD based on statistical modeling (Sanders et al. 2012; 

Iossifov et al. 2011). Therefore, understanding how such a large and varied number of genes 

can all be associated with one common clinical phenotype is a major challenge in the field, 

and one of the focuses of this work.  Secondly, a meta-analysis of these studies at the group 

level showed that the average rate of mutations in individuals with ASD was not significantly 

different than controls—or even unaffected siblings—unless the analysis was restricted to 

genes that are known to be expressed during human brain development (Sanders et al. 2012). 

This highlights the tissue- and human-specific nature of gene function, which underscores the 

importance of understanding the function of ASD candidate genes in the context of human 

brain development specifically. 

 

Lastly, there is a growing appreciation that the presence of multiple mutations and/or 

inherited protective or risk alleles—each at different loci within one individual—may interact 

with each other to result in the emergent ASD phenotype, and that this may help explain the 

complex and heterogeneous nature of ASD genomics.  For instance, a number of studies have 

described individuals with ASD who have more than one deleterious mutation (Girirajan et 

al. 2010; Girirajan et al. 2012; Leblond et al. 2012), and the presence of more than one 

mutation correlates with an increased risk of developmental delay (Girirajan et al. 2012). 

Other studies have suggested certain inherited variants may be protective against other ASD-

causing mutations, especially in females (Robinson et al. 2013). While the identification of 

multiple mutations within individuals is becoming a relatively straightforward task, the 

challenge of understanding how combinations of susceptibility genes interact during human 

brain development to cause disease (epistasis) has only begun to be explored, and is a major 

theme of this thesis. 

 

In summary, much work has attempted to elucidate the molecular genetics underlying autism, 

with many linkage, genome-wide association, copy number variation, and whole-exome 
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sequencing projects having implicated hundreds of genes in ASD. Yet understanding how 

this diverse set of genes relates to the underlying molecular mechanisms and subsequent 

neuropathology of ASD is still unclear. The genetic etiology of ASD is variable, complex, 

and likely involves gene-gene, gene-environment, and epigenetic interactions, as is evidenced 

by the incomplete concordance among monozygotic twins, and the considerable variability 

within pedigrees (Piven et al. 1997; Ronald et al. 2006). This genetic heterogeneity reflects 

the overlying broad clinical presentation of ASD, and is captured by the ‘spectrum’ 

designation of the disorder.   Furthermore, ASD shares considerable clinical and genetic 

overlap with other neuropsychiatric disorders such as schizophrenia and mental retardation 

(Mitchell 2011), and ASD patients have significantly increased neurologic co-morbidities 

like hypotonia, tics, and epilepsy (Levy 2009).  In fact, many of the same gene mutations 

have been found to predispose to more than one of these neurodevelopmental disorders 

(Ching et al. 2010; Guilmatre et al. 2009). This body of evidence suggests that while 

identification of candidate genes in ASD is a critical first step toward understanding the 

genetic etiology of this disorder, a comprehensive, disorder-specific understanding of the 

molecular mechanisms cannot be realized until the functional genomics of ASD candidate 

genes are properly understood in the context of human brain development. 

	
Cellular	Etiology	of	ASD	

Although autism currently lacks any unifying principles at the genetic and molecular levels, 

both human and animal studies have begun to demonstrate that disruption of synaptogenesis 

and improper connectivity of local and distant brain networks likely underlie the cellular 

pathophysiology responsible for the broad ASD phenotype (Geschwind and Levitt 2007; 

Zoghbi 2003).  Multiple different brain regions have been implicated in both post-mortem 

and neuroimaging studies, notably the prefrontal and temporal cortices, and the cerebellum 

(Abrahams and Geschwind 2010).  Histological analysis has revealed increased cell densities, 

changes in synaptic spine morphology, mini-columnar disorganization, and glial activation 

(Pickett and London 2005).  Intriguingly, many of the genes known to be integral to these 

processes have been independently linked to autism in genetics studies.  For instance, the 

Shank family of proteins, which interact with themselves and other transmembrane proteins 

at the post-synaptic density, are one of the main regulators of synaptic spine morphology 

(Sala et al. 2001). Multiple Shank family genes, notably Shank 1 and Shank 3, have been 

repeatedly implicated in ASD (Bourgeron 2009). Similarly, genes involved both in formation 
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and maintained of cortical mini-columns, such as the cadhedrin family of proteins (Redeis et 

al. 2012), and genes involved in glial activation, such as members of the Wnt/B-catenin 

pathway like DOCK1 and WNT2 (Yang 2012), have been independently implicated in ASD 

through genetic studies (Wang et al. 2010; Kalkman 2012). 

Despite these observations, the underlying mechanism(s) responsible for this “disconnection” 

phenotype remains obscure, as a complex interplay between diverse cell types and functions 

modulate the developing network architecture in both a temporally and spatially regulated 

manner (Levitt 2003; Vogel et al. 2010; Bolton et al. 2009).   

In particular, studies have shown that long-distance communication between disparate 

neocortical areas may be disrupted in ASD, causing delays in information processing within 

the brain that manifest as the communication, language, and social development problems 

seen in children with autism (Just et al. 2007). Additionally, parallel research has shown that 

neuronal micro-circuitry within brain areas may also be disrupted in ASD, and that this may 

result in local processing deficits within brain regions related to higher functioning, such as 

the prefrontal cortex (Rubenstein and Merzenich 2003). Underlying these circuit disruptions 

is a large body of evidence that has demonstrated decreased numbers of neurons (and their 

various subtypes) throughout the autistic brain by early childhood in post-mortem studies 

(Courchesne et al. 2007). 

In addition to the body of evidence implicating aberrant local and long-distance synaptic 

dysfunction in ASD, many studies have demonstrated microglial and astrocyte dysfunction in 

ASD brains.  For instance, post-mortem pathological studies of autistic brain using 

immunocytochemistry (IHC) and/or stereology have identified microglial activation patterns 

(Vargas et al. 2005; Morgan et al. 2010; Morgan et al. 2012), and have demonstrated 

increased microglial cell density in multiple brain regions (Morgan et al. 2010; Tetreault et al. 

2012). Furthermore, positron emission tomography (PET) using a microglial-specific 

radiotracer also demonstrated microglial activation in multiple brain regions of autistic cases 

(Suzuki et al. 2013). Additionally, studies in a Rett syndrome mouse model, a single-gene 

deletion disorder with autism as a component, have also demonstrated cellular microglial 

abnormalities (Maezawa and Jin 2010), and a remarkable study demonstrated that autistic-

like phenotypes can be partially reversed by replacing mutant microglia with their respective 

wild-type cells (Derecki et al. 2012). 
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Increased numbers of astrocytes, with altered cell size and branching patterns, have also been 

demonstrated in post-mortem autistic brains (Cao et al. 2012). Additionally, astrocyte-

specific cell marker proteins are increased in multiple autistic brain regions (Laurence and 

Fatemi 2005; Fatemi et al. 2008). Similar to microglial studies in ASD mouse models, 

astrocytes have been shown to be abnormal in number of single-gene ASD models, including 

Rett (Maezawa et al. 2009; Yasui et al. 2013), Fragile X (Yaskaitis et al. 2010), and Tuberous 

Sclerosis (Uhlmann et al. 2002). In parallel to the aforementioned microglial study, it was 

also shown that replacing mutant astrocytes in Rett syndrome mice could correct some 

aspects of the phenotype (Lioy et al. 2011). 

 

Overall, the cellular pathology in the brains of individuals with ASD is equally as 

complicated as the underlying genetics.  While there is strong evidence to suggest that the 

autistic phenotype ultimately results from aberrant local and long-distance synaptic wiring, it 

remains unclear if the repeated observation of altered microglia and astrocytes are 

contributory to the phenotype or represent a reaction to synaptic pathology.  However, 

previous functional genomics studies of ASD brain tissue (discussed in Chapter 1.3) have 

demonstrated altered immune and glial gene expression in autistic brains, suggesting that 

glial cell abnormalities may contribute to defects in synaptic wiring.  The complex interplay 

between ASD genetics and glial cell abnormalities is explored further throughout this work.  

	

Conclusion	

In summary, autism spectrum disorders are common, and have considerable consequences for 

individuals with ASD, their families, and society at large.  Because the underlying causes of 

ASD are not understood, specific diagnostic tests and therapeutic strategies are unavailable.  

The evolution of ASD’s clinical definition is indicative of the heterogeneous and complex 

nature of the disorder.  While ASD has recently been shown to have a significant genetic 

etiological component, the genes implicated are equally heterogeneous, hampering attempts 

to define common molecular mechanisms.  In parallel, cellular studies have revealed that 

ASD likely ultimately results from disrupted synaptic function, but a large body of evidence 

has also implicated immune and glial abnormalities in autistic individuals. Therefore, studies 

that attempt to reconcile the heterogeneous and varied nature of ASD genomics, and the 

interplay between neurons and glial, are necessary to move the field forward toward a 

common understanding of the mechanisms underlying the development of ASD.	
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1.2 Functional	Genomics	of	Human	Brain	Development	

 

Transcription of the inherited DNA sequence into copies of messenger RNA (mRNA) is the 

most fundamental process by which the genome functions to guide development.  

Furthermore, encoded sequence information, inherited epigenetic marks, and environmental 

influences all converge at the level of mRNA gene expression to allow for cell type-specific, 

tissue-specific, spatial, and temporal patterns of expression. Thus, the transcriptome 

represents a complex interplay between inherited genomic structure, dynamic experiential 

demands, and external signals. This property makes transcriptome studies uniquely 

positioned to provide insight into complex genetic-epigenetic-environmental processes such 

as human brain development, and disorders with non-Mendelian genetic etiologies such as 

autism spectrum disorders.  

 

As humans develop, an individual gene can be expressed in multiple ways depending on the 

particular developmental context; that is, the tissue, stage of development, and local or long-

distance signaling mechanisms being received.  Therefore, in order to understand how a gene 

may contribute to a developmental disorder, it is critical to assess its expression and function 

in the appropriate tissue and developmental time window. Human brain gene expression has 

been demonstrated to be particularly unique evolutionarily, compared to other human tissues, 

and in its complex regulatory processes, underscoring the need to understanding the 

functional genomics of genes implicated in autism spectrum disorders during human brain 

development. 

	

A	Brief	Overview	of	Human	Brain	Development	at	the	Cellular	Level	

The complex processes that lead to the fully formed human brain encompass a spectrum of 

mechanisms spanning genetic determinates to environmental and experimental influences. 

While the functional genomic mechanisms underlying human brain development remain 

poorly understood—motivating much of the work in this thesis—over the past several 

decades significant advances have been made to document the cellular and anatomical events 

that occur as the human brain develops and matures. It is therefore important to consider 

studies of gene expression in this context of cellular/anatomic brain developmental patterns.  
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Cellular human brain development is a protracted process that begins around the third post-

conception week (pcw) and arguably extends nearly into adulthood (Stiles and Jernigan, 

2010). Conventionally, human brain development is considered in gross stages within which 

major cellular and anatomic transitions occur (Figure 1.2.1, Insel 2010); namely the 

embryonic, fetal, early and late postnatal, adolescent, and adult periods.  

 

	
Figure 1.2.1. Trajectory of major brain developmental processes and their relationship to work 
performed in this thesis.  Top: the trajectory of the major cellular phases of brain development are 
depicted as a percentage of their maximum abundance across human development.  Bottom: Stages of 
brain development that are assessed in Chapter 2 of this thesis are depicted in colored blocks. Names 
and age ranges of the stages are given. Pcw; post-conceptional weeks. Figure adapted from: Insel TR. 
Nature. 2010;468(7321):187-93.	
 

Beginning early in the embryonic period (defined as conception to eight pcw), the basic 

structures of the brain, spinal cord, and peripheral nervous system are established. The first 

major differentiating event of the embryonic period is gastrulation, during which the single-

layered blastula forms a trilaminar structure containing the ectoderm, mesoderm, and 

endoderm. Gastrulation is completed by the third pcw, at which time some cells of the 

ectodermal layer differentiate into neural progenitors (Ozair et al. 2013). The first well-

defined neural structure, the neural tube, begins forming during the third pcw and serves as 

the basis of the early developing central nervous system, within which reside populations of 

neural stem cells. From this basic tubular structure, more specific neural patterning of what 
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will become the major brain structures and compartments occurs through the creation and 

migration of neural cells from the stem cell proliferative zones. Through graded patterns of 

molecular signaling, neural progenitors migrate outward from proliferative zones and begin 

differentiation such that a primitive map of the brain is established by the end of the 

embryonic period. For instance, through comparative studies of other mammals it has been 

projected that the sensimotor regions of the neocortex (Bishop et al. 2002), the major 

compartments of the diencephalon and midbrain (Nakamura et al. 2005; Kiecker and 

Lumsden 2004), and the organization of the hindbrain and spinal column are all well 

established by the end of the embryonic period in humans (Lumsden and Keynes 1989; 

Gavalas et al. 2003).  

 

Around the ninth pcw, the fetal period of development ensues and extends until birth, during 

which time there is rapid growth of the structures established during the embryonic period. 

Grossly, the brain develops its characteristic gyri and sulci during the fetal period (Chi et al. 

1977), reflecting the underlying dramatic cellular changes occurring during this period. The 

majority of neuronal and glial proliferation occurs between the 9th and 16th pcw, with the 

peak period of migration of these cells to their appropriate region following closely thereafter 

(Volpe 2000). In fact, production of new neurons is largely finished by midgestation, except 

for the ongoing production of neurons in a few specialized areas (Bystron et al. 2008). 

 

After their production in the proliferative regions, neurons migrate in an orderly manner to 

their final position in the developing brain.  In the neocortex, the arriving cells establish a 6-

layered structure, with the earlier migrating neurons forming the deeper layers and the later 

migrating neurons forming the more superficial layers (Cooper 2008). Their migration from 

the proliferative zone to their final position in the neocortex is helped by the guidance of 

radial glial cells, a population of stem cells that serve as a scaffold in the developing brain of 

all vertebrates (Borrell and Götz, 2014). Different layers of the neocortex contain different 

types of neurons as a result of both cell-intrinsic mechanisms operant in the progenitor cells 

from which they derive (Leone et al. 2008), and through soluble signaling cascades that direct 

progenitors toward a restricted mature neuronal type (Desai and McConnell 2000). 

 

Of particular note in this migration process are a set of structures that appear only transiently 

during the fetal period to help guide the migration of progenitors to the developing 
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neocortical layers. The very first neurons to populate the developing neocortex form a 

primitive and transient structure termed the preplate, which is then split into two separate 

structures by arriving neurons—the marginal zone and the subplate (Molnár et al. 2006). The 

region between the marginal zone and subplate serves as a hub for new arriving neurons, and 

will eventually become layer 6 (the deepest) of the developing neocortex. Subsequently, all 

newly arriving cells will form progressively more superficial layers of the neocortex from 

this base structure. Intriguingly, both the marginal zone and subplate disappear by the end of 

the fetal period, yet they have been shown to highly express some of the genes most 

significantly linked to neurodevelopmental disorders such as autism and schizophrenia, such 

as Reelin (Bielle et al. 2005; Hoerder-Suabedissen et al. 2013). Consequently, an important 

caveat to post-mortem tissue research, both cellular and genetic, is the possibility of omitting 

the contribution of these transient structures to the proper formation and potential 

abnormalities in neocortical patterning. 

 

Once the migrating neural cells have reached their destination, they begin to be incorporated 

into newly developing neural networks through a dynamic process of synaptogenesis and 

pruning that continues late into adolescence. Young neurons initially develop processes 

(dendrites and axons) that allow them to form synapses with other neurons both locally and 

long-distance. The growth cone of an axon is able to sample the neuron’s environment for 

both chemical and electrical signals that guide its wiring to other neurons to create a new 

synapse (Brown et al. 2001). Initial patterns of connectivity in the fetal and early postnatal 

brain are characterized by exuberant synaptic connections that will later be pruned away to 

leave only the connections indicated through postnatal experience (Stiles and Jernigan, 2010). 

This process of network refinement occurs through both synaptic rewiring and neuronal 

apoptosis, with rates of apoptosis as high as 70% of cells in some regions of the cortex 

(Rabinoqicz et al. 1996). Physiological neuronal apoptosis in development occurs both as the 

result of intrinsic neuronal cell death mechanisms mainly responding to the absence of local 

neurotrophic factors (Huang and Reichardt, 2001), and also through glial-initiated 

mechanisms which have recently become more widely recognized (Kettenmann et al. 2013), 

which are of particular relevance to much of the work presented in Chapters 2 and 3 of this 

thesis. This synaptic and network refinement continues through early adulthood, largely in 

response to interaction with one’s environment (Huttenlocher, 1987, Paus et al. 2001). 
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By the end of fetal development, all major adult brain structures are present, major 

connections between them are established, and the brain is poised for the rapid and dynamic 

growth that occurs in the first few years of life. The brain develops rapidly in the first few 

years after birth, reaching almost adult volume by age six (Lenroot and Giedd, 2006). While 

the production and migration of neurons are mainly prenatal events (with the notable 

exception of subventricular zone), glial progenitors have been shown to proliferate and 

differentiate throughout childhood (Cayre et al. 2009), like helping to sculpt the developing 

synaptic networks.  

 

One main function of these proliferating glial cells during the early and late postnatal periods 

is to accomplish the extensive amount of axon myelination that occurs during this time. 

Increased myelination of axons allows for increased growth of axon diameter, and ultimately 

enables faster and long-distance neuronal connections (Zalc et al. 2008). Robust increases in 

myelination have been reported across the brain from ages 5 – 12 years, with a varying rate of 

fiber tract myelination in various brain regions (Lebel et al. 2008; Lebel and Beaulieu, 2009). 

 

While the early postnatal period is characterized anatomically by an over-abundance of 

synaptic connections (“overconnectivity”) between neurons, these connections are gradually 

pruned back over the course of development by competitive experiential processes.  In fact, 

this particular pruning mechanism is hypothesized to be one of the main altered mechanisms 

in neurodevelopmental disorders like autism (Just et al. 2004). Modern neuroimaging 

techniques such as diffusor tensor imaging (DTI) and functional magnetic resonance imaging 

(fMRI) have made significant recent advances in linking brain structural changes to 

functional and behavioral development, with longitudinal neuroimaging studies having 

demonstrated changes in grey matter density throughout the neocortex into the mid-twenties, 

with the prefrontal cortex being the last to mature (Paus et al. 2008). While much of the 

organization of the postnatal brain is genetically determined (Stiles and Jernigan, 2010), it 

has been clearly demonstrated that this intrinsic development remains extremely malleable to 

experience-dependent processes (Hubel and Wiesel, 1977; Markham and Greenough, 2004).  

 

Moreover, epigenetic mechanisms that ultimately converge to influence gene expression have 

been shown to be one of the main mediators between environmental experiences and 

developmental synaptic plasticity (Fagiolini et al. 2009). For instance, studies in mice have 



	

 

27 
 

shown that environmental enrichment results in increased chromatin remodeling that 

modifies gene expression patterns in the hippocampus, resulting in improved spatial memory 

(Fischer 2007). Alternatively, an increase in methylation of the BDNF promoter and 

consequent decrease in BDNF mRNA in the prefrontal cortex was found in association with 

exposure to periods of abusive maternal care, and these effects are perpetuated to the F1 

generation suggesting a role for transgenerational effects (Champagne 2008). Yet while 

studies of model organisms are beginning to demonstrate that gene expression represents a 

critical nexus of experience dependent plasticity, human studies of neurodevelopmental 

disorders in which this process may go awry are limited, and the general landscape of gene 

expression in the developing human brain as relates to neurodevelopmental disorders like 

autism is largely unexplored. 

 

In summary, great progress in understanding the anatomical and cellular trends underlying 

human brain development have been made over the past few decades.  We have come to 

appreciate though various approaches that human neurodevelopment is a dynamic and 

protracted process, characterized by an initial period of neurogenesis leading to the formation 

of the basic CNS framework in early embryonic development. This is following by 

substantial cellular proliferation, migration, and differentiation in the fetal period that 

establishes the main areas and pathways of the brain by birth. The early postnatal period is a 

time of rapid growth through glial proliferation, myelination, and organization of developing 

neural networks. Importantly, this process is very malleable particularly with regard to 

environmental and experiential events. Precise refinement of these developing neural 

networks occurs throughout adolescence and into early adulthood. 

 

While the cellular events that lead to the initial formation and subsequent refinement of 

human neuroanatomy are fairly well defined, the underlying molecular and genetic 

determinates that in part encode for these events are much well-less understood.  Recent 

efforts to profile genome-wide expression patterns in post mortem human brains across 

development have begun to expose the uniqueness of human brain functional genomics, as is 

discussed in the next section. 	
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Human	Brain	Gene	Expression	

Compared to other species, human brains express mRNA transcripts at much higher levels 

and with much greater complexity.  For instance, comparisons of human brain gene 

expression with both mouse (Enard et al. 2002; Lockhart and Barlow 2001) and primates 

(Caceres et al. 2003; Khaitovich et al. 2004) has demonstrated that most of the differentially 

expressed genes between the species are up-regulated in humans, but this phenomena is not 

apparent in other tissues. Additionally, the human brain expresses ~86% of all genes encoded 

in the human genome at some point during development (Kang et al. 2011), which is greater 

than any other individual tissue type. It is hypothesized that this increased level of gene 

expression in the human brain is at least partially responsible for the higher level of neuronal 

activity and overall cognitive function in humans. 

 

Within humans specifically, the brain also displays a distinct gene expression profile from 

other tissues.  Using both array (de la Grange et al. 2010) and sequencing-based techniques 

(Ramskold et al. 2009), the brain has been shown to have higher expression levels and greater 

transcriptome complexity than other human tissue and cell types. In particular, human brain 

gene expression displays a high level of alternative splicing and a unique diversity of non-

coding RNA types expressed. For example, studies have demonstrated that the human brain 

transcriptome has an unusually high level of alternatively spliced transcripts compared to 

other tissues (Yeo et al. 2004; Wang et al. 2008; Mortazavi et al. 2008), and the set of 

isoforms produced in brain differs considerably from other tissue types (Yeo et al. 2004; de la 

Grange et al 2010).  In addition to increased numbers and types of spliced mRNAs, the 

human brain transcriptome also displays a uniquely high abundance of transcribed non-

coding RNAs (ncRNAs). In fact, the brain displays the greatest abundance of transcribed 

ncRNAs among all tissues studied thus far (Qureshi and Mehler 2012).  Both short ncRNAs, 

such as microRNAs (miRNAs) and piwi-interacting RNAs (piRNA), and long non-coding 

RNAs (lncRNAs) are highly enriched in the brain (Chodroff et al. 2010; Kuss and Chen 

2008; Ponjavic et al. 2009; Schonrock et al 2010; St. Laurent et al. 2009). As ncRNAs are 

becoming increasingly recognized as important regulatory elements in genome processing 

during neurodevelopment and in the pathogenesis of neurodevelopmental disorders (Qureshi 

and Mehler 2011), their abundance in the brain further highlights the uniqueness of 

neurodevelopmental functional genomics (discussed further below). 
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While within a given brain region the human transcriptome has been shown to be incredibly 

complex, it is also of importance to consider the relationship among different anatomical 

regions of the brain, as ‘disconnectivity’ between disparate brain regions is thought to 

underlie a number of neurodevelopmental syndromes including ASD (Geschwind and Levitt 

2007).  Perhaps unsurprisingly, there is strong evidence that distinct regions of the human 

brain have distinct gene expression profiles, and animal studies have suggested that this 

variation is related to both structural and functional differences (Nadler et al. 2006).  For 

instance, a microarray study of twenty distinct brain and spinal cord sites showed that 

expression profiles can cluster samples from different donors by anatomical origin, and that 

some anatomical regions have up to 2,000 region-specific genes (Roth et al. 2006). Multiple 

studies have shown that the cerebellum contains the most unique gene expression pattern 

compared to other brain structures (Lockhart an Barlow 2001; Roth et al. 2006; Strand et al. 

2007), which is of consequence to autism in particular, as this region has been consistently 

implicated in the pathogenesis of the disorder (Fatemi et al. 2012). Even just within the 

neocortex, different cortical layers each express a detectably distinct profile of mRNA 

transcripts (Molveneaux et al. 2007). Underscoring the importance of region-specific 

expression are results that have shown gene expression differences between any two brain 

areas with one individual are more pronounced than are gene expression differences between 

two different individuals within the same brain region (Strand et al. 2007; Khaitovich et al. 

2004; Naumova et al. 2008). 

 

In summary, the human brain has been demonstrated to have a unique pattern and complexity 

of gene expression both compared to other species and compared to other human tissues, 

including region specific gene expression patterns, and pervasive transcription of ncRNAs.  

This highlights the importance of understanding human neuropsychiatric disorders, such as 

ASD, in the context of human brain gene expression specifically, as it is likely that animal, 

cellular, and other models do not recapitulate the uniqueness of human brain functional 

genomics with the appropriate level of fidelity. Moreover, recent evidence is accumulating 

that suggests gene expression patterns within the human brain vary considerably across 

developmental time, and therefore temporal patterns of gene expression are also an important 

consideration. 
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Changes	in	Gene	Expression	During	Human	Neurodevelopment	

The developing human brain grows remarkably fast—the weight of a newborn’s brain is 

approximately 25% of its adult weight, but within two years, it nearly reaches its adult size 

(Dekaban and Sadowsky 1978).  During this time, the brain grows mainly through glial 

multiplication, myelination, formation of new synaptic connections, and pruning of unused 

synaptic connections. While the human brain continues to mature up to the age of 25 years 

(Sowell et al. 2004), the greatest changes occur in the periods of infancy and early childhood.  

Coincidentally, most neurodevelopmental disorders, including autism spectrum disorders, 

become clinically recognizable around this age. 

 

Underlying these dramatic early changes in brain development are complex and dynamic 

broad patterns of gene expression, which have only recently begun to be understood. The 

most comprehensive study to date of the developing human brain transcriptome (published 

after the onset of this work; Kang et al. 2011) documented that genome-wide patterns of gene 

expression correspond closely to the major stages of clinical development (namely prenatal, 

early infancy, childhood, adolescence, and adulthood), and that the molecular profile of these 

stages are distinct from each other. The most striking observation was that the greatest shifts 

in gene expression occur around the period of birth, where the authors found almost 60% of 

genes change their expression patterns in the neocortex (Kang et al. 2011). Other studies have 

demonstrated similar changes, and have showed that many of the genes identified during this 

shift are known to be involved in cortical development and higher order cognitive functioning 

(Johnson et al. 2009; Lambert et al. 2011).  

 

The Kang et al. study, which profiled RNA expression using whole-genome microarrays on 

tissue derived from neurologically normal donor brains spanning the 2nd trimester through 

adulthood, also demonstrated that after infancy the number of genes whose expression profile 

changes in the neocortex decreases dramatically to approximately 9% of expressed genes 

between infancy and adolescence, and less than 1% of genes between adolescence and 

adulthood. Functional annotation of these gene sets further revealed that genes expressed 

very early in prenatal development are highly related to the process of cell differentiation, 

proliferation, and migration, while genes expressed later in gestation are more related to 

synaptogenesis, suggesting that time-period specific gene expression patterns drive cell-level 

developmental programs.  Again, these findings highlight the importance of assessing autism 
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candidate gene expression and function during the appropriate developmental time window, 

in order to gain the most relevant insight into this disorder. 

 

In addition to the greatest number of genes shifting their expression trajectory shortly after 

birth, the changes in gene expression in early post-natal life have also been shown to have 

greater amplitude of change (Colantuoni et al. 2011; Somel et al. 2009; Somel et al. 2010). In 

fact, it was shown that many genes actually reverse their expression trajectory in early life 

(Calantuoni et al. 2011), mostly shifting from a pattern of increasing expression in fetal life 

and infancy to a decrease in expression beginning in childhood. Moreover, as the brain begins 

to mature, the gene expression profile within each anatomical region becomes more similar to 

other regions, with the exception of the cerebellum, suggesting that most of the region-

specific development is completed early in life. Interestingly, these broad gene expression 

patterns appear to reverse themselves in older age, at least in the prefrontal cortex (Somel et 

al. 2010). 

 

Gene expression dynamics in early human brain development are clearly both spatially and 

temporally specific.  This suggests not only that they are highly regulated, but that different 

genes and gene networks will have dynamic expression throughout space and time. Despite 

this increasingly recognized property of human neurodevelopmental genomics, few studies of 

autism candidate genes have considered their expression and function in early human brain 

development.  Furthermore, the molecular regulators of brain mRNA expression, such as 

non-coding RNAs, have not been extensively characterized in the developing human brain, 

and their potential involvement in ASD has hardly been studied. Accordingly, an 

understanding of the functional genomics of autism, the genetic interaction networks that 

ASD candidate genes participate in, and the potential ncRNA regulators of these genes, 

represent important unresolved avenues of research, and are addressed by work in this thesis. 

 

Non‐coding	RNAs	in	Human	Brain	Development	

Since the advent of high-throughput, unbiased, genome expression arrays and sequencing 

platforms, the recognition that the genome is pervasively transcribed at loci that do not 

encode for protein products is becoming well recognized. The term ‘non-coding RNA’ 

(ncRNA) is commonly employed for RNA that is transcribed in the cell but does not encode 

for a corresponding protein product (Mattick and Makunin, 2006). While originally consider 
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to represent transcriptional ‘noise’ (Ponting and Belgard 2010), this non-coding RNA 

component of the transcriptome is increasingly implicated in regulating the genomic 

landscape though a myriad of mechanisms (Figure 1.2.2), and as such are increasingly being 

recognized as important modulators of gene expression.  Moreover, they are also beginning 

to be implicated in disease.   

 

These ncRNAs can interact with DNA to induce methylation or histone modifications, recruit 

transcription factors, and modulate the three-dimensional architecture of chromosomes in the 

nucleus (Ponting et al. 2009).  They can bind to other RNA molecules, especially mRNA 

with complementary sequences, to inhibit translation through RNA degradation, or they can 

act as ‘sponges’ and thereby dilute the effect of mRNAs or other ncRNAs (Hansen et al. 

2013).  Conversely, they can increase the rate of translation by acting as molecular stabilizing 

scaffolds.  They can also interact with proteins and protein complexes to catalyze reactions 

by acting as linkers among otherwise scarce proteins in the cytosol, and participate in cellular 

trafficking of RNA binding proteins (Mansfield and Keene 2009). Additionally, ncRNAs 

have been shown to participate in intracellular communication by helping transport cargo 

between adjacent cells (Skog et al. 2008; Balaj et al. 2011). 

 

 

Figure 1.2.2.  Schematic of some experimentally validated functions of ncRNAs.  Long non-
coding RNAs, one class of ncRNAs, have been demonstrated to act through a variety of mechanisms 
to modulate gene expression.  Adapted from: Hu W, et al. EMBO reports. 2012; 13:971. 
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The increasing recognition of this important layer of transcriptome information is perhaps 

most important in the brain, where it has been shown that the greatest abundance of ncRNAs 

exist (Mercer et al. 2008). Furthermore, there is strong evidence that ncRNAs played a 

critical role in the evolution of human brain structure and function.  For instance, the fastest 

evolving regions of the primate genome are sequences that are transcribed to ncRNAs, and it 

has been shown that these particular ncRNAs are primarily involved in regulating 

neurodevelopmental genes (Pollard et al. 2006).  Similarly, regulation at the level of RNAs 

through RNA editing mechanisms (which many classes of ncRNAs exhibit high degrees of) 

has undergone a significant evolutionary expansion in higher primates and humans (Paz-

Yaacov et al. 2010). 

 

This expanding inventory of ncRNAs, and their increasing functional and regulatory 

activities in humans, appear to play an important role in neurodevelopment and 

neuropsychiatric diseases.  In particular, microRNAs (miRNAs) and long non-coding RNAs 

(lncRNAs) are the best studied of this class of regulatory RNAs, and have recently been 

implicated in a number of neurodevelopmental disorders, including ASD. 

	

MicroRNAs		

The best studied of the ncRNAs are microRNAs, which mainly function to repress translation 

post-transcriptionally through the RNA interference (RNAi) mechanism.  The miRNA family 

includes a variety of precursor RNA molecules that are classified mainly on their genomic 

origin, such as endogenous small interfering RNAs (endo-siRNAs) and PIWI-interacting 

RNAs (piRNAs).  However, all classes are quickly processed after transcription into the 

common mature form of miRNAs that are 20-23 nucleotides in length and single-stranded 

(Hutvagner and Zamore 2002, Figure 1.2.3). 

 

Figure 1.2.3.  Representation of 
precursor and mature miRNAs.  
A variety of precursor RNAs are 
processed through a series of 
steps into their mature, functional 
forms, which are 20-23nt in 
length and single-stranded. 
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In brief, the RNAi mechanism begins when precursor miRNAs are transcribed in their 

entirety from the genomic DNA, processed by an enzyme complex known as DROSHA, 

exported to the cytoplasm, and cleaved by the ribonuclease DICER into their mature form.  

At this point, they bind to a class proteins termed Argonaute proteins, which are then 

incorporated into a larger multi-protein complex termed the RNA-induced silence complex 

(RISC).  The RISC complex is then guided to mRNAs that are complementary to its 

associated miRNA, leading to a repression of translation or overt degradation of the mRNA 

transcript (Liu and Paroo 2010). 

 

Importantly, a single miRNA can target—and therefore regulate—many mRNAs because of 

their short sequence, their preferential binding to 3’-UTRs, and their imperfect 

complementary binding to cognate sequences (Hashimoto et al. 2013).  Conversely, it has 

been shown that individual mRNAs are often targeted by multiple miRNAs. Therefore, 

miRNA-mRNA interactions alone can increase the complexity of gene expression regulation 

by orders of magnitude.  Furthermore, miRNAs are known to target other ncRNAs in 

addition to protein-coding mRNAs (Hansen et al. 2011).  The critical implication of these 

insights is that a single miRNA has the ability to modulate entire transcriptional networks, 

and therefore the mis-expression of a single miRNA has the potential to disrupt the proper 

expression of entire suites of genes. 

 

Recent studies have demonstrated the importance of miRNAs in human brain evolution, 

cellular development, experience-dependent plasticity, and in neuropsychiatric disorders.  A 

large number of miRNAs exhibit species-specific expression patterns, are conserved only in 

primates and/or humans, or are exclusively expressed in brain—providing strong evidence for 

their role in human-specific brain functions and disorders (Somel et al. 2010; Somel et al. 

2011).  For example, an analysis of human, chimpanzee, and macaque prefrontal cortex and 

cerebellum showed a substantial degree of divergence in their miRNA expression patterns 

(Hu et al. 2011).   

 

Additionally, important roles for miRNAs in neural stem cell maintenance and differentiation 

have been established through a number of studies that have identified and characterized 

individual miRNAs of interest.  For instance, multiple animal studies have shown that 
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DICER knockout animals display a host of neurodevelopmental defects, including abnormal 

brain size, structural defects, and improper formation of synapses (Giraldez et al. 2005; Davis 

et al. 2008; Zhao et al. 2010).  One particular miRNA, miR-9, has been studied extensively 

for its role in developmental patterning and cell migration, where it has been shown to be 

critical for neural stem cell self-renewal (Zhao et al. 2005), production of some of the earliest 

neurons in the developing telencephalon, and cortical laminization (Shibata et al. 2011).  

Cellular studies of pluripotency have demonstrated that introduction of particular miRNAs 

can reprogram human skin fibroblasts into neuronal-like cells (Yoo et al. 2011), and that this 

mechanism likely involves the central nature of these miRNAs in canonical transcriptional 

networks that are known to guide neural cell fate decisions (Wu and Xie 2006).  In addition 

to neurogenesis, miRNAs have also been shown to regulate gliogenesis, in particular the 

formation of oligodendrocytes and astrocytes (Dugas et al. 2010; Tao et al. 2011). 

 

In the neocortex specifically, miRNA regulation of neural stem cell differentiation and 

migration has been shown to be critical to normal development in mice, as cortex-specific 

Dicer mutants have pronounced changes to the proportion of different classes of cortical 

neurons generated (Saurat et al. 2013). Importantly, the role of miRNAs in neural stem cell 

differentiation and migration appears to vary over developmental time, as deletion of Dicer 

before the onset of neurogenesis results in an overall reduction in neuron number (De Pietri et 

al. 2008), whereas deletion later in development leads to a much milder phenotype (Kawase-

Koga et al. 2009). This temporal variability underscores the importance of studying miRNA 

regulation of gene expression across developmental time. 

 

In addition to being implicated in individual cellular-level functions, miRNAs have been 

shown to contribute to synaptogenesis and experience-dependent plasticity—both functions 

thought to underlie complex human behavior, and hypothesized to be disrupted in ASD.  For 

example, specific miRNAs are enriched in the synaptic nerve terminals of axons (Natera-

Naranjo et al. 2010), and are up-regulated in expression in the hippocampus following 

memory tasks in mice (Hansen et al. 2013).  In Drosophila melanogaster, knockout of 

subcomponents of the DICER complex results in synaptic transmission defects, but no overt 

brain structural abnormalities (Smibert et al. 2011), and in mice results in dendritic spine 

malformations (Davis et al. 2008) and impaired synaptic transmission (Schofield et al. 2011). 
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Finally, miRNAs are now recognized as contributing to human neurologic disease.  Inherited 

variation in DNA encoding for miRNAs or in miRNA recognition sites has been linked to a 

number of disorders including schizophrenia (Liu et al. 2012).  Dysregulated expression of 

miRNAs has been demonstrated in brain tumors (Silber et al. 2008), Parkinson’s disease 

(Martins et al. 2011), and Tourette’s syndrome (Abelson et al. 2005), and an absence of 

mature miRNAs due to DICER knockout affects memory and learning in mice (Konopka et 

al. 2010). 

