On Zero Stiffness

Mark Schenk and Simon D Guest *

Abstract

Zero stiffness structures have the remarkable ability to undergo large
elastic deformations without requiring external work. Several equivalent
descriptions exist, namely i) continuous equilibrium, ii) constant potential
energy, iii) neutral stability and iv) zero stiffness. Each perspective on zero
stiffness provides different methods of analysis and design. This paper
reviews the concept of zero stiffness and categorises examples from the
literature by the interpretation that best describes their working principle.
Lastly, a basic spring-to-spring balancer is analysed to demonstrate the
equivalence of the four different interpretations, and illustrate the different
insights that each approach brings.

1 Introduction

A fascinating combination of geometry, stiffness and prestress enables zero stiff-
ness structures to deform and maintain their deformed configuration without
any external work — in effect, these elastic structures behave as mechanisms.
This remarkable property forms the topic of this paper. Paradoxically, there
exists a considerable body of work describing zero stiffness structures, while
the concept. of zero stiffness is at the same time generally unknown. One of
the reasons is that examples of zero stiffness structures are found in disparate
disciplines and go by various monikers (for example, in mechanical engineering
they are often referred to as statically balanced mechanisms). As a result, the
shared underlying mechanical principles are seldom recognised.

There are several equivalent interpretations of the concept of zero stiffness. The
key property is the ability of an elastic structure to deform with zero stiffness,
where any change in configuration requires no external work. These structures
are thus said to be neutrally stable: at the cusp at stability and instability, they
can undergo large displacements for a constant critical load or self-stress. An-
other interpretation is that these structures are in continuous equilibrium with
an applied load over a finite range of motion. Lastly, a zero stiffness struc-
ture maintains a constant potential energy, which is continuously redistributed
as the structure deforms, thus eliminating any preferred position under the ap-
plied load or self-stress. Throughout this paper the term zero stiffness structures
will be used as the most general description; while these elastic systems behave
as mechanisms, they will generally be referred to as structures.
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Figure 1: A ball lying on a curved surface illustrates the different stability con-
ditions of a single degree of freedom elastic structure. As the potential energy of
the ball is proportional to its vertical position, the shape of the surface is anal-
ogous to a potential energy function IT for an elastic structure. Consider small
variations dg around the equilibrium state. Shown are configurations which are
(a) stable (d?II/dg® > 0), (b) unstable (d?II/dg® < 0), and (c) neutrally stable
(d2H/ dq? = 0). The examples shown in (d) are all locally neutrally stable (i.e.
the system has quasi-zero stiffness), but are ultimately either stable (d-i) or
unstable (d-ii, d-iii):

Zero stiffness structures can be more formally defined by considering the total
potential energy IT of an elastic structure under conservative loads. If the geo-
metric configuration of the structure is defined by a vector of coordinates p with
components p;, then setting the derivatives of IT (9I1/dp;) to zero provides the
equilibrium equations. The Hessian (821'[/ aplﬁpj) subsequently yields the stiff-
ness equations for the structure. By looking at the eigenvalues of the Hessian
matrix the stability of the structure can be assessed [1,2]. A structure is stable
if all eigenvalues are positive, unstable if there exists a negative eigenvalue, and
has a zero stiffness deformation mode if the Hessian is singular.

In general a zero stiffness mode will be infinitesimal, and higher-order strain and
prestress effects will ultimately determine the stability of the structure, as illus-
trated in Figure 1. Despite the local nature of the zero stiffness behaviour, such
quasi-zero stiffness structures may nonetheless be of use in engineering applica-
tions such as vibration isolation. However, of primary interest to our discussion
are cases where all higher-order derivatives of the potential energy are also zero,
and the structure therefore has a finite zero stiffness path. Barring any imper-
fections, friction or material damping, these elastic structures can deform over
large displacements with zero stiffness. This singular stuctural behaviour only
exists for very specific combinations of material stiffness, structural geometry
and prestress.



It is important to note that in order to fully describe the mechanical properties
of zero stiffness structures, a geometrically non-linear analysis is necessary to
distinguish between infinitesimal and large-displacement zero stiffness modes.
This is analogous to the study of buckling, where only a postbuckling analysis
can provide information about the structure’s ability to carry further loads.

Applications In some respects zero stiffness structures are a structural cu-
riosity, as they cannot carry any further loads. Nonetheless, zero stiffness has
interesting practical applications. Zero stiffness structures can maintain their
deformed state without any plastic deformation, and static balancing can be
used to reduce the operating energy of mechanisms, as a quasi-static change of
position will require no effort. Furthermore, from an academic point of view
zero stiffness structures are singularities in structural theory, and their study
advances our understanding of structural mechanics.