	

However, despite these substantial observations suggesting that miRNAs are critical 

regulators of neurodevelopmental transcriptional networks and are often disrupted in 

neurologic diseases, the miRNA landscape of the developing human brain has not been fully 

characterized, and only a few small studies have attempted to profile miRNA expression 

levels in autism spectrum disorder (reviewed below).  Thus, there is a need for a 

comprehensive assessment of miRNAs during human brain development, and a more 

thorough characterization of miRNA changes in ASD. 

	

Long	Non‐coding	RNAs	

In contrast to miRNAs, which are short sequences with well-defined functions in post-

transcriptional regulation, long non-coding RNAs (lncRNAs) represent a novel class of 

transcripts whose function in brain development remains poorly understood.  Long non-

coding RNAs are defined as RNAs greater than 200 nucleotides in length (as compared to 

~21-23 nucleotide length of miRNAs), which do not encode for protein, or lack an 

appreciable reading frame.  LncRNAs undergo post-transcriptional processing similar to 

other RNAs, providing the first hint at their functional importance.  For instance, some 

lncRNAs are modified to include a 5’-methyl cap and 3’ polyadenlyation (Carninci et al. 

2005; Diebali et al. 2012). However, unlike miRNAs, long non-coding RNAs are generally 

poorly conserved evolutionary, and as such, elucidation of their functional roles has relied 

more upon expression analysis and individual functional studies than on comparative 

genomic interpretations. 

 

While originally thought to be evolutionary byproducts, long non-coding RNAs have been 

shown to be involved in major mechanisms of gene expression regulation, such as targeting 

transcription factors, initiating chromatin remodeling, directing methylation complexes, and 
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blocking nearby transcription (Ponting et al. 2009).  Moreover, pervasive transcription of 

lncRNAs has been demonstrated to occur in both a temporally and spatially regulated manner 

during development (Amaral and Mattick 2008), with the central nervous system displaying 

the greatest abundance of transcribed lncRNAs (Mercer et al. 2008).   

 

Recently, it has been demonstrated that individual lncRNAs play important regulatory roles 

in the spatial-temporal control of gene expression in the brain specifically. One of the first 

studies to demonstrate this explored RNA expression from mouse in situ hybridization data, 

and the authors demonstrated that most lncRNAs examined were localized to specific cell 

types, subcellular compartments, or neuroanatomical regions (Mercer et al. 2008).  This work 

provided some of the first large scale evidence that lncRNAs may have specific functions in 

their capacity as RNAs alone in the mammalian brain.  Subsequently, a number of studies 

employing both whole-genome and individual candidate lncRNA assessment have begun to 

expose the importance of lncRNAs to the regulation of the developing brain transcriptome. 

For example, individual lncRNAs have been shown to be induced in response to neural 

activity or modulate synaptogenesis (Lipovich et al. 2012; Bernard et al. 2010).  They have 

also been implicated in neuronal differentiation; for instance, the lncRNA Evf2 recruits a 

number of important neurodevelopmental transcription factors (such as Mecp2, the DLX 

family, and GAD1) to their target genes in GABA-ergic interneurons, and Evf2 knockout 

mice have reduced interneuron cell numbers (Bond et al. 2009).  Transcriptome studies of 

brain tissue have also begun to characterize the entire landscape lncRNAs during 

neurodevelopment.  It was shown that lncRNAs are differentially expressed across layers of 

the mouse neocortex (Belgard et al. 2011), and that those expressed in brain are preferentially 

located in genomic regions containing critical neurodevelopmental genes (Ponjavic et al. 

2009). 

 

Long non-coding RNAs have also been found to be abnormally expressed in a number of 

neurologic disorders.  For example, the lncRNA BACE1-AS is an antisense transcript of the 

beta-secretase-1 gene locus, which is implicated in the generation of beta-amyloid plagues in 

Alzheimer’s disease (Faghihi et al. 2008).  The BACE1-AS lncRNA extensively regulates the 

level of BACE1, and therefore can directly affect the level of beta-amyloid plaque 

accumulation (Modarresi et al. 2011).  Other lncRNAs have been implicated in the 
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neurodevelopmental disorder Angelman’s syndrome (Landers et al. 2005; Meng et al. 2012), 

which shares many features with ASD. 

 

Therefore, lncRNAs appear to play a critical role in modulating gene expression in the 

developing brain, and are increasingly implicated in neurological disorders.  Their potentially 

numerous regulatory mechanisms, and largely overlooked sequence variation in disease, 

makes them an important class of candidate molecules to consider in neurodevelopmental 

disorders with complex genetics, such as autism spectrum disorders.  However, no work has 

attempted to systematically identify lncRNAs in ASD, despite the increasing recognition of 

their importance to the complex genomics of brain development. 

 

Gene	Networks	in	the	Developing	Human	Brain	

While assessing non-coding regions of the genome is an important approach to 

comprehensively understand the complex functional genomics of human brain development 

and neurodevelopmental disorders, it is equally important to consider how disparate genomic 

elements may work in concert with each other to produce biological effects that are emergent 

only after their interaction.  The study of genetic interactions can be done by modeling large 

gene sets as networks of interacting nodes and edges, allowing for a statistical assessment of 

relationships among and between genes, as opposed to the study of individual genes 

themselves.  Such approaches are particularly important in complex genetic syndromes like 

autism spectrum disorder, as genome wide association studies have consistently demonstrated 

that most individual variants in ASD have only very small effects by themselves. 

The study of gene networks is a subset of the field of network science that applies 

mathematical and statistical principles to biological systems.  A biological network is a 

system of individual biologic components that interact with each other in a structured, non-

random manner, such that properties of the network as a whole emerge that are not apparent 

by studying the individual components in isolation.  Biological networks have been identified 

at levels spanning molecular (Sharan et al. 2005), cellular (Sanchez-Vives and McCormick 

200), organ system (Bullmore and Sporns 2009), and even inter-individual relationships 

(Croft et al. 2004).   

An interaction network consists of nodes and edges.  In gene networks, nodes represent 

discrete genes and edges represent a biological relationship or connection between nodes 
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(Figure 1.2.4). Depending on the interaction being studied, edges can represent many 

relationships such as known protein-protein binding, correlations of expression levels 

between genes, or any other metric that can be measured in all nodes and have putative 

biological relevance to how the system works.  As most gene networks are incredibly large 

(thousands of nodes and millions of possible edges), the study of biological networks relies 

on a number of mathematical principles adopted from network theory and statistics that 

allows for the incredible complexity of large networks to be summarized, quantified, and 

visualized in order to more easily infer biological meaning.   

 

Figure 1.2.4.  Examples of gene interaction networks.  Properties of networks as a whole can 
become apparent that would not be appreciated by studying individual genes.  For example, the 
network on the left represents known 2nd degree protein-protein interactions with the gene Mecp2 in 
humans, whereas the network on the right represents the known Mecp2 interactions in mice.  As can 
be seen, the human network is much more densely connected, suggesting Mecp2 has more known 
interactions in humans. Networks created with String v9.05 (http://string-db.org/). 
 

A genetic interaction occurs, then, when an unexpected phenotype emerges from the 

combination of two or more interacting genes.  This phenomenon is widely pervasive in 

genetics and has been recognized for decades.  For instance, the phenomenon of synthetic 

lethality occurs when two genetic mutations that by themselves have no effect, are both 

present in the same gene and their presence together results in a defective protein product 

(Hajeri and Amatruda 2012).  Furthermore, genetic interactions appear to be ubiquitous 

throughout the genome (Phillips 2008).  However, predicting how independent genes 

combine with each other to create emergent properties is not straightforward.  This is 

especially true in non-model organism systems, such as the human brain, where it is 

impossible to experimentally modulate individual genes, and therefore researchers must rely 

only on observational measures such as gene and protein expression levels. 
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One validated approach to integrate heterogeneous gene sets, in order to uncover shared 

molecular mechanisms, is through the analysis of gene co-expression patterns, which invokes 

the guilt-by-association heuristic that is pervasive in genomics research (Stuart et al. 2003; 

Wolfe et al. 2005). Several studies have demonstrated that genes with similar brain co-

expression patterns are likely to function together in common cellular pathways (Oldham et 

al. 2008; Winden et al. 2009). These transcriptional co-expression relationships are 

particularly relevant to neurodevelopment, as the precise regulation of gene expression across 

brain regions at different ages instructs the exquisite specialization and connectivity within 

the brain. For instance, if two genes are expressed with similar patterns (i.e. they have a 

similar magnitude and direction of expression change across developmental time), they 

would have a higher correlation than two genes whose expression appears to be randomly 

related to one another.  In this network, edges would link genes with similar expression 

profiles, whereas unrelated genes would not share an edge.  Defining edges between genes in 

this way allows the conclusion that the two nodes share related biological function, and can 

be used to derive and study large-scale genetic interaction networks. 

 

Another widely used approach to infer interaction networks is to draw upon experimentally 

determined protein-protein interactions.  Protein-protein interaction networks are perhaps the 

best-characterized networks in all of biology, and many well-curated experimental datasets 

containing detailed interaction information exist.  Studies have demonstrated that protein 

interaction networks are conserved evolutionarily (Perez-Bercoff et al. 2013), and that 

proteins in the network with high degrees of connectedness are more important for 

organismal survival and fitness than those with lesser connectivity (Baryshnikova et al. 

2010).  This suggests that information on the importance of individual genes/proteins in a 

network can be inferred by studying the overall structure of the network as a whole. Such an 

approach could be particularly valuable in disorders like ASD, where there are many 

implicated genes, but the relative importance of each to the pathophysiology of the disorder is 

unclear. 

 

Approaches that combine gene co-expression networks and protein interaction networks are 

also beginning to be developed, and will be an important future approach to understanding 

the ultimate cellular function of autism candidate genes at the protein level.  Recent large-

scale proteomics efforts have shown that protein co-expression patterns are slightly better 
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predictors of protein interactions than are mRNA co-expression patterns (Kim et al. 2014). 

However, obtaining comprehensive and unbiased datasets of protein co-expression is much 

more technically challenging than obtaining genome-wide RNA expression levels. 

Consequently, understanding gene co-expression patterns among autism candidates is an 

important first step, which can then be used to guide future protein-protein interaction studies 

of these genes in a more targeted manner, as has been described in other model systems 

(Tornow and Mewes 2003). 

 

Since neurodevelopmental disorders such as autism are believed to result from functional 

aberrations within brain regions and/or disruption of inter-regional connectivity between 

regions (Geschwind and Levitt 2007), investigating the gene expression profiles of autism 

candidate genes across brain regions and throughout normal human neurodevelopment may 

provide insight into the complex functional genomics of this neurodevelopmental disorder. 

Furthermore, as the genetic heterogeneity of ASD continues to increase as more sequencing 

and association studies are performed, prioritizing candidate genes through their location in 

interaction networks is an important undertaking. 

 

Conclusion	

The human brain transcriptome displays a remarkably complex array of genes and ncRNAs 

that appear to be highly temporally and spatially regulated.  Furthermore, comparative 

genomics studies have shown that the functional genomics of human brain development 

diverges significantly from model organisms or even close evolutionary relatives.  Non-

coding RNAs, miRNAs and lncRNAs in particular, are increasingly recognized as critical 

regulators of gene expression, and the analysis of gene interaction networks allows for the 

identification of emergent properties among large sets of genes that are often not apparent 

when studying individual genes of interest in isolation.  Therefore, it is critical that the genes 

implicated in autism be understood in the specific context of human neurodevelopmental 

gene expression, that potential critical ncRNA regulators of their expression be identified, 

and that their network-level properties be explored, as it is increasingly apparent that the 

appropriate genomic context be applied and understood in complex genetic disorders. 

	

-- 
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1.3 Previous	Functional	Genomics	Studies	of	ASD	

At the onset of this work, very few studies had assessed the expression, regulation, or 

network properties of autism candidate genes specifically in human neurodevelopment.  

Similarly, partly due to the scarcity of well-preserved post-mortem tissue, there have been 

few studies assessing autistic brain tissue directly, and in particular, almost no studies have 

explored non-coding RNAs and the mitochondrial genome in autistic brain.  Recently, newer 

functional genomics studies in ASD have added critical insight into potentially convergent 

molecular and regulatory pathways in ASD, many of which are supportive and 

complementary to the work described in Chapters 2 and 3 of this thesis. 	
 

Gene	Expression	Studies	in	ASD	

The majority of gene expression studies in autism have been performed in peripheral blood 

lymphocytes (Voineagu 2012); however, as only approximately half of the genes expressed 

in brain are also expressed in lymphocytes (Cookson 2009), it is critically important that 

autistic brain tissue be assessed directly.  The few genome-wide expression profiling studies 

in autistic brain tissue have repeatedly identified a number of functions that appear to be 

disrupted in autistic brain.  The first microarray study assessed autistic post-mortem 

cerebellum and demonstrated dysregulation of AMPA receptor subunits in ASD (Purcell et 

al. 2001).  Subsequently, Garbett et al. analyzed genome-wide microarray expression profiles 

form six autistic temporal cortices and six controls, and their results suggested an up-

regulation of genes involved in immune and inflammatory processes with a concurrent down-

regulation of genes involved in neurodevelopment (Garbett et al. 2008).  The largest sample 

size assessed by microarray analysis to date studied three separate brain regions (frontal 

cortex, temporal cortex, and cerebellum) form 19 autistic cases and 17 controls (Voineagu et 

al. 2011).  This work also demonstrated an up-regulation of genes with known immune 

function and a concurrent down-regulation of genes involved with the synapse.  Importantly, 

there was a large degree of overlap in the genes identified between the Garbett et al. 2008 and 

the Voineagu et al. 2011 studies, even though they assessed different cohorts of donor brains.  

 

Interestingly, there is a large body of evidence potentially linking immune-related gene 

expression changes in autistic brain with prenatal events that may affect the developing brain 

and result in the autism phenotype. For instance, there is increasing evidence implicating 

maternal infection during pregnancy and inflammation in the placenta to autism risk. For 
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example, abnormal inclusions of trophoblasts, the cells that comprise the placenta, are found 

more frequently in placentas from mothers of children who develop autism than in controls 

(Anderson et al. 2007). In addition, placental inflammation is associated with impairments in 

communication and social interaction in the child, as measured by low ratings on the 

Modified Checklist for Autism in Toddlers (Limperopoulos et al. 2008). It has further been 

shown that inducing inflammation in the utero-placental compartment in pregnant sheep is 

sufficient to cause neurological deficits reminiscent of autism in their offspring (Hutton et al. 

2007). It is hypothesized that maternal immune activation induces cytokines expression that 

can activate immune cells within the placenta, eventually leading to abnormal placental 

signaling and sequent neuroinflammation in the developing fetal brain (Boksa 2010; Hsiao 

and Patterson 2012). Supporting this theory are studies correlating elevated levels of 

cytokines in amniotic fluid and maternal blood with increased risk of autism in the child 

(Abdallah et al. 2012; Goines et al. 2011). Yet it is not understood how inherited genetic risk 

for autism may relate to these immune findings. 

 

More recently, Chow et al. studied autistic prefrontal cortex across a large age span, and 

demonstrated dysregulation in pathways governing cell number, cortical patterning, and 

differentiation in young autistic prefrontal cortex, but in contrast found dysregulation of 

signaling and repair pathways in adult autistic brain tissue (Chow et al. 2012).  Another 

recent study of autistic cerebellar and occipital brain regions demonstrated no changes in 

DNA methylation, but significant gene expression abnormalities in mitochondrial oxidative 

phosphorylation and protein translation pathways (Ginsberg et al. 2012). 

 

Therefore, while the number of studies assessing gene expression in autistic brain are still 

small, already there appears to be a growing body of evidence implicating disrupted 

molecular pathways involved in synaptogenesis and immune function, in addition to a 

number of others.  However, how these observations relate to known inherited mutations in 

autistic candidate genes, or how disruptions of autism candidate gene expression may result 

in these broad molecular changes, is far from clear.	
 

Non‐coding	RNA	Studies	in	ASD	

Remarkably, the majority of the single nucleotide polymorphisms associated with ASD via 

GWAS studies have been found in intergenic regions or intronic sequences outside the 
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protein coding sequences (see Chapter 1.2). Despite the increasing recognition of the 

importance of non-coding genomic regions in the molecular regulation of human brain 

development, their relation to the pathogenesis of ASD has hardly been assessed.  Moreover, 

despite the known tissue-specific nature of ncRNA expression, only one study of miRNAs in 

autism has been done in brain tissue, and until only very recently no studies had assessed 

long non-coding RNAs in autistic brain.  

Four studies have profiled miRNA expression in tissues derived from patients with 

‘idiopathic’ autism. In the only study of autistic post-mortem brain tissue, Abu-Elneel et al. 

identified 28 differentially expressed miRNAs in ASD cerebellum via qRT-PCR analysis 

(Abu-Elneel et al. 2008).  More recently, a number of microarray studies have assessed for 

miRNA expression differences in blood lymphocytes of autistic patients as compared to 

controls, having discovered nearly 100 miRNAs that are abnormally expressed in ASD 

(Talebizadeh et al. 2008; Sarachana et al. 2010; Ghahramani Seno et al. 2011).  Additionally, 

a recent report described aberrant expression of long non-coding RNAs in autistic frontal 

cortex and cerebellum that are antisense transcripts to known autism candidate genes 

(Velmeshev et al. 2013). 

Therefore, while it appears that ncRNAs are abnormal in ASD patients, their expression and 

function during human brain development has not been thoroughly characterized. 

Furthermore, apart from identification of mis-expressed miRNAs and antisense RNAs, no 

work has attempted to functionally integrate these findings to determine how they may 

ultimately result in the ASD phenotype. Consequently, there is a critical need to assess for 

changes in miRNA and lncRNA expression in autistic brain tissue, and to attempt to 

determine putative functional consequences of these changes as they relate to the known 

genetic etiology of ASD. 

Network	and	Pathways	Studies	in	ASD	

Finally, several pathway analyses have been performed using either genetic or transcriptome 

data to gain insight into the biological functions associated with ASD candidate genes. For 

instance, O’Roak et al. analyzed protein-interaction networks among genes implicated in 

ASD via whole-exome sequencing studies, and identified that de novo mutations in ASD 

patients are overrepresented among proteins involved in a chromatin remodeling network 

(O’Roak et al. 2012).  Similarly, Gilman et al. demonstrated that CNVs identified in autistic 

patients are enriched for genes involved in a molecular network related to synaptogenesis, 
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axon guidance, and neuronal motility (Gilman et al. 2011).  Only two studies have attempted 

to integrate autism candidate genes with known human brain gene expression patterns.  Ben-

David and Shifman attempted to assess for differences between rare and common ASD 

candidate genes by studying their co-expression relationships in adult human brain. They 

discovered these genes were both related to modules involved with synaptogenesis and 

neuronal plasticity, and that they are expressed in areas associated with learning, memory, 

and sensory perception (Ben-David and Shifman, 2012).  The same authors also recently 

analyzed the neurodevelopmental expression of ASD candidate genes that had been 

discovered in cohorts as de novo mutations, and demonstrated that these genes appear to 

relate to networks involved in transcription regulation and chromatin remodeling processes 

(Ben-David and Shifman 2013). 

 

Summary	

In summary, while the number of investigations attempting to integrate genetic findings in 

ASD lags far behind gene discovery studies, there is evidence that through integrative 

functional genomics analysis, common pathways and mechanisms underlying ASD may be 

discovered.  This thesis describes some of the first studies that have attempted to integrate 

large sets of ASD candidate genes to assess for common pathways, and to understand ncRNA 

regulation of gene expression in autistic brain. 

 

 

-- 
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1.4 Major	Unanswered	Questions	and	Motivations	for	this	Work	

	

The work described in Chapters 1.1 through 1.3 catalogs prior studies that have identified 

genetic mutations in individuals with ASD, explored the functional genomics of human brain 

development, and have attempted to integrate what is known about autism genetics with 

human neurodevelopmental functional genomics.  These bodies of work make clear a number 

of important observations: 

(i) Autism spectrum disorders have a significant hereditary/genetic component 

(ii) The genetic etiology of ASD is extremely heterogeneous  

(iii) Gene expression in the human developing brain is unique from other human 

tissues and brain gene expression in other model organisms 

(iv) Regulation of human neurodevelopmental gene expression is exquisitely regulated 

through a number of mechanisms including ncRNAs 

(v) Autistic brain tissue displays disrupted gene expression patterns 

 

However, there remain a number of fundamental questions about the functional genomics 

underlying autism spectrum disorders that serve as the main motivations for the studies 

described in Chapters 2 and 3 of this work: 

(i) Are there common developmental gene expression properties/patterns among the 

genes implicated in autism that may be informative of their role in ASD? 

(ii) Do these patterns provide insight into how so many genes with different functions 

can all relate to the same clinical phenotype? 

(iii) Are there inherent gene expression differences between the developing male and 

female brain that may be informative of the significant bias in ASD seen in males? 

(iv) Can studies of non-coding regions of the genome in ASD help explain some of the 

‘missing heritability’ by regulating genes involved in ASD pathogenesis? 

 

These four questions served as the theoretical basis for the work that I performed for this 

thesis, as is described in the following chapters. 

 

-- 
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Chapter	2.	Characterizing	ASD	Candidate	Genes	
During	Human	Neurodevelopment	
 

Hundreds of genes have been implicated in autism spectrum disorders through many different 

approaches.  However, most of these studies failed to also assess these genes for expression 

in human brain tissue, and in early human neurodevelopment in particular.  Furthermore, as 

has already been discussed, it is important to consider the genetic interaction among various 

autism candidate genes, as their relation to each other throughout human brain development 

may provide additional layers of information regarding the pathogenesis of ASD. 

 

In this chapter, I describe a set of studies that explored the expression of autism candidate 

genes throughout human brain development, in order to provide relevant insight into the 

functional genomics of this complex syndrome.  In the first study, I performed the first 

comprehensive analysis to date of individual ASD candidate gene expression patterns 

spanning human neurodevelopment. Then, I performed (in collaboration) a study of autism 

candidate gene co-expression relationships.  These two projects represent a comprehensive 

functional genomics assessment of ASD candidate genes during human brain development, 

and provide unique insight into common pathways that may underlie ASD pathogenesis.   

 

Next, I performed two analyses on aspects of normal human neurodevelopmental genomics 

that have important implications for ASD.  First, I assessed for sex-specific differences in 

human brain gene expression during development, as autism spectrum disorders are known to 

affect a preponderance of males.  Then, I describe results of miRNA differential expression 

analysis across human brain development, and evaluated their relationship to known ASD 

candidate genes. 

 

The work in this chapter provides critical insight into the functional roles of ASD candidate 

genes during normal human brain development, and how sex-specific gene expression and 

miRNA regulation of gene expression may relate to the functional genomics of ASD. 
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Autism	Candidate	Genes	and	Gene	List	

	 	
As detailed in Chapter 1, the evolution of genomic techniques has resulted in a large and 

increasing set of genes implicated in autism via various approaches. In fact, recent estimates 

suggest that as many as 1,000 genes or more could contribute to ASD (He et al. 2013, 

Ronemus 2014), and various reports have already systematically reviewed hundreds of 

candidate genes with very strong association to ASD (Miles 2011). Given this large and 

heterogeneous set of putative autism candidate genes, the field has come to rely upon a 

number of repositories of curated autism candidate genes lists, which themselves continue to 

grow and evolve over time (Basu et al. 2009; Matuszek et al. 2009; Betancur 2011; Xu et al. 

2012; Abrahams et al. 2013). 

 

While these repositories of autism candidate genes serve as important resources to enable 

researchers to quickly identify and further study genes associated with ASD, any attempt to 

collect and annotate a comprehensive yet specific list of ‘autism candidate genes’ will face a 

number of problems of note. Foremost, due to the extreme heterogeneity in the clinical 

presentation of ASD, and the fact that ASD remains a qualitative clinical diagnosis, studies of 

autistic individuals have varying inclusion/exclusion criteria even when standardized 

protocols are used. For instance, some studies will exclude individuals with significant 

intellectual disability in order to study ‘intrinsic autism,’ while others will include cases with 

even severe intellectual disability. Such variability between studies has the potential to 

confound the assumption that these lists include genes purely associated with ASD and not 

one of its many co-morbidities or other endophenotypes. 

 

Secondly, the sample sizes in studies reporting candidate gene associations with ASD vary 

widely and in general are underpowered (O’Roak and State, 2008), potentially biasing the 

identified candidates toward those with large effects. Moreover, the population structure in 

the various patient cohorts studied also varies considerably, challenging the interpretation and 

significance of the reported candidates because of the differing background allele frequencies 

in different ethnic groups. Furthermore, once genes are reported as significantly associated 

with ASD based on achieving a minimum threshold for significance, their inclusion in many 

databases of ASD candidates treats them equally (Basu et al. 2009, Matuszek et al. 2009), 

despite their varying significance of association. Even newer attempts to develop ‘evidence 



	

 

49 
 

scores’ for annotated candidates (Xu et al. 2012; Abrahams et al. 2013) remain incomplete, 

non-systematic, and static to the continuously updated understanding of ASD genetic risk. 

 

As a result, attempts to prioritize ASD candidate genes, either for further investigation, to 

assess gene-gene interactions, or to infer information about the genetic architecture of ASD, 

are inevitably biased by the manner in which the individual variants were implicated in ASD 

initially. It will be important for future work to attempt to quantify in an unbiased manner the 

strength of ASD candidate association based on the strength of the genetic evidence 

supporting their involvement in ASD. However, until such a resource is available, one 

unbiased method to construct sets of autism candidate genes for further study (and the 

method employed in this work) is simply to include all variants associated to date that are 

annotated in expert-curated autism databases, remaining agnostic to how they were initially 

included.  

 

Therefore, in order to further investigate relationships between and among as broad a set of 

‘autism candidate genes’ as possible in this work, I included all ASD candidates that had 

been annotated by expert curation and published in peer-reviewed databases. The reasoning 

for this approach was to remain agnostic with regard to type of association with ASD in order 

to avoid introducing my own biases on top of those already existing, as detailed above. This 

approach resulted in an ASD candidate gene list that included genes implicated based on i) 

rare copy number variants and single gene disruptions enriched in cohorts of individuals with 

ASD as compared to controls ii) genes identified to be mutated in patients with syndromes in 

which some significant proportion of patients has ASD iii) small risk-conferring genes with 

common polymorphisms in the general population that have been identified in genome-wide 

association studies, and iv) ‘functional’ candidates that have been shown to be mis-expressed 

in autistic post-mortem brain tissue. 

 

In the work described in Chapters 2.1 – 2.3, I assessed for relationships among these autism 

candidate genes via gene expression. As the work in this thesis evolved over time, so too did 

available databases of autism candidate genes.  As a result, the autism candidate gene list in 

Chapter 2.1 is derived only from the AutDB database, as that was the only published resource 

available at the time the work in Chapter 2.1 was initiated. In Chapters 2.2 and 2.3, however, 

a larger set of ASD candidate genes was compiled for analysis, as two new databases became 



	

 

50 
 

available by the onset of those studies.  The full list of ASD candidate genes used in Chapters 

2.2 and 2.3 (herein named “ASD list”) was created by combining (taking the union) lists from 

three main ASD genes databases: AutDB, Autism Genetics Database, and AutKB-484, and 

the resulting list is included in the Appendix as Table A2. These databases each 

independently annotated genes that had previously been associated with autism, and although 

largely overlapping, there are some differences. As a result, the final combined ASD list 

consisted of 455 unique ASD candidate genes (Table A2). The subset of genes assessed in 

Chapter 2.1, derived only from the AutDB database, are annotated with an asterix in Table 

A2, and are presented as a separate table in the supplementary material (Supplementary 

Table S1). 

 
Description	of	Normal	Human	Neurodevelopmental	Gene	Expression	Dataset	

In order to assess the expression properties of these autism candidate genes across normal 

human neurodevelopment, I searched the literature for repositories of human brain gene 

expression. In the following four sub-chapters (Chapters 2.1-2.4), the work described is based 

on publically-available gene expression data provided by the Allen Institute for Brain 

Science, the “BrainSpan Atlas of Human Development” (www.brainspan.org). This database 

represents the largest and most comprehensive human brain gene expression dataset currently 

available.	The BrainSpan Atlas contains next-generation RNA sequencing (RNA-seq) data 

from neurologically normal post-mortem human donor brains. This data was downloaded in 

its entirety and analyzed as described in each sub-chapter (see respective Methods sections 

below). 

 

The process of collecting donor tissue, sectioning the donor brains into anatomical areas, 

extracting RNA, performing RNA-sequencing, and aligning the RNA-seq data to the human 

reference genome (Build HG 37) was all carried out by the Allen Brain Institute. The details 

of this are available on the Allen Institute website, and is included as Supplementary File 

S2. 

 

The resulting RNA-seq dataset that was used for this analysis consisted of expression values 

aligned to composite gene models, and given in units of reads per kilobase of exon model per 

million mapped reads (RPKM, Mortazavi et al. 2008). Upon download of the entire database, 

genes whose RPKM values were likely to represent noise rather than actual sequenced reads 



	

 

51 
 

were discarded by removing any gene that did not have at least one expression value greater 

than or equal to five RPKM in any of the tissue samples. The remaining dataset consisted of 

13,563 expressed genes that were used for analysis. 

 

The full BrainSpan atlas contains data generated from over 40 developing and adult post-

mortem brains. However, many of these brains are missing data from some of the regions 

profiled. Therefore, for this analysis only donor brains with complete data were retained, 

resulting in a final dataset of 30 total donor brains used here. As shown in Figure 2.0.1, the 

donor brains analyzed span pre-conception through adulthood and contain an approximately 

equal distribution of male and female donors. To maintain consistency with other recent 

large-scale studies of human brain developmental gene expression to allow for appropriate 

comparison of this work with standard approaches in the field, we grouped donor brains into 

the same seven developmental stages previously described (Kang et al. 2011; Colantuoni et 

al. 2011, see  Figure 2.0.1). This strategy resulted in the data from at least four separate 

donor brains binned together per time point. All available demographic information about 

each of the 30 donor brains individually is included in the Appendix (Table A1).   

 

Figure 2.0.1. 
Temporal description 
of the number and sex 
of the assessed brains. 
The data were grouped 
into 7 developmental 
stages. Blue colored 
brains indicate the 
donor was male and 
pink indicates female. 
Pcw, post-conceptional 
weeks; m, month; yrs, 
years. 
 

 

 

 

 

From each donor brain, RNA-sequencing was performed on RNA extracted from 16 separate 

brain regions (Figure 2.0.2). These regions included  the cerebellar cortex (CBC), medial-

dorsal nucleus of the thalamus (MD), striatum (STR), amygdala (AMY), hippocampus (HIP), 
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and 11 areas of the neocortex (NCX): orbitofrontal (OFC), medial frontal (MFC), dorsolateral 

frontal (DFC), ventrolateral frontal (VFC), primary motor (M1C), primary somatosensory 

(S1C), inferior parietal (IFC), primary auditory (A1C), superior temporal (STC), inferior 

temporal (ITC), and primary visual cortex (V1C). 

 

 

Figure 2.0.2. Graphical representation of brain regions assessed. Representation of the 16 
structures that full BrainSpan dataset contains. Note: in chapters 2.1 and 2.4, only a subset of 
the brain regions were assessed as described in the respective Methods sections. 

	

It is important to note that an assessment of only four brains per time point is a major 

limitation of this work. However, repositories of high-quality human donor brain tissue with 

multiple regions from the same individual are scarce (Abbott 2011). Consequently, while 

underpowered to detect differences of small effect size, this dataset represents the largest 

repository of gene expression data from human post-mortem tissue that is completely 

available. Moreover, all samples in this dataset were obtained using a single, standardized, 

acquisition process and run on the same gene expression platform, removing many of the 

confounds associated with combining various different RNA-seq datasets (Chu and Corey, 

2012).  
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Despite the relatively small sample size, this is the largest dataset of human post-mortem 

brain gene expression. Furthermore, due to the uniquely sensitive nature of RNA-sequencing 

as compared to microarray, analysis of this dataset has reasonable ability to assess for 

differences in gene expression between groups. For instance, a recent report (Hart et al. 2013) 

estimating the power of RNA-seq to reliably detect differences in human tissue suggests that 

in order to identify a fold-change difference of 1.5 between sample groups, approximately 20 

samples per group are required (at a power level (β) of 80% and Type 1 error rate (α) of 0.05, 

assuming a 0.4 coefficient of variation and a 20 million read count depth). Yet at present, no 

such human brain dataset exits with sample numbers this large. However, using the calculator 

provided by Hart et al., it can be estimated that the dataset used for this work (with 4-6 

samples per group, Figure 2.0.2) has 60-80% power (β) to detect a fold change of 2.0 

between groups (Hart et al. 2013). As the results presented in the studies of Chapter 2 are 

focused mainly on broad patterns of expression change not individual genes or miRNAs, the 

low power to detect all instances of actual differential expression is somewhat further 

minimized.  

 

Studies of post-mortem human brain tissue are likely to continue to have small sample sizes 

owing to the nature of the work. Interesting, there is a substantial statistical literature on the 

assessment of extremely small sample sizes (N < 5), even with specific emphasis on 

neurobiological samples (Janusonis, 2009). In fact, it has been explicitly demonstrated using 

repeated simulations that the Student’s t-test functions validly with small sample sizes, even 

as few as N = 2, provided the effect size being tested is large and the underlying population 

distributions are normal (de Winter, 2013). Furthermore, the study by de Winter further 

demonstrated that the t-test behaves similarly to other approaches for small sample size, such 

as rank transformations and Welch’s test (de Winter, 2013).  

 

Interestingly, the Student’s t-test was originally developed specifically for small sample sizes 

(as an alternative to the z-test), and was first described with a use-case of N = 4 (Student, 

1908; Zabell, 2008). Therefore, while working with extremely small sample sizes in this 

thesis is a limitation, as the chances of introducing Type II errors is relatively high (i.e. that 

true effects of small size will be missed), evidence suggests that the identified results should 

otherwise remain statistically valid provided the assumptions underlying parametric t-testing 

(normally distributed populations) hold true (de Winter, 2013), as is generally assumed to be 
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the case in human brain gene expression studies (Kang et al. 2011; Akula et al. 2014). As 

with all statistical inference, the chance of Type I error (i.e. false positive) remains, and the 

degree to which Type I error is likely depends on the resulting p-value, the ability to replicate 

the finding, and how surprising the results are in the given biological context. Throughout 

this work, I have attempted to minimize Type I error to the extent possible by correcting p-

value for multiple testing comparisons, performing confirmatory RT-PCR, exploring the 

biological relevance of the identified genes in terms of the published literature and other 

bioinformatic approaches, and generally remaining conservative of the interpretations.   

 

In summary, while larger sample sizes are always desirable in order to produce the most 

sensitive results, this dataset represents a unique opportunity to discover broad patterns of 

gene expression change of large effect that are unique to human neurodevelopment, a process 

that has largely been understudied and therefore limits efforts to better understand human 

disorders of neurodevelopment. While the small sample sizes used in this work have 

statistical power limitations, and future work should assess larger sample cohorts, there is still 

valuable insight into human neurodevelopmental genomics that can be obtained. 

Furthermore, throughout the work in this thesis I have made every attempt possible to 

incorporated additional analyses of the identified differentially expressed genes in order to 

place these results in biological context to better ensure their biological relevance. It will be 

important for future studies to replicate these efforts when more samples become available, 

but these studies represent some of the first to assess the functional genomics of autism 

candidate genes in human brain tissue and can therefore provide important initial insight.   

 

-- 
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2.1 Expression	Profiling	of	Individual	Autism	Candidate	Genes	

	

2.1.1 Aim	

Despite substantial efforts to uncover the genetic basis of ASD, the genomic etiology appears 

complex and a clear understanding of the molecular mechanisms underlying autism remains 

elusive.  I hypothesized that focusing gene interaction networks on ASD-implicated genes 

that are highly expressed in the developing brain may reveal core mechanisms that are 

otherwise obscured by the genomic heterogeneity of the disorder.   Here I report an in silico 

study of the gene expression profiles of ASD-implicated genes in the unaffected developing 

human brain.  By implementing a biologically relevant approach, I identified a subset of 

highly expressed ASD-candidate genes from which interactome networks were derived.  

Strikingly, immune signaling through NFκB, Tnf, and Jnk was central to ASD networks at 

multiple levels of the analysis, and cell-type specific expression suggested glia—in addition 

to neurons—deserve consideration.  This work provides integrated genomic evidence that 

ASD-implicated genes may converge on central cytokine signaling pathways. 

 

2.1.2 Introduction	

A major question in ASD research is how to reconcile the genetic and phenotypic 

heterogeneity of the disorder with the apparent convergence of molecular mechanisms into 

synaptic network abnormalities.  One proposed unifying explanation posits that differences in 

gene expression in the developing brain could explain how many genes, each with a different 

contribution to proper formation of brain circuitry, could result in a single disorder with 

neural network dysfunction at its core (Geschwind 2008; Levitt and Campbell 2009).  This 

model is underscored by the prototypical autism spectrum disorder, Rett Syndrome, in which 

mutations in the Mecp2 gene result in global dysregulation of the transcriptome (Chahrour et 

al. 2008).  Moreover, it has been shown that mutations in Mecp2—a transcriptional 

repressor—result in aberrant expression at many ASD-implicated loci (Samaco et al. 2005).  

To investigate this model, however, requires gene expression profiling of ASD-candidate 

genes in developing human brain tissue.  At the onset of this work, a number of studies had 

investigated gene expression in post-mortem brain tissue of patients with ASD (Lintas et al. 

2010), with three examining ASD brain tissue on a genome-wide scale (Purcell et al. 2001; 

Garbett et al. 2008; Voineagu et al. 2008). However, no study had explicitly described the 
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transcriptional profile of ASD-implicated genes.  Furthermore, individual genes of interest 

that had been studied in human neurodevelopment were limited in developmental time points 

and brain regions investigated.   

To investigate more thoroughly the notion that differences in expression of ASD-implicated 

genes underlies the complex genomics of the disorder, I hypothesized that focusing gene 

interaction networks on ASD-implicated genes with high expression in the developing brain 

may reveal core mechanisms that are otherwise obscured by the heterogeneity of all 

implicated loci.  To do this, I mined the BrainSpan Atlas of Human Brain Development 

(Jones et al. 2009) for all genes implicated in ASD that were included in the database AutDB 

(Basu et al. 2009).  I devised a biologically-driven computational approach to analyze 

differential expression across regions and development, and assessed cell-type specific 

expression using the Human Protein Atlas (Berglund et al. 2008).  I discovered distinct 

molecular interaction networks using an enriched set of highly expressed genes, which 

implicated canonical immune signaling pathways at multiple levels of analysis as central to 

ASD. 

 

2.1.3 Methods	

Neurodevelopmental Disorder Databases 

As described previously, autism candidate genes were obtained by using the complete AutDB 

database (Table A1 and Supplementary Table S1, Basu et al. 2009). To concurrently 

investigate the relationship among autism and related neurodevelopmental disorders, and to 

serve as control datasets, I also obtained similar lits of Schizophrenia and Epilepsy-

assoociated genes from the SzGene (Allen et al. 2008) and CarpeDB (Galperin 2005) 

databases, respectively (Supplementary Tables S3 and S4). In all three databases, some 

implicated regions are provisional loci, non-coding RNAs, pseudogenes, or otherwise not 

included in the BrainSpan Atlas and, therefore, were not considered.   

BrainSpan Atlas of Human Brain Development 

The BrainSpan Atlas was accessed on 2/16/2011 at www.brainspan.org, and the raw Gene 

Matrix .csv datafile was downloaded.  I re-organized the data so that rows are genes and 

columns are developmental time points subdivided according to brain region.  While the full 

dataset contains data from 16 different brain regions and up to age 40 (Figures 2.0.1 

and2.0.2), the analysis in this Chapter considered only 11 brain regions that are most relevant 
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to autism (Schumann et al. 2011) and only donor brains up to 23 years old.  This was done in 

order to decrease the computational burden of the analysis approach I developed. The brain 

regions assessed in this Chapter are: Dorsolateral Prefrontal Cortex (DLPC), Ventrolateral 

Prefrontal Cortex (VLPC), Medial Prefrontal Cortex (MPC), Orbital Prefrontal Cortex 

(OPC), Posterior Superior Temporal Cortex (PSTC), Inferior Lateral Temporal Cortex 

(ILTC), Hippocampus (Hipp), Amygdala (Amyg), Striatum (Stri), Cerebellum (Cere), and 

Primary Motor Cortex (PMC).   

Gene Expression Analysis 

Genes in AutDB, CarpeDB, and SZGene were parsed from the full database to create disease-

specific expression datasets (Supplementary Tables S5-S7).  Expression values were 

divided into quintiles and given corresponding colors for heat map creation (<20 RPKM, 20-

40 RPKM, 40-60 RPKM, 60-80 RPKM, >100 RPKM).  Genes were then assigned to one of 

five tiers within each brain region based on their highest level of expression across all time 

points, in a conservative attempt to analyze the expression data qualitatively.  For example, if 

a gene is expressed at 150 RPKM at 24 weeks gestation (wg) and at 80 RPKM for all other 

time points, it is placed in the >100 RPKM tier.  Based on results from established 

housekeeping genes (see Results), I considered a gene to be differentially expressed if it 

crossed more than three tiers.  Because of this, genes in the top three tiers were considered to 

be “highly expressed,” and were the focus of my subsequent analysis (Supplementary Tables 

S5-S7, “Highly Expressed Genes” tab). 

Gene Ontology Enrichment Analysis 

To test if a subset of genes implicated different Gene Ontology categories than a background 

set of all genes, I employed the Gene Ontology Enrichment Analysis and Visualization tool 

(Eden et al. 2009), accessed at http://cbl-gorilla.cs.technion.ac.il/.  I specified the organism as 

Homo sapiens, chose the option for two unranked lists of genes, and set the p-value threshold 

to 0.01. Raw p-values were then converted to False Discovery Rate (FDR) q-values within 

the software. 

Ingenuity Pathway Analysis 

Integrated gene-network analysis for the AutDB, CarpeDB, and SZGene sets and on the 

highly expressed subsets were generated by Ingenuity Pathways Analysis (Version 8.8, 

Ingenuity® Systems, www.ingenuity.com). Each gene identifier was mapped to its 

corresponding gene object in the Ingenuity Pathways Knowledge Base.  The gene lists were 
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overlaid onto a global molecular network developed from information contained in the 

Ingenuity Pathways Knowledge Base.  These focus gene networks were then algorithmically 

generated based on their connectivity.   

Canonical pathways analysis identified the pathways from the Ingenuity Pathways Analysis 

library of canonical pathways that were most significant to the data set. The significance of 

the association between the data set and the canonical pathway was measured in two ways: i) 

A ratio of the number of molecules from the data set that map to the pathway divided by the 

total number of molecules that map to the canonical pathway and ii) Fisher’s exact test was 

used to calculate a p-value determining the probability that the association between the genes 

in the dataset and the canonical pathway is explained by chance alone.  A p-value of less than 

0.01 was considered significant.  For comparison analysis between all disease genes and 

highly expressed genes, Benjamini-Hochberg multiple testing correction was used to 

calculate p-values, with 0.01 set as a significance threshold. 

Functional network analysis identified the biological interactions that were most significant 

to the molecules in the network.  The network molecules associated with biological functions 

and/or diseases in Ingenuity’s Knowledge Base were considered for the analysis.  Right-

tailed Fisher’s exact test was used to calculate a p-value determining the probability that each 

biological function assigned to that network was due to chance alone, with a threshold of 0.01 

set for significance.  A graphical representation of the molecular relationships between 

molecules was generated.  Molecules are represented as nodes, and the biological relationship 

between two nodes is represented as an edge (line).  All edges are supported by at least one 

reference from the literature.  Nodes are displayed using various shapes that represent the 

functional class of the gene product.  Edges are displayed as either solid or broken lines to 

describe the nature of the relationship between the nodes (solid for direct interaction, broken 

for an indirect interaction). 

Human Protein Atlas 

To compare expression data at the transcriptome level to protein-level expression, I also 

accessed the Human Protein Atlas (Berglund et al. 2008) at http://www.proteinatlas.org/.  The 

Human Protein Atlas is a publicly available database cataloging the distribution of proteins in 

different normal human tissues, cancer types, and cell lines via validated antibody analysis.  

The data includes immunohistochemisty, western blot analysis and, for a large fraction of 

genes, a protein array assay and immunofluorescent based confocal microscopy.  I utilized 
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the reported levels of antibody staining as given, except for genes that contained annotated 

expression results, which are reported instead. 

 

2.1.4 Results	

Evaluating Differential Expression in the BrainSpan Atlas 

The BrainSpan Atlas reports the normalized reads per kilobase of exon model per million 

mapped reads (RPKM) units (Mortazavi et al. 2008); whereas primary RNA-seq analysis 

pipelines have the advantage of using raw read counts for statistical evaluation of differential 

gene expression.  Thus, I first established a qualitative differential expression methodology 

that could directly interpret RPKM values with consistency and validity across different brain 

regions and time points.  This allowed me to identify a subset of genes that were highly 

expressed directly from RPKM data.   

To achieve this, I examined the expression profile of the top 15 genes determined by Hsiao et 

al as regularly expressed from 59 different whole-genome microarrays in 19 different tissue 

types (Hsiao et al. 2001).  For 11 of the 15 genes there was consistency in expression across 

developmental time points and in different brain regions (Supplementary Table S8).  To 

validate this approach further, I selected at random 10 canonical housekeeping genes 

representing 10 different cellular processes (Eisenberg and Levanon 2003).  I observed 

consistent expression for all 10 of these genes across brain regions and time points 

(Supplementary Table S9).  This resulted in a total of 21 housekeeping genes with constant 

expression (11 from Hsiao et al and 10 canonical), which were used to define normal 

biological variance in the BrainSpan dataset.  To stratify the data based on expression, I 

grouped expression values into quintiles (<20 RPKM, 20-40 RPKM, 40-60 RPKM, 60-80 

RPKM and >100 RPKM), as is often done for microarray expression data (Tebbenkamp et al. 

2010).  Of the 21 constantly expressed housekeeping genes, all vary within three consecutive 

quintile tiers.  Based on these results, I concluded that genes crossing more than three tiers 

were likely to be significantly differentially expressed, as opposed to exhibiting normal 

biological variation.  This initial approach demonstrated that reported RPKM values could be 

used qualitatively to assess differences in gene expression levels.   

Notably, expression values at the 6 month time point were considerably lower for almost all 

genes and brain regions.  This may be a function of lowered CNS transcriptional activity at 

this age, however a systematic error in sequencing is also likely.  Since we were interested in 
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highly expressed genes, we were not concerned this would introduce false-positive results 

into our subsequent analysis. 

Expression of Brain-specific Markers 

Next, I analyzed genes of brain-specific markers (adhesion/elastic/filament proteins) with 

intermediate expression to further validate this method and gain insight into cell-type specific 

expression across brain regions and during different developmental time points.  As seen in 

Supplemental Table S10, Keratin and Desmin—markers of epithelia and muscle, 

respectively—were not expressed as expected.  Neurofilament (Nefl), a neuron-specific 

maker, showed high expression in most brain regions after 24 weeks gestation (wg).  

Notably, expression of Nefl was significantly lower in the cerebellum, which is consistent 

with my observation at the protein level (see below).  Expression of Glial Fibrillary Acid 

Protein (Gfap), an astrocyte-specific intermediate filament, also showed high expression in 

all brain regions beginning at the fourth postnatal month, although markedly later in 

development than Nefl.  Interestingly, Vimentin, a marker of mesenchyme-derived cells, 

exhibits a differential expression pattern with very high expression in the early developing 

brain (24 weeks gestation – 4 months).  This may be a reflection of invading microglia, which 

are of mesenchymal origin and known to enter the developing brain during early 

embryogenesis (Ginhoux et al. 2010), and/or it may relate to the laying down of the 

vasculature and extracellular matrix early in development. 

Expression Profile of Genes Implicated in ASD, Epilepsy, and Schizophrenia 

I then parsed the database for all genes implicated in autism that were described in the 

database AutDB (Supplementary Table S1 and Methods).  To strengthen my approach and 

investigate the overlapping genetic and clinical aspects of schizophrenia and epilepsy with 

ASD, I also investigated all genes implicated in these disorders, which are cataloged in the 

databases SZGene and CarpeDB, respectively (see Methods).  Non-redundant, protein-coding 

loci that were present in the atlas were included in this study, as summarized in Figure 2.1.1.  

Only 11 genes are shared by all three disorders.  Gene ontology (GO) enrichment analysis of 

these 11 overlapping genes as opposed to all genes implicated in all three disease databases 

yielded many significant pathways mainly involved in the response to external stimuli and 

GABA metabolism (Table 2.1.1). 
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GO Term Description P‐value FDR q‐value Enriched Genes

GO:0042220 response to cocaine 1.11E‐05 1.89E‐04 CNR1, OPRM1, ABAT, GRIN2A

GO:0014073 response to tropane 1.11E‐05 9.44E‐05 CNR1, OPRM1, ABAT, GRIN2A

GO:0014070 response to organic cyclic compound 6.99E‐05 3.96E‐04 CNR1, PTGS2, OPRM1, ABAT , 

GO:0009450 gamma‐aminobutyric acid catabolic process 7.68E‐05 3.26E‐04 ABAT, ALDH5A1

GO:0051259 protein oligomerization 1.22E‐04 4.15E‐04 TSC2, ADSL , SLC1A1, ALDH5A1

GO:0043279 response to alkaloid 1.75E‐04 4.96E‐04 CNR1, OPRM1, ABAT, GRIN2A

GO:0009605 response to external stimulus 1.85E‐04 4.49E‐04
TSC2 , NRXN1, CNR1 , RELN, PTGS2, 

OPRM1, GRIN2A

GO:0051260 protein homooligomerization 1.99E‐04 4.23E‐04 TSC2, SLC1A1, ALDH5A1

GO:0009448 gamma‐aminobutyric acid metabolic process 2.29E‐04 4.33E‐04 ABAT, ALDH5A1

GO:0032103 positive regulation of response to external stimulus 6.05E‐04 1.03E‐03 CNR1, PTGS2, OPRM1 

GO:0010042 response to manganese ion 7.57E‐04 1.17E‐03 PTGS2, GRIN2A

GO:0042135 neurotransmitter catabolic process 7.57E‐04 1.07E‐03 ABAT, ALDH5A1

GO:0031622 positive regulation of fever generation 7.57E‐04 9.90E‐04 CNR1, PTGS2

GO:0031620 regulation of fever generation 7.57E‐04 9.19E‐04 CNR1, PTGS2 

GO:0031650 regulation of heat generation 7.57E‐04 8.58E‐04 CNR1, PTGS2

GO:0031652 positive regulation of heat generation 7.57E‐04 8.04E‐04 CNR1, PTGS2

GO:0009607 response to biotic stimulus 8.35E‐04 8.34E‐04 CNR1, PTGS2, OPRM1, GRIN2A

Figure 2.1.1.  Summary of all genes 
analyzed from AutDB, CarpeDB, 
and SZGene.   Number of genes and 
genes shared between disorders 
indicated.   

 

 

 

 

 

 
Table 2.1.1.  GO enrichment analysis of the 11 genes shared by autism, schizophrenia, 
and epilepsy. 

 

I constructed expression heatmaps for all genes by brain region and time-point by assigning 

each RPKM expression value to one of five quintiles, and then grouping genes into five 

expression tiers.  Strikingly, for each of the three disease sets more than 55% of genes were 

never expressed above 20 RPKM, with the majority of these less than 5 RPKM (Table 2.1.2).  

For ASD candidate genes, greater than 70% were not expressed highly in each brain region.  

In each region, a large percentage of ASD-implicated genes had no detectable transcription 
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(<1 RPKM).  For instance, in the hippocampus 46 out of 219 (21%) ASD-implicated genes 

had no detectable transcripts. Similar proportions were not detected in the cerebellum (52/219 

or 24%) or dorsolateral prefrontal cortex (40/219 or 18%).  While it is possible that these loci 

still have functional roles in ASD genomics via cis-regulation or other mechanisms, I 

reasoned that their inclusion in protein-interaction networks might obscure more prominent 

molecular mechanisms underlying ASD.        

Table 2.1.2.  Summary of differential gene expression across all brain regions. 
Region  % of genes less than 20 RPKM  % of genes in Top 3 Tiers 

   Autism  Epilepsy  Schizophrenia  Autism  Epilepsy  Schizophrenia 

DLPC  71%  59%  67%  7%  18%  16% 

VLPC  73%  59%  67%  7%  17%  16% 

MPC  77% 59%  69% 7% 18% 15%

OFC  74%  58%  69%  6%  20%  16% 

Motor  74%  61%  68%  6%  18%  16% 

PS Temp  74%  57%  69%  6%  19%  16% 

IL Temp  73% 59%  68% 8% 21% 15%

Hippo  79%  63%  70%  5%  15%  14% 

Amygdala  74%  56%  66%  5%  19%  16% 

Striatum  73%  58%  67%  6%  19%  16% 

Cerebellum  77% 62%  67% 8% 14% 15%

 

It is of note that the cerebellum and frontal cortex contained the greatest number of highly 

expressed “autism genes” and the temporal cortex had the greatest number of “epilepsy 

genes,” whereas schizophrenia gene expression distributed more evenly throughout the brain.  

While much work in autism has focused on the hippocampus as a potential epicenter of 

pathology, we found the developing hippocampus had the fewest ASD candidate genes 

expressed at high levels, and none were specific for the hippocampus.  Conversely, the 

cerebellum contained a unique set of six autism candidate genes that were not highly 

expressed in any other brain region.  These included the canonical neurodevelopmental genes 

Nlgn3 and Reln, two cell adhesion molecules, and 7-dehydrocholesterol reductase.  This is 

intriguing since multiple imaging studies have implicated the cerebellum in the pathogenesis 

of autism (Schumann and Nordahl 2011).  The BrainSpan Atlas parcels the frontal cortex into 

four subregions, yet the expression profile of ASD genes between them was similar.  Only 

one gene (Gabrb3) was specific to the frontal cortex, and it was only present at high levels in 

the ventrolateral prefrontal cortex.  Interestingly, this gene lies in the 15q11-13 imprinted 

region implicated in Prader-Willi and Anglemen Syndromes, and is one of the most 

reproducible loci identified in ASD genome-wide association studies (Buxbaum et al. 2002).  
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For the remainder of the analysis, I focused on genes in the top three expression tiers (at least 

one time-point >60 RPKM) as genes that are significantly highly expressed as compared to 

all ASD-implicated genes (based on my “housekeeping gene” results).  This yielded 32 genes 

for autism, 42 for epilepsy and 212 for schizophrenia (Fig. 2.1.2).   Autism shared eight 

highly expressed genes with schizophrenia, and only two with epilepsy (Dcx and Cnr1).  GO 

enrichment of these nine shared genes did not identify any significant pathways.  There was 

only one gene—Cannabinoid Receptor 1 (Cnr1)—implicated in all three disorders that is 

highly expressed in the developing brain.  Cnr1 expression is high mainly during gestation, 

and is most pronounced in the cerebellum and amygdala (Supplementary Table S11). 

   

Figure 2.1.2.  
Summary of the 
subset of highly 
expressed genes 
identified. 

 

 

 

 

 

 

 

Nine autism genes were highly expressed in all brain regions examined.  These nine genes 

(Fabp7, Gnas, Gpx1, Hnrnph2, Hras, Pdzd4, Rpl10, Sez6l2, and Tspan7) had considerably 

higher expression than all other ASD genes (over 500 RPKM in many instances, 

Supplementary Table S12).  Their temporal expression profiles were mostly constant across 

developmental stages, except for Fabp7, which exhibited drastic differential expression.  

Fabp7 was expressed much higher than the other eight genes during almost all time-points, 

but was highest during the two gestational time points.  Interestingly, Fabp7 (Fatty acid 

binding protein 7) is known to interact with Notch in radial glia during development 
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GO Term Description P‐value FDR q‐value Enriched Genes

GO:0002682 regulation of immune system process 0.0001                  0.0004                 
HLA‐A, APC, ADORA2A, GNAS, MEF2C, PRKCB, CNR1, 

CADM1, GPX1

GO:0006915 apoptosis 0.0009                  0.0018                  APC, MEF2C, ADORA2A, PRKCB, CADM1, HRAS

GO:0012501 programmed cell death 0.0009                  0.0012                  APC, ADORA2A, MEF2C, PRKCB, CADM1, HRAS

GO:0031347 regulation of defense response 0.0009                  0.0090                  HLA‐A, MEF2C, ADORA2A, CNR1, CADM1 , GPX1

(Anthony et al. 2005), and I subsequently found it to only be expressed in glia (see below).  

The temporal expression of the other 32 highly expressed genes varied considerably, but was 

biased toward high expression in the early time points analyzed.  

Gene ontology enrichment of the 32 highly expressed autism genes revealed four new GO 

categories representing two significant processes—immune system regulation and apoptosis 

(Table 2.1.3).  GO enrichment of the highly expressed Schizophrenia genes yielded a much 

different set of processes, mostly implicating cellular morphogenesis, but none involving the 

immune response (Table 2.1.4).  The epilepsy dataset did not enrich for any significant 

functions when considering those genes that were highly expressed.  This suggests that ASD-

implicated genes with no or low expression in the developing brain may obscure functional 

pathway analysis, which otherwise implicates cytokine signaling. 

Table 2.1.3.  GO enrichment analysis of highly expressed autism genes. 

 
 
 
Network Analysis 

Next, I set out to determine if the genes identified as being highly expressed in the 

developing brain implicate different functional networks as compared to all genes associated 

with these diseases. To do so, I utilized integrated gene-network analysis using the curated 

Ingenuity Pathway Analysis (IPA) database.  Initially I searched for canonical pathways for 

each disorder, comparing the highly expressed gene sets to all disease-associated genes 

(Tables 2.1.5-2.1.7).  This analysis implicated many new canonical pathways from the set of 

highly expressed genes not seen in the full dataset analysis.  For autism, this included 

corticotrophin releasing hormone signaling, g-protein and phospholipase C signaling, and 

neutrophil cytokine signaling.  The new pathways implicated in schizophrenia included 

synaptic long-term potentiation and axon guidance signaling, and in epilepsy semaphorin 

signaling and the splicesome cycle.  Interestingly, there are no canonical pathways shared 

between the three disorders when the entire set of implicated genes is considered, but analysis 

of the highly expressed sets implicates Reelin Signaling in Neurons as common to all three 
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GO Term Description P‐value FDR q‐value Enriched Genes

GO:0048812 neuron projection morphogenesis 0.00001            0.00010                 

APC, PTPRZ1 , CTNNA1, MAPK8IP2  , CDK5, NR4A2, RTN4R, 

TSPO, OMG, SNAP25, PAFAH1B1, ADORA2A, CCK , DRD2, 

APOE, WNT7B , S100B , NTNG2 , APP

GO:0032990 cell part morphogenesis 0.00002            0.00010                 

APC, PTPRZ1, CTNNA1, MAPK8IP2, CDK5, NR4A2, RTN4R, 

TSPO, OMG, SNAP25, PAFAH1B1, ADORA2A, CCK, DRD2, 

APOE, WNT7B , S100B, NTNG2, APP

GO:0048858 cell projection morphogenesis 0.00002            0.00010                 

APC, PTPRZ1, CTNNA1, MAPK8IP2, CDK5, RTN4R, NR4A2, 

TSPO, OMG, SNAP25, PAFAH1B1, ADORA2A , CCK, DRD2 , 

APOE, WNT7B, APP, NTNG2, S100B

GO:0032989 cellular component morphogenesis 0.00007            0.00020                 

PPP3R1, APC, PTPRZ1, CTNNA1, MAPK8IP2, RELN, CDK5, 

RTN4R, NR4A2, TSPO, OMG, PAFAH1B1 , SNAP25, ADORA2A, 

SLC1A3, CCK, DRD2 , ATP2B2 , APOE, NTNG2, CAP2 , S100BB, 

APP

GO:0007409 axonogenesis 0.00007            0.00020                 
APC, PTPRZ1, CTNNA1, NR4A2, RTN4R, TSPO, SNAP25, 

PAFAH1B1 , CCK, DRD2, WNT7B, APOE, APP, NTNG2, S100B 

GO:0090066 regulation of anatomical structure size 0.00008            0.00020                 
ADORA2A, SPTAN1, NTS, AKT1, CAPZA2 , GSN, APOE, 

ATP2B2 , AGT, NEFM, GPX1 

GO:0051129
negative regulation of cellular component 

organization
0.00063            0.00110                 

APC, SFRP1 , MAG, YWHAH, NGFR, MAPT, GSN, RTN4R, OMG, 

PAFAH1B1, CLU, SPTAN1, CAPZA2, HSPA1B, RTN4, MBP

GO:0032535 regulation of cellular component size 0.00065            0.00100                  SPTAN1, CAPZA2, GSN, AKT1, ATP2B2, NEFM

GO:0010721 negative regulation of cell development 0.00083            0.00110                 
CTNNA1, SFRP1, PAX6, MAG, YWHAH, NGFR, RTN4R, OMG, 

TSPO, DLX1, RTN4, MBP

GO:0007417 central nervous system development 0.00083            0.00100                 
MAL, ADORA2A, PTPRZ1, UGT8, MOG, RELN, PAX6, NGFR, 

GSTP1, S100B, MBP, ATN1

GO:0030030 cell projection organization 0.00084            0.00090                 

APC, PTPRZ1, CTNNA1, MAPK8IP2, CDK5, RTN4R, NR4A2, 

TSPO, OMG, PAFAH1B1, GNAO1, SNAP25, ADORA2A, CCK, 

DRD2, L1CAM, AKT1, WNT7B, APOE, ATP2B2, NTNG2, APP, 

S100B

GO:0031344 regulation of cell projection organization 0.00096            0.00100                 
APC, MAG, YWHAH, NGFR, MAPT, RTN4R, NPTN, OMG, 

PAFAH1B1, CNR1, AKT1, FEZ1, APOE, RTN4, NEFM, MBP

disorders.  Further investigation of this pathway (Supplementary Fig. S13) shows almost all 

molecules are implicated in at least one of these three neurodevelopmental disorders. 

Table 2.1.4.  GO enrichment analysis of highly expressed schizophrenia genes. 
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Table 2.1.5.  Canonical Pathways implicated in ASD when considering all genes versus 
highly expressed genes.  ** indicates the pathway was implicated in both sets.  #indicates 
the pathway was common to all three disorders. P-values shown are corrected for multiple 
testing using the Benjamini-Hochberg method. 

Canonical Pathways Derived from 
All AutDB Genes 

B‐H 
Corrected 
P‐Value 

Canonical Pathways Derived from 32 
Highly Expressed ASD Genes 

B‐H 
Corrected 
P‐Value 

 Serotonin Receptor Signaling  4.4E‐08   Corticotropin Releasing Hormone Signaling 4.5E‐05 

 Reelin Signaling in Neurons**  5.4E‐06   G‐Protein Coupled Receptor Signaling**  2.5E‐04 

 HER‐2 Signaling in Breast Cancer  5.0E‐05 Role of NFAT in Cardiac Hypertrophy  3.1E‐04

 cAMP‐mediated Signaling**  6.9E‐05   Reelin Signaling in Neurons**#  3.7E‐04 

 G‐Protein Coupled Receptor 
Signaling** 

7.6E‐05 
 Factors Promoting Cardiogenesis in 
Vertebrates 

5.0E‐04 

 Virus Entry via Endocytic 
Pathways** 

1.7E‐04   α‐Adrenergic Signaling  5.1E‐04 

 Macropinocytosis Signaling  1.8E‐04   cAMP‐mediated Signaling**  5.1E‐04 

 Axonal Guidance Signaling  2.2E‐04   Virus Entry via Endocytic Pathways**  5.5E‐04 

 PTEN Signaling  3.8E‐04 G Beta Gamma Signaling 5.9E‐04

 GABA Receptor Signaling  4.3E‐04   Phospholipase C Signaling  7.2E‐04 

 Glioblastoma Multiforme Signaling  5.9E‐04 
 Cholecystokinin/Gastrin‐mediated 
Signaling 

7.8E‐04 

 PI3K/AKT Signaling  9.1E‐04   fMLP Signaling in Neutrophils  9.5E‐04 

 
 
 
 
Table 2.1.6.  Canonical Pathways implicated in schizophrenia when considering all 
genes versus highly expressed genes.  ** indicates the pathway was implicated in both sets.  
#indicates the pathway was common to all three disorders. P-values shown are corrected for 
multiple testing using the Benjamini-Hochberg method. 

Canonical Pathways Derived from All 
Schizophrenia Genes 

B‐H 
Corrected 
P‐Value 

Canonical Pathways Derived from 212 
Highly Expressed Schizophrenia Genes 

B‐H 
Corrected 
P‐Value 

 Glutamate Receptor Signaling**  1.0E‐32   Glutamate Receptor Signaling**  1.3E‐12 

 Amyotrophic Lateral Sclerosis 
Signaling** 

4.0E‐23   Reelin Signaling in Neurons**#  4.4E‐09 

 Neuropathic Pain Signaling In Dorsal 
Horn Neurons 

7.9E‐22   cAMP‐mediated Signaling  1.5E‐08 

 CREB Signaling in Neurons**  1.0E‐21   14‐3‐3‐mediated Signaling  4.3E‐08 

 Role of Macrophages, Fibroblasts and 
Endothelial Cells in Rheumatoid Arthritis 

1.3E‐20   Axonal Guidance Signaling  6.6E‐08 

 Role of Osteoblasts, Osteoclasts and 
Chondrocytes in Rheumatoid Arthritis 

1.3E‐19   p70S6K Signaling  8.7E‐08 

 G‐Protein Coupled Receptor Signaling  4.0E‐18   CREB Signaling in Neurons**  9.1E‐08 

 Human Embryonic Stem Cell 
Pluripotency 

1.3E‐17   Synaptic Long Term Potentiation  1.9E‐07 

 Serotonin Receptor Signaling  5.0E‐17   Myc Mediated Apoptosis Signaling  1.1E‐06 

 Glucocorticoid Receptor Signaling  7.9E‐17 
 Amyotrophic Lateral Sclerosis 
Signaling** 

1.1E‐06 
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Table 2.1.7.  Canonical Pathways implicated in epilepsy when considering all genes 
versus highly expressed genes.  ** indicates the pathway was implicated in both sets.  
#indicates the pathway was common to all three disorders. P-values shown are corrected for 
multiple testing using the Benjamini-Hochberg method. 

Canonical Pathways Derived from 
All Epilepsy Genes 

B‐H 
Corrected 
P‐Value 

Canonical Pathways Derived from 
42 Highly Expressed Epilepsy Genes 

B‐H 
Corrected 
P‐Value 

 GABA Receptor Signaling**  4.7E‐09   Reelin Signaling in Neurons**#  1.3E‐06 

 Neuropathic Pain Signaling In 
Dorsal Horn Neurons 

2.1E‐06   GABA Receptor Signaling**  2.8E‐04 

 Reelin Signaling in Neurons**  2.6E‐05   Semaphorin Signaling in Neurons  7.1E‐03 

 β‐alanine Metabolism  2.2E‐04   Spliceosomal Cycle  7.2E‐03 

 Glutamate Receptor Signaling**  7.4E‐04   Glutamate Receptor Signaling**  1.1E‐02 

 Calcium Signaling  8.5E‐04 

 Cellular Effects of Sildenafil (Viagra) 1.1E‐03 

 Butanoate Metabolism  2.7E‐03 

 Hepatic Cholestasis  5.5E‐03 

 Glutamate Metabolism  6.0E‐03 

 

Unbiased gene-network analysis was then constructed in IPA, to identify connectivity 

networks derived from the enriched gene set compared to those derived from all autism-

associated genes.  Overlaying derived networks based on connectivity revealed that the two 

networks constructed from the highly expressed ASD genes are central to all networks 

obtained from all ASD-associated genes (Figure 2.1.3).  In the first central network (Figure 

2.1.4), NFκB, Jnk, and Mapk are hubs.  Network 2 from the highly enriched set also contains 

NFκB as a hub, in addition to Tnf, TgfΒ1 and Myc (Figure 2.1.5).  Taken together, these 

enriched networks, which are the most inter-connected of all ASD-derived networks, have at 

their core fundamental cytokine signaling molecules not previously implicated as ASD 

susceptibility loci.  These may serve as potential final common pathways through which the 

heterogeneous ASD-implicated genes ultimately converge.  Moreover, this represents a third, 

independent level of analysis whereby the highly expressed ASD genes implicate immune 

signaling pathways that are not apparent when the full set of ASD-associated genes is 

considered. 
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Figure 2.1.3.  
Overlapping gene-
networks in ASD.  
Networks 1 and 2 
(yellow border) 
were derived from 
the highly 
expressed ASD 
gene set.  All other 
networks were 
derived from the set 
of all ASD-
implicated genes.  
Orphaned networks 
(no edges) were 
excluded.  Edge 
values represent 
number of 
interactions between networks. 

 

 

Figure 2.1.4.  Network 
1 derived from the 
ASD highly expressed 
gene set.  Orange genes 
are those present in 
AutDB that are highly 
expressed. 
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Figure 2.1.5.  Network 2 
derived from the ASD 
highly expressed gene set.  
Orange genes are those 
present in AutDB that are 
highly expressed. 

 

 

 

 

 

 

 

 

Similar analysis comparing ASD-associated gene networks specific to brain regions did not 

result in a significant clustering by region, nor were there central network nodes.  

Considering only genes expressed highly during gestational time points, we did not observe 

any new pathways or networks not already implicated using all time points.  Gene-network 

analysis of the epilepsy and schizophrenia gene sets did not result in centrality of the highly 

expressed networks as we observed in ASD, perhaps reflecting the less heterogeneous nature 

of these disorders. 

Correlating Gene Transcription with Cell-type Specific Protein Expression 

Next, I was interested in correlating the ASD gene transcriptome results with protein 

expression levels in a cell-type specific manner.  To do so, I mined the Human Protein Atlas 

database for the 32 highly expressed autism genes (see Methods, Table 2.1.8).  Surprisingly, 

many of the highly expressed ASD genes were mainly detected in glia not neurons, and/or in 

specific layers of the cerebellum.  A similar proportion of genes exhibited neuron-specific 

protein expression.  For instance, the gene Gnas, a complex locus known to be imprinted and 

express antisense and non-coding transcripts (Peters and Williamson 2008), does not appear 

to make detectable protein in the CNS, yet is one of the 9 most highly expressed ASD 



	

 

70 
 

transcripts.  Similarly, Fabp7, which was the most highly expressed ASD-associated gene, 

was only detected in glia.  Moreover, Cnr1—the one highly expressed gene shared by all 

three disorders—is most highly expressed in glial cells and the molecular layer of the 

cerebellum.  These results suggest investigation of cell-type specific expression in ASD will 

be an important undertaking, and consideration of non-coding RNAs in ASD pathogenesis is 

warranted as well. A limitation of this assessment is that there are not currently published 

data on glial-subtype specific protein expression patterns, and therefore I was unable to assess 

for specific types of glial cells. 

Table 2.1.8.  Cell-type specific protein expression of highly expressed ASD genes from 
the Human Protein Atlas database.   

Neurons  Glia  Cerebellum 

Cortex  Hipp  Lat Vent Cortex Hipp
Lat 
Vent  Purkinje Granular  Molecular

FABP7  ‐  ‐  ‐  ++  +++  ++  ‐  ‐  ++ 

GNAS  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

GPX1  +  +  ‐  ++ ++ ++ ++ ‐  ‐ 

HNRNPH2  +++  +++  +++  +++  ++  ++  ++  +++  +++ 

HRAS  +++  +++  +++  +++  +++  +++  ‐  +++  +++ 

PDZD4  ++  +  ++  +  +  +++  ++  ‐  ++ 

RPL10  +++  +++  +++  +++ ++ ++ +++ ++  +++

TSPAN7  +++  ++  ++  ‐  ‐  ‐  ‐  ‐  ‐ 

MAP2  +++  +++  +++  ‐  ‐  ‐  +++  +++  +++ 

PRKCB  ++  ++  ++  ‐ ‐ + ++ +++  ++

MEF2C  +++  +++  +++  +++ +++ +++ +++ +  +++

RAPGEF4  +++  ++  ‐  ++  +  ++  +++  +  ++ 

APC  +  +  ++  ++  ++  ++  ++  ++  +++ 

DCX  +++  +  +  ++ ++ ++ ++ ++  +++

RIMS3  +  +  +  ‐  ‐  ‐  +  ++  ‐ 

ROBO1  ++  ++  ++  +++  ++  ++  ++  ++  ++ 

GLO1  ++  ++  ++  ++  ++  ++  ‐  ‐  + 

DLX2  +++  ++  ++  + + + ++ +  ‐ 

CNR1  ++  +  +  +++  +++  +++  +  ++  +++ 

PCDH10  ++  ++  +  +++  +++  +++  +  ++  +++ 

NLGN3  ++  +++  +  ‐  ‐  ‐  +++  +++  ‐ 

RELN  +  +  +  ‐ ‐ ‐ + ‐  ‐ 

CADM1  ‐  ‐  ‐  ‐  ‐  ‐  ‐  +++  ‐ 

CDH22  +  ‐  ‐  +  +  +  ‐  ++  ‐ 

Data is reported as presented in the Atlas: +++ for “strong” expression, ++ for “moderate,” + 
for “weak,” and – for “negative.”  These highly expressed ASD genes were not present in the 
database: Sez6l2, Gabrb3, Hsd11b1l, Hla-A, Dlx1, Adora2a, Cadps2, and DHCR7.  Lat vent 
= Lateral Ventricle, Hipp = Hippocampus.   
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Analysis of ASD Transcriptome Data 

Lastly, I was interested in considering these findings in the context of the major three 

published transcriptomics studies on ASD brain tissue (Purcell 2001; Garbett 2008; Voineagu 

2011). I examined the results of all three studies to determine how many of the genes that are 

differentially expressed in ASD brain tissue have previously been implicated in ASD through 

inherited or de novo DNA mutations.  Surprisingly, in each study only ~5% of genes that 

were significantly differentially expressed in ASD brains were previously implicated in ASD 

(Table 2.1.9).  This is particularly intriguing because both the analysis presented here of 

known ASD candidate genes and two of the three gene expression studies all implicate 

immune signaling pathways in ASD, even though most ASD-implicated genes profiled in this 

study are not dysregulated in ASD brain tissue 

Table 2.1.9.  Correlation of AutDB genes with published transcriptome studies in ASD 
brain. 

Garbet et al 2008  Voineagu et al 2011  Purcell et al 2001 

Brain tissue 
studied 

STC  STC, PFC, Cerebellum  Mainly Cerebellum 

# of samples  6 ASD, 6 Ctrls 
29 ASD, 29 Ctrls (cortex) 

11ASD, 10 Ctrl (cerebellum) 
10 ASD, 23 Ctrls 

Transcriptome 
Profiling 
Method 

U133 Plus 2.0 GeneChip 
(Affymetrix) 

Ref8 v3 Array (Illumina) 
Clontech Array and 
UniGEM V2 Array 

# of genes 
dysregulated in 

ASD 
130  444  30 

Main findings 
↑ Immune‐related genes    Genes converge on  

immune and synapse 
modules 

↑ AMPA‐type 
glutamate receptors ↓ Genes involved in 

neuronal development  

Dysregulated 
genes in AutDB 

4/130 (3%)1  21/444 (4.7%)2  1/31 (3.2%)3 

1 SDC2, SLC9A9, DLX1, AHI1 
2 CD44, CDH10, DLX1, DPP6, GABRB3, HLA-A, KCNMA1, MET, NOS2A, PRKCB1, PTGS2, SCN1A, 
SLC25A12, NLGN4Y, CADM1, A2BP1, AHI1, PCDH10, PDZD4, CADPS2, SLC9A9 
3 CNR1 
STC = Superior temporal cortex, PFC = Pre-frontal cortex, cere = cerebellum 
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2.1.5 Discussion	

In an attempt to integrate the genomic heterogeneity underlying the complex etiologies of 

common neurodevelopmental disorders, I report here the analysis of expression from genes 

implicated in autism, schizophrenia, and epilepsy across the developing human brain.  Sakai 

et al recently constructed a protein interactome network using a yeast two-hybrid screen on a 

subset of ASD candidate genes (Sakai et al. 2011), but no study had yet attempted to derive 

molecular pathways underlying ASD by investigating as large of a set of ASD candidate 

genes.   