The concept and application of zero stiffness is certainly not new: the first
known academic description dates from 1867 [3]!, and the first engineering ex-
ample can be found in a 1901 patent [4]. Many applications have since been
proposed, and this paper only provides a brief overview of the wide range of
possibilities. An important application of zero stiffness is in the counterbalanc-
ing of a mass. The classic example is the Anglepoise desk lamp, where the lamp
shade can be repositioned effortlessly [5]. Other examples of counterbalancing
can be found in drafting tables [6], blackboards [7], instrument tables [8], com-
puter screens [9] (e.g. the Apple G4 iMac), supports for industrial pipes [10,11],
and rehabilitation aids [12]: In robotics the use of static balancing enables ma-
nipulators to become lighter and faster, as the weight of the links no longer
needs to be carried by the actuators [13,14]. Constant force generators can also
be found in machine design applications [4,15,16]. In recent years compliant
mechanisms have gained increasing interest; static balancing can significantly
reduce the required operating force [17] by compensating for the parasitic stiff-
ness inherent in the flexible hinges. Lastly, vibration isolation [18-20] provides
further applications for zero stiffness structures, with as notable examples the
Steadicam [21,22] and a gravity measurement device [23].

Scope and Outline This review aims to familiarize the reader with the con-
cept of zero stiffness structures, by drawing together examples from disparate
fields and describing the mechanical principles that unite them. Accordingly,
the intention of this paper is to develop an over-arching insight, rather than
present an in-depth review of individual research fields.

This paper is structured as follows. Section 2 describes three illustrative, and
purposefully dissimilar, examples of zero stiffness structures. In Section 3 we
discuss four interpretations of zero stiffness, and group examples from the liter-
ature accordingly. Section 4 analyses the basic spring-to-spring balancer from
four perspectives; the example demonstrates the equivalence of the different zero
stiffness interpretations, but also illustrates that each approach provides its own
insights.

1William Thomson and Peter Guthrie Tait’s Treatise on Natural Philosophy was first
published in 1867. In this paper we shall refer to the 1883 second edition, which is more
widely available. William Thomson is generally better known as Lord Kelvin.
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Figure 2: The structural response of a ring subject to an equal and opposite
axial rotation at two diametrically opposed points depends crucially on the
presence of prestress. An unstressed ring (a) deforms into a saddle-shaped con-
figuration, whereas a prestressed ring (b), formed from an initally straight rod,
twists effortlessly around its centroidal axis with zero stiffness. The numerical
simulations were performed using the finite element software ABAQUS 6.11.
The ring and rod have a diameter of 200 mm and 2 mm respectively, and the
axial rotation was 7/4. The colours represent the Von Mises stress, with warmer
colours indicating higher values, illustrating the difference in stress distribution
in the two cases.

2 Three Examples

In this section we highlight three examples from the literature. While at first
glance these structures appear dissimilar, they share the common feature of
deforming with zero stiffness.

2.1 Twisting Rod

The first known description of a zero stiffness elastic structure was given by
Thomson and Tait [3, §621-626]. Take an initially straight rod with uniform
bending stiffness, and bend it arbitrarily (but elastically) along its length. In this
deformed configuration, any twisting of the rod along its centroidal axis requires
no torque, and thus has zero stiffness. The explanation is immediately intuitive:
there exists no preferential bending axis and thus any twisted orientation of the
rod will have identical strain energy. An example of this type of structure is
shown in Figure 2. When a thin straight rod is bent uniformly and its ends are
rigidly joined, the resulting prestressed ring can be twisted along its axis with no
stiffness (in practise there will be some, negligible, stiffness due to imperfections
in the initial straightness of the rod). In contrast, when an unstressed ring is
twisted along its axis, it deforms into a saddle shape. The Thomson & Tait



Figure 3: Designed in 1935 by George Carwardine, the three-spring design of
the Anglepoise 1227 has become iconic. Left, the original patent drawings [5];
right, the modern reinterpretation Type 1227 as pictured on the 2009 Royal
Mail stamp celebrating British Design Classics.

twisting rod is an elegant example of a structure with a constant strain energy,
where the elastic stresses are continuously redistributed as it deforms in its zero
stiffness mode.

2.2 Anglepoise Lamp

The classic Anglepoise lamp-exemplifies a category of spring-and-linkage based
statically balanced mechanisms. The spring-based balancing system enables ef-
fortless positioning of the lamp shade [24]. The original design by George Car-
wardine [5] dates to the 1930s, but its elegant mechanical design has remained
effectively unchanged since. In this type of statically balanced mechanisms the
links are regarded as freely hinged rigid bodies and the linear springs are the
only elastic components. Often these are zero-free-length springs, which are
pretensioned to the extent that the spring has an effective zero rest length, and
the force is therefore proportional to the length of the spring. (The necessary
pretension can be achieved, for instance, by twisting the wire prior to the coiling
of the spring.) The Anglepoise spring mechanism illustrates two zero stiffness
interpretations: by generating a constant upward force the weight of the lamp
shade is continuously balanced in all positions, and a constant potential energy
is maintained by redistributing energy between the strain energy in the springs
and the gravitational potential energy of the lamp shade.
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Figure 4: A neutrally stable cylindrical shell [25] can be twisted from fully coiled
to fully extended configuration and again to fully coiled (clockwise from top-
left) with zero stiffness. In all deformed configurations the shell can be wrapped
around an underlying cylinder with constant radius.