To do so, I first described gene ontology, canonical pathways, and interactome networks for 

all genes implicated in ASD that are cataloged in the database AutDB.  Then, I developed a 

biologically relevant methodology to extract a subset of highly expressed ASD-implicated 

genes from the BrainSpan Atlas of Human Brain Development.  I found that interactome 

analysis placed the two networks derived from highly expressed ASD candidate genes at the 

center of all ASD gene networks.  Closer inspection of these networks revealed NFκB, Jnk, 

MapK, TNF, TGF-Β, and Myc as central hubs.  These central networks were supported by 

evidence at two other levels of the analysis (gene ontology and canonical pathways).  Taken 

together, these findings integrate a large set of genes implicated in ASD and suggest that they 

may converge onto classical cytokine signaling pathways.  While other transcriptomics 

studies on ASD tissue have implicated immune system signaling in ASD pathogenesis, these 

findings suggest that the ASD-implicated genes themselves may also be related to these 

functions. 

Interestingly, there is also mounting evidence at the cellular and tissue levels that more in 

depth investigation of an immune component is warranted in ASD (Goines and Van de Water 

2010).  For instance, multiple studies have demonstrated altered cytokine profiles in ASD 

patients (Croonenberghs et al. 2002; Molloy et al. 2006), and altered TGF-Β concentration in 

serum and CSF correlates with disease severity (Ashwood et al. 2008).  Others have 

described various autoimmune phenomena including autoantibodies to neural antigens and 

maternal-fetal cross-reactive neural antibodies (Braunschweig et al. 2008).  There is also 

indication of altered innate cellular immunity in ASD, such as differences in gene expression 

and altered response to immunostimlulatory ligands in both natural killer and monocytic cells 

from ASD patients (Enstrom et al. 2009; Enstrom et al. 2010).  Post-mortem brain tissue from 

ASD patients shows increased microglial density in grey matter, an activated morphology, 



	

 

73 
 

and secretion of a cytokine profile consistent with a pro-inflammatory state, most prominent 

in the cerebellum (Vargas et al. 2005; Morgan et al. 2010).  Moreover, microglia from 

MeCP2- null mice—a model of Rett Syndrome—produce a conditioned media that damages 

synaptic connectivity via a glutamate-excitotoxicity mechanism (Maezawa and Jin 2010).  

While all of this work provides post-hoc evidence for altered immune response in ASD, the 

results presented here suggest a direct link between genes implicated in ASD based on DNA 

mutations and molecular pathways involved in immune signaling. 

This considerable attention to the immune response in ASD research has resulted in two 

prevailing theories: one suggests exogenous factor(s) stimulate neuro-inflammation during 

development, while the other postulates autoimmune activation causes ASD pathology 

(Pardo et al. 2005; Derecki et al. 2010).  However, it is equally possible that the mutations 

described in ASD result in aberrant signaling regulation of immune cells during 

neurodevelopment.  This could result in cell-autonomous activation and/or improper response 

to otherwise nominal stimuli, such as occurs in the autoinflammatory syndromes (Kastner et 

al. 2010).  Alternatively, as glia are increasingly implicated in normal formation of synaptic 

connectivity (Bolton and Eroglu 2009)—and these results demonstrated a significant 

proportion of ASD-implicated genes appear to be glial-specific—it is possible that genomic 

aberrations ultimately funnel through core signaling pathways of glial cells to disrupt 

formation of neural networks independent of an inflammatory mechanism.  In support of this 

notion, a number of recent reports have demonstrated that these same cytokine signaling 

pathways are central to proper brain development (Kacimi et al. 2011; Awasaki et al. 2011).  

Furthermore, signaling through the NFkB pathway has been shown to be important in 

synaptic plasticity independent of inflammation (Mattson 2005).     

Interestingly, the canonical cytokine receptors, toll-like receptors (TLRs), are abundantly 

expressed not just in the peripheral immune system but also in the brain (Visser et al. 2006). 

Microglia express the full repertoire of TLRs, but some of these receptors are also present in 

neurons (Lehnardt, 2010). Experimental evidence suggests that distinct TLRs regulate neural 

plasticity and development in neurons. For example, TLR3 inhibits neural progenitor cell 

proliferation in the embryonic mouse telencephalon and regulates axonal growth (Cameron et 

al. 2007; Lathia et al. 2008). In addition, TLR8 is involved in injury and neurite outgrowth 

associated with neural development (Ma et al. 2006). Similarly, TLR2 and TLR4 play a role 

in adult neurogenesis of the hippocampus (Okun et al. 2010). Furthermore, a recent study that 
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systematically characterized the expression of TLR1–9 during pre- and postnatal 

development of the mouse brain demonstrated these receptors tend to have distinct 

developmental time-dependent patterns (Kaul et al. 2012). The fact that distinct TLRs exert 

specific expression patterns over time in the developing mouse brain suggests a physiological 

relevance of specific TLRs in vertebrates in brain development. 

Moreover, two of three genome-wide expression studies in autistic brain tissue concluded 

that the most prominent transcriptome changes were related to neuro-immune disturbances.  

In the Garbett et al study, the most significant functional pathway implicated was NFκB 

signaling (Garbett et al. 2008).  The most comprehensive transcriptomics study of ASD post-

mortem brain to date concluded that one of two significant co-expression networks is 

involved in immune function (Voineagu et al. 2011).  While the results presented in this 

chapter are only a first step in linking common molecular interaction pathways to the 

underlying genetic heterogeneity of ASD, they provide integrated genomic evidence, which 

is supported by these transcriptomics, cell, and tissue level studies that further investigation 

into cytokine signaling in ASD is needed. 

 

2.1.6 Conclusion	

In summary, the work reported in this chapter demonstrates the spatial and temporal 

expression profile of genes implicated in autism spectrum disorders, in addition to the 

genetically and phenotypically related neurodevelopmental disorders schizophrenia and 

epilepsy.  I discovered that a large proportion of ASD-implicated genes are not expressed in 

the developing human brain, and a significant number appear to be mainly expressed in glial 

cells.  Integrated gene-network analysis, gene ontology enrichment, and canonical pathways 

investigation of a subset of highly expressed ASD genes all implicate central immune 

signaling pathways as common to the heterogeneous interactome of the implicated genes. 

 

-- 
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2.2 Co‐expression	Network	Analysis	of	Autism	Candidate	Genes	

	

2.2.1 Aim	

As hundreds of diverse genes have been implicated in ASD, an important first step toward 

understanding the functional genomics of this disorder was to analyze individual expression 

profiles of ASD candidates individually, as was presented in Chapter 2.1.  However, 

understanding how so many genes, each with disparate function, can all be linked to a single 

clinical phenotype remains unclear. To address this, I hypothesized that understanding 

functional relationships between autism candidate genes during normal human brain 

development may provide convergent mechanistic insight into the genetic heterogeneity of 

ASD. To test this hypothesis, I analyzed in collaboration the co-expression relationships of 

455 genes implicated in autism using the BrainSpan database. We discovered modules of 

ASD candidate genes with biologically relevant temporal co-expression dynamics, which 

were enriched for functional ontologies related to synaptogenesis, apoptosis, and GABA-

ergic neurons. Furthermore, we also constructed co-expression networks from the entire 

transcriptome and found that ASD candidate genes were enriched in modules related to 

mitochondrial function, protein translation, and ubiquitination. Hub genes central to these 

ASD-enriched modules were further identified, and their functions supported these 

ontological findings. Overall, our multi-dimensional co-expression analysis of ASD 

candidate genes in the normal developing human brain suggests the heterogeneous set of 

ASD candidates share transcriptional networks related to synapse formation and elimination, 

protein turnover, and mitochondrial function.   

 

2.2.2 Introduction	

Mechanistic understanding of how ASD candidate genes relate to the neurobiology of autism 

is a difficult task, since genes encode multiple highly complex functions at different stages of 

development and across different regions of the brain. Moreover, the set of genes implicated 

in ASD is highly heterogeneous, and many of their functions are completely unknown. 

Furthermore, understanding how disruption in different genes with disparate functions still 

results in a common clinical phenotype makes developing common targeted biomarkers and 

treatments for ASD challenging. Therefore, in addition to attempts to identify genes that are 

causative for ASD, and to understand their individual expression profiles, it is equally 
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important to understand how ASD candidate genes may relate to each other during human 

neurodevelopment in order to identify potential shared molecular pathways. 

 

A global survey of ASD gene co-expression patterns across normal human neurodevelopment 

could therefore facilitate our translation of ASD candidate genes to ASD candidate pathways, 

but this has not yet been undertaken. A recent study that assessed autism gene co-expression 

patterns in two adult human brains is an important step toward this goal (Ben-David and 

Shifman 2012), but as autism is a neurodevelopmental disorder it is imperative to understand 

the relationship of autism candidate genes in a developmental context. Conversely, other 

studies have explored the expression profiles of individual ASD candidates in human brain 

development (Kang et al. 2011), but lack an assessment of the relationships among these 

ASD candidates and how they relate to global transcriptional pathways important in brain 

development. 

 

Transcriptome-based studies of the developing human brain have previously been limited in 

the sample size, number of brain structures analyzed, and developmental time points 

assessed, hampering the ability to evaluate the genetic contributors to neurodevelopmental 

disease comprehensively (Abrahams et al. 2007; Ip et al. 2010; Johnson et al. 2009; Somel et 

al. 2010; Sun et al. 2005). However, the recent availability of broad developmental surveys of 

gene expression, which cover many brain regions over multiple developmental stages, can 

greatly facilitate such analysis (Kang et al. 2011). The BrainSpan Atlas presents a unique 

opportunity to understand the spatial and temporal co-expression properties of ASD 

candidate genes.  

 

We developed a biologically driven computational approach to deduce functional 

relationships among this diverse set of genes. We first discovered modules of ASD 

candidates with biologically relevant temporal co-expression dynamics. These modules were 

related to the processes of synaptogenesis, apoptosis, and the neurotransmitter γ-aminobutyric 

acid (GABA). Then, we created a transcriptome-wide co-expression network from all genes 

expressed in the brain, to discover significant ‘Molecular Interaction Modules,’ and 

demonstrated that ASD candidate genes are enriched only in modules related to the processes 

of synaptogenesis, mitochondrial function, protein translation, and ubiquitination. Lastly, we 

identified hub genes within the ASD-enriched Molecular Interaction Modules, whose 
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functions supported our ontological results, and which may serve as additional ASD 

candidate genes. Our analysis of this multi-dimensional expression data suggests pathways 

previously independently implicated in autism are related to each other through shared 

neurodevelopmental transcriptional networks. 

	

2.2.3 Methods	

Developing Human Brain Transcriptome Data and ASD Gene List 

We downloaded the BrainSpan transcriptional atlas from www.brainspan.org, processed the 

data, and grouped samples into developmental timepoints as was described above (page 51, 

Figure 2.0.1). We were able to design an efficient computational algorithm to analyze the co-

expression relationships, therefore all 16 brain regions and all 30 donor brains were analyzed 

as described above (Figure 2.0.1 and 2.0.2, page 51-52). In this analysis, the list of autism 

candidate genes used was the full 455 ASD gene list detailed in Appendix Table A2. 

 

Co-expression Netowrk Creation and Statistical Analysis 

In order to identify functional relationships between ASD candidate genes, we investigated 

patterns of gene co-expression change across developmental stages between each pair of 

genes from the ASD list. First, the correlation between each pair of ASD genes was calculated 

separately within each of the seven developmental stage bins, based on the Spearman’s rank 

correlation between the two genes across all brain regions. For each gene-pair, this resulted in 

a correlation value for each of the seven developmental stages, representing the brain-wide 

transcriptional similarity between the genes at each developmental stage (Figure 2.2.1). 

Gene-pairs were retained only if they had an absolute correlation value greater than 0.8 in at 

least one developmental stage. We used the Spearman’s Rank Correlation as it focuses more 

on the similarity in the change of gene expression, as opposed to similarity in the absolute 

values of gene expression. 

Second, the surviving gene-pairs were hierarchically clustered into distinct modules based on 

the similarity of their correlation profiles over time (using the Euclidean distance between the 

profiles and a complete linkage to merge clusters). Finally, the correlation pattern for each 

module was summarized by averaging all the gene-pair correlation patterns included in the 

respective module. It is worth noting that the patterns within the modules represent changes 
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in co-expression across development (which should not be confused with actual expression 

levels of genes). 

Lastly, in order to assess the biological relevance of these networks, we created 10,000 

random networks, each consisting of 455-randomly selected genes from this dataset.  We 

constructed co-expression networks from each of these random sets in the same manner as 

described above, and then determined how many gene-pairs remain above the correlation 

threshold of 0.8 in each random co-expression network. We then employed the 

Hypergeometric probability test to determine if the number of gene pairs with correlation 

above 0.8 in the ASD co-expression network is more than would be expected by chance 

based on these 10,000 random co-expression networks.  This analysis indicated that the ASD 

co-expression networks display a significant enrichment for co-expression relationships (p = 

1x10-4) as compared to the random networks, indicating that our threshold of 0.8 is likely to 

be capturing true biological relationships in the data (Appendix Figure A3). 

Gene set enrichment and Gene Ontology enrichment analysis 

Enrichment of transcriptome-wide Molecular Interaction Modules for ASD candidate genes 

and cell-type specific genes was assessed using the hypergeometric probability density 

function (hygepdf) in MATLAB R2011a (The MathWorks, Inc.). The resulting p-values were 

corrected for multiple testing using false discovery rate (FDR). All results reported are the –

log10 of FDR-corrected p-values, and only p-values < 0.001 were considered significant. 

Gene list were assessed for shared biological pathways by testing for enrichment of gene 

ontology terms (GO) using DAViD Bioinformatics Resources 6.7 (Huang et al. 2009). The 

complete list of expressed genes in this study’s dataset (13,563 genes) was used as the 

background. Only gene ontology terms with a Benjamini-Hochberg multiple testing corrected 

p-value < 0.01 are presented as significant. 
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Figure 2.2.1. Graphical Representation of methodology used in this analysis. (a) Each 
heat-map shows the expression of all genes across six representative brain regions in three 
representative developmental stages. (b) A co-expression network of ASD candidate genes 
was generated for each developmental stage by correlating the expression vectors across 
brain regions. The blue gene-pair represents two genes that are moderately correlated at early 
developmental stages, but gain correlation through development. Stronger correlation is 
represented by a thicker edge between the two nodes. By contrast, the red gene-pair 
represents two genes that lose correlation over development. The lower panel shows the 
correlation patterns of all gene-pairs in the network (grey) across development. Correlation 
patterns of the blue & red pairs are shown in respective colors. Birth and the average age of 
ASD diagnosis are indicated. (c) The transcriptome-wide Molecular Interaction Network was 
constructed based on the pairwise correlation between each pair of genes expressed in the 
BrainSpan Atlas (13,563 genes). Each node in the network represents a gene while the 
weighted edges represent correlations between genes based on their expression across all 
samples. Nodes were clustered into modules (dashed circles). Genes from the ASD list are 
highlighted within each module (blue nodes). Blue circles indicate modules that are 
significantly enriched in genes from the ASD list.  

 

 

a 

b  c
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2.2.4 Results	

Part 1: Spatio-temporal Gene Co-expression Analysis of ASD Candidate Genes 

ASD gene modules display distinct temporal dynamics around birth 

Figure 2.2.2a shows the hierarchical clustering of the retained ASD gene-pairs. In total there 

were 103,285 pair-wise correlations between the 455 ASD candidate genes in the ASD list, of 

which 1,168 remained after applying the stringent threshold of an absolute correlation greater 

than 0.8. The surviving gene-pairs clustered into three distinct modules. Two of these 

modules, the “Green” module and the “Blue” module, displayed distinct correlation patterns 

relative to pre- versus post-natal development. The Green module (Figure 2.2.2b) consisted 

of gene-pairs that lose correlation in the middle stages of development (infancy and 

childhood); that is, each pair of genes within the Green module has highly correlated spatial 

expression profiles at prenatal developmental stages but this correlation is lost at birth. In 

contrast, the Blue module (Figure 2.2.2c) consisted of gene-pairs that gain correlation during 

development. These genes do not show correlation at prenatal stages but progressively 

increase correlation throughout postnatal development. The “Red” module did not show any 

coordinated pattern of expression over developmental time (not shown).  

To characterize these modules further, we used the gene ontology enrichment analysis tool 

David 6.7 (39) to discover whether genes in these modules related to specific molecular 

mechanisms, cellular pathways or disease annotation terms. The top significantly enriched 

terms (Benjamini-corrected p-values < 0.01) are summarized as shown in Figure 2.2.3. All 

the three modules were enriched for annotation terms related to neuron projection, synapse, 

synaptic transmission and behavior. The three modules were also enriched for disease terms 

including mental retardation and epilepsy. The Green and Blue modules were significantly 

enriched for neuron differentiation, cell morphogenesis, and learning/memory. The Green 

module was specifically enriched in functional terms related to regulation of apoptosis and 

regulation of cell death, while the Blue module was specifically enriched in terms related to 

ion channel, neurotransmitter receptor activity and GABA receptor activity. Supplementary 

Table S3 includes the full list of enriched gene-annotation terms for these two modules.  
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 Figure 2.2.2. Spatio-temporal Gene Co-expression Analysis of ASD candidate genes.    
(a) Heat-map of the temporal correlation pattern of ASD gene-pairs (rows) through different 
developmental stages (columns). The dendrogram to the right shows the clustering of ASD 
gene-pairs into three modules (Red, Green and Blue). (b-c) The average correlation pattern of 
gene-pairs in the Green module (b) shows loss of correlation at childhood, whereas the 
average correlation pattern of gene-pairs in the Blue module (c) shows progressive gain of 
correlation across development.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

None of the GO terms that were significantly enriched in the three ASD modules showed any 

significant enrichment in modules from 10 randomly created sets. We also assessed how 

many gene-pairs remained after thresholding them on co-expression (absolute correlation > 

0.8 at any developmental stage) in 10,000 random gene sets of 455 genes. These results 

showed that the number of gene-pairs remaining after thresholding the ASD list (1,168 gene-

pairs) is highly significant (p = 10-4). 

Modules of ASD candidate genes are enriched in neurons  

We then assessed if these modules were enriched in specific brain cell types. Lists of cell-

type specific genes were obtained from a previously published work (Cahoy et al. 2008).  
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These lists included 1,465 neuron-, 1,529 oligodendrocyte-, and 1,829 astrocyte-specific 

genes. ASD candidate gene modules were assessed for enrichment of these cell types using 

the hypergeometric probability test (see Methods).  Both the Green and Blue modules were 

significantly enriched in neurons, whereas the Red module demonstrated no significant 

enrichment, as shown in Figure 2.2.4.  

Figure 2.2.3. Gene Ontology terms enriched in each of the three modules. Bars are 
colored according to 
the module’s name. 
Data is presented as 
the –log10(p-value) 
with Benjamini-
correction applied. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2.4. Enrichment scores for each of 
the ASD modules in neurons, astrocytes and 
oligodendrocytes. Data is presented as the –
log10(p-value) with Benjamini-correction 
applied. 
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Part 2: Enrichment of ASD Candidate Genes in Transcriptome-wide Molecular Interaction 

Modules 

Given the marked genetic heterogeneity of ASD and the large number of genes involved, it is 

also important to understand the role of ASD candidate genes in normal brain development 

within the context of the whole transcriptome, as sub-networks of the entire brain 

transcriptome may be perturbed by the ASD candidates. An analysis of these sub-networks 

could reveal ASD-related pathways that would be missed by analyzing the ASD candidates 

alone, as it is unlikely that all ASD candidate genes have been identified to date. Moreover, 

this top-down approach allows the identification of other genes that might also relate to ASD. 

Therefore, we performed a transcriptome-wide co-expression network analysis to identify 

functionally related gene modules throughout the normal developing brain transcriptome 

(‘Molecular Interaction Modules’). Then, we assessed whether these modules were specific 

to distinct brain regions or developmental stages, and if they were related to specific 

pathways, cellular processes, or disease annotation terms. Finally, we determined if ASD 

candidate genes were enriched in any of the resultant Molecular Interaction Modules.  

No evidence for region-specific modules  

The transcriptome-wide co-expression network was constructed from all genes expressed in 

the brain (13,563 genes), based on their expression profile across all samples (480 samples, 

i.e. all brain structures and developmental stages). Genes were hierarchically clustered based 

on Spearman’s rank correlation and complete linkage between pairs of genes. The resulting 

network consisted of 32 modules of varying size (from 36 to 1,386 genes), as shown in 

Figure 2.2.5a. Visual analysis of the heat-map and average expression patterns of member 

genes from each of the 32 modules demonstrated that none were specific to particular 

anatomical regions. This observation is consistent with the results from a similar dataset of 

human brain development assessed by microarray (Ben-David and Shifman 2012). We did 

not observe any pre/post natal specific expression patters in any of the 32 modules. 

 

Modules enriched for ASD genes relate to synaptogenesis, protein turnover, and 

mitochondria  

The resulting transcriptome-wide co-expression modules were then assessed for enrichment 

of genes belonging to the ASD list using the hypergeometric probability test. Four modules—

Magenta, Brown, Orange, and Purple—were significantly enriched for ASD candidate genes 

(FDR-corrected p-values < 0.001), as shown in Figure 2.2.5b. The Magenta module (Figure 
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2.2.6a) contained genes highly co-expressed during early childhood. The Brown module 

(Figure 2.2.6b) included genes with low co-expression during childhood and differential 

spatial co-expression at late developmental stages. The Orange Module (Figure 2.2.6c) 

contained genes with progressively increasing co-expression during development. Finally, the 

Purple module (Figure 2.2.6d) included genes with varied co-expression during development 

and high differential spatial expression in adolescence and adulthood.  

                                      

 

Figure 2.2.5. Transcriptome-wide Molecular Interaction 
Network. (a) A heat-map of the co-expression of 13,563 genes 
(rows) across all 480 samples (columns). Samples are ordered 
first by brain region (color-code at the top) and then by age. 
The dendrogram to the right shows the clustering of all the 
genes into 32 modules. Modules with significant enrichment (p 
< 10-3) of genes from the ASD list are colored while other 
modules are shown in gray. (b) Enrichment of ASD candidate 
genes in each of the modules showing high significance in the 
Magenta, Brown, Orange and Purple modules (represented by 
–log10(p), FDR-corrected).  

 

 

 



	

 

85 
 

 

Figure 2.2.6. ASD Modules. (a) Left: Average co-expression pattern of the Magenta module 
genes across different brain regions (different plot colors). Right: Top GO terms enriched in 
the Magenta module. (b) Left: Average co-expression pattern of the Brown module genes. 
Right: Top GO terms enriched in the Brown module. (c) Left: co-Average expression pattern 
of the Orange Module genes. Right: Top GO terms enriched in the Orange module. (d) Left: 
Average expression pattern of the Purple module genes. Right: Top GO terms enriched in the 
Purple module. All enrichment values are represented by –log10(p), Benjamini-corrected. 

 

Then, these ASD-enriched modules were tested for enrichment of gene ontology terms, as 

shown in Figure 2.2.6 (right panel). The Magenta and Orange modules were significantly 

enriched for mitochondrial processes. Additional GO terms that were significantly enriched 

in the modules included ribosome and protein translation, transit peptide, ubiquitination, and 

alternative splicing.  Significant enrichment for synapse was also found in the Brown module 
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and the Purple module. Enrichment of ASD candidate genes into transcriptome-wide synapse 

modules further supports our previous finding of ASD modules (Green and Blue modules), 

above, which were also related to synaptogenesis. Neurological disease terms were also 

significant in the ASD-enriched modules: epilepsy (Brown module), Parkinson’s (Magenta 

and Orange modules), Alzheimer’s (Magenta module and Orange modules) and Huntington’s 

(Magenta and Orange modules).   

ASD-enriched Molecular Interaction Modules are Mainly Neuronal  

Each module was also tested for enrichment of specific neural cell populations (i.e. neurons, 

oligodendrocytes, and astrocytes), as described earlier. Three out of the four ASD-enriched 

modules were enriched for neurons (Magenta, Brown and Purple modules), as shown in 

Figure 2.2.7. The Orange module, which was related to mitochondrial functioning, was 

highly enriched in astrocytes but not neurons. This finding is of relevance, as multiple recent 

studies have implicated glia, and specifically astrocytes, in the brain pathology of autistic 

subjects (Cao et al. 2012; Lioy et al. 2011). 

Figure 2.2.7. Enrichment of the ASD Modules in Cell-
type Specific Genes. Enrichment of ASD-enriched 
modules in: neurons, oligodendrocytes and astrocytes 
(represented in –log10(p) , FDR-corrected). 
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ASD-enriched Molecular Interaction Module hub genes provide molecular targets  

An alternative approach to annotate the function of each ASD-enriched module is to analyze 

the genes with the strongest correlations within each module. It has been shown that within 

an interaction network, genes with the most connections to other genes, termed hub genes, 

are informative for the network as a whole, and are potential high yield therapeutic targets 

(Barabasi et al. 2011). The strongest correlations within a module were explored using 

Cytoscape v2.8 (Smoot et al. 2011). First, each ASD-enriched module (Magenta, Brown, 

Orange and Purple) was imported as a graph with genes acting as nodes and pair-wise 

correlations between genes representing edges between the nodes. Figure 2.2.8 shows a 

subset of the connected nodes within each graph. 

 

Figure 2.2.8. Hub Genes of ASD Modules.  Each of the four ASD-enriched modules is 
presented with the Degree Sorted Circle layout of Cytoscape, with the nodes’ size and color 
reflective of the level of connectivity within the network. For clarity, edges with correlation 
values smaller than 0.9 are removed. (a) Top connected genes of the Magenta module. (b) 
Top connected genes of the Brown module. (c) Top connected genes of the Orange module. 
(d) Top connected genes of the Purple module. 



	

 

88 
 

The 10 most highly connected nodes (genes) within each graph were extracted and their 

putative functions determined by manual curation of the literature. Among these most highly 

connected hub genes, a number were of note. The most striking observation was that most of 

the highly connected hub genes in the Magenta and Brown modules are known to function in 

the processes of chromatin remodeling, transcription, or translation (HMGN3, EIF3K, 

ZFAND6, DNAJC1, C6orf130, ERCC1, LCMBT2, MBTPS2, KIAA1191, C14orf138, GDA, 

and NCOA7). This result is in line with the gene ontology enrichment for these modules. A 

number of other central hub genes are involved in intra-cellular signaling pathways 

(PROCA1, TBC1D22B, PPP2R2D, HACE1), and a few are known to function as membrane 

ion channels (PRRT1, KCTD4, SLC26A1, KCNA4). In addition, a number of hub genes 

function in apoptosis or myeloid/microglia cell processes (such as RNF11, CD200, and 

FAF1). These hub gene functions largely recapitulate the ontologies of their respective 

networks, supporting our enrichment results and highlighting potential critical regulatory 

molecules of these networks. 

 

2.2.5 Discussion	

In order to gain insight into the molecular pathogenesis of ASD, we present a biologically-

driven computational approach to analyze a heterogeneous set of genes previously 

independently implicated in ASD, to understand if they may relate to each other through 

shared functional genomics mechanisms. The main goal of this work is to understand if ASD 

candidate genes relate to common cellular/molecular pathways when considered in the 

context of transcription during normal human brain development. Identifying such pathways 

has profound implications for understanding the pathophysiology of ASD, especially since 

the majority of ASD patients do not have an identifiable genetic mutation (Huguet et al. 

2013). Yet those patients without an identifiable mutation are still likely to have alterations in 

the same pathways, although the alterations may be caused by environmental, epigenetic, or 

other non-genetic factors. 

 

We intentionally analyzed a very broad collection of genes associated with ASD, in an 

attempt to understand if there are cellular or molecular pathways that may represent final 

common mechanisms across all patients. Despite the fact that some of the genes in our ASD 

list are essentially causative for ASD (for instance, single gene mutation syndromes such as 

Fragile X), while others are not as strongly associated, we have weighted all genes equally to 
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avoid bias toward more severely-affected patient cases. Future work could attempt to weight 

genes differently within the co-expression networks to study different genetic subtypes of 

autism. 

 

We discovered subsets of ASD candidate gene modules that displayed biologically-relevant 

co-expression dynamics, which were enriched for the processes of synaptogenesis, apoptosis, 

and GABA-ergic signaling. In addition, we assessed for functional genomic relationships 

between ASD candidate genes and the entire developing human brain transcriptome. This 

analysis revealed that ASD candidate genes are enriched within transcriptome-wide modules 

related to synaptogenesis, mitochondrial function, alternative splicing, protein translation, 

and ubiquitination. By identifying gene modules that have similar expression patterns in the 

brain (regardless of time period), we were able to infer that they are likely functioning in 

similar pathways. This allowed us to infer which cellular and molecular mechanisms are 

likely to be disrupted in autism. We also demonstrated the cell-type specific enrichment of 

these modules is mostly in neurons. Although several brain regions have been highlighted in 

neuroimaging and connectivity studies of autistic brains (namely cortical regions and the 

cerebellum; Carper and Courchesne 2005; Courchesne and Pierce 2005), interestingly, none 

of the transcriptome-wide modules were specific to particular anatomical regions, which 

supports previous reports of the BrainSpan dataset via microarray (Kang et al. 2011). Finally, 

by assessing genes with the highest connectivity within the transcriptome-wide Molecular 

Interaction Modules that were enriched for ASD candidates, we identified hub genes that may 

represent critical regulatory molecules in these networks, and their functions further 

supported our enrichment findings. 

 

The number of strongly connected gene-pairs from the ASD list were found to be highly 

significant (p = 10-4), indicating that based on their significantly strong co-expression across 

development, those ASD-associated genes are functionally related. We discovered three 

subsets of ASD–associated genes with distinct co-expression profiles around birth, even 

though the co-expression network for each developmental stage was calculated separately to 

avoid any bias towards pre/post natal expression changes. All three of these modules were 

significantly enriched for the processes of synaptogenesis and behavior, in addition to the 

disease annotations of mental retardation and epilepsy.  Two of the modules (the Green and 

Blue modules) were also significantly associated with cell morphogenesis, neuron 
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differentiation, and learning. Moreover, the Green module, which had highly correlated 

spatial co-expression at prenatal developmental stages with a dramatic loss of correlation at 

birth, was uniquely enriched for the process of apoptosis. Conversely, the Blue module 

displayed an opposite co-expression trajectory—poor correlation in expression prior to birth, 

but strong co-expression beginning in infancy and increasing through adulthood—and was 

uniquely related to GABA-ergic signaling and ion channels. The distinct, biologically 

relevant expression patterns of these two modules around birth, a developmental period with 

the greatest shifts in gene expression (Kang et al. 2011), suggests a key role of these networks 

in brain development and autism.  

 

A finding of particular interest was that ASD-associated genes were highly co-expressed later 

in development in some of the identified modules (childhood and adulthood), although 

autism symptoms are generally apparent by age 2. However, this does not preclude the 

possibility that the pathways implicated by these modules are involved in ASD pathogenesis, 

as our analysis was on co-expression patterns, not absolute gene expression levels. It is 

possible that the genes in these modules are still expressed in early neurodevelopment, but 

that they are most strongly co-expressed with other genes in the same module later in life. 

Consequently, disruption of the integrity of these genes (through inherited mutations, de novo 

mutations, mis-expression, etc.) early in development is likely to disrupt the functions of 

those modules later in life. 

 

The functional ontologies of these networks are all pathways previously implicated ASD. 

Disrupted synaptogenesis has been one of the most replicated findings in ASD research 

(Bourgeron 2009), and autism is largely considered to be a disorder that results from a 

convergence of factors into synaptic dysfunction (Zoghbi 2003). Our finding of multiple 

ASD gene co-expression networks enriched for the function of synaptogenesis is in line with 

these previous studies. Additionally, our analysis shows these same transcriptional networks 

are related to the processes of GABA-ergic signaling and apoptosis, which have been 

independently associated with ASD through various approaches. GABA-ergic neurons are 

the main inhibitory cell of the brain, and much research has suggested that an imbalance in 

the ratio of inhibitory to excitatory neurons may underlie autism at the cellular circuit level 

(Rubenstein and Merzenich 2003). Furthermore, a number of clinical trials are currently 

ongoing to test GABA-ergic modulators for the treatment of ASD (Spooren et al. 2012). 
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Likewise, apoptosis—and more specifically the pruning of overabundant neural connections 

in early development—has recently been shown to be a critical process in the developing 

mammalian brain (Paolicelli et al. 2011), and a number of studies have suggested this process 

may be aberrant in ASD (Maezawa et al. 2011; Sheikh et al. 2010). A delicate balance 

between formation of needed synaptic connections and pruning of overabundant connectivity 

(and their excitatory/inhibitor ratio) is a main component of early experience-dependent brain 

development, and both human and animal studies have previously shown deficiencies in 

these processes in ASD (Courchesne and Pierce 2005). Our results suggest these processes 

may relate to each other and to ASD candidate genes through shared transcriptional networks.    

 

ASD candidate gene modules with distinct temporal co-expression profiles around birth, 

which are highly related to synaptogenesis, support the notion that the pathogenesis of ASD 

is strongly related to this process. Additionally, the demonstration that the same 

transcriptional networks are also related to GABA-ergic signaling and apoptosis—both also 

suggested to be aberrant in autism—suggests that these disparate pathways may relate to each 

other through underlying shared transcriptional networks, providing a potential mechanism 

for functional convergence of ASD candidate genes into common pathways underlying 

autism. 

 

By incorporating the ASD candidate genes into the context of the entire brain transcriptome, 

our results suggest that the disruption of synaptogenesis in autism may also relate to 

underlying basic cellular processes —alternative splicing, protein translation, and 

ubiquitination— which have previously been implicated in ASD (Glessner et al. 2009; 

Kelleher and Bear 2008; Piton et al. 2012; Smith and Sadee 2011).  Defects in protein 

translation in particular have recently been shown to be a prominent feature in multiple 

animal models of ASD (Gkogkas et al. 2013; Neves-Pereira et al. 2009; Santini et al. 2013).  

 

Two transcriptome-wide modules that were enriched for ASD candidate genes were both 

related to mitochondrial function. A large body of evidence has associated mitochondria 

dysfunction with rare syndromic forms of autism (Rossignol and Frye 2012) and recent 

evidence suggests that altered mitochondrial gene expression may contribute to non-

syndromic autism as well (Anitha et al. 2012a; Anitha et al. 2012b).  Furthermore, these 

modules were also related to Huntington’s and Alzheimer’s disease, both known to have 
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mitochondrial defects associated with their pathogenesis (Sheng and Cai 2012). While the 

ASD-only gene modules in the first part of this study did not implicate mitochondrial 

function, significant enrichment of ASD genes in two different transcriptome-wide networks 

related to mitochondria suggests that additional ASD genes related to mitochondria may 

remain to be discovered, and our hub gene analysis provides potential high confidence 

candidates. 

 

A number of other studies have also assessed gene co-expression networks as relate to 

autism, although none has used a set of ASD candidate genes as broad nor have they used a 

comprehensive gene expression profile of human neurodevelopment, yet the findings of these 

studies are largely in agreement with those presented here. For instance, a study of autism 

candidate genes was performed using a subset of the genes assessed in this Chapter (the 

AutDB list) and they were assessed for co-expression modules in adult mice. The authors 

demonstrated that the ASD candidate genes were more highly co-expressed than random sets 

of genes—a finding similar to ours—and that there were two ‘cliques’ of highly co-expressed 

ASD candidates that corresponded the GO functions of synaptic transmission and ion 

transport (Menashe et al. 2013). They also found these cliques to be enriched in the 

cerebellum in particular. A similar study, which assessed two adult human brains in the Allen 

Atlas dataset for gene co-expression modules enriched for ASD candidates described in the 

AutDB database, found enrichment of ASD candidates in a neuron-expressed module with 

GO functions related to synaptogenesis and neural plasticity, and a second module associated 

with endocytosis (Ben-David and Shifman, 2013). 

     

While the phenotype of autism may ultimately result from dysfunctional synaptogenesis, it is 

possible that such fundamental cellular processes as protein translation, ubiquitination, 

alternative splicing, and mitochondrial function may underlie the synaptic dysfunction. 

Furthermore, this may help explain the incredibly variable clinical spectrum of autism, and 

account for the increased prevalence of other complex medical problems in both the brain and 

other systems that ASD patients experience (Levy et al. 2009). Moreover, a recent meta-

analysis of de novo mutations in autism demonstrated enrichment for genes related to 

transcriptional regulation, and showed they have similar neurodevelopmental expression 

patterns to the Green and Blue modules of ASD candidates we identified (Ben-David and 

Shifman 2012). Whether and how defects in these basic cellular mechanisms result in altered 
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synaptogenesis, are a reaction to altered synaptogenesis, or are mutually- exclusive from 

synaptogenesis is unclear. However, our results suggest that a complex interplay between 

these processes and synaptogenesis are related to each other through overlapping co-

expression networks. 

 

A number of studies have assessed for changes in gene expression in post-mortem autistic 

brain directly (Lintas et al. 2012; Voineagu 2012). These studies have repeatedly shown that 

the autistic transcriptome is abnormally expressed compared to control brains across many 

different brain regions.  The genes that are mis-expressed in autistic brains have been 

consistently demonstrated to be involved in pathways related to the synapse (Chow et al. 

2012; Voineagu et al. 2011), immune response/apoptosis (Chow et al. 2012, Voineagu et al. 

2011; Garbett et al. 2008), neurotransmitter receptors (Purcell et al. 2011), RNA splicing 

(Chow et al. 2012; Voineagu et al. 2011; Ziats and Rennert 2013), and mitochondrial 

function (Anitha et al. 2012b; Smith et al. 2012). These findings in autistic brain complement 

our results by showing that the ASD co-expression modules we discovered in the normal 

developing brain are functioning in the same pathways that are consistently disrupted in 

autistic brains.  

 

Finally, the identified hub genes of ASD-enriched modules recapitulate the gene ontology 

analysis of these modules, strengthening the observation that basic cellular functions related 

to genome processing and mitochondrial function may represent a nexus in the genomic 

pathology of ASD.  In addition, a number of hub genes relate to myeloid cells and apoptosis. 

There is a growing body of evidence implicating cytokine signaling, microglia-mediated 

synaptic pruning, and other immune-related processes in ASD (Maezawa et al. 2011), and 

this finding suggests the autism candidate genes may indirectly relate to processes that 

interact with these pathways through the transcriptional machinery. Furthermore, this 

supports our finding that the Green module of autism candidate genes relates to apoptotic 

pathways. However, because comprehensive lists of microglia-specific marker genes are not 

available, we were unable to assess for enrichment of ASD candidate genes into this cell type 

in this study.  By highlighting individual genes that are most central in the identified 

molecular interaction networks, the hub gene analysis may provide potential additional high-

yield ASD candidates for their respective transcriptional networks. 
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2.2.6 Conclusion	

In summary, we have profiled the transcriptional co-expression networks of autism candidate 

genes throughout normal human brain development to identify modules of ASD candidate 

genes with biologically-relevant expression patterns. We have shown that these ASD 

modules are enriched for synaptogenesis, apoptosis, and GABA-ergic signaling, suggesting 

that pathways previously independently implicated in autism are related to each other through 

shared neurodevelopmental transcriptional networks. In addition, we expanded the analysis of 

ASD candidates to consider their relationship with the entire brain transcriptome. We 

demonstrated that ASD-enriched transcriptome-wide Molecular Interaction Modules are 

related to mitochondrial function, splicing, and protein turnover, which suggests further ASD 

candidates related to these functions may remain to be discovered. 

 

Our comprehensive analysis of the global co-expression relationships between ASD 

candidates demonstrates that the various pathways implicated in autism separately may relate 

to one another when considered in a broader functional genomics framework. Furthermore, 

our Molecular Interaction Module analysis represents a valuable strategy to identify and 

prioritize other potential ASD candidate genes. Moreover, this approach can be used to assess 

genes from other complex neurodevelopmental and psychiatric disorders like schizophrenia, 

to uncover potential overlapping transcriptional pathways in the developing human brain 

among other gene sets. 

 

 

 

 

 

-- 
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2.3 Global	Sex	Differences	in	Gene	Expression	

 

2.3.1 Aim	

Autism spectrum disorders affect significantly more males than females. Understanding sex 

differences in normal human brain development may provide insight into the mechanism(s) 

underlying this disparity; however, studies of sex differences in brain development at the 

genomic level are lacking. Here, I report an analysis of sex-specific gene expression from a 

recent large transcriptomic study of normal human brain development, to determine whether 

sex-biased genes relate to specific mechanistic processes. I discovered that male-biased genes 

are enriched for the processes of extracellular matrix formation/glycoproteins, immune 

response, chromatin, and cell cytoskeleton. I highlight that these pathways have been 

repeatedly implicated in autism and demonstrate that autism candidate genes are also 

enriched for these pathways. I propose that the overlap of these male-specific brain 

transcriptional modules with the same pathways in autism spectrum disorders may partially 

explain the increased incidence of autism in males. 

 

2.3.2 Introduction	

Among the varied genetic, cellular, and clinical phenotypes described in autism spectrum 

disorders, the predominance of males versus females affected has stood apart as one of the 

most replicated findings.  The most recent analysis indicates that at least four males are 

affected for every one female (Centers for Disease Control and Prevention 2012), and among 

the least severely affected children with ASD, the male-to-female ratio is even higher 

(Gilberg et al. 2006).  Multiple hypothesis have been put forth to explain this phenomena, 

including the notion that autistic children have brains that are more “masculine” (Baron-

Cohen 2002; Baron-Cohen et al. 2005; Baron-Cohen et al. 2011).   Implicit in such theories is 

the idea that by understanding the mechanism(s) contributing to the sex disparity of ASD, a 

better understanding of the underlying pathophysiology can be realized.  While sex 

differences in ASD have mainly been studied at the behavioral level, molecular evidence that 

the autistic brain is somehow biased toward a male pattern of development is lacking.   

Therefore, I was interested in assessing sex-biased patterns of normal human brain 

development at the genomic level, in an attempt to gain insight into processes that may 

underlie sex differences in ASD.  
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2.3.3 Methods	

I re-analyzed gene expression data from a recent whole-genome transcriptomics study of 

normal human brain development by Kang and colleagues (Kang et al. 2011).  This study 

performed genome-wide microarray analysis on unremarkable post-mortem human brain 

tissue from 16 brain regions spanning preconception to adulthood.  While the Kang et al. 

study identified genes with male and female-specific patterns of expression and highlight 

individual genes of interest, a global assessment of sex-specific gene expression differences 

was not undertaken.  Therefore, I assessed male versus female gene expression differences in 

aggregate to determine if common biological pathways were over-represented.  I used the 

gene ontology function DAVID 6.7 (Huang et al. 2009) to analyze all sex-biased genes in 

aggregate (i.e. male versus female differentially expressed genes from all brain regions and 

developmental time points; Supplementary Table S15).  Additionally, I repeated this 

analysis using two other gene ontology databases: Ingenuity Pathways Analysis and 

GeneGO.  Only functional ontologies with a Benjamini-Hochberg multiple testing correction 

p-value < 0.05 were considered significant. 

2.3.4 Results		

The genes with female-biased expression patterns were not significantly enriched for any 

particular functional categories.  However, genes with male-biased patterns of expression 

were enriched for the processes of: glycoproteins/extra-cellular matrix (ECM), immune 

response, nucleosome/chromatin, and cell cytoskeleton (Table 2.3.1).  Repeating the analysis 

using both Ingenuity Pathways Analysis and GeneGO yielded similar results 

(Supplementary Tables S16-S19).  

This finding is incredibly interesting in light of previous studies of autistic brain, as these 

pathways are consistently implicated in ASD.  For instance, gene-expression studies from 

post-mortem autism brain tissue have demonstrated over-expression of immune response 

pathways in ASD (Voineagu et al. 2011; Garbett et al. 2008).  Furthermore, both genetic and 

cellular studies have suggested synaptogenesis is impaired in autism through cell adhesion 

and cell-ECM binding pathways (Betancur et al. 2009).  Moreover, recent large sequencing 

studies repeatedly identified a chromatin-remodeling gene as one of only a few reaching 

genome-wide significance (Neale et al. 2012; O’Roak et al. 2012).  Interestingly, however, 

when I compared the list of genes with male biased expression to those aberrantly expressed 

in ASD brain (Voineagu et al. 2011) or otherwise implicated in ASD (Xu et al. 2012), no 
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genes overlapped.  This suggests that perhaps individual genes themselves do not relate 

normal sexually dimorphic brain development to sex differences in ASD incidence, but rather 

suites of genes that funnel into common sex-specific brain development pathways may 

become perturbed in ASD.   

To test this hypothesis, I also performed GO enrichment analysis on autism candidate genes, 

to determine if these male sex-biased pathways overlap with those implicated by ASD 

candidates.  I assessed in aggregate putative autism genes curated in the AutKB database 

(both ‘syndromic’ and ‘non-syndromic’ sets; Xu et al. 2012).  I found that all of the male sex-

biased pathways were also implicated by the ASD candidate genes (Supplementary Table 

S20).  Taken together, these results demonstrate that pathways—but not the individual 

genes—implicated in autism overlap with normal male-specific modules of the developing 

brain.  Therefore, I propose that shared transcriptional modules, which influence both normal 

male brain development and the pathogenesis of ASD, may partially explain the increased 

incidence of autism in males.   

Of unique interest is the finding of an immune system module in normal male-specific brain 

transcription. While peripheral immune responses have a significant gender dimorphism 

(Shames 2002), the role of immune activation in autism spectrum disorders and its relation to 

sex differences has remained unclear.  Based on a lack of enrichment for autism susceptibility 

genes in immune-related whole-genome co-expression networks that derived from genes 

differentially expressed in the autistic brain, Voineagu et al. concluded that immune findings 

in autistic brain are environmental rather than genetic (Voineagu et al. 2011).  However, my 

results suggest that a transcriptional program utilizing immune system components somehow 

may contribute to making a normal human brain more “male.”  To further explore my results 

in this context, I parsed the autism susceptibility genes into those that had been identified on 

the basis of microarray or proteomics studies (‘expression set’) versus those that had been 

identified via studies assessing inherited or de novo DNA mutations (‘inherited set’), such as 

genome-wide association, copy number variation, linkage, and other association analysis 

(Supplementary Table S21).  This showed that immune-related modules were only 

significant in the expression set, but not the inherited set, of ASD candidate genes 

(Supplementary Tables S22 and S23).  It is intriguing to speculate then, that while 

disruption of immune pathways in ASD may not be inherited, as Voineagu et al  propose and 

these results support, male brains may still be more susceptible to environmental insults 
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because of their reliance on these immune-related pathways for normal male-specific brain 

development. 

 

2.3.5 Conclusion	

Overall, these results suggest the hypothesis that sex-specific transcriptional modules may 

make males more susceptible to neurodevelopmental disorders that result from aberrations—

both inherited and environmental—in these pathways.  As these four particular pathways are 

repeatedly implicated in ASD and overlap with pathways implicated by ASD candidate 

genes, I propose that normal sex-differences in the functional genomics underlying human 

brain development may partly explain the significantly higher incidence of ASD in males.  

Notably, if these four modules are more prominent in normal male versus female brain 

development, than any disorder resulting from aberrations in these pathways would be 

expected to have increased incidence in males.  It will be important for future studies to 

further assess the role of male-specific gene expression programs as they relate to co-

expression, dysregulation, and interaction with autism-candidate genes in the developing 

brain, in addition to those of other neurodevelopmental and psychiatric disorders with sex-

biased incidence. 
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Table 2.3.1.  List of all significant gene ontology results from analysis of male genes. 

Annotation Cluster 1  Enrichment Score: 2.89 

Category  Term 
Raw 

PValue 
Benjamini 

Corrected Pvalue 

SP_PIR_KEYWORDS  glycoprotein  2.51E‐09  6.62E‐07 

SP_PIR_KEYWORDS  signal  6.00E‐08  7.92E‐06

UP_SEQ_FEATURE  signal peptide  7.24E‐08  3.60E‐05 

UP_SEQ_FEATURE  glycosylation site:N‐linked (GlcNAc...)  4.79E‐07  1.19E‐04 

SP_PIR_KEYWORDS  Secreted  1.20E‐06  1.06E‐04

SP_PIR_KEYWORDS  extracellular matrix  1.59E‐06  1.05E‐04 

SP_PIR_KEYWORDS  disulfide bond  2.37E‐06  1.25E‐04 

GOTERM_CC_FAT  GO:0005578: extracellular matrix  5.23E‐06  9.05E‐04 

UP_SEQ_FEATURE  disulfide bond 8.91E‐06  1.48E‐03

GOTERM_CC_FAT  GO:0031012: extracellular matrix  1.12E‐05  6.47E‐04 

GOTERM_CC_FAT  GO:0005583: fibrillar collagen  8.87E‐05  3.06E‐03 

GOTERM_BP_FAT  GO:0030199: collagen fibril organization  5.14E‐05  1.00E‐02 

SP_PIR_KEYWORDS  Skin  3.38E‐04  9.87E‐03

PIR_SUPERFAMILY  PIRSF002255: collagen alpha 1(I) chain  6.80E‐04  4.65E‐02 

GOTERM_CC_FAT  GO:0005576: extracellular region  7.36E‐04  1.80E‐02 

GOTERM_CC_FAT  GO:0044421: extracellular region part  8.24E‐04  1.57E‐02 

SP_PIR_KEYWORDS  Ehlers‐Danlos syndrome 1.82E‐03  3.63E‐02

GOTERM_CC_FAT  GO:0044420: extracellular matrix part  1.95E‐03  3.31E‐02 

GOTERM_CC_FAT  GO:0005581: collagen  2.33E‐03  3.60E‐02 

SP_PIR_KEYWORDS  collagen  2.38E‐03  4.40E‐02

Annotation Cluster 2  Enrichment Score: 2.79

Category  Term 
Raw 

PValue 
Benjamini 

Corrected Pvalue 

GOTERM_BP_FAT  GO:0009611: response to wounding  1.01E‐04  1.23E‐02 

GOTERM_BP_FAT  GO:0006952: defense response  1.46E‐03  6.90E‐02 

GOTERM_BP_FAT  GO:0006954: inflammatory response  2.93E‐02  4.70E‐01 

Annotation Cluster 3  Enrichment Score: 2.78 

Category  Term 
Raw 

PValue 
Benjamini 

Corrected Pvalue 

GOTERM_CC_FAT  GO:0000786: nucleosome 7.83E‐06  6.77E‐04

SP_PIR_KEYWORDS  nucleosome core  8.96E‐06  3.94E‐04 

INTERPRO  IPR007125: Histone core  1.08E‐05  3.11E‐03 

GOTERM_BP_FAT  GO:0006334: nucleosome assembly 3.01E‐05  2.91E‐02

GOTERM_BP_FAT  GO:0031497: chromatin assembly 3.68E‐05  1.20E‐02

GOTERM_CC_FAT  GO:0032993: protein‐DNA complex  4.71E‐05  2.04E‐03 

GOTERM_BP_FAT  GO:0065004: protein‐DNA complex assembly  4.74E‐05  1.16E‐02 

GOTERM_BP_FAT  GO:0034728: nucleosome organization 5.36E‐05  8.74E‐03

GOTERM_BP_FAT  GO:0006323: DNA packaging  1.92E‐04  1.86E‐02 

SP_PIR_KEYWORDS  chromosomal protein  2.16E‐04  7.09E‐03 

KEGG_PATHWAY  hsa05322: Systemic lupus erythematosus  2.63E‐04  1.28E‐02 

GOTERM_BP_FAT  GO:0006333: chromatin assembly  2.99E‐04  2.42E‐02

GOTERM_BP_FAT  GO:0043933: macromolecular complex   5.16E‐04  3.56E‐02 

SP_PIR_KEYWORDS  isopeptide bond  5.94E‐04  1.56E‐02 
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GOTERM_CC_FAT  GO:0000785: chromatin 8.09E‐04  1.74E‐02

Annotation Cluster 4  Enrichment Score: 2.55 

Category  Term 
Raw 

PValue 
Benjamini 

Corrected Pvalue 

GOTERM_BP_FAT  GO:0030199: collagen fibril organization  5.14E‐05  1.00E‐02 

GOTERM_BP_FAT  GO:0032964: collagen biosynthetic process  5.02E‐04  3.72E‐02 

Annotation Cluster 6  Enrichment Score: 2.25 

Category Term 
Raw 

PValue 
Benjamini 

Corrected Pvalue 

GOTERM_BP_FAT GO:0030036: actin cytoskeleton organization 3.45E‐05  1.68E‐02 

GOTERM_BP_FAT  GO:0030029: actin filament‐based process  5.69E‐05  7.96E‐03 

GOTERM_BP_FAT  GO:0007015: actin filament organization  1.64E‐04  1.77E‐02 

GOTERM_CC_FAT  GO:0015629: actin cytoskeleton  2.01E‐04  5.78E‐03 

SP_PIR_KEYWORDS  actin binding 1.66E‐03  3.60E‐02
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2.4 Identification	of	differentially	expressed	miRNAs	and	their	

Relation	to	ASD	

	

2.4.1 Aim	

Non-coding RNAs, and miRNAs in particular, are known to play a role in modulating gene 

expression, and have been circumstantially implicated in ASD.  However, a comprehensive 

assessment of miRNA expression in the developing human brain has not been performed, 

hampering attempts to both understand broad patterns of miRNA-mediated gene expression 

regulation during neurodevelopment, and to explore individual miRNAs of interest to 

neurodevelopmental disorders like ASD.  Therefore, in this chapter I describe my results of 

the most comprehensive assessment of broad miRNA expression patterns during human 

neurodevelopment to date, and their relation to neurodevelopmental disorders.  Finally, I 

assessed specific miRNAs of interest to syndromic causes of ASD to gain father insight into 

the potential role miRNAs may play in the pathogenesis of ASD functional genomics.	

	

2.4.2 Introduction	

Human neurodevelopment requires coordinated expression of thousands of genes, exquisitely 

regulated in both spatial and temporal dimensions, to achieve the proper specialization and 

inter-connectivity of brain regions.  Consequently, the dysregulation of complex gene 

networks in the developing brain is thought to underlie many neurodevelopmental and 

psychiatric disorders (Oldham et al. 2008).  In order to understand these pathologic gene 

expression changes, it is critical to achieve a comprehensive understanding of normal gene 

expression regulation throughout human neurodevelopment.   While broad surveys of gene 

expression across the developing human brain have recently been described (Kang et al. 

2011), the molecular regulators of this gene expression—most notably microRNAs—have 

only been assessed in a few brain regions or developmental periods (Shao et al. 2010; Hu et 

al. 2011; Somel et al. 2010; Somel et al. 2011).  As microRNAs are increasingly recognized 

as fundamental to brain developmental processes and neurologic diseases (Qureshi et al. 

2012), a comprehensive understanding of their expression dynamics throughout human brain 

development is important.  
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Therefore, I analyzed the differential expression of all microRNAs (miRNAs) detected by 

RNA-sequencing of 82 neurologically-normal post-mortem human brain tissue samples, 

which derived from 18 individual donor brains spanning 4 months through 19 years of age 

(see Methods).  Donor samples were grouped into four developmental time windows 

(infancy, early childhood, late childhood, and adolescence, Table 2.4.1).  Six distinct brain 

regions were assessed: four regions of the prefrontal cortex, the hippocampus, and the 

cerebellum.  I also assessed for differential miRNA expression between males and females in 

the prefrontal cortex.  Then, I identified putative gene targets of the differentially expressed 

miRNAs, determined if these gene targets were enriched for particular functional processes, 

and assessed if the identified targets were enriched for genes associated with common 

neurodevelopmental, psychiatric, and neurodegenerative diseases.  Finally, I explored in 

depth the potential miRNA-mediated regulation of three genes that are known to be causative 

of syndromes with ASD as a major component.  The results presented here further implicate 

miRNAs in the functional genomics of ASD and other neurodevelopmental disorders. 

 

Table 2.4.1.  Developmental periods and average number of donor tissue samples assessed. 
Developmental Period  Ages   Avg. Samples per Region 

Infancy  4 months – 1 year  3.5 

Early Childhood  2 – 4 years  3.0 

Late Childhood  8 – 13 years  2.8 

Adolescence  15 – 23 years  4.3 

	

2.4.3 Methods	

miRNA Data and Pre-processing 

Data was downloaded at: download.alleninstitute.org/ brainspan/MicroRNA.  The full dataset 

contained 1620 miRNAs measured across 215 brain samples.  Only brain samples originating 

from the orbitofrontal prefrontal cortex (OFC; Brodmann’s Area (BA) 11), dorsolateral 

prefrontal cortex (DFC; BA 9, 46), medial prefrontal cortex (MFC; BA 32, 33, 34), 

ventrolateral prefrontal cortex (VFC; BA 44,45), hippocampus (HIP), or cerebellum (CER) 

were retained.  For analysis between sexes, brain regions were aggregated from the prefrontal 

cortex samples.  Next, miRNAs with read counts likely to be noise rather than true reads were 

removed, in order to increase subsequent statistical power; this has been demonstrated not to 

affect the dispersion model used to calculate differential expression (Anders and Huber 

2010).  Importantly, I did this prior to any analysis of the data.   To do so, the sum total of 
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read counts for each miRNA across all 82 samples was calculated.  miRNAs with zero total 

reads were immediately discarded (58 miRNAs).  Next, miRNAs were ordered from most to 

least reads (range 1 to 41,540,463) and the dispersion of read counts was plotted for 

visualization.  Then, any miRNA with a total read count less than 60 was discarded, resulting 

in 902 retained miRNAs (Supplementary Table S24).   

 

miRNA Differential Expression Analysis 

Differentially expressed miRNAs were discovered using the edgeR package (Robinson et al. 

2010) run in the R programming environment.  The edgeR user guide was followed as 

detailed in the “classic analysis” section.  This method was chosen to evaluate differential 

expression because its performance is intermediately conservative among various RNA-seq 

analysis packages (Robles et al. 2012).  miRNAs were considered to be significantly 

differentially expressed between groups only if the false discovery rate (FDR) p-value was < 

0.05 and the absolute log2 of Fold Change (FC) was > 1.5.  Differentially expressed miRNAs 

were identified across three dimensions: spatial, temporal, and by sex.  Spatial miRNAs were 

differentially expressed between two anatomic brain regions within one developmental time 

period.  Temporal miRNAs were differentially expressed over developmental time within the 

one anatomic brain region.  Sex-biased miRNAs were differentially expressed between male 

and female prefrontal cortex samples within one time period (data was combined from all 

four prefrontal cortex regions). 

 

Downstream analysis of miRNA targets 

miRNAs that were determined to be differentially expressed temporally or by sex were 

further analyzed for putative target genes under their control.  To do so, I used the target 

prediction algorithms of TargetScanHuman 6.2 (Lewis et al. 2005) and miRDB (Wang 2008).  

I considered as significant only those targets that were predicted by both algorithms.  Gene 

ontology (GO) enrichment analysis of the target genes was performed using DAVID 

Bioinformatics Resources 6.7 Functional Annotation Tool (Huang et al. 2009).  Gene 

ontologies were considered significant only if their Benjamini-Hochberg multiple testing 

corrected p-value was < 0.05. GO enrichment analysis was performed on lists of aggregated 

targets (all time periods) that were brain region specific. 
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Test for enrichment of disease-associated genes 

To determine if the target genes of differentially expressed miRNAs may relate to 

neurological diseases, I assessed for their enrichment into disease-related gene sets.  Disease 

related gene sets were downloaded from the Genotator database (Wall et al. 2010).  

Enrichment was tested using the Hypergeometric probability distribution function in Excel.  

The population universe (i.e. all protein-coding genes in the human genome) was set to 

20,687 (Dunham et al. 2012).  A success in the Hypergeometric function test was a gene that 

was both a predicted miRNA target and previously associated with a disorder.  P-values were 

corrected for multiple testing by applying the conservative Bonferorri method.  Enrichment 

was only considered significant if the Bonferorri-corrected p-value was < 0.01. 

	

2.4.4 Results	

In total, I discovered 75 miRNAs differentially expressed across developmental time within 

brain regions (absolute log2 fold change > 1.5 and FDR < 0.05, Supplementary Table S25).  

Similar to previously described changes in gene expression, the greatest differential 

expression of miRNAs occurred during the transition from infancy to early childhood 

(Figure 2.4.1).  The dorsolateral prefrontal cortex exhibited the greatest number of 

differentially expressed miRNAs (35 miRNAs) and the cerebellum a similar amount (22 

miRNAs); the hippocampus and other regions of the prefrontal cortex each displayed less 

than five differentially expressed miRNAs.  In contrast, differential expression of miRNAs 

between brain regions increased over developmental time (Figure 2.4.2, Supplementary 

Table S26).  This finding is opposite previously described patterns of mRNA expression, 

which has been shown to become more globally similar between brain regions over 

development (Kang et al. 2011).  

 
Figure 2.4.1.  
Number of 
differentially 
expressed 
miRNAs 
within each 
region over 
development. 
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Figure 2.4.2.  Number of differentially expressed miRNAs between brain regions over 
development.  Light blue represents the prefrontal cortex, green represents the hippocampus, and the 
cerebellum is shaded in brown. 
 

As many neurodevelopmental disorders display a significant sex-bias in their prevalence 

(Jazin et al. 2010; Abel et al. 2010; Werling and Geschwind 2013), I also assessed for 

differential miRNA expression by sex in the prefrontal cortex.  I discovered 40 miRNAs with 

significant sex-biased expression differences between the prefrontal cortex of males and 

females (Table 2.4.2, Supplementary Table S27).  Strikingly, 93% were more highly 

expressed in females, again a trend opposite to that of sex-biased gene expression (Kang et al. 

2011).  Furthermore, the majority of sex-biased miRNA expression occurred in adolescence 

(65%), suggesting that miRNA-targeted gene expression differences in the prefrontal cortex 

of males versus females becomes most pronounced around puberty. 

 
Table 2.4.2. Differentially expressed miRNAs between male and female prefrontal cortex over 
development. 

  Up‐regulated in Males Up‐regulated in Females  Total 

Infancy 1 1 2 
Early Childhood  1 9 10 
Late Childhood  0  2  2 
Adolescence  1  25  26 

Total  3  37  40 

 

To explore the potential biologic and pathogenic roles of the differentially expressed 

miRNAs, I identified putative targets of the temporally and sex-biased differentially 

expressed miRNAs.  I then assessed for enrichment of gene ontology categories in all lists of 

putative target genes.  Overall, miRNA target genes were highly related to the process of 

transcription regulation in almost all lists (Supplementary Tables S28-S32).  This finding is 

in line with the well-known function of miRNAs as master regulators of gene expression 

networks (Chen et al. 2007; Hobert 2008), and underscores the importance of identifying 

these key hubs of brain transcriptomes.  Additionally, putative gene target lists were enriched 
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for biological processes relating to nervous system development, synaptogenesis, and other 

basic intracellular processes.   

 

Of particular note was the functional enrichment of miRNA targets that were differentially 

expressed between male and female prefrontal cortex.  In addition to the processes implicated 

in all lists, the sex-biased targets were further enriched for Wnt signaling and transforming 

growth factor-beta (TGF-β) pathways.  This result suggests these pathways may partially 

underlie normal behavioral differences in executive functioning between males and females.  

Furthermore, these two pathways are implicated in neurological disorders with sex-biased 

differences in prevalence (Freese et al. 2010; Krieglstein et al. 2011), and therefore may 

relate this sex disparity to underlying miRNA expression differences during normal brain 

development.  

 

Next, I assessed for enrichment of miRNA targets among genes previously implicated in 

various neurological and psychiatric disorders that have significant genetic etiology (see 

Methods).  I tested for enrichment of genes involved in epilepsy, three neurodevelopmental 

disorders (autism, schizophrenia, and bipolar disease), three neurodegenerative disorders 

(Alzheimer’s, Huntington’s, and Parkinson’s diseases), and three psychiatric diseases (major 

depressive disorder, post-traumatic stress disorder, and obsessive-compulsive disorder).  The 

enrichment of all gene lists significant for various disorders is shown in Figures 2.4.3 and 

2.4.4.  The three neurodevelopmental disorders (ASD, Schizophrenia, and Bipolar) showed a 

nearly identical enrichment pattern, among many categories.  In contrast, there was almost no 

enrichment for neurodegenerative disease lists.  Similarly, the neuropsychiatric disorders 

showed no enrichment for miRNA target genes, except for major depressive disorder, where 

the pattern was similar to the neurodevelopmental disorders. 
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Figure 2.4.3.  Enrichment of differentially expressed miRNA target genes by brain region for 
disease associated genes.  Dashed line indicates significance (corrected p-value < 0.01). 
 

 

 
Figure 2.4.4.  Enrichment of differentially expressed miRNA target genes among male versus 
female sets for disease associated genes.  Dashed line indicates significance (corrected p-value < 
0.01). Note that there was little to no enrichment of Infancy and Late Childhood time periods.  
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Finally, I explored the temporal-spatial correlation between three high-confidence autism 

candidate genes (PTEN, BDNF, and MECP2) and their experimentally-known regulator 

miRNAs (Mellios and Sur 2012).  To do so, the Pearson correlation was calculated between 

each ASD candidate gene and its cognate miRNA by brain region across all of developmental 

time (Figure 2.4.5a-c). This analysis showed that miRNA-mediated gene suppression 

appears to be region specific, and that this region specificity is unique to each gene-miRNA 

pair, as significant anti-correlations were only found in certain brain regions and these 

regional patterns differed between the three genes.  For instance, both PTEN and BDNF 

appear to be significantly down-regulated by their cognate miRNAs in the dorsolateral and 

ventrolateral prefrontal cortices, but not in other brain regions; whereas MECP2 appears to be 

regulated by its miRNA mainly in the cerebellum.  Furthermore, different mature isoforms of 

the same precursor miRNA sometimes display opposite correlations (e.g. miR212-3-p vs. 

miR21205-p in panel C, DFC), providing strong evidence for highly-specific miRNA-

mediate gene repression. 

 

 

Figure 2.4.5. Temporal, spatial, and isoform-specific miRNA regulation of three autism 
candidate genes. a-c. Pearson correlation analysis between three autism candidate genes and their 
known miRNAs by brain region across all of developmental time. d-f.  Temporal profile of significant 
miRNA-gene expression pairs. 

 

Assessing the temporal profile of significant miRNA-gene expression pairs shows that 

miRNA-mediated gene suppression also appears to be time-period specific (Figure 2.4.5d-f).  

For instance, miR-21-3p appears to modulate expression of PTEN throughout development in 

the DFC (d), whereas miR-212-3p appears to only modulate MECP2 expression in the 
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cerebellum after infancy (f).  Taken together, these results further illuminate the critical 

regulatory roles that miRNAs play in modulating expression of ASD candidate genes. 

 

2.4.5 Discussion	

In summary, the work described in this chapter represents the most comprehensive 

assessment to date of spatio-temporal miRNA expression in the developing human brain.  I 

identified miRNAs differentially expressed both within and between brain regions, and 

demonstrated that the greatest shifts in miRNA expression occur shortly after birth.  

However, unlike global gene expression patterns, miRNAs become more differentially 

expressed between brain regions over time, potentially driving regional specialization as the 

brain matures.  Target genes under putative control by region-specific differentially expressed 

miRNAs are most related to the processes of transcription regulation and neurodevelopment, 

highlighting the central function of these miRNAs to brain transcription networks.   

Additionally, sex-biased expression of miRNAs increases in the prefrontal cortex around 

puberty, and the pathways related to sex-biased target genes are further enriched for Wnt 

signaling and TGF-β pathways.  Common neurodevelopmental disorders with complex 

genetic etiologies are highly related to genes targeted by these miRNAs, but this was not 

found for genes related to neurodegenerative or other neuropsychiatric diseases with adult 

onset.  Examining the specific relationship between three high confidence ASD candidate 

genes and their experimentally-known miRNAs showed that miRNA-mediated gene 

silencing appears to be highly temporally and spatially specific, and even isoform-specific 

miRNA regulation appears during neurodevelopment.  These results highlight the importance 

of miRNAs in understanding the functional genomics of ASD, and suggest that future work 

should more closely examine the role of miRNAs in ASD molecular pathogenesis.   

This study has a number of important limitations.  First, the total sample size is 18 donor 

brains, potentially limiting the statistical power.  Unfortunately, this problem is prevalent 

throughout human neurosciences research owing to the lack of large repositories of human 

post mortem brain tissue (Button et al. 2013).  Therefore, it will be important for future 

studies to replicate and aggregate the data presented here with larger datasets when they 

become available.  Additionally, while computational prediction of miRNA targets based on 

sequence homology is an effective discovery tool, individual miRNAs of interest will require 

in vitro or in vivo experimental validation of their targets.  



	

 

110 
 

 

2.4.6 Conclusion	

In conclusion, while thousands of genes are differentially expressed throughout human 

neurodevelopment, I have identified a set of miRNAs with differential spatio-temporal and 

sex-biased expression patterns that may regulate these expression changes.  A number of the 

identified miRNAs are of note for their known role in neurodevelopmental processes.   

For instance, miR-9, which I found to be increased in expression nearly 5-fold in the 

hippocampus of early childhood samples as compared to infants (FDR = 0.0039), is known to 

be a critical regulator of neural progenitor migration and proliferation (Delaloy et al. 2011). 

Intriguingly, I did not observe increased miR-9 expression in any other brain region during 

post-natal development, which is to be expected, as the hippocampus was the only region 

assessed that contains neural stem cells after embryonic development (Song et al. 2002). 

Similarly intriguing was the finding of significant differential expression of miR-103 between 

the prefrontal cortex of males and females in adolescence (fold change 1.73, FDR = 0.0041). 

MiR-103 has been demonstrated to regulate expression of the insulin like growth factor (IGF) 

family of proteins (Liao and Lonnerdal 2010), of which IGF-2 is known to exhibit genomic 

imprinting—the phenomena of expressing an allele from either the paternal or maternal DNA 

but not both—and has unique, brain-region specific imprinted expression patterns (Pham 

1999). This is particularly interesting given that microRNAs are one of the main mechanisms 

by which genomic imprinting is maintained (Delaval and Feil 2004), and imprinting 

mechanisms could partially account for the significant sex bias seen in neurodevelopmental 

disorders like ASD (Skuse 2000). These examples further support the notion that the 

identified miRNAs are likely critical regulators of neurodevelopmental transcriptional 

processes. 

The targets of these differentially expressed miRNAs are highly enriched for genes related to 

transcriptional regulation, neurodevelopmental processes, and common neurodevelopmental 

disorders.  Furthermore, inter-regional expression differences of miRNAs appear to increase 

over development.  These results suggest the identified miRNAs are likely hubs of critical 

brain developmental and pathologic transcriptional processes.   

 

 
--	
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Chapter	3.	Functional	Genomics	Studies	of	
Autistic	Post‐mortem	Brain	Tissue	
 

In Chapter 2, I studied autism candidate genes during normal human neurodevelopment in an 

attempt to discover potential shared molecular and cellular mechanisms through which the 

hundreds of genes implicated in ASD may ultimately converge upon to result in the common 

clinical phenotype.  My results repeatedly implicated a number of pathways that had 

previously been independently linked to ASD: immune and cytokine signaling, glia, 

synaptogenesis, transcription/translation, mitochondrial function, and non-coding RNAs. 

In this chapter, I performed three studies directly assessing autistic post-mortem brain tissue 

for defects in these processes, in order to corroborate the mechanisms identified in Chapter 2 

that were inferred based on ASD candidate gene function during normal human 

neurodevelopment.  First, I assessed for aberrant expression of a class of ncRNAs not 

previously examined in autism—long non-coding RNAs.  My results demonstrated that 

lncRNAs that are differentially expressed in autistic brain are preferentially located near 

genes involved in neurodevelopment, and that broad patterns of transcriptional dysregulation 

in autistic brain become apparent when assessing mRNAs and lncRNAs in parallel.  Next, I 

performed a direct assessment of glial marker genes in autistic brain tissue, demonstrating 

that both microglia and astrocyte specific cell surface markers are altered in autistic brain in a 

manner similar to previously published studies that assessed glial cell numbers in ASD via 

other techniques.  Finally, I performed the first assessment to date of the mitochondrial 

transcriptome in ASD brain tissue, and show that altered mitochondrial genes are related to 

apoptosis in ASD prefrontal cortex, in addition to oxidative metabolism—potentially linking 

previously separate lines of evidence implicating glia/apoptosis and metabolism in ASD. 

The work in this chapter provides direct evidence in ASD brain tissue that the processes I 

discovered ASD candidate genes are most highly related to in normal neurodevelopment 

(Chapter 2) are in fact abnormal in autistic brain.  This both underscores the importance of 

the approach taken in Chapter 2 to discovering ASD pathways, and provides further evidence 

for these processes being involved in the pathogenesis of ASD. 
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Post‐Mortem	Autistic	Brain	Tissue	Dataset	

	
The following three studies discussed in this Chapter (3.1 – 3.3) were conducted on human 

post-mortem brain tissue from individuals with autism and matched controls. Frozen brain 

tissue was obtained from the NICHD Brain and Tissue Bank for Developmental Disorders at 

the University of Maryland, Baltimore, MD.  The collection protocol at the University of 

Maryland, Baltimore was reviewed and approved by the Institutional Review Board of that 

institute. This source obtained consent to use brain tissue for research from each patient or 

their guardian prior to his/her death, and their protocol was approved by an appropriate 

Institutional Review Board.  No patient-specific identifiable information was obtained.     

 

Because multiple brain regions have been implicated in ASD, we requested tissue from two 

separate brain areas that have been consistently demonstrated as abnormal in autism—the 

prefrontal cortex and the cerebellum. We further requested that if possible, the prefrontal 

cortex and cerebellum samples should originate from the same donor brain, in order to be 

able to make intra-individual comparisons. We obtained post-mortem prefrontal cortex (PFC) 

brain tissue from five individuals with autism and from four healthy controls (Table 3.0.1). 

We obtained post-mortem cerebellum brain tissue from four individuals with autism and four 

healthy controls. While many of PFC/Cerebellum samples were obtained from the same 

donor brain, this was not available for all donors. The tissue samples in which the matching 

PFC or Cerebellar sample are included in this dataset are marked with an asterix in Table 

3.0.1.  