2.3 Neutrally Stable Cylindrical Shells

Guest et al. [25] describe a neutrally stable prestressed shell, discovered serendip-
itously during work on bistable cylindrical shell structures. These bistable struc-
tures have two stable states, and can transition between the two through elastic
deformations. The bistability can be achieved by imposing a state of prestress in
the shell by an initial plastic forming process [26]. Using a simple inextensional
shell deformation model [27], a particular prestress state for the shell was found
where the twisting deformation requires no external energy; see Figure 4. Upon
closer inspection, a hidden symmetry was revealed, with a parallel in the neu-
trally stable buckled state of a bi-metallic.disc. When such a disc is subjected
to a change in temperature it will first develop a spherical curvature due to the
different thermal expansion coefficients of the two layers, before bifurcating into
a cylindrical configuration [28]. As the orientation of the cylindrical axis is ar-
bitrary, the cylindrical shell can effortlessly be twisted into other configurations
with identical strain energy. The same underlying mechanism operates in the
redistribution of the strain energy in the neutrally stable cylindrical shell.

3 Design and Analysis Methods

The concept of zero stiffness can be described in various manners: equivalent
formulations are continuous equilibrium, constant potential energy, neutral sta-
bility and zero stiffness. However, different interpretations will lead to different
methods for the design and analysis of zero stiffness structures. In this section
examples are drawn from a wide range of disparate disciplines, and categorised
by an interpretation that best clarifies their working principle. Inevitably, the
boundaries between the categories are blurred.
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Figure 5: Three gravity equilibrators: (a) basic linkage with a zero-free-length
spring; (b) wrapping cam with a regular spring [30]; (¢) curved guides with two
sets of springs [31].

3.1 Continuous Equilibrium

A key approach to the design of zero stiffness structures is to focus on the
force and moment equilibrium equations, and maintain continuous equilibrium
throughout the structure’s range of motion.

The driving application is the design of gravity equilibrators, where the zero
stiffness structure provides a constant vertical force to counterbalance a mass.
A wealth of gravity balancing mechanisms can be found in the patent literature;
a full review is beyond the scope of this paper, and we shall highlight only key
examples. Static balancing of a mass can naturally be achieved through the
use of counterweights. However, spring-based mechanisms are often preferred
for minimal increase in inertia;, and compactness of design. As the force of a
regular coiled spring is proportional to its elongation, a mechanical conversion is
necessary to produce a constant force at the end effector. This can be achieved
through appropriate mechanical linkages, or cams and other curved surfaces [29].

In linkage based statically balanced mechanisms, only the springs are considered
to deform elastically and the links are regarded as rigid. (A classic example is
the Anglepoise desk lamp discussed in Section 2.2.) Often a key component is
the use of zero-free-length springs [32,33]. The spring is prestressed such that
the spring force is proportional to the length of the spring, as opposed to its
elongation, and thus has an effective zero rest length. These springs greatly sim-
plify the design of statically balanced linkages, but are seldom used in practise
as accurate manufacture is difficult. Fortunately, their properties can straight-
forwardly be emulated (or closely approximated) in practical implementations,
for example by using multiple pulleys [32]. The basic spring balancer, as shown
in Figure 5(a), forms the core of many statically balanced mechanisms. Its de-
sign has been extended by many authors, notably [5,15,32,34,35], and it can
be recognized in many engineering applications.



Another means of converting a linear spring to a constant balancing force, is the
use of wrapping cams or curved guides. Ostler and Zwick [30] describe cam based
balancers where moment equilibrium is preserved between the constant load and
the varying spring force; see Figure 5(b). More generally, curved guides can be
used to control the deformation of a linear or torsional spring, and produce
a desired force output [9,31,36]. The curve geometry can be generated using
equilibrium [36] or energy [31] equations. Either approach produces a differential
equation for the curve, which can be solved for a desired payload, geometry
and spring stiffness [37]. Recent development have resulted in the design of
curve-based balancers where adjustment to different payloads is possible without
redesign of the curve geometry [31]. This is achieved by using two sets of springs:
the first is coupled directly to the payload, and the vertical force component of
the second set is controlled by the curved surface; together they produce a
constant upward force over the balancer’s range of motion; see Figure 5(c).
Adjusting the balancer to different payloads is done by increasing the initial
tension in the first set of springs. An important advantage of the curve and
cam based balancers is their compactness, compared to linkage based gravity
equilibrators.

Instead of counterbalancing a constant (gravity) load, mechanisms may also be
designed to counterbalance elastic forces. For instance, to counteract undesired
forces, such as the elasticity in cosmetic gloves for prosthetics or the parasitic
stiffness in compliant mechanisms. Another application is in spring-to-spring
balancers that enable energy-free adjustability of gravity equilibrators to mul-
tiple payloads [8,38]. A classic spring-to-spring balancer is discussed in detail
in Section 4.

3.2 Constant Potential Energy

An intuitive interpretation of zero stiffness structures is the realisation that
throughout their deformation a constant total energy is maintained, and no
preferred configuration thus exists. In the zero stiffness deformation mode the
elastic strain energy is either redistributed within the structure, and/or ex-
changed with potential energy in an external field (e.g. gravity or magnetic [39]).
The constant energy