 

All cases were Caucasian males, and case controls were matched by age as closely as 

possible. The average post-mortem interval (PMI) was not significantly different between 

autistic and control tissue samples (Table 3.0.1; ASD = 17.9hrs, ctrl = 13.2hrs, p-value = 

0.16). This remained true after sub-stratifying by brain region (ASD PFC = 19.4hrs, ctrl PFC 

= 13.2hrs, p-value = 0.28; and ASD cerebellum = 16.0hrs, ctrl cerebellum = 13.25hrs, p-value 

= 0.48). RNA isolated from post-mortem brain tissue was generally of high quality, and the 

RNA Integrity Number (RIN) was not significantly different between autism and controls 

(ASD = 5.84, ctrl = 6.18, p-value = 0.67). The RIN was also not significantly different after 

sub-stratifying by brain region (ASD PFC = 4.92, ctrl PFC = 5.80, p-value = 0.13; and ASD 

cerebellum = 7.00, Ctrl cerebellum = 6.65, p-value = 0.85). 
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Table 3.0.1. Clinical characteristics and RNA quality of autistic and control samples. 

Sample# UMB # Diagnosis Brain Area 
Age 
(yrs) 

PMI 
(hrs) 

RNA Quality 

A260/280 A260/230 RIN 

1 5308* Autism PFC 4.5 21 2.051 2.266 4.9 

2 1349 Autism PFC 5.6 39 2.044 2.232 4.3 

3 5144 Autism PFC 7.2 3 2.058 2.271 5.4 

4 5302* Autism PFC 16.3 20 2.031 2.238 4 

5 4999* Autism PFC 20.8 14 2.039 2.232 6 

6 4670* Control PFC 4.6 17 2.048 2.276 5.2 

7 1185 Control PFC 4.7 17 2.026 2.243 4.7 

8 4898 Control PFC 7.7 12 2.056 2.183 5.9 

9 4848* Control PFC 16.7 15 2.044 2.185 6.7 

10 4727* Control PFC 20.5 5 2.066 2.209 6.5 

11 5308* Autism  Cerebellum 4.5 21 2.087 1.781 7.3 

12 4899 Autism Cerebellum 14.3 9 2.077 2.314 9.3 

13 5302* Autism Cerebellum 16.3 20 2.083 1.646 2.2 

14 4999* Autism Cerebellum 20.8 14 2.081 2.114 9.2 

15 4670* Control Cerebellum 4.6 17 2.088 2.161 6.1 

16 4722 Control Cerebellum 14.5 16 2.073 2.828 6.5 

17 4848* Control Cerebellum 16.7 15 2.087 2.327 6.8 

18 4727* Control Cerebellum 20.5 5 2.067 2.307 7.2 

PFC: Prefrontal cortex; UMB: University of Maryland Brain Bank sample number; PMI: Post-
mortem interval; RIN = RNA integrity number. *indicates both prefrontal cortex and cerebellum 
samples were present from the same donor brain. 
 

A few brain samples were of lower RNA integrity than the others (for example, sample 4 and 

13). To control for this I first ensured that the group differences in RNA quality were not 

significantly different (discussed above), as differential expression analysis was subsequently 

performed at the group level.  Secondly, in the individual analyses that used these two 

samples (Chapter 3.2 and 3.3), I assessed for differentially expressed genes separately after 

removing these two samples from the analysis, and found there to not be any significant 

change in the results.  Therefore, these samples were retained for the final analysis. As 
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compared to other reports studying autistic post-mortem brain tissue, the average RNA 

integrity values for these samples is good (Kang et al. 2011; Chow et al. 2012). 

 

As is noted in the respective methods sections below, in Chapter 3.1 only a subset of this 

entire dataset was analyzed. In Chapters 3.2 and 3.3, all available post-mortem tissue was 

analyzed. 

 

 

 

 

-- 
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3.1 Long	non‐coding	RNAs	are	Dysregulated	in	Autistic	

Prefrontal	Cortex	and	Cerebellum	

	

3.1.1 Aim	

The autism spectrum disorders have a significant hereditary component, but the implicated 

genetic loci are heterogeneous and complex. Consequently, there is a gap in understanding 

how diverse genomic aberrations all result in one clinical ASD phenotype.  Gene expression 

studies from autistic brain tissue have demonstrated aberrantly expressed protein-coding 

genes may converge onto common molecular pathways, potentially reconciling the strong 

heritability and shared clinical phenotypes with the genomic heterogeneity of the disorder.  

However, the regulation of gene expression is extremely complex and governed by many 

mechanisms, including non-coding RNAs. Yet no study in ASD brain tissue has assessed for 

changes in regulatory long non-coding RNAs, which represent a large proportion of the 

human transcriptome, and actively modulate mRNA expression. To assess if aberrant 

expression of lncRNAs may play a role in the molecular pathogenesis of ASD, I profiled over 

33,000 annotated lncRNAs and 30,000 mRNA transcripts from post-mortem brain tissue of 

autistic and control prefrontal cortex and cerebellum by microarray. I detected over 200 

differentially expressed lncRNAs in ASD, which were enriched for genomic regions 

containing genes related to neurodevelopment and psychiatric disease. Additionally, 

comparison of differences in expression of mRNAs between prefrontal cortex and cerebellum 

within individual donors showed ASD brains had more transcriptional homogeneity.  

Moreover, this was also true of the lncRNA transcriptome.  These results suggest that 

investigation of lncRNA expression in autistic brain may further elucidate the molecular 

pathogenesis of this disorder.  

	

3.1.2 Introduction	

While transcriptome studies in autistic brain samples have demonstrated that aberrant 

expression of mRNA transcripts may represent a convergence of the heterogeneous genomics 

of ASD, none of these studies has concurrently assessed the regulatory RNAs that may 

underlie aberrant mRNA expression.  Three studies in lymphoblast cell lines from autistic 

patients have shown that miRNAs are abnormal in autism (Talebizadeh et al. 2008; 
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Sarachana et al. 2010; Seno et al. 2011), and Abu-Elneel et al demonstrated differential 

expression of miRNAs in autistic cerebellum (Abu-Elneel et al. 2008).  However, a novel 

class of regulatory RNAs, long non-coding RNAs, has recently been implicated in a number 

of fundamental gene regulatory events, but their role in autism molecular pathogenesis 

remains unknown.   

 

Therefore, the purpose of this study was to determine if dysregulated expression of lncRNAs 

might play a role in the molecular pathogenesis of ASD.  To do so, I profiled over 33,000 

annotated lncRNAs in ASD patient post-mortem brain tissue (prefrontal cortex and 

cerebellum) using microarrays.  In parallel, I also assessed for transcriptional differences in 

all known protein-coding mRNAs.  I identified over 200 differentially expressed lncRNAs, 

which were oriented in or around protein-coding loci strongly enriched for brain development 

genes.  Moreover, I discovered that the previously reported homogeneity of mRNA 

transcription within autistic brains is also observed within the lncRNA component of the 

transcriptome. 

	

3.1.3 Methods	

Brain Tissue 

The human post-mortem brain tissue used in this study is a subset of all the samples 

described in Table 3.0.1 above. As this was a pilot investigation of lncRNAs in autism, only 

two autistic prefrontal cortex samples and two autistic cerebellar samples were assessed (and 

compared to two matched control prefrontal cortex and two matched control cerebellar 

samples). These four donors’ brains are detailed below in Table 3.1.1. Of note, from each of 

the four donors both prefrontal cortex and cerebellum samples were obtained in this analysis. 

 

RNA Isolation and Quality Control 

Total RNA was extracted by homogenizing samples in TRIzol® Reagent (Invitrogen) 

according to the manufacturer’s protocol.  RNA quantity was measured by NanoDrop ND-

1000.  Agilent Bioanalyzer 2100 was used to assess RNA integrity for each sample (Table 

3.1.1). 

 

 



	

 

117 
 

Table 3.1.1.  Characteristics of patients from whom brain samples were obtained.   

UMB#  Sex  Race  Diagnosis 
Age 

(yrs) 

Age 

(days) 

PMI 

(hrs)
RIN 

Cause of 

death 

5308  Male  Caucasian  Autism (ADI‐R)  4  182  21  8.9‐9.1 
Skull 

fracture 

5302  Male  Caucasian  Autism (Clinical)  16  119  20  8.8‐8.9  DKA 

4670  Male  Caucasian  Control  4  237  17  8.9‐9.0 
Commotio 

Cordis 

4848  Male  Caucasian  Control  16  271  15  9.0‐9.0  Drowning 

RIN = RNA integrity number calculated from isolated RNA used for analysis; ADI-R = Autism 
Diagnostic Interview-Revised; PMI = Post-mortem interval; DKA = diabetic ketoacidosis 
 

lncRNA Microarray 

ArrayStar, Inc (Rockville, MD) Human lncRNA Microarray V2.0 was used and run by the 

service provider.  The array contained 33,045 lncRNAs and 30,215 protein-coding 

transcripts.  The lncRNAs were manually collected from the most authoritative databases 

such as RefSeq, UCSC knowngenes, Ensembl, and manually curated lncRNA literature 

sources (Table 3.1.2).  The mRNAs were obtained from RefSeq (March 2011).  Each 

transcript was represented by a specific exon or splice junction probe.  Positive probes for 

housekeeping genes and negative control probes (i.e. scramble sequences) were also printed 

onto the array for hybridization quality control. 

 
Table 3.1.2.  Source of lncRNAs contained on ArrayStar lncRNA microarray.  

Database   # of lncRNAs   Literature Source   # of lncRNAs  

RefSeq (March 2011)   2,608   Khalil et al “lincRNAs”   3,289  

UCSC Known Genes 4   10,380   Calin et al  “T‐UC RNAs”   962  

Ensembl 37.59   23,383   Rinn et al Hox cluster ncRNA   407  

H‐invDB 7.0   2,568 Orom et alenhancer lncRNAs 3,019

RNAdb 2.0   1,492      

NRED (March 2011)   1,112      
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Microarray Labeling, Hybridization, and Scanning 

Sample labeling and array hybridization were performed according to the Agilent One-Color 

Microarray-Based Gene Expression Analysis protocol (Agilent Technology) with minor 

modifications.  Briefly, mRNA was purified from 1 μg total RNA after removal of rRNA 

(mRNA-ONLY™ Eukaryotic mRNA Isolation Kit, Epicentre).  Then, each sample was 

amplified and transcribed into fluorescent cRNA along the entire length of the transcripts 

without 3’ bias utilizing a random priming method.  The labeled cRNAs were purified by 

RNAeasy Mini Kit (Qiagen).  The concentration and specific activity of the labeled cRNAs 

(pmol Cy3/μg cRNA) was measured by NanoDrop ND-1000.  1μg of each labeled cRNA was  

fragmented by adding 11μl of 10x Blocking Agent and 2.2μl of 25x Fragmentation Buffer, 

heating the mixture at 60°C for 30 min, then adding 55μl of 2x GE Hybridization buffer to 

dilute the labeled cRNA.  100μl of hybridization solution was dispensed into the gasket slide 

and assembled to the lncRNA expression microarray slide.  The slides were incubated for 17 

hours at 65°C in an Agilent Hybridization Oven.  The hybridized arrays were washed, fixed, 

and scanned using the Agilent DNA Microarray Scanner (G2505B). 

 

Microarray Data Processing 

Agilent Feature Extraction software (version 10.5.1.1) was used to analyze acquired array 

images.  Quantile normalization and subsequent data processing were performed using the 

GeneSpring GX v11.5.1 software package (Agilent Technologies).  After quantile 

normalization of the raw data, lncRNAs and mRNAs that at least 4 out of 8 samples had 

flagged as “Present” or “Marginal” were chosen for further data analysis.  Differentially 

expressed lncRNAs and mRNAs were identified through fold change (FC) filtering.  

Differentially expressed lncRNAs and mRNAs with statistical significance (as determined by 

two-tailed student’s t-test < 0.05) were identified through Volcano Plot filtering.  All 

microarray data was deposited into Gene Expression Omnibus (GEO) at the National Center 

for Biotechnology Information (NCBI), NIH under Series Number GSE36315. 

 

qRT-PCR 

Five randomly selected lncRNAs from among those showing the greatest fold change were 

chosen for confirmation via quantitative real time reverse transcriptase PCR (qRT-PCR).  

The selected lncRNAs and the primers used for qRT-PCR are described in Supplementary 
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Table S33.  Five micrograms of total RNA was used for the synthesis of first strand cDNA 

using the SuperScript III First Strand cDNA Synthesis Kit (Invitrogen).  qRT-PCR analysis 

was performed using ABI prism 7900 (Applied Biosystems) with SYBR Green expression 

assay system (Applied Biosystems).  Normalized, relative gene expression was calculated 

using standard ∆∆Ct methods using Applied Biosystem RQ Manager Software (v1.2).  Each 

qPCR reaction was run three separate times, with technical triplicates in each reaction.   

 

In silico Mapping Analysis 

To assess for the potential cis-regulatory effects of the identified lncRNAs, I utilized the 

Genomic Regions Enrichment of Annotations Tool (Mclean et al. 2010).  This program takes 

genomic coordinates as inputs and outputs nearby genes and their ontologies.  Default 

settings were used for analysis on all probes detected as differentially expressed between 

ASD and Ctrl (both prefrontal cortex and cerebellum), with curated regulatory domains 

included. 

 

Gene ontology enrichment analysis 

To assess for functional categories that the genes identified as significantly differentially 

expressed in ASD implicated, I used the Database for Annotation, Visualization and 

Integrated Discovery (DAVID) v6.7, accessed at: http://david.abcc.ncifcrf.gov/.  GO 

categories were reported as significant only if the p-value after multiple testing corrections 

was <0.05. 

	

3.1.4 Results	

In total, 222 lncRNAs were differentially expressed between ASD and control samples (fold 

change > 2, p<0.05).  Eighty-two of these were unique to prefrontal cortex, and 143 were 

unique to cerebellum (Fig. 3.1.1).  The majority of differentially expressed lncRNAs in ASD 

were from intergenic regions (~60%), antisense to protein-coding loci (~15%) or within 

introns of protein coding genes (~10%), with the others representing overlapping transcripts 

from exons or introns in both sense and antisense directions.  This distribution was not 

significantly different from the distribution of all lncRNAs detected by the array (Fig. 3.1.2).  

I confirmed a select number of the most highly differentially expressed lncRNAs between 

autism and controls by qRT-PCR analysis (Fig. 3.1.3). 
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Figure 3.1.1.  
Summary of 
differentially 
expressed 
lncRNAs and 
mRNAs. *3 
shared lncRNAs, 
^99 shared 
lncRNAs. 

 

 

 

 

 

 

 

 

 

Figure 3.1.2.  Distribution of differentially expressed lncRNAs by genomic origin.  All 
lncRNAs that were detected by the array in our samples were mapped to their genomic 
origin, and this distribution was compared to the 222 lncRNAs that were differentially 
expressed in ASD 
brains (shown 
below), which 
was not 
significantly 
different (chi-
square p-value = 
0.33). 
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Figure 3.1.3.  qRT- PCR 
Analysis of select 
lncRNAs.  Five lncRNAs 
that were detected as 
differentially expressed 
by microarray were 
confirmed by qRT-PCR 
(with the same directional 
change). 
 
 
 
 
 
 
 

 
Almost 50% of differentially expressed lncRNAs map to within 50 kilobases (kb) of an 

annotated gene, and greater than 90% map within 500kb of a known gene (Fig. 3.1.4).  

Mapping all differentially expressed lncRNAs to the nearest genes identified 381 protein-

coding loci under putative cis-regulatory control by these lncRNAs.  The ontologies of those 

loci implicated two functions: cerebral cortex cell migration and targets of microRNAs mir-

103/107 (Table 3.1.3).  These results are intriguing given that the prevailing cellular model 

of autism is a defect in neuronal connectivity (Geschwind and Levitt 2007), and that mir-

103/107 has previously been implicated in CNS development (Moncini et al. 2011), 

Alzheimer’s disease (Nelson and Wang 2010), and Schizophrenia (Santarelli et al. 2011). 

Although it is not possible to define the specific aspects of cell mirgration that are implicated 

here, owing to limitations in gene ontology enrichment analysis, it will be important for 

future work to investigate this complex processes in more detail.  Eleven of these genes near 

differentially expressed lncRNAs have previously been implicated in ASD, and 18 have 

previously been shown to exhibit differential expression in ASD brain (Table 3.1.4). 

Table 3.1.3.  Gene ontology analysis of 381 mRNA loci nearby differentially expressed 
lncRNAs. 

Ontology Term Name 
Binomial 
FDR Q-
Value 

Binomial 
Fold 

Enrichment 

Hypergeometric 
FDR Q-Value 

Hypergeometric 
Fold Enrichment 

GO Biological 
Process 

Cerebral cortex 
cell migration 

3.16e-2 4.68 2.06e-2 12.82 

MSigDB 
miRNA Motifs 

Targets of miR-
103/miR-107 

5.88e-8 3.18 3.85e-2 3.30 
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Figure 3.1.4.  
Relative orientation 
and distance to the 
nearest 
transcriptional start 
site (TSS) of all 
differentially 
expressed lncRNAs. 
 

 

 
 

 

 
 
 

 
 

 

Table 3.1.4.  Genes near differentially expressed lncRNAs that were previously 
implicated in ASD or shown to be differentially expressed in ASD brains. 

Cataloged in  
AutDB or AGD  

Differentially Expressed in ASD brains 
in Voineagu et al study 

DHCR7  DACH1  KIAA0427  

DLGAP2   DUSP5   LGALS3  

DRD3   ECE2  MAPRE2 

HLA‐A   FBLN2   NTSR2  

RPL10   GSTT1   PFKP  

SDC2   HLA‐A  TNRC6A 

SHANK2   HLA‐H   TXNIP  

UBE3A   IGFBPL1    

APBA2  ITPR1 

BDNF   KCNB1    

DLX6   KCNG1    

 

Ninety of the differentially expressed lncRNAs are oriented in or around a known protein-

coding region (i.e. not intergenic).  Of these, three are known imprinted loci in humans 
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(C9orf85, SLC4A2, and UBE3A).  Interestingly, UBE3A is implicated in the genomic 

imprinting disorder Angelman Syndrome, which shares many features with ASD (Bonati et 

al. 2007).  Surprisingly, however, only three of these 90 genes are also differentially 

expressed (RBM8a, ARL17A, KLF6), suggesting perhaps more complex mechanisms for 

many of these lncRNAs than simple cis-regulation.  

 

The array also contained probes for known protein-coding transcripts, of which we detected 

355 genes differentially expressed between ASD and controls, which were enriched for the 

process of alternative splicing (Table 3.1.5).  This finding is in agreement with a recent large 

transcriptome study in autistic brains by Voineagu et al, where they demonstrated 

dysregulated splicing of A2BP1-dependent exons in ASD brains using RNA-seq (Voineagu et 

al. 2011). 

 
Table 3.1.5.  Gene ontology analysis for differentially expressed mRNAs between autism 
and control prefrontal cortex. 

Category  Term  P‐Value Bonferroni Benjamini  FDR

SP_PIR_KEYWORDS 
alternative 

splicing 
1.70E‐04  3.90E‐02  3.90E‐02  2.10E‐01 

 

Because the samples assessed from the prefrontal cortex and the cerebellum were from the 

same patients, I had the ability to compare intra-individual differences in expression of both 

genes and lncRNAs between these regions, which has not previously been done.  I detected 

almost 2,000 genes differentially expressed in control prefrontal cortex versus control 

cerebellum, which were highly enriched for gene ontology terms related to synaptogenesis 

(Table 3.1.5), but only 322 genes differentially expressed between ASD prefrontal cortex and 

cerebellum (Fig. 3.1.1).  These results are also in agreement with the study by Voineagu and 

colleagues, where they observed more transcriptional homogeneity in ASD brains (Voineagu 

et al. 2011).  In light of this, then, it was particularly intriguing to find that the number of 

lncRNAs differentially expressed within control brains was also much greater than lncRNAs 

differentially expressed within autism brains (1375 lncRNAs versus 236 lncRNAs, 

respectively). 
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Table 3.1.6.  Gene ontology analysis for differentially expressed mRNAs within control 
prefrontal cortex versus cerebellum. 

Category  Term  P‐Value  Bonferroni Benjamini  FDR 

GOTERM_BP_FAT  synaptic transmission  1.70E‐10  6.40E‐07  6.40E‐07  3.10E‐07

GOTERM_BP_FAT  transmission of nerve impulse 2.60E‐09 9.90E‐06 4.90E‐06  4.90E‐06

GOTERM_CC_FAT  neuron projection  1.00E‐08  5.80E‐06  5.80E‐06  1.50E‐05

SP_PIR_KEYWORDS  alternative splicing  1.20E‐07  8.00E‐05  8.00E‐05  1.80E‐04

SP_PIR_KEYWORDS 
cleavage on pair of basic 

residues 
2.20E‐07  1.50E‐04  7.40E‐05  3.20E‐04

UP_SEQ_FEATURE  splice variant  2.20E‐07  9.50E‐04  9.50E‐04  4.10E‐04

GOTERM_BP_FAT  cell‐cell signaling  6.60E‐07  2.50E‐03  8.20E‐04  1.20E‐03

GOTERM_CC_FAT  synapse 2.30E‐06 1.30E‐03 6.40E‐04  3.30E‐03

GOTERM_MF_FAT 
substrate specific channel 

activity 
2.10E‐06  2.50E‐03  2.50E‐03  3.30E‐03

GOTERM_CC_FAT  postsynaptic membrane 2.50E‐06 1.40E‐03 4.70E‐04  3.60E‐03

SP_PIR_KEYWORDS  postsynaptic cell membrane  3.90E‐06  2.70E‐03  9.00E‐04  5.90E‐03

GOTERM_CC_FAT  dendrite  4.10E‐06  2.40E‐03  5.90E‐04  6.10E‐03

SP_PIR_KEYWORDS  developmental protein  4.40E‐06  3.00E‐03  7.60E‐04  6.60E‐03

GOTERM_MF_FAT  calcium ion binding  4.80E‐06  5.90E‐03  2.90E‐03  7.80E‐03

GOTERM_CC_FAT  synapse part 6.70E‐06 3.80E‐03 7.70E‐04  9.80E‐03

GOTERM_MF_FAT  channel activity 7.30E‐06 8.90E‐03 3.00E‐03  1.20E‐02

GOTERM_MF_FAT 
passive transmembrane 

transporter activity 
8.00E‐06  9.70E‐03  2.40E‐03  1.30E‐02

SP_PIR_KEYWORDS  synapse  9.80E‐06  6.70E‐03  1.40E‐03  1.50E‐02

GOTERM_BP_FAT 
regulation of nervous system 

development 
1.10E‐05  3.90E‐02  9.90E‐03  2.00E‐02

GOTERM_BP_FAT 
regulation of neuron 

projection development 
1.60E‐05  6.00E‐02  1.20E‐02  3.00E‐02
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3.1.5 Discussion	

While there have been multiple studies of the mRNA transcriptome in ASD, this chapter 

describes the first assessment of regulatory lncRNAs in autism post-mortem brain tissue.  I 

identified lncRNAs that are differentially expressed in ASD brain tissue, and show they are 

enriched for genomic loci involved in neurodevelopment and psychiatric disease.  Notably, 

trans-regulatory mechanisms of these lncRNAs are likely to be major contributors to their 

cellular importance.  Future studies using knock-down or over-expression techniques in a 

relevant model system would be a reasonable approach to uncover potential trans-regulatory 

effects. 

 

Furthermore, both the lncRNA and the mRNA transcriptome appear to be more differentially 

expressed within control brains (between prefrontal cortex and cerebellum) as compared to 

ASD brains.  This finding is particularly interesting in the context of imaging studies of 

autistic brain, where it has been suggested that anatomically distinct regions of the autistic 

brain are less specialized from each other than in healthy subjects (Minshew and Keller 

2010).  It is intriguing to speculate that perhaps less “genomic differentiation” between brain 

regions in autism underlies these imaging findings. 

 

Owing to the very small sample size assessed in this work, this study should be considered a 

pilot assessment until the results can be replicated in other autistic post-mortem brain 

samples.      

	

3.1.6 Conclusion	

In summary, these results identify lncRNAs that are aberrantly expressed in autistic brain, 

and suggest that perhaps lncRNAs contribute to dysregulation of protein-coding loci in ASD, 

and/or that a fundamental defect in genome-wide transcriptional regulation—including non-

coding regions of the genome—underlies ASD molecular pathology.  Future studies will 

need to replicate and expand these findings in more patient samples, but this initial evidence 

suggests that the lncRNA component of the transcriptome deserves attention in autism. 

 

-- 
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3.2 Aberrant	Glial	Marker	Expression	in	Autistic	Brains	

	

3.2.1 Aim	

The cellular mechanism(s) underlying autism spectrum disorders are not completely 

understood, but ASD is thought to ultimately result from disrupted synaptogenesis. However, 

studies have also shown that glial cell numbers and/or function are abnormal in post-mortem 

brain tissue from autistic patients. Yet direct assessment of glial cells in post-mortem human 

brain tissue is technically challenging, which has limited glial research in human ASD 

studies. Therefore, we attempted to determine if glial cell-type specific markers may be 

altered in autistic brain tissue in a manner that is consistent with known cellular findings, 

such that they could serve as a proxy for glial cell numbers and/or activation patterns.  

	

3.2.2 Introduction	

Two separate bodies of work have independently implicated both synaptogenesis and 

microglia/astrocyte dysfunction in ASD.  However, it is not clear how these separate lines of 

evidence may converge into a common mechanism in the autistic brain that ultimately results 

in the shared clinical phenotype. Because separate studies have shown that microglia and 

astrocytes play critical roles in sculpting developing synapses during normal 

neurodevelopment (Eroglu and Barres 2010; Paolicelli et al. 2011), it is reasonable to 

hypothesize that inherent defects or aberrant numbers of microglia and astrocytes in the 

developing autistic brain may be causative of the synaptic abnormalities by affecting the 

proper wiring of developing neuronal connections. However, because appropriately-

preserved post-mortem autistic brain tissue is lacking (Abbott 2011), cellular-level studies 

assessing glial numbers and activation in human autistic brains have been limited.  Moreover, 

quantification of cell numbers in postmortem tissue by stereology is technically challenging, 

further limiting the ability of researchers to assess the few appropriately-preserved tissue 

samples that are available. Finally, no studies have concurrently specifically assessed for 

microglia, astrocytes, and neurons in the same set of autistic brain samples.  As a 

consequence, a comprehensive understanding of the relationship between glial and neuron 

cells in autistic brains is needed. 
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Therefore, the purpose of this study was two-fold.  First, we sought to determine if microglia, 

astrocyte, and neuron-specific markers were altered in post-mortem autistic brain tissue, in 

order to further investigate the role of glia in ASD.  Then, we determined if glial and 

neuronal cell-type specific marker expression patterns are consistent with known cellular-

level findings, because gene expression studies of post-mortem human brain are often easier 

to perform than cell-level studies, and therefore this approach may serve as a valuable 

‘screening’ assay to infer relative cell proportions. 

 

To do so we compared internally-normalized mRNA expression levels of microglial, 

astrocyte, and neuronal cell-type specific marker genes in post-mortem brain tissue from 

patients with autism and healthy controls. Our results provide further evidence for a role of 

glia in autism pathology, and suggest that assessment of internally-normalized glial cell-type 

specific markers may serve as a proxy for relative cellular distributions. 

	

3.2.3 Methods	

Post mortem brain samples 

The post-mortem brain tissue assessed in this study is the full dataset describe in Table 3.0.1 

above (page 112). This dataset contains five prefrontal cortex samples from autistic donors 

and five prefrontal cortex samples from age/sex matched controls, and four cerebellum 

samples from autistic donors and four cerebellum samples form age/sex matched controls.  

When possible, the same donor was used to obtain prefrontal cortex and cerebellum samples 

from, as is noted in Table 3.0.1 with an asterix.  

 

RNA isolation and quality control   

RNA isolation and quality control analysis were performed as previously described in the 

proceeding Chapter (see Chapter 3.1, Methods). Briefly, total RNA was extracted using 

TRIZOL Reagent (Invitrogen) according to the manufacturer’s protocol. Quantification of 

RNA was performed using a NanoDrop ND-1000, and RNA integrity was assessed using an 

Agilent Bioanalyzer 2100 (Table 3.0.1). 
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Reverse transcriptase reaction 

Total RNA (1ug) was used in a 20µL reverse transcriptase reaction to synthesize cDNA with 

SuperScript3 Reverse Transcriptase (Invitrogen) according to the manufacturer’s protocol. 

Briefly, 1µg of total RNA added to an aqueous solution containing 250ng/µl of random 

hexamer (Operon) and 10mM deoxyribonucleotide triphosphate. The RNA was denatured for 

5 minutes at 65 °C and then snap cooled on ice for 2 minutes. To each sample mixture was 

added 0.1M DTT, 5x First-Strand Buffer (250mM Tris-HCl, 375mM KCl, 15 mM MgCl2), 

RNaseOUT Recombinant Ribonuclease Inhibitor (40 Units/µl), and SuperScript3 Reverse 

Transcriptase (200units/µl). The reaction was carried out under the following conditions: 25 

°C for 5 minutes, 50 °C for 60 minutes, and 70 °C for 15 minutes. The cDNA produced from 

the reaction was diluted to 0.25x with nuclease free water. 

 

Real time quantitative PCR 

SYBR Green Expression Assay System (Applied Biosystems) was used to measure relative, 

normalized, mRNA expression levels. We assessed four separate microglial-specific cell 

surface genes: TREM2, DAP12, CX3CR1, and AIF1 (Ransohoff and Perry 2009).  Two cell 

type specific intermediate filaments, glial fibrillary acidic protein (GFAP), which is 

astrocyte-specific (Baba et al. 1997), and the pan-neuronal cell marker NEFL (Lepinoux-

Chambaud and Eyer 2013), were used to assess for astrocytes and neurons, respectively. 

Additionally, we assessed for GABAergic interneurons specifically with parvalbumin (PVL) 

(Conde et al. 1994). The intermediate filament housekeeping gene beta-actin (ACTB) was 

used as an endogenous control. Forward and reverse primer sequences were generated using 

Primer3 software and synthesized by Operon (Table 3.2.2).  

 

Quantitative reverse transcriptase polymerase reaction (qRT-PCR) was performed using an 

ABI Prism 7900 Sequence Detection System (Life Technologies) with a 96-well format. 

Each qRT-PCR reaction contained 6.5µl water, 12.5µl SYBR Green master mix (Applied 

Biosystems), 1µl forward primer (10µM), 1ul reverse primer (10µM), and 4µl of cDNA 

(0.25x). Data was collected using the SDS2.3 Program (Applied Biosystems) under the 

following run parameters: 48°C for 30 min, 95°C for 10 min, 40 cycles of 95°C for 15 sec, 

60°C for 1 min, and a final dissociation stage.  
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Table 3.2.1. Primers used for qRT-PCR. 

Primer Name Primer Sequence (5’ to 3’) OD MW % GC 
content 

Tm (°C) 

ActinB-F AGAAAATCTGGCACCACACC 4.1 6064 50 60.4 

ActinB-R AGAGGCGTACAGGGATAGCA 4.3 6240.1 55 62.4 

Trem2-F CCGGCTGCTCATCTTACTCT 3.3 5995 55 62.4 

Trem2-R AGTCATAGGGGCAAGACACC 4.2 6160 55 62.4 

Dap12-F GAGACCGAGTCGCCTTATCA 3.8 6102 55 62.4 

Dap12-R GTCATGATTCGGGCTCATTT 3.7 6114.1 45 58.4 

Cx3cr1-F GCAGATCCAGAGGTTCCCTT 3.7 6093 55 62.4 

Cx3cr1-R TAACAGGCCTCAGCCAAATC 3.9 6055 50 60.4 

Gfap-F CTGCGGCTCGATCAACTCA 3.5 5748.8 57.9 62.3 

Gfap-R TCCAGCGACTCAATCTTCCTC 3.6 6277.1 52.4 62.7 

Nefl-F AGCTGGAGGACAAGCAGAAC 4.4 6209.1 55 62.4 

Nefl-R TGCCATTTCACTCTTTGTGG 3.5 6065 45 58.4 

Parvalbumin-F CTGGAGACAAAGATGGGGAC 4.3 6240.1 55 62.4 

Parvalbumin-R CAGAGAGGTGGAAGACCAGG 4.4 6265.1 60 64.5 

Aif1-F AGCAGTGATGAGGATCTGCC 4.0 6182.1 55 62.4 

Aif1-R AGCATTCGTTTCAGGGACAT 3.9 6132.1 45 58.4 

F: forward; R: reverse; OD: optical density; MW: molecular weight; Tm: melting temperature. 
 

 

Data Analysis 

The target genes and the endogenous control were measured with technical triplicates in each 

qRT-PCR run, and all genes were assessed in three separate, independent qRT-PCR runs. The 

cycle threshold number (Ct) was calculated using RQ Manager 1.2 Software (Applied 

Biosystems). Relative expression of each target gene was normalized to ACTB using the ΔΔ 

Ct method. All p-values reported are based on a two-tailed Student’s t-test. Only results with 

a p-value less than 0.05 were considered significant. 
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3.2.4 Results	

In the pre-frontal cortex, relative quantification of microglial markers demonstrated 

significantly increased expression in autistic samples of TREM2, DAP12, CX3CR1, and 

CD11b, but not AIF1 (Figure 3.2.1). The expression of TREM2 was highest of all microglial 

markers, approximately 1.75-fold higher in autism brain tissue than controls (p=0.0016). The 

levels of CX3CR1, CD11b, and DAP12 were 1.50-fold (p=0.0092), 1.39-fold (P=0.0017), and 

1.34-fold (p=0.0086) higher in autistic samples relative to controls, respectively. Similarly, 

the relative expression of astrocyte marker GFAP was significantly higher in autism brain 

tissue (1.70-fold, p=0.0049). Conversely, however, both the pan-neuronal marker NEFL, and 

the GABAergic interneuron-specific marker PVA, were significantly lower in autistic 

samples compared to controls (0.68-fold, p=0.0034; and 0.52-fold, p=0.0020, respectively).  

 

In post-mortem cerebellum, the relative expression of astrocyte marker GFAP was also 

significant higher in autism samples than in healthy controls (2.63-fold, p=0.0022; Figure 

3.2.2). In contrast, the expression of microglial markers TREM2, DAP12, CX3CR1, and AIF1 

were lower in autism tissue than in control tissue, with fold changes of 0.780 (p=0.0056), 

0.797 (p=0.0083), 0.659 (p=0.0029), and 0.808 (p=0.0052), respectively. Relative expression 

of neuronal markers PVA and NEFL were also lower in autism samples than in control 

samples (0.862-fold, p=0.033; and 0.798-fold, p=0.013, respectively), as was found in the 

prefrontal cortex. 

 
Figure 3.2.1. Expression of cell-type specific markers in pre-frontal cortex samples of 
autistic cases relative to controls. *p < 0.05, **p < 0.005, n.s. = not significant. 
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Figure 3.2.2. Expression of cell-type specific markers in cerebellum samples of autistic 
cases relative to controls. *p < 0.05, **p < 0.005. 

	

3.2.5 Discussion	

While there have been multiple studies assessing RNA expression levels in autistic tissue, 

here we report the specific assessment of microglial, astrocyte, and neuron-specific cell 

markers concurrently in two regions of autistic brains. Our results provide further evidence 

for the role of glia in the cellular pathophysiology of ASD. Moreover, we show that relative 

gene expression levels of cell-type specific markers may be a useful technique to screen for 

activation and/or altered numbers of glia and neurons in post-mortem brain tissue.  

 

Microglia cell-marker research is still a relatively new area, and thus the markers used to 

quantify microglial cell number and activation are still debated.  To address this issue, we 

used four different markers that are putatively microglial-specific. Our results demonstrate 

that in the PFC, there is increased expression of all microglial markers assessed, although 

AIF1 did not reach statistical significance. However, previous reports have shown that AIF1 

expression in the brain is low (Imai et al. 1996), potentially contributing to this result. The 

finding of increased microglial cell markers in autistic PFC is in agreement with a number of 

studies that have found increased numbers and activation of microglia in autistic brains. For 

instance, Morgan, et al. showed increased microglial density in dorsolateral prefrontal cortex 
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(DLPFC) grey matter of ASD brains via IHC and stereology (Morgan et al. 2010), and they 

also demonstrated that microglia are more closely associated with neurons in autistic DLPFC 

than in controls (Morgan et al. 2012).  Similarly, Tetreault, et al. also demonstrated increased 

microglial density in the frontoinsular and visual cortex of autistic brains as compared to 

controls (Tetreault et al. 2012).  Additionally, a number of studies have specifically identified 

microglial activation in autistic frontal cortex, through both PET radiotracer imaging (Suzuki 

et al. 2013) and IHC/cytokine profiling approaches (Vargas et al. 2005). Our results further 

support these findings, and suggest that microglial cell-marker expression patterns in the 

frontal cortex may be able to serve as an accurate proxy for more technically challenging 

studies at the cellular level. 

 

In contrast, our cerebellar results show significantly lower expression of all four microglial 

cell specific markers in autistic brains. While other studies have identified microglial 

activation in the cerebellum of autistic tissue (Casanova 2007), no study has attempted to 

specifically quantify microglial cells in the cerebellum using the markers assessed here, and 

therefore histopathologic studies in the cerebellum are needed to confirm these findings. One 

report described increased microglial cell activation in the cerebellum, assessed via HLA-DR 

staining in the white matter and granular cell layer of the cerebellum (Vargas et al. 2005), and 

another showed increased microglial activation throughout the brain (although most 

prominently in the cerebellum) using an in vivo PET metabolic radiotracer (Suzuki et al. 

2013).  However, HLA-DR expression in human microglial cells has been shown to be highly 

variable between individuals, and its expression actually decreases upon cytokine stimulation 

(Smith et al. 2013). Moreover, as discussed in the Appendix, the cerebellum is anatomically 

and physiologically unique; thus metabolic and pathological findings in the cerebellum must 

be interpreted with caution. Furthermore, our tissue samples from cerebellum contained all 

three layers of the cerebellar cortex, as opposed to the molecular layer only. Until direct 

histologic assessment of these microglial markers are performed in post-mortem autistic 

cerebellum, our results must be interpreted cautiously. Yet they suggest that while microglia 

may be activated in autistic cerebellum, they may not be as numerous as they are in autistic 

prefrontal cortex. 

 

In both the PFC and the cerebellum, there was significantly increased expression of the 

astrocyte-specific marker GFAP in autistic brains. This trend was most prominent in the 
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cerebellum, where GFAP expression was over two-fold higher in ASD brains than in healthy 

controls. Our findings parallel those of previous studies, which have showed increased 

expression of GFAP protein in the cerebellum and cortex of patients of autism through IHC 

staining, western blotting, and mRNA expression (Vargas et al. 2005; Laurence and Fatemi 

2005; Bailey et al. 1998; Purcell et al. 2001). Previous work in rats has demonstrated that 

GFAP displays a distinctive expression profile over developmental time in the brain. For 

instance, via Northern blotting and in situ hybridization histochemistry Landry et al. and 

found a caudal to rostral gradient of GFAP expression, consistent with 

overall brain maturation (Landry et al. 1990). Moreover, both the Landry et al. study and 

others have shown a transient increase in GFAP expression in the early postnatal period, 

which is most pronounced in the cerebellum (Sancho-Tello et al. 1995). Again, the distinct 

developmental expression profile suggests important regulatory roles for GFAP and 

astrocytes in brain development. While studies have not been done to quantify astrocyte 

numbers in the autistic cerebellum, our results and those of previous studies provide evidence 

for astroglial reaction in autism.  

 

Interestingly, we also found significantly decreased expression of the pan-neuronal marker 

NEFL in both the PFC and the cerebellum of autistic brains. This result is also supported by 

previous studies, which have shown decreased NEFL mRNA expression in the anterior 

cingulate gyrus, motor cortex, and thalamus of autistic brains (Anitha et al. 2012). However, 

cell-level studies in autistic brain have produced conflicting results about neuron numbers. 

While a large body of evidence has suggested there is a loss of neurons in many areas of 

autistic brains (Kern et al. 2013), other studies have shown that young autistic brains may 

have upward of 70% more neurons in the PFC (Courchesne et al. 2011a). Importantly, 

though, is the age of the patient at time of death, as longitudinal studies have suggested that 

early brain overgrowth in ASD quickly reverses to a phenotype of neuronal loss (Courchesne 

et al. 2011b). Consequently, the older age of patients in this study may bias our findings 

towards the neuronal loss spectrum of the disease. 

 

Similarly, we found significant decreases in the GABAergic interneuron-specific marker PVA 

in both the prefrontal cortex and cerebellum of autistic samples. Despite many studies 

demonstrating decreased GABAergic components across different areas of the autistic brain 

(Fatemi and Blatt 2011), the one pathological analysis of parvalbumin-positive interneurons 
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in ASD did not identify differences in the autistic cerebellum (Whitney et al. 2009).  

However, this study only assessed the molecular layer of the cerebellar cortex, whereas our 

tissue samples contained all three layers. Additionally, while parvalbumin interneurons have 

been shown to be unchanged in autistic posterior cingulate cortex and fusiform gyrus (Oblak 

et al. 2011), and increased in autistic hippocampus (Lawrence et al. 2010), they have not been 

directly assessed in autistic prefrontal cortex.  

 

Overall, our findings suggest that the autistic brain by mid-childhood has molecular changes 

consistent with astrogliosis and neuronal loss in both the prefrontal cortex and cerebellum, 

and prefrontal cortex-specific microgliosis and/or activation. These findings support the 

notion that a complex interplay between glial dysfunction and/or reaction and neurogenesis 

may underlie the clinical manifestations of autism spectrum disorders. 

 

One potential explanation of these findings is that there is an exaggeration in autistic brains 

of the normal processes that occur during the completion of brain development.  It has been 

shown that microglial cells in the developing cerebral cortex of prenatal and postnatal 

macaques and rats limit the production of cortical neurons by phagocytizing neural precursor 

cells as neurogenesis nears completion (Cunningham et al. 2013). Furthermore, studies of 

mice with abnormal numbers of microglia have shown that alterations in microglial number 

perturbs neural development by directly affecting embryonic neural precursors, and induces 

astrogliosis (Antony et al. 2011). This process appears to be regulated to a large degree by the 

CX3CL1-CX3CR1 signaling axis, which our results also demonstrate to be abnormal in these 

autistic brain samples. CX3CL1 is expressed on neurons in the CNS, and CX3CR1 is 

expressed exclusively on microglia in the brain parenchyma. CX3CR1-deficient mice showed 

increased microglial cell-autonomous neurotoxicity in three different models of inflammation 

(Cardona et al. 2006). Perhaps this complex interplay is aberrant in the autistic brains studied, 

whereby abnormal microglial numbers and/or function result in increased phagocytosis of 

neural precursors, and consequently the astrogliosis and lower number of neurons described 

here and in other previous work. 

 

This study has a number of limitations of note.  Foremost is the relatively modest sample 

size. Unfortunately, post-mortem human brain research in general is hampered by the lack of 

accessibility to tissue samples, and pediatric samples in particular are scarce (Abbott 2011).  
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Therefore, replication with a large number of samples will be important. However, we chose 

qRT-PCR techniques in this pilot study because of the increased sensitive compared to 

whole-genome microarray or sequencing approaches, and therefore some aspects of the small 

sample size limitation is addressed.  Secondly, due to the inter-individual heterogeneity of the 

brain, and in the brain-banking methodologies used in distinguishing areas of post-mortem 

brain tissue, it cannot be assumed that all samples will derive from the exact same anatomic 

site within the prefrontal cortex or cerebellum.  This limitation is largely unavoidable.  

Lastly, the approach of using cell-type specific marker expression as a proxy for cell number 

and/or activation still needs verification, by assessing them concurrently with traditional 

histopathologic/ stereology analysis. However, the concordance of our results with previously 

published studies, and the scarcity of appropriate ASD brain tissue and technical expertise, 

suggest this may be a valuable and simple alternative ‘screening’ approach. 

	

3.2.6 Conclusion	

In summary, assessment of glial numbers and activation in autistic post-mortem brain 

research is hampered by the scarcity of appropriately-preserved tissue, and the technical 

challenge of traditional stereotactic methods. We show that glial and neuron cell-type specific 

markers have mRNA expression patterns that parallel known cellular aberrations in ASD.  

Our results provide further evidence that glial cells may play a role in the pathogenesis of 

ASD, and suggest that assessing for glial cell-type specific marker expression may represent 

a viable approach to relatively quantify glial cell patterns in ASD post-mortem research.  

 

-- 
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3.3 Altered	Expression	of	the	Mitochondrial	Genome	in	Autism	

	

3.3.1 Aim	

There is a long history of mitochondrial dysfunction in patients with neurologic and 

psychiatric symptoms, especially children.  While recent efforts, including work presented in 

Chapter 2.2 of this thesis, have implicated mitochondrial dysfunction in ASD, no work has 

directly assessed the functional genomics of the unique mitochondrial genome in autistic 

brain tissue.  Therefore, the purpose of this work was to specifically assess for changes in 

gene expression among the 37 mitochondrially-encoded genes, which have not been 

previously studied in ASD.  Furthermore, we also investigated nuclear-encoded genes that 

function specifically in the mitochondria, in order to comprehensively survey for possible 

transcriptional dysregulation of the mitochondrial genome in autism. 

	

3.3.2 Introduction	

Mitochondria are distinct cellular organelles that are believed to have originated from a 

symbiotic event between eukaryotes and bacteria, such that in mammalian cells they retain a 

unique mitochondrial genome (Figure 3.3.1) in addition to having co-opted nuclear genes for 

use in mitochondrial function (Anderson et al. 2003). The main function of mitochondria is to 

generate adenosine triphosphate (ATP), the energy currency of human cells, from adenosine 

diphosphate by oxidizing glucose and fatty acids (Nunnari and Suomalainen 2012). Through 

a series of metabolic biochemical reactions that occur in the mitochondrial matrix (the TCA 

cycle), the reduced intermediates flavin adenine dinucleotide (FAD) and nicotinamide 

adenine dinucleotide (NAD) are generated.  FAD and NAD then donate protons to the 

mitochondrial electron transport chain (ETC) in a series of reactions known as oxidative 

phosphorylation, ultimately resulting in the production of ATP by the flow of protons down 

their electrochemical gradient (Figure 3.3.2). 

 

Mitochondria are the only organelle in mammalian cells with their own genome. The human 

mitochondrial DNA (mtDNA) contains 37 genes.  These genes encode for 13 proteins that 

are subunits of complexes I, III, IV and V of the electron transport chain, in addition to two 

mitochondrial- specific ribosomal RNAs (rRNAs) and 22 mitochondrial-specific transfer 
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Figure 3.3.1. Map of the human mitochondrial genome. The genes that encode the subunits of the 
electron transport chain are shown in colors. The two ribosomal RNAs (rRNAs, 12S and 16S) are 

shown in purple. The 22 
mitochondrial tRNAs are indicated 
by black lines and denoted by their 
single letter code. The displacement 
loop (D-loop) is a non-coding 
control region that initiates 
mitochondrial replication. The 
origin of light-strand replication is 
shown as OL. Adapted from: Taylor 
et al. Nature Reviews Genetics. 6, 
390 (2005). 

	
	

	

	

	

	

	

	

RNAs (tRNAs) that are required to transcribe and translate, respectively, the unique 

mitochondrial genome into ETC complex subunits. In addition to the 13 mitochondrially-

encoded ETC genes, the remainder of the ETC complex subunits are coded by over 850 

nuclear encoded genes (Cotter et al. 2004). The nuclear DNA also encodes hundreds of 

enzymes and other proteins that participate in carbohydrate and fatty acid oxidation 

exclusively in the mitochondrial matrix. Thus, the full complement of proteins that function 

specifically in the mitochondria consists of 37 mitochondrially-encoded genes, and over 

1,000 genes encoded on the nuclear DNA.  Consequently, mutations or altered expression in 

genes residing in either genome can impair mitochondrial function (DiMauro et al. 2003). 

 

In addition to their function as cellular energy producers, the mitochondria are also intimately 

involved in initiating cell death in response to oxidative stress.  The mitochondrial 

membranes contain a number of proteins that are capable of activating cellar apoptotic 

pathways if released into the cytoplasm (in particular Cytochrome C).  Increased permeability 

of the mitochondrial membrane results in leakage of these proteins in the cytosol, activating 
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Figure 3.3.2. 
Schematic of 
mitochondrial 
ATP generation. 
The red arrows 
denote the flow of 
electrons in the 
ETC. Adapted 
from: DA 
Rossignol, RE 
Frye. Mol 
Psychiatry. 2012 
March; 17(3): 
290–314. 
 

	

	

	

cell death mechanisms.  The release of these proteins is tightly regulated by a family of pro- 

and anti-apoptotic molecules belonging to the Bcl family.  The Bcl family of proteins 

comprise over 20 molecules that are in a delicate balance between initiating and inhibiting 

mitochondrially-mediated apoptosis.  In response to sensing cellular insults, particularly in 

the form of DNA damage or protein mis-folding (both the end results of free radical 

oxidation), the Bcl sensors activate effector molecules that collectively cause the release of 

mitochondrial proteins into the cytosol.  Once in the cytosol, these mitochondrial proteins 

(Cytochrome C in particular) activate the Caspase family of cell death enzymes, which 

represent a convergence point between mitochondrial and non-mitochondrial mediated cell 

death pathways.  Capsases are able to auto-amplify the apoptotic signal, culminating in cell 

death through cytoskeletal breakdown and endonuclease activation (Kumar et al. 2010).   

  

The number of mitochondria in each cell depends on the particular energy demands of that 

cell type. For example, skin cells, which have lower metabolic rates, have fewer 

mitochondria than more metabolically-demanding tissue types such as muscle, liver, and 

brain (Robin and Wong 1988).  Neurons are cells with particularly high levels of metabolic 

activity and are therefore especially dependent on mitochondrial function (Ames 2000; 

Mattson and Liu 2002).  In neurons, mitochondria are concentrated in the dendritic and 

axonal termini (Li et al. 2004). Their dysfunction has been shown to be involved with a 
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number of fundamental cellular defects, including reduced neurotransmitter release (Li et al. 

2004). Consequently, the role of mitochondrially-mediated apoptosis and autophagy is 

becoming increasingly recognized as central to the pathogenesis of neurologic disease, in 

particular neurodegenerative diseases such as Alzheimer’s and Parkinson’s (Knott et al. 

2008). 

 

The role of mitochondrial dysfunction in autism is also becoming increasingly recognized.  

For instance, numerous studies have demonstrated a high proportion of children diagnosed 

with ASD have concurrent mitochondrial abnormalities as assessed via biochemical 

metabolites (Oliveira et al. 2005; Poling et al. 2006; Pastural et al. 2009).  However, genetic 

studies of the mitochondrial DNA of autistic individuals have failed to identify significant 

increases in the mutation rate in ASD mtDNA (Kent et al. 2006; Kent et al. 2008; Serajee et 

al. 2006).  Similarly, no conclusive studies have identified mutations in nuclear-encoded 

genes with mitochondrial function in ASD (Ramoz et al. 2004; Blasi et al. 2006). 

 

Therefore, it is important to consider whether functional genomic aberrations in the mtDNA 

and nuclear-encoded mitochondrial genes may be contributing to the observed biochemical 

metabolic alterations in ASD, as opposed to overt DNA mutations.  However, when the work 

in this thesis was begun, only one study had attempted to characterize mtDNA expression in 

ASD brain (Lepagnol-Bestel et al. 2008), and one other report assessed blood lymphocytes 

from individuals from ASD (Taurines et al. 2010).  In both studies, only one gene was 

assessed (SLC25A12 and a component of complex I of the ETC, respectively).  Recently, 

Anitha and colleagues measured the expression of 84 nuclear encoded mitochondrial genes 

that function in the ETC from multiple regions of autistic post-mortem brain tissue.  They 

discovered a number of mitochondrial genes with alerted expression, many with brain-region 

specific expression patterns in ASD, suggesting that altered processing of mitochondrial 

genes may play a role in ASD (Anitha et al. 2013a; Anitha et al. 2013b).   

 

Despite this important work linking biochemical metabolic alterations with altered 

mitochondrial gene expression, a comprehensive analysis of mitochondrial gene expression 

in ASD has not been undertaken, and assessment of the unique mitochondrially-encoded 

genes in particular is lacking. As mitochondrial function is very tissue-specific, it is 

imperative that functional genomics studies of mtDNA be carried out in brain tissue.  
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Therefore, the purpose of this study was to comprehensively assess the expression of all 

nuclear-encoded and mitochondrial-encoded genes in post-mortem autistic brain tissue, and 

to also assess for possible brain-region specific patterns.  To do so, I performed microarray 

analysis of all genes with known mitochondrial function in post-mortem autistic prefrontal 

cortex and cerebellum samples. 

	

3.3.3 Methods	

Brain Samples and RNA Extraction 

The ASD and control donor brain samples assessed in this study were full dataset described 

in Table 3.0.1.  In brief, this cohort consisted of nine samples from autistic brain (5 prefrontal 

cortex and 4 cerebellum) and nine age and gender matched controls from the same brain 

regions. Total RNA was extracted using Trizol Reagent and purified using RNeasy kit 

(Qiagen), as previously described in Chapter 3.2. 

 

hMitChip3 Microarray and Data Analysis 

A human mitochondria-focused cDNA microarray (hMitChip3) was designed for this 

experiment and run by the service provider as previously described (Bai et al. 2007). The 

hMitChip3 contained all 37 mitochondrial–encoded genes, 1,098 nuclear–encoded 

mitochondrial genes, and 225 controls. Each gene was printed in triplicate. A total of 1,135 

mitochondria-related genes are assessed by the array. 

 

A total of 5ug RNA per sample was used for microarray labeling and hybridization. Slides 

were scanned using the ScanArray Express Microarray Scanner (Perkin-Elmer). Every gene 

on the hMitChip3 gene chip was printed in triplicate, and triplicate microarray experiments 

were done for every RNA sample, resulting in at least nine data points for each gene analyzed 

from each brain tissue sample. 

 

The gene expression database was constructed using FileMaker software (FileMaker Pro, 

Inc.). Database construction, data filtering, and selection were done as described previously 

(Bai et al. 2007). The quantile normalization method (Bolstad et al. 2003) was used to 

normalize the microarray data. The normalized expression data were clustered and visualized 
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using Cluster version 3.0 (Eisen et al. 1998), and heat maps were generated by using 

MapleTree 6 software. 

 

Statistics 

Differentially expressed genes were identified by assessing for fold change differences in the 

average expression of the background-subtracted mean intensity ratios of a gene between 

autism and control samples. Using the LIMMA package in R/Bioconductor software suite 

(version 2.7.1; The R Foundation for Statistical Computing), I calculated the moderated t-

statistic, raw P values, and False Discovery Rate (FDR). Genes were considered to be 

significantly differentially expressed if the absolute value of the log2 fold change was greater 

than 1.20 and the FDR q-value was less than 0.05.  Sets of nuclear-encoded mitochondrial 

genes found to be differentially expressed in autistic brain were further analyzed for their 

functional ontologies using the Database for Annotation, Visualization and Integrated 

Discovery v6.7 (Huang et al. 2009).  Only gene ontologies with a FDR multiple testing 

correction value less than 0.05 were considered significant. 

	

3.3.4 Results		

I discovered 7 mtDNA genes that were significantly differentially expressed in the prefrontal 

cortex of ASD samples as compared to controls, representing 19% of the mitochondrial 

genome (Table 3.3.1).  Interestingly, all mtDNA genes that were up-regulated in ASD 

prefrontal cortex encode for tRNAs, while the only down-regulated mitochondrially-encoded 

gene in ASD prefrontal cortex was Cytochrome B.  In the cerebellum, I discovered 21 

differentially expressed mtDNA genes in ASD as compared to controls, representing 57% of 

the mitochondrial genome (Table 3.3.2).  Five of the six tRNAs that were found to be up-

regulated in ASD prefrontal cortex were also found to be up-regulated in ASD cerebellum, in 

addition to ten other tRNAs that showed increased expression in ASD cerebellum.  

Furthermore, Cytochrome B was also identified as differentially expressed in ASD 

cerebellum, although the direction of change was opposite that of the prefrontal cortex.  In 

addition, a number of the components of the NADH dehydrogenase complex were up-

regulated in ASD cerebellum, which was not observed in ASD prefrontal cortex.	
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Table 3.3.1.  Differentially expressed mtDNA genes in the prefrontal cortex of ASD. Red 
denotes decreased expression in ASD and green denotes increased expression in ASD. FC, 
fold change; FDR, false discovery rate. 

	

	

Table 3.3.2.  Differentially expressed mtDNA genes in the cerebellum of ASD. Green 
denotes increased expression in ASD. FC, fold change; FDR, false discovery rate. 

	
 

I concurrently assessed nuclear-encoded genes with mitochondrial function in both brain 

regions. I discovered 506 nuclear-encoded mitochondrial genes that were differentially 

expressed in ASD prefrontal cortex (232 up-regulated, 274 down-regulated), and 475 that 

were differentially expressed in ASD cerebellum (236 up-regulated, 239 down-regulated).  I 

then performed gene ontology analysis on the nuclear encoded genes that were up- and down-

OfficialGeneFullName GeneID OfficialGeneSymbol Ttest FDR FC

mitochondrially encoded cytochrome b 4519 MT‐CYB 7.57E‐04 3.56E‐03 0.75

mitochondrially encoded tRNA asparagine 4570 mt‐Tn 1.72E‐04 1.34E‐03 1.99

mitochondrially encoded tRNA tyrosine 4579 mt‐Ty 7.11E‐04 3.36E‐03 1.61

mitochondrially encoded tRNA cysteine 4511 mt‐Tc 8.39E‐04 3.84E‐03 1.70

mitochondrially encoded tRNA methionine 4569 mt‐Tm 9.88E‐04 4.18E‐03 1.24

mitochondrially encoded tRNA glutamic acid 4556 mt‐Te 1.36E‐03 5.11E‐03 1.78

mitochondrially encoded tRNA isoleucine 4565 mt‐Ti 2.16E‐02 3.46E‐02 1.21

Mitochondrially Encoded

OfficialGeneFullName GeneID OfficialGeneSymbol Ttest FDR FC

mitochondrially encoded tRNA tryptophan 4578 mt‐Tw 3.07E‐02 4.21E‐02 1.25

mitochondrially encoded tRNA methionine 4569 mt‐Tm 3.38E‐02 4.53E‐02 1.29

mitochondrially encoded NADH dehydrogenase 1 4535 ND1 2.83E‐03 9.07E‐03 1.31

mitochondrially encoded cytochrome b 4519 MT‐CYB 1.27E‐02 2.34E‐02 1.31

mitochondrially encoded NADH dehydrogenase 4 4538 mt‐Nd4 5.86E‐03 1.40E‐02 1.32

mitochondrially encoded tRNA lysine 4566 mt‐Tk 4.51E‐04 2.52E‐03 1.40

mitochondrially encoded tRNA arginine 4573 mt‐Tr 1.99E‐02 3.22E‐02 1.42

mitochondrially encoded NADH dehydrogenase 2 4536 mt‐Nd2 1.41E‐03 5.55E‐03 1.43

mitochondrially encoded tRNA leucine 2 (CUN) 4568 TRNL2 4.66E‐03 1.24E‐02 1.43

mitochondrially encoded tRNA serine 2 (AGU/C) 4575 mt‐Ts2 1.74E‐03 6.48E‐03 1.45

mitochondrially encoded tRNA isoleucine 4565 mt‐Ti 1.49E‐03 5.74E‐03 1.52

mitochondrially encoded NADH dehydrogenase 5 4540 ND5 1.12E‐03 4.72E‐03 1.58

mitochondrially encoded NADH 4L 4539 mt‐Nd4l 8.20E‐05 8.20E‐04 1.59

mitochondrially encoded tRNA threonine 4576 mt‐Tt 5.17E‐09 3.67E‐06 1.72

mitochondrially encoded tRNA proline 4571 mt‐Tp 3.65E‐03 1.07E‐02 1.73

mitochondrially encoded tRNA histidine 4564 mt‐Th 1.29E‐06 6.54E‐05 1.89

mitochondrially encoded tRNA tyrosine 4579 mt‐Ty 1.11E‐05 2.38E‐04 1.95

mitochondrially encoded tRNA aspartic acid 4555 mt‐Td 5.56E‐07 3.95E‐05 1.96

mitochondrially encoded tRNA glutamic acid 4556 mt‐Te 1.48E‐05 2.77E‐04 2.19

mitochondrially encoded tRNA glutamine 4572 mt‐Tq 5.40E‐06 1.82E‐04 2.21

mitochondrially encoded tRNA asparagine 4570 mt‐Tn 5.47E‐05 6.93E‐04 2.55

Mitochondrially Encoded
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regulated in each ASD brain region separately.  The results demonstrated brain-region 

specific alterations in mitochondrial gene expression in ASD (Table 3.3.3).  Nuclear-encoded 

mitochondrial genes that showed increased expression in ASD prefrontal cortex were highly 

significantly related to the process of apoptosis, whereas genes that were down-regulated in 

ASD prefrontal cortex were significantly related to oxidative metabolism.  In contrast, genes 

up-regulated in ASD cerebellum were related to oxidative metabolism but not apoptosis. 

Nuclear-encoded mitochondrial genes with decreased expression in ASD cerebellum were 

highly related to fatty acid oxidation.	
 
Table 3.3.3.  Significant gene ontologies of differentially expressed nuclear-encoded 
mitochondrial genes. 

	

	

3.3.5 Discussion	

These results demonstrate substantial, brain-region specific changes in both mitochondrially-

encoded and nuclear-encoded genes with mitochondrial function in ASD brain.  These 

findings suggest that altered transcription of the mitochondrial genome may partly reconcile 

the biochemical alterations seen in patients with ASD with the known heritable nature of 

autism.  Furthermore, as mitochondrial DNA is inherited only through the maternal lineage, 

altered mtDNA transcription in ASD may represent a mechanism that contributes to the 

significant sex difference in prevalence of the disorder. 

 

Of particular interest is the up-regulation of many mitochondrially-encoded tRNAs in both 

ASD prefrontal cortex and cerebellum. Moreover, all tRNAs identified as differentially 

expressed in ASD samples are significantly up-regulated, and tRNAs were overwhelming the 

main mtDNA gene type that was altered in ASD.  
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Transfer RNAs are adaptor molecules, typically 73 to 94 nucleotides in length, which 

mediate the transfer of information encoded in the RNA sequence to direct the amino acid 

sequence of proteins. They do this by carrying their specified amino acid to the ribosome 

based on the codon specified in the messenger RNA.  Therefore, tRNAs are a critical 

component of protein translation.  Interestingly, the work described earlier in Chapter 2.2 

identified both mitochondrial function and protein synthesis as key functions disrupted by 

ASD candidate genes.  Furthermore, although not studied in mitochondria specifically, 

protein translation has been demonstrated to be globally abnormal in a number of autism 

spectrum disorders as well as ASD mouse models (Kelleher and Bear 2008).  It is interesting 

to speculate that abnormal protein synthesis may cause a feedback loop whereby the cell (or 

mitochondria) up-regulates protein synthesis machinery, such as tRNAs, in an attempt to 

compensate for the production of abnormal protein.  The unique nature of mitochondrial 

genome processing—that the 37 mtDNA genes require their own tRNAs—may highlight this 

defect.  Future studies should assess the nuclear-encoded tRNAs in ASD brain to explore this 

hypothesis further. 

 

In addition, these results show up-regulation of mitochondrially-encoded NADH 

dehydrogenase complex genes (Complex I) and up-regulation of nuclear-encoded genes 

related to oxidative phosphorylation in the cerebellum of ASD samples, and an opposite trend 

in the prefrontal cortex of ASD samples.  These results are in line with previous studies of 

ASD patients, which have shown marked reductions in Complex I activity in ASD.  

However, those studies were conducted in peripheral blood, and our results suggest that 

oxidative defects may be brain-region specific in ASD.  Up-regulation of oxidative 

phosphorylation in autistic cerebellum is an unexpected finding, but may relate to the known 

hyperactivity and repetitive mannerisms exhibited by ASD patients.	

	

In contrast, apoptotic mitochondrial functions were significantly up-regulated in ASD 

prefrontal cortex but not in ASD cerebellum.  This findings is particularly intriguing in light 

of previously discussed studies that have demonstrated microglial/synaptic pruning 

abnormalities in ASD, as well as the work described in Chapter 3.2 of this thesis where I 

demonstrated pre-frontal cortex specific increased microglial markers in ASD.  These results 

further support previous studies suggesting that neuronal loss ultimately contributes to the 

alteration of higher cognitive functions in ASD patients, and potentially serves as a common 
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mechanism to reconcile the metabolic findings in ASD with known synaptic and microglial 

abnormalities.	

	

3.3.6 Conclusions	

In summary, I report here the first assessment of expression changes in ASD brain tissue 

from genes encoded by the mitochondrial DNA as well as all known mitochondrially-

functioning nuclear encoded genes.  The results reported in this chapter demonstrate 

increased expression of apoptotic mitochondrial genes in the prefrontal cortex of ASD 

samples with concurrent decreased expression of oxidative metabolism genes.  These 

findings appear to be brain-region specific, as they were not observed in cerebellum samples 

from the same ASD patients.  Furthermore, these results demonstrated a global up-regulation 

in mitochondrial tRNA genes, perhaps reflecting known problems in protein translation 

among ASD patients.  Future studies will need to replicate these findings in larger cohorts, 

but these results suggest that alterations in mitochondrial genome processing may potentially 

represent a point of convergence among known deficits in protein translation, metabolic 

alterations, and synaptic apoptosis in patients with autism spectrum disorders. 

	

	

	

	
--	
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Chapter	4.	Conclusions	
 

4.1 Summary	

I set out to address four main questions in this thesis:  

(i) Are there common gene expression properties/patterns among the genes 

implicated in autism that may be informative of their role in ASD pathogenesis? 

(ii) Do these patterns provide insight into how so many genes with different functions 

can all relate to the same clinical phenotype? 

(iii) Are there inherent gene expression differences between the developing male and 

female brain that may be informative of the significant bias in ASD seen in males? 

(iv) Can studies of non-coding regions of the genome in ASD help explain some of the 

‘missing heritability’ by their regulation of ASD genes? 

 

The work described in Chapters 2.1 and 2.2 provide the first description of ASD candidate 

gene expression and co-expression patterns across normal human neurodevelopment.  From 

these two studies, my results suggest that the heterogeneous ASD candidate genes relate to 

each other through shared transcriptional networks and gene expression patterns to converge 

upon a number of mechanisms and pathways that have been independently implicated in 

ASD pathogenesis.  Namely, my results suggest that cytokine signaling, glia, mitochondrial 

function, regulation of transcription/translation, and synaptogenesis are all shared pathways 

during normal human neurodevelopment among the heterogeneous ASD candidate genes.  

Moreover, I performed two analyses specifically in autistic post-mortem brain tissue to 

confirm that two of these less well studied pathways are indeed aberrant in ASD brain—glia 

(Chapter 3.2) and mitochondrial function (Chapter 3.3).  Together, these results provide 

important insight into potential common molecular mechanisms underlying ASD, which have 

the potential to be informative for future diagnostic and therapeutic development studies. 

 

Additionally, the work presented in Chapter 2.3 describes unique gene expression differences 

in male and female brains, and shows how these relate to these implicated ASD pathways.  

While most research into the sex bias in ASD prevalence has focused on either behavioral or 

inherited causes, the results of this chapter provide a potentially new avenue of research that 
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has implications not just for autism, but for other neurodevelopmental disorders with sex-

biased prevalence. 

 

Finally, Chapters 2.4 and 3.1 provide strong support for the role of miRNAs and lncRNAs, 

respectively, in the functional genomics of ASD.  Chapter 2.4 is the largest study to date to 

identify differentially expressed miRNAs in human brain development, and the miRNAs 

identified can now be more explicitly studied in cell systems.  Chapter 3.1 provided the first 

evidence that long non-coding RNAs may contribute to the global dysregulation of gene 

expression in autistic brains, and more recent studies support my initial discovery.  The work 

of these two chapters will play an important role in bringing to light the role of ncRNAs in 

the functional genomics of ASD, allowing future studies to explore specific mechanistic 

properties of the identified ASD ncRNAs. 

 

The work described in this thesis has a number of important limitations of note. As discussed 

in the introduction, the small sample sizes assessed per time period group in the studies 

conducted in Chapter 2 hamper the power of these studies to detect all instances of 

differential expression. Furthermore, while the BrainSpan database used in the Chapter 2 

studies is the largest available dataset of human brain gene expression, the samples were not 

available to perform confirmatory PCR or other follow up studies.  Consequently, it will be 

important for future studies to replicate these findings in other for confirmation. 

 

The studies of human post-mortem brain tissue are also limited in their size, and in particular, 

the work in Chapter 3.1 is to be considered very preliminary until larger studies can confirm 

the results in larger sample sizes. Additionally, it is difficult to control for other clinical 

factors completely, such as post-mortem interval and RNA integrity, although the samples 

assessed were not significantly different at a group in regard to these values. Despite these 

limitations, however, which are likely to remain in all of post-mortem brain research, the 

work described above presents some of the first global assessment of ncRNA and 

mitochondrial gene expression in autistic brain, potentially serving as important first steps for 

the field of autism genetics research. 
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4.2 Future	Perspectives	

Overall, the work of this thesis, in the context of previous and recent complementary studies, 

serves as an important first step in moving from ASD gene discovery to ASD pathway and 

mechanism understanding.  However, as more genes are implicated in ASD it will be 

important for future work to replicate and expand upon these approaches to ensure that the 

most information about convergent ASD gene function is captured.  Furthermore, novel 

analytical techniques to probe the relationship among ASD candidate genes should be 

undertaken. For instance, by integrating genome-wide methylation or other epigenetic marks 

with gene expression data both from normal and autistic post-mortem brains, a multi-level, 

systems biology approach can potentially provide novel insight into other functional 

genomics layers underlying ASD.  Newer technologies and large consortia should allow such 

studies to be completed in the near future. 

 

The results presented here suggest that through integration of the many layers of genetic, 

functional genomic, and epigenetic information that is now possible to obtain, the seemingly 

heterogeneous and complex nature of ASD genetics will be exposed to consist of a few broad 

pathological patterns, allowing for the development of targeted diagnostic and therapeutics 

for individuals with ASD.  The work in this thesis provides some of the first evidence that 

supports this notion, and represents an important first step in understanding the etiology of 

ASD at this level. 

	

	

	

	
‐‐	

	

	



	

 

149 
 

Appendix	

Theoretical	hypothesis	on	the	role	of	the	cerebellum	in	autism	

 

In the September 2012 issue of The Cerebellum, Fatemi et al. presented a comprehensive 

literature analysis of the putative role of the cerebellum in autism pathogenesis (Fatemi et al. 

2012). While this is an important work, which synthesizes the main findings of cerebellar 

research in autism spectrum disorders, I believe there is an alternative hypothesis to the role 

of the cerebellum in autism that is more parsimonious. 

 

The conclusion that the cerebellum is pathogenic in ASD is predicated on the notion that the 

cerebellum functions in the cognitive processes disrupted in autism, although such pathways 

remain undiscovered. While the cerebellar contribution to higher cognition has been debated 

for decades (Frings et al. 2007), a clear mechanistic understanding of how the cerebellum 

may integrate with processes affected in autism, such as theory of mind, is not well 

established—as Fatemi et al. noted. Human studies that have consistently implicated the 

cerebellum in ASD do so mostly on the basis of volumetric imaging studies, or postmortem 

histologic and molecular changes, including my own work (Ziats and Rennert 2013). 

However, as opposed to the notion that these changes are pathogenic—which would require 

an as yet undiscovered mechanism for the cerebellum in the higher cognitive functions 

affected in ASD—I propose instead that the unique anatomy, physiology, and development of 

the cerebellum may result in an exaggerated manifestation of the brain-wide pathologic 

changes that underlie autism, without being causal for the clinical phenotype. In this sense, 

then, the cerebellum in autism may be acting as an “anatomical beacon” of more subtle 

changes in other brain regions where the functional pathology actually rests. 

 

The unique anatomy, physiology, and development of the cerebellum make it a distinct part 

of the human brain. The cerebellum has the highest cell density of any brain area, 

approximately four times that of the neocortex (Herculano-Houzel 2009, 2012), and 

cerebellar Purkinje cells have more synapses than any other cell type by orders of magnitude 

(Kandel et al. 2012). As building synapses requires the appropriate molecular “toolkit,” the 

cerebellum's molecular complexity of transcripts (Mazin et al. 2013; Kang et al. 2011) and 

proteins (Fountoulakis et al. 2002; Martins-de-Souza et al. 2012) rivals that of the cerebral 
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cortex. Underlying the heightened synaptogenesis of the cerebellum is the need for energy to 

carry out this process, resulting in oxidative metabolic demand that is similar to the cerebral 

cortex as well (Howarth et al. 2012). The implications of these well-recognized cerebellar 

properties to autism are profound. The ASD phenotype is considered to ultimately result from 

synaptic dysfunction (Zoghbi 2003), which derives from underlying genetic changes that 

manifest in aberrant RNA and protein production (Voineagu 2012; Maurer 2012). 

Additionally, autism has a strong and growing association with related problems in oxidative 

metabolism (Rossignol and Frye 2012). Is it possible that cerebellar pathology in ASD is 

more evident than other brain areas purely because the cerebellum contains more of the 

components that are disrupted in autism? 

 

If the molecular and cellular processes that are abnormal in ASD are dysfunctional 

throughout the brain, then these observations suggest that the cerebellum may have properties 

that result in an exaggerated manifestation of ASD pathology compared to other brain 

regions. Therefore, I hypothesize that the cerebellum may not be etiological in the 

pathogenesis of autism spectrum disorders; rather its unique anatomic and physiologic 

properties may accentuate the mechanisms that are aberrant throughout the autistic brain. 

Consequently, investigations into autism pathology may be more readily observed in the 

cerebellum because the changes are more obvious than the concomitant changes in other 

brain areas responsible for the clinical phenotype. 

 

This hypothesis does not diminish the potential importance of the cerebellum to autism 

research. Harnessing this unique property has serious implications in diagnostic testing, for 

example with neuroimaging. Diagnostic tests may be able to identify biological changes in 

ASD patients earlier in life, which is known to correlate with improved patient outcomes 

(Howlin et al. 2009; Levy et al. 2009) by focusing on the cerebellum. While cerebellar 

changes may not directly cause the cognitive deficits of ASD, they could serve as an “internal 

biomarker” for the more subtle alterations that must therefore be ongoing in other brain areas 

but would require more sensitive techniques to detect. 

 

Until it is understood how the cerebellum functions in the higher cognitive processes that are 

abnormal in autism, the field must consider the alternative hypothesis that changes found in 

the cerebellum of autistic patients are not pathogenic, but rather are collateral manifestations 
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of the cellular and molecular deficits that are present throughout the autistic brain. The 

distinctive nature of the cerebellum may exaggerate changes that are more subtle in other 

brain areas, without being causal of the ASD phenotype. However, such an interpretation 

does not diminish the importance of cerebellar research in autism, as this unique 

characteristic may make the cerebellum an ideal diagnostic target. 
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Detailed	Description	of	Work	Performed	in	Collaboration	

 

All writing and work described in this thesis is the result of my own independent effort, under 

the guidance of my thesis mentors, with the following two exceptions: 

 

 Chapter 2.2 was performed in direct collaboration with Ahmed Mahfouz, a PhD 

student at Delft University of Technology, The Netherlands.  Ahmed and I met at a 

short course run by the Allen Institute for Brain Science.  We collaborated to develop 

all aspects of the work described in Chapter 2.2 from the conception of the project to 

writing of the manuscript, with equal contribution from each of us. Specifically, the 

general conception for the project was a joint effort. I was responsible for processing 

the gene expression information, compiling the autism candidate gene list, and 

constructing a database of ASD candidate gene expression. Ahmed wrote and 

executed the Matlab script that performed correlation analysis on this dataset. I then 

performed the gene ontology analysis and manually curated the results for biological 

relevance to autism. We both were responsible for creating the figures in this Chapter 

(I created Figures 1, 2, and 9 while Ahmed created Figures 3-8 as part of the Matlab 

script), and we worked in collaboration to interpret the results.  The writing in Chapter 

2.2 I did myself with input from Ahmed on the methods section. 

 

 Chapter 3.3 was performed in collaboration with Catherine Edmonson, a MD student 

at University of Florida School of Medicine.  Catherine worked in the laboratory of 

one of my PhD thesis mentors, Dr. Owen Rennert, for a period of time.  The work 

described in this Chapter was a result of equal contributions between Catherine and 

myself. Specifically, I was responsible for the conception of the experiment and the 

experimental design. Catherine performed the qRT-PCR experiments. We jointly 

analyzed and interpreted the results. I was responsible for creating the figures and 

writing up the manuscript. 
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Additional	Tables	and	Figures	

Table A1.  Demographic information of donor brains in the Brainspan atlas used in this 
analysis. All information that was from: www.brainspan.org is presented. 

	
Donor # for 
this Study 

Allen Institute 
Donor ID 

Allen Institute 
Donor Description 

Donor Age 
at Death 

Donor 
Gender 

Donor 
Ethnicity 

Brain pH  PMI 
(hours)

1  12287  H376.IIIB.50  16 pcw  M  H  unknown 2 

2  12837  H376.IIIB.51  16 pcw  M  E  6.84 1

3  12879  H376.IIIB.52  16 pcw  M  A/E  6.44  1 

4  12880  H376.IIIB.53  17 pcw  F  E  unknown 2

5  12885  H376.IV.53  19 pcw  F  H  unknown 2 

6  12365  H376.IV.51  21 pcw  F  E  6.61  20 

7  12886  H376.IV.54  21 pcw  M  A  6.65  4 

8  12288  H376.IV.50  24 pcw  M  E  6.58  2 

9  12296  H376.VI.50  4 mos  M  E  6.60 22

10  12889  H376.VI.51  4 mos  M  A  6.70  20 

11  12890  H376.VI.52  6 mos  M  E  6.26 26

12  12977  H376.VII.51  10 mos  M  A  5.96  18 

13  12979  H376.VIII.53  2 yrs  F  E  6.30  12 

14  12836  H376.VIII.52  3 yrs  F  E  6.03 8

15  12980  H376.VIII.54  3 yrs  M  H  5.69  16 

16  12298  H376.VIII.50  4 yrs  M  A  6.52 20

17  12841  H376.IX.51  8 yrs  M  A  6.54  30 

18  12981  H376.IX.52  8 yrs  M  A  6.25  16 

19  12289  H376.IX.50  11 yrs  F  A  6.70  22 

20  12831  H376.X.51  13 yrs  F  A  6.34  19.5 

21  12299  H376.X.50  15 yrs  M  A  6.93 14.5

22  12984  H376.X.53  18 yrs  M  E  6.21  28 

23  12832  H376.X.52  19 yrs  F  E  5.91 9.5

24  13057  H376.XI.60  21 yrs  F  E  6.81  18 

25  12300  H376.XI.50  23 yrs  M  A  6.36  10.5 

26  12290  H376.XI.52  30 yrs  F  E  6.92  9.5 

27  12302  H376.XI.53  36 yrs  M  E  6.42  18 

28  12303  H376.XI.54  37 yrs  M  A  6.37 13

29  12304  H376.XI.56  40 yrs  F  A  6.82  30.5 

30  12305  H376.XI.55  40 yrs  M  E  6.27 28

E = European, As = Asian, A= African American, H = Hispanic, A/E = Afircan American/European, 
PMI = post-mortem interval 
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Table A2.  List of Autism Candidate Genes Used in Chapter 2 Analyses.  
** indicates the gene was in the AutDB database when the analysis in Chapter 2.1 was performed as 
described in the methods section of that Chapter.. 
 

Gene Symbol Entrez ID Gene Name 

A2BP1** 54715 ataxin 2-binding protein 1 

ABAT** 18 4-aminobutyrate aminotransferase 

ABCC1 4363 ATP-binding cassette, sub-family C (CFTR/MRP), member 1 

ACCN1 40 amiloride-sensitive cation channel 1, neuronal 

ACSL4 2182 acyl-CoA synthetase long-chain family member 4 

ADA** 100 adenosine deaminase 

ADH5 128 
alcohol dehydrogenase 5 (class III), chi polypeptide, pseudogene 4; alcohol 

dehydrogenase 5 (class III), chi polypeptide 

ADORA2A** 135 adenosine A2a receptor 

ADSL** 158 adenylosuccinate lyase 

AFF2 2334 AF4/FMR2 family, member 2 

AGAP1 116987 ArfGAP with GTPase domain, ankyrin repeat and PH domain 1 

AHCYL2 23382 adenosylhomocysteinase-like 2 

AHI1** 54806 Abelson helper integration site 1 

ALDH5A1** 7915 aldehyde dehydrogenase 5 family, member A1 

ALDH7A1 501 aldehyde dehydrogenase 7 family, member A1 

ALOX5AP** 241 arachidonate 5-lipoxygenase-activating protein 

ANKRD11** 29123 ankyrin repeat domain 11; hypothetical protein LOC100128265 

AP1S2 653653 
adaptor-related protein complex 1, sigma 2 subunit pseudogene; adaptor-

related protein complex 1, sigma 2 subunit 

APBA2 321 amyloid beta (A4) precursor protein-binding, family A, member 2 

APC** 324 adenomatous polyposis coli 

APCDD1 147495 adenomatosis polyposis coli down-regulated 1 

APOE 100129500 hypothetical LOC100129500; apolipoprotein E 

ARHGEF6 9459 Rac/Cdc42 guanine nucleotide exchange factor (GEF) 6 

ARID1B 57492 AT rich interactive domain 1B (SWI1-like) 

ARNT2** 9915 aryl-hydrocarbon receptor nuclear translocator 2 

ARX** 170302 aristaless related homeobox 

ASS1** 445 argininosuccinate synthetase 1 

ASTN2** 23245 astrotactin 2 

ATP10A** 57194 ATPase, class V, type 10A 

ATP1A2 477 ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide 

ATP2B2 491 ATPase, Ca++ transporting, plasma membrane 2 

ATP6AP1 537 ATPase, H+ transporting, lysosomal accessory protein 1 

ATP6AP2 10159 ATPase, H+ transporting, lysosomal accessory protein 2 

ATRX 546 
alpha thalassemia/mental retardation syndrome X-linked (RAD54 homolog, 

S. cerevisiae) 

AUTS2** 26053 autism susceptibility candidate 2 
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AVPR1A** 552 arginine vasopressin receptor 1A 

BAIAP2 10458 BAI1-associated protein 2 

BCL2 596 B-cell CLL/lymphoma 2

BCL6 604 B-cell CLL/lymphoma 6 

BDNF 627 brain-derived neurotrophic factor 

BLMH 642 bleomycin hydrolase 

BRAF 673 v-raf murine sarcoma viral oncogene homolog B1 

BZRAP1** 9256 benzodiazapine receptor (peripheral) associated protein 1 

C16orf68 79091 chromosome 16 open reading frame 68 

C3orf58** 205428 chromosome 3 open reading frame 58 

C7orf68 29923 chromosome 7 open reading frame 68 

CACNA1C** 100131098 
hypothetical protein LOC100131098; calcium channel, voltage-dependent, 

L type, alpha 1C subunit 

CACNA1G** 8913 calcium channel, voltage-dependent, T type, alpha 1G subunit 

CACNA1H** 8912 calcium channel, voltage-dependent, T type, alpha 1H subunit 

CACNA1I 8911 calcium channel, voltage-dependent, T type, alpha 1I subunit 

CADM1** 23705 cell adhesion molecule 1 

CADPS2** 93664 Ca++-dependent secretion activator 2 

CALCA 796 calcitonin-related polypeptide alpha 

CARHSP1 23589 calcium regulated heat stable protein 1, 24kDa 

CASK 8573 calcium/calmodulin-dependent serine protein kinase (MAGUK family) 

CASP3 836 caspase 3, apoptosis-related cysteine peptidase 

CBS** 875 cystathionine-beta-synthase 

CCDC64** 92558 coiled-coil domain containing 64 

CD44** 960 CD44 molecule (Indian blood group) 

CDH10** 1008 cadherin 10, type 2 (T2-cadherin) 

CDH22** 64405 cadherin-like 22 

CDH8 1006 cadherin 8, type 2 

CDH9** 1007 cadherin 9, type 2 (T1-cadherin) 

CDK14 5218 cyclin-dependent kinase 14 

CDKL5** 6792 cyclin-dependent kinase-like 5 

CEP290 80184 centrosomal protein 290kDa 

CHD7 55636 chromodomain helicase DNA binding protein 7 

CHI3L1 1116 chitinase 3-like 1 (cartilage glycoprotein-39) 

CHN1 1123 chimerin (chimaerin) 1 

CHRM5 1133 cholinergic receptor, muscarinic 5 

CHRNA4 1137 cholinergic receptor, nicotinic, alpha 4 

CHRNB2 1141 cholinergic receptor, nicotinic, beta 2 (neuronal) 

CLCN4 1183 chloride channel 4 

CLDN5 7122 claudin 5 

CNKSR2 22866 connector enhancer of kinase suppressor of Ras 2 

CNR1** 1268 cannabinoid receptor 1 (brain) 

CNTN3 5067 contactin 3 (plasmacytoma associated) 



	

 

156 
 

CNTN4** 152330 contactin 4 

CNTNAP2** 26047 contactin associated protein-like 2

CNTNAP5** 129684 contactin associated protein-like 5 

COMT 1312 catechol-O-methyltransferase 

CREBBP 1387 CREB binding protein 

CTNNA2** 1496 catenin (cadherin-associated protein), alpha 2 

CTNNA3 29119 catenin (cadherin-associated protein), alpha 3 

CTSD 1509 cathepsin D 

CTTNBP2** 83992 cortactin binding protein 2 

CUX1 1523 cut-like homeobox 1 

CYFIP1 23191 cytoplasmic FMR1 interacting protein 1 

CYR61 3491 cysteine-rich, angiogenic inducer, 61 

DAB1** 1600 disabled homolog 1 (Drosophila) 

DAO 1610 D-amino-acid oxidase 

DAPK1** 1612 death-associated protein kinase 1 

DCC 1630 deleted in colorectal carcinoma 

DCUN1D1** 54165 DCN1, defective in cullin neddylation 1, domain containing 1 

DCX** 1641 doublecortin 

DDX3X** 1654 DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked 

DGCR2 9993 DiGeorge syndrome critical region gene 2 

DGCR6 8214 DiGeorge syndrome critical region gene 6 

DHCR7** 1717 7-dehydrocholesterol reductase 

DHRS3 9249 dehydrogenase/reductase (SDR family) member 3 

DLG4 1742 discs, large homolog 4 (Drosophila) 

DLGAP2** 9228 discs, large (Drosophila) homolog-associated protein 2 

DLX1** 1745 distal-less homeobox 1 

DLX2** 1746 distal-less homeobox 2 

DLX5 1749 distal-less homeobox 5 

DLX6 1750 distal-less homeobox 6 

DMPK** 1760 dystrophia myotonica-protein kinase 

DNAJC10 54431 DnaJ (Hsp40) homolog, subfamily C, member 10 

DNER 92737 delta/notch-like EGF repeat containing 

DOC2A 8448 double C2-like domains, alpha 

DOCK4 9732 dedicator of cytokinesis 4 

DPP10** 57628 dipeptidyl-peptidase 10 

DPP6** 1804 dipeptidyl-peptidase 6 

DRD1 1812 dopamine receptor D1 

DRD3** 1814 dopamine receptor D3 

DRD4 1815 dopamine receptor D4 

DRD5 1816 dopamine receptor D5 

DYNLT3 6990 dynein, light chain, Tctex-type 3 

EGR2** 1959 early growth response 2 

EHMT1 79813 euchromatic histone-lysine N-methyltransferase 1
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EIF4E** 100131565 eukaryotic translation initiation factor 4E; similar to hCG1777996 

ELN 2006 elastin 

EN2** 2020 engrailed homeobox 2 

EPHA5 2044 EPH receptor A5 

EPHB6 2051 EPH receptor B6 

ERBB4 2066 v-erb-a erythroblastic leukemia viral oncogene homolog 4 (avian) 

ESRRB** 2103 estrogen-related receptor beta 

EXOC4 60412 exocyst complex component 4 

EXT1 2131 exostoses (multiple) 1 

F13A1** 2162 coagulation factor XIII, A1 polypeptide 

FABP5** 728729 fatty acid binding protein 5-like 2; fatty acid binding protein 5  

FABP7** 2173 fatty acid binding protein 7, brain 

FAM84A 653602 hypothetical LOC653602; family with sequence similarity 84, member A 

FBXO33** 254170 F-box protein 33 

FEZF1 389549 FEZ family zinc finger 1 

FEZF2** 55079 FEZ family zinc finger 2 

FGD1 2245 FYVE, RhoGEF and PH domain containing 1 

FHIT** 2272 fragile histidine triad gene 

FLT1** 2321 
fms-related tyrosine kinase 1 (vascular endothelial growth factor/vascular 

permeability factor receptor) 

FMR1** 2332 fragile X mental retardation 1 

FOXG1 2290  forkhead box G1 

FOXP1 27086 forkhead box P1 

FOXP2** 93986 forkhead box P2 

FRMPD4** 9758 FERM and PDZ domain containing 4 

FTSJ1 24140 FtsJ homolog 1 (E. coli) 

GABRA2 2555 gamma-aminobutyric acid (GABA) A receptor, alpha 2 

GABRA4** 2557 gamma-aminobutyric acid (GABA) A receptor, alpha 4 

GABRA5 2558 gamma-aminobutyric acid (GABA) A receptor, alpha 5 

GABRB1** 2560 gamma-aminobutyric acid (GABA) A receptor, beta 1 

GABRB3** 2562 gamma-aminobutyric acid (GABA) A receptor, beta 3 

GABRG1 2565 gamma-aminobutyric acid (GABA) A receptor, gamma 1 

GABRG3 2567 gamma-aminobutyric acid (GABA) A receptor, gamma 3 

GAD1 2571 glutamate decarboxylase 1 (brain, 67kDa) 

GAD2 2572 glutamate decarboxylase 2 (pancreatic islets and brain, 65kDa) 

GADD45B 4616 growth arrest and DNA-damage-inducible, beta 

GALNT13** 2589 
UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 13 (GalNAc-T13); 

GALNTL4 374378 
UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase-like 4 

GAMT 2593 guanidinoacetate N-methyltransferase
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GATA3 2625 GATA binding protein 3 

GCLC 2729 glutamate-cysteine ligase, catalytic subunit 

GDI1 2664 GDP dissociation inhibitor 1 

GFAP 2670 glial fibrillary acidic protein 

GLO1** 2739 glyoxalase I 

GLRA2** 2742 glycine receptor, alpha 2 

GLRA3 8001 glycine receptor, alpha 3 

GLRB 2743 glycine receptor, beta 

GNAS** 2778 GNAS complex locus 

GNPTAB 79158 N-acetylglucosamine-1-phosphate transferase, alpha and beta subunits 

GPD2 2820 glycerol-3-phosphate dehydrogenase 2 (mitochondrial) 

GPM6B 2824 glycoprotein M6B 

GPR139 124274 G protein-coupled receptor 139 

GPR173 54328 G protein-coupled receptor 173 

GPX1** 2876 glutathione peroxidase 1 

GRIA2 2891 glutamate receptor, ionotropic, AMPA 2 

GRIA3 2892 glutamate receptor, ionotrophic, AMPA 3 

GRIK2** 2898 glutamate receptor, ionotropic, kainate 2 

GRIN2A** 2903 glutamate receptor, ionotropic, N-methyl D-aspartate 2A 

GRIN2B 2904 glutamate receptor, ionotropic, N-methyl D-aspartate 2B 

GRIN3B 116444 glutamate receptor, ionotropic, N-methyl-D-aspartate 3B 

GRIP1 23426 glutamate receptor interacting protein 1 

GRIPAP1 56850 GRIP1 associated protein 1 

GRM8** 2918 glutamate receptor, metabotropic 8 

GSG1L 146395 GSG1-like 

GSTM1** 2944 glutathione S-transferase mu 1 

GSTP1 2950 glutathione S-transferase pi 1 

GTF2I 100093631 
general transcription factor II, i; general transcription factor II, i, 

pseudogene 

HAPLN4 404037 hyaluronan and proteoglycan link protein 4 

HAT1 8520 histone acetyltransferase 1 

HCFC1 3054 host cell factor C1 (VP16-accessory protein) 

HDAC6 10013 histone deacetylase 6 

HERC6 55008 hect domain and RLD 6 

HIRIP3 8479 HIRA interacting protein 3 

HLA-A** 3105 major histocompatibility complex, class I, A 

HLA-DRB1** 3126 
major histocompatibility complex, class II, DR beta 4; major 

histocompatibility complex, class II, DR beta 1 

HMGB1 100130561 high-mobility group box 1; high-mobility group box 1-like 10 

HNRNPH2** 6173 

ribosomal protein L36a pseudogene 51; ribosomal protein L36a pseudogene 

37; ribosomal protein L36a pseudogene 49; heterogeneous nuclear 

ribonucleoprotein H2 (H'); ribosomal protein L36a 
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HRAS** 3265 v-Ha-ras Harvey rat sarcoma viral oncogene homolog 

HS3ST5** 222537 heparan sulfate (glucosamine) 3-O-sulfotransferase 5 

HSD11B1** 3290 hydroxysteroid (11-beta) dehydrogenase 1 

HSPA6 3311 
heat shock 70kDa protein 7 (HSP70B); heat shock 70kDa protein 6 

(HSP70B') 

HSPB8 26353 heat shock 22kDa protein 8 

HTR1B** 3351 5-hydroxytryptamine (serotonin) receptor 1B 

HTR2A** 3356 5-hydroxytryptamine (serotonin) receptor 2A 

HTR2C** 3358 5-hydroxytryptamine (serotonin) receptor 2C 

HTR7** 3363 5-hydroxytryptamine (serotonin) receptor 7 (adenylate cyclase-coupled) 

ID3 3399 inhibitor of DNA binding 3, dominant negative helix-loop-helix protein 

IFI16 3428 interferon, gamma-inducible protein 16 

IFITM3 10410 interferon induced transmembrane protein 3 (1-8U) 

IGF2 3481 
insulin-like growth factor 2 (somatomedin A); insulin; INS-IGF2 

readthrough transcript 

IMMP2L** 83943 IMP2 inner mitochondrial membrane peptidase-like (S. cerevisiae) 

ING3 54556 inhibitor of growth family, member 3 

INPP1** 3628 inositol polyphosphate-1-phosphatase 

IQSEC2 23096 IQ motif and Sec7 domain 2 

IRAK1 3654 interleukin-1 receptor-associated kinase 1 

JARID2 3720 jumonji, AT rich interactive domain 2 

JMJD1C** 221037 jumonji domain containing 1C 

JMJD6 23210 jumonji domain containing 6 

KCND1 3750 potassium voltage-gated channel, Shal-related subfamily, member 1 

KCND2 3751 potassium voltage-gated channel, Shal-related subfamily, member 2 

KCNMA1** 3778 
potassium large conductance calcium-activated channel, subfamily M, 

alpha member 1 

KDM4C 23081 lysine (K)-specific demethylase 4C 

KDM5C 8242 lysine (K)-specific demethylase 5C 

KIAA1586** 57691 KIAA1586 

KLHL21 9903 kelch-like 21 (Drosophila) 

KRAS 3845 v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog 

L1CAM 3897 L1 cell adhesion molecule 

LAMB1** 3912 laminin, beta 1 

LAMC3 10319 laminin, gamma 3 

LEMD3 23592 LEM domain containing 3 

LHFPL3 375612 lipoma HMGIC fusion partner-like 3 

LRFN5** 145581 leucine rich repeat and fibronectin type III domain containing 5 

LRRC1** 55227 leucine rich repeat containing 1

LRRN3 54674 leucine rich repeat neuronal 3 

LRRTM3 347731 leucine rich repeat transmembrane neuronal 3 
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LRRTM4 80059 leucine rich repeat transmembrane neuronal 4 

LZTS2** 84445 leucine zipper, putative tumor suppressor 2 

MACROD2** 140733 MACRO domain containing 2 

MAOA** 4128 monoamine oxidase A 

MAOB 4129 monoamine oxidase B 

MAP1A 4130 microtubule-associated protein 1A 

MAP2** 4133 microtubule-associated protein 2 

MAP2K1 5604 mitogen-activated protein kinase kinase 1 

MAP2K3 5606 mitogen-activated protein kinase kinase 3 

MAPK1 5594 mitogen-activated protein kinase 1 

MAPK3 5595 hypothetical LOC100271831; mitogen-activated protein kinase 3 

MARK1** 4139 MAP/microtubule affinity-regulating kinase 1 

MBD1** 4152 methyl-CpG binding domain protein 1 

MBD2 8932 methyl-CpG binding domain protein 2 

MBD3** 53615 methyl-CpG binding domain protein 3 

MBD4** 8930 methyl-CpG binding domain protein 4 

MBD5 55777 methyl-CpG binding domain protein 5 

MCF2 4168 MCF.2 cell line derived transforming sequence 

MCM7 4176 minichromosome maintenance complex component 7 

MCPH1** 79648 microcephalin 1 

MDGA2** 161357 MAM domain containing glycosylphosphatidylinositol anchor 2 

MECP2** 4204 methyl CpG binding protein 2 (Rett syndrome) 

MED12** 9968 mediator complex subunit 12 

MEF2C** 4208 myocyte enhancer factor 2C 

MET** 4233 met proto-oncogene (hepatocyte growth factor receptor) 

MFSD6 54842 major facilitator superfamily domain containing 6 

MID1 4281 midline 1 (Opitz/BBB syndrome) 

MIF 4282 macrophage migration inhibitory factor (glycosylation-inhibiting factor) 

MKKS 8195 McKusick-Kaufman syndrome 

MTHFR 4524 5,10-methylenetetrahydrofolate reductase (NADPH) 

MTNR1A 4543 melatonin receptor 1A 

MYH11 4629 myosin, heavy chain 11, smooth muscle 

MYO16** 23026 myosin XVI 

MYO1D 4642 myosin ID 

NBEA** 26960 neurobeachin 

NCAM1 4684 neural cell adhesion molecule 1 

NDN 4692 necdin homolog (mouse) 

NDNL2** 56160 necdin-like 2 

NDP 4693 Norrie disease (pseudoglioma) 

NDUFA5 4698 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 5, 13kDa 

NF1** 4763 neurofibromin 1 

NFIX 4784 nuclear factor I/X (CCAAT-binding transcription factor) 

NGF 4803 nerve growth factor (beta polypeptide) 
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NIPA1 123606 non imprinted in Prader-Willi/Angelman syndrome 1 

NIPA2 81614 non imprinted in Prader-Willi/Angelman syndrome 2 

NIPBL 25836 Nipped-B homolog (Drosophila) 

NLGN1** 22871 neuroligin 1 

NLGN3** 54413 neuroligin 3 

NLGN4X** 57502 neuroligin 4, X-linked 

NLGN4Y** 22829 neuroligin 4, Y-linked 

NOS1 4842 nitric oxide synthase 1 (neuronal) 

NOS1AP** 9722 nitric oxide synthase 1 (neuronal) adaptor protein 

NOTCH2 4853 Notch homolog 2 (Drosophila) 

NPAS2** 4862 neuronal PAS domain protein 2 

NPTX2 4885 neuronal pentraxin II 

NPY1R 4886 neuropeptide Y receptor Y1 

NPY5R 4889 neuropeptide Y receptor Y5 

NRCAM** 4897 neuronal cell adhesion molecule 

NRP2** 8828 neuropilin 2 

NRXN1** 9378 neurexin 1 

NRXN2 9379 neurexin 2 

NSD1 64324 nuclear receptor binding SET domain protein 1 

NTF3 4908 neurotrophin 3 

NTNG1** 22854 netrin G1 

NTRK1** 4914 neurotrophic tyrosine kinase, receptor, type 1 

NTRK3** 4916 neurotrophic tyrosine kinase, receptor, type 3 

OCRL 4952 oculocerebrorenal syndrome of Lowe 

OMG 4974 oligodendrocyte myelin glycoprotein 

OPCML 4978 opioid binding protein/cell adhesion molecule-like 

OPHN1** 4983 oligophrenin 1 

OPRM1** 4988 opioid receptor, mu 1 

OSBPL6 114880 oxysterol binding protein-like 6 

OXT** 5020 oxytocin, prepropeptide 

PAFAH1B1 5048 platelet-activating factor acetylhydrolase, isoform Ib, subunit 1 (45kDa) 

PARK2** 5071 Parkinson disease (autosomal recessive, juvenile) 2, parkin 

PAX3 5077 paired box 3 

PAX6 5080 paired box 6 

PCDH10** 57575 protocadherin 10 

PCDH11X 27328 protocadherin 11 X-linked 

PCDH19** 57526 protocadherin 19 

PCDH9** 5101 protocadherin 9 

PCYT1B 9468 phosphate cytidylyltransferase 1, choline, beta

PDE4A 5141 phosphodiesterase 4A, cAMP-specific  

PDE4B 5142 phosphodiesterase 4B, cAMP-specific  

PDZD4** 57595 PDZ domain containing 4 

PER1** 5187 period homolog 1 (Drosophila) 
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PLAUR 5329 plasminogen activator, urokinase receptor 

PLD5 200150 phospholipase D family, member 5 

PLN** 5350 phospholamban 

PLXNA3 55558 plexin A3 

PLXNA4 91584 plexin A4 

POMGNT1 55624 protein O-linked mannose beta1,2-N-acetylglucosaminyltransferase 

PPP1R3F** 89801 protein phosphatase 1, regulatory (inhibitor) subunit 3F 

PQBP1 10084 polyglutamine binding protein 1 

PRKCB** 5579 protein kinase C, beta 

PRKX 5613 protein kinase, X-linked 

PRL 5617 prolactin 

PRLR 5618 prolactin receptor 

PRODH 5625 proline dehydrogenase (oxidase) 1 

PRPF31 26121  pre-mRNA processing factor 31 

PRRT2 112476 proline-rich transmembrane protein 2 

PSD3 23362 pleckstrin and Sec7 domain containing 3 

PSMD10** 5716 proteasome (prosome, macropain) 26S subunit, non-ATPase, 10 

PTCHD1** 139411 patched domain containing 1 

PTEN** 5728 
phosphatase and tensin homolog; phosphatase and tensin homolog 

pseudogene 1 

PTGS2** 5743 
prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and 

cyclooxygenase) 

PTPN11 442113 
protein tyrosine phosphatase, non-receptor type 11; similar to protein 

tyrosine phosphatase, non-receptor type 11 

PTPRD 5789 protein tyrosine phosphatase, receptor type, D 

PTPRN2 5799 protein tyrosine phosphatase, receptor type, N polypeptide 2 

PTS 5805 6-pyruvoyltetrahydropterin synthase 

PUM2 23369 pumilio homolog 2 (Drosophila) 

RAB11FIP5 26056 RAB11 family interacting protein 5 (class I) 

RAB39B** 116442 RAB39B, member RAS oncogene family 

RAI1** 10743 retinoic acid induced 1 

RAPGEF4** 11069 Rap guanine nucleotide exchange factor (GEF) 4 

RB1CC1** 9821 RB1-inducible coiled-coil 1 

REEP3** 221035 receptor accessory protein 3 

RELN** 5649 reelin 

RFWD2** 64326 ring finger and WD repeat domain 2

RFX4 5992 regulatory factor X, 4 (influences HLA class II expression) 

RIMS3** 9783 regulating synaptic membrane exocytosis 3 

RIT1 6016 Ras-like without CAAX 1 

RNF216L 441191 ring finger protein 216-like 

RNF8 9025 ring finger protein 8 

ROBO1** 642132 roundabout, axon guidance receptor, homolog 1 (Drosophila) 
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ROBO2 6092 roundabout, axon guidance receptor, homolog 2 (Drosophila) 

ROBO3 64221 roundabout, axon guidance receptor, homolog 3 (Drosophila) 

ROBO4 54538 roundabout homolog 4, magic roundabout (Drosophila) 

RORA 6095 RAR-related orphan receptor A 

RPL10** 285176 ribosomal protein L10; ribosomal protein L10 pseudogene 15 

RPP25 54913 ribonuclease P/MRP 25kDa subunit 

RPS6KA2** 6196 
ribosomal protein S6 kinase, 90kDa, polypeptide 2; hypothetical 

LOC100127984 

RPS6KA3 6197 ribosomal protein S6 kinase, 90kDa, polypeptide 3 

RYR2 6262 ryanodine receptor 2 (cardiac) 

SATB2 23314 SATB homeobox 2 

SCN1A** 6323 sodium channel, voltage-gated, type I, alpha subunit 

SCN2A** 6326 sodium channel, voltage-gated, type II, alpha subunit 

SCT 6343 secretin 

SDC2** 6383 syndecan 2 

SDF2L1 23753 stromal cell-derived factor 2-like 1 

SEMA4D 10507 
sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) 

and short cytoplasmic domain, (semaphorin) 4D 

SEMA5A** 9037 
sema domain, seven thrombospondin repeats (type 1 and type 1-like), 

transmembrane domain and short cytoplasmic domain, (semaphorin) 5A 

SERPIND1 3053 serpin peptidase inhibitor, clade D (heparin cofactor), member 1 

SERPINH1 871 
serpin peptidase inhibitor, clade H (heat shock protein 47), member 1, 

(collagen binding protein 1) 

SEZ6L2** 26470 seizure related 6 homolog (mouse)-like 2 

SFRS3 6428 splicing factor, arginine/serine-rich 3 

SGSH 6448 N-sulfoglucosamine sulfohydrolase 

SH3KBP1** 30011 SH3-domain kinase binding protein 1 

SHANK1 50944 SH3 and multiple ankyrin repeat domains 1 

SHANK2** 22941 SH3 and multiple ankyrin repeat domains 2 

SHANK3** 85358 SH3 and multiple ankyrin repeat domains 3 

SHISA9  729993 shisa family member 9  

SHROOM2 357 shroom family member 2 

SLC16A3 9123 solute carrier family 16, member 3 (monocarboxylic acid transporter 4)

SLC1A1** 6505 
solute carrier family 1 (neuronal/epithelial high affinity glutamate 

transporter, system Xag), member 1 

SLC25A12** 8604 solute carrier family 25 (mitochondrial carrier, Aralar), member 12 

SLC25A13 10165 solute carrier family 25, member 13 (citrin) 

SLC38A5 92745 solute carrier family 38, member 5 

SLC4A10** 57282 solute carrier family 4, sodium bicarbonate transporter, member 10 

SLC6A8** 6535 solute carrier family 6 (neurotransmitter transporter, creatine), member 8 
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SLC7A5 8140 solute carrier family 7, member 5 

SLC9A6** 10479 solute carrier family 9 (sodium/hydrogen exchanger), member 6 

SLC9A9** 285195 solute carrier family 9 (sodium/hydrogen exchanger), member 9 

SLTM 79811 SAFB-like, transcription modulator 

SMO 6608 smoothened homolog (Drosophila) 

SNAP25 6616 synaptosomal-associated protein, 25kDa 

SNRPN 6638 small nuclear ribonucleoprotein polypeptide N 

SPON2 10417 spondin 2, extracellular matrix protein 

SPP1 6696 secreted phosphoprotein 1 

SSBP1 6742 single-stranded DNA binding protein 1 

ST7** 7982 suppression of tumorigenicity 7 

ST8SIA2 8128 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 2 

STK33 65975 serine/threonine kinase 33 

STK39** 27347 serine threonine kinase 39 (STE20/SPS1 homolog, yeast) 

STS 412 steroid sulfatase (microsomal), isozyme S 

STX1A 6804 syntaxin 1A (brain) 

SUCLG2** 8801 similar to sucb; succinate-CoA ligase, GDP-forming, beta subunit 

SYN1 6853 synapsin I 

SYNGAP1 8831 synaptic Ras GTPase activating protein 1 homolog (rat) 

SYPL1 6856 synaptophysin-like 1 

SYT17** 51760 synaptotagmin XVII; synaptotagmin VII 

TAC1 6863 tachykinin, precursor 1 

TAF1C 9013 TATA box binding protein (TBP)-associated factor, RNA polymerase I 

TAOK2 9344 TAO kinase 2 

TBR1 10716 T-box, brain, 1 

TCN2 6948 transcobalamin II; macrocytic anemia 

TFPI 7035 tissue factor pathway inhibitor (lipoprotein-associated coagulation inhibitor) 

TGM3 7053 
transglutaminase 3 (E polypeptide, protein-glutamine-gamma 

glutamyltransferase) 

TH** 7054 tyrosine hydroxylase 

TIMP1 7076 TIMP metallopeptidase inhibitor 1 

TLE2 7089 transducin-like enhancer of split 2 (E(sp1) homolog, Drosophila) 

TLK1 9874 tousled-like kinase 1 

TLK2 11011 tousled-like kinase 2

TMEM130** 222865 transmembrane protein 130 

TMEM47 83604 transmembrane protein 47 

TMEM98 440181 similar to transmembrane protein 98; transmembrane protein 98 

TRO 7216 trophinin 

TSC1** 7248 tuberous sclerosis 1 

TSC2** 7249 tuberous sclerosis 2 

TSGA14 95681 testis specific, 14 

TSN** 7247 translin 
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TSPAN12 23554 tetraspanin 12 

TSPAN7** 7102 tetraspanin 7 

TUBGCP5 114791 tubulin, gamma complex associated protein 5 

UBE2H** 7328 ubiquitin-conjugating enzyme E2H (UBC8 homolog, yeast) 

UBE2L3 7332 ubiquitin-conjugating enzyme E2L 3 

UBE3A** 7337 ubiquitin protein ligase E3A 

UPF3B 65109 UPF3 regulator of nonsense transcripts homolog B (yeast) 

USP9X 8239 ubiquitin specific peptidase 9, X-linked 

VASH1** 22846 vasohibin 1 

VIP 7432 vasoactive intestinal peptide 

VIPR2 7434 vasoactive intestinal peptide receptor 2 

WNK3** 65267 WNK lysine deficient protein kinase 3 

WNT2** 7472 wingless-type MMTV integration site family member 2 

XPC** 7508 xeroderma pigmentosum, complementation group C 

YWHAB 7529 tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein 

YWHAE 440917 similar to 14-3-3 protein epsilon (14-3-3E)  

ZNF214 7761 zinc finger protein 214 

ZNF385B 151126 zinc finger protein 385B 

ZNF498 221785 zinc finger protein 498 

ZNF622 90441 zinc finger protein 622 
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Supplementary Figure A3. Distribution plot of the number of strongly correlated gene-pairs per 
gene set from Chapter 2.2. The distribution of the number of gene-pairs remaining after applying the 
threshold (absolute correlation > 0.8 at any developmental stage) shows that that the number of 
strongly correlated gene-pairs from the the ASD list (dashed red line) is highly significant (p = 10-4). 
Blue bars correspond to the 10,000 random gene sets analyzed. 
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Supplementary	Information	
Most supplementary information referred to in this thesis consists of very large data tables 

containing raw gene expression or gene ontology results. In no instances are the 

supplementary data referred to necessary to interpret the results presented herein.  Therefore, 

in an attempt to conserve space, the Supplementary Tables described in the text and listed 

below are included on the accompanying CD attached to this work. Additionally, the same 

dataset that is found on the accompanying CD can be accessed for free at:  

http:// mziats.wix.com/cambridgethesis 

 
 
Chapter 2.1 

Supplementary Table S1. List of AutDB Genes.  

Supplementary Document S2. Allen Brain Institute BrainSpan Detailed Methods. 

Supplementary Table S3. SZGene Gene List. 

Supplementary Table S4. CarpeDB Gene List. 

Supplementary Table S5. AutDB Expression Heatmap. 

Supplementary Table S6. SZGene Expression Heatmap. 

Supplementary Table S7. CarpeDB Expression Heatmap. 

Supplementary Table S8. Validation of approach via known constantly expressed genes. 

Supplementary Table S9. Validation of approach via housekeeping genes. 

Supplementary Table S10. Validation of approach via Intermediate Filaments. 

Supplementary Table S11. Expression heatmap of CNR1. 

Supplementary Table S12. Highly Expressed ASD Genes by Region. 

Supplementary Figure S13. Reelin pathway depicting ASD-associated genes in yellow. 

 

Chapter 2.2 

Supplementary Table S14. GO enrichment of ASD modules  
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Chapter 2.3 

Supplementary Table S15. Known sex biased genes analyzed. 

Supplementary Tables S16 – 19. Confirmatory GO analysis using IPA and GeneGO. 

Supplementary Table 20. Male sex biased pathways are enriched among autism GO terms. 

Supplementary Table S21. ‘Expression’ versus ‘Inherited’ gene sets.  

Supplementary Table S22. ‘Expression’ set GO enrichment results. 

Supplementary Table S23. ‘Inherited’ set GO enrichment results. 

 

Chapter 2.4 

Supplementary Table S24. Full miRNA dataset analyzed after removing lowly-expressed miRNAs. 

Supplementary Table S25 – S27. DE miRNAs within brain regions (S25), between brain regions 
(S26), and between sexes in the prefrontal cortex (S27). 

Supplementary Tables S28-33. Gene targets of differentially expressed miRNAs by region (S28) 
and gene ontology terms of gene targets by region (S29-S33). 

 

Chapter 3.1 

Supplementary Table S34. PCR primers used for RT-PCR confirmation. 
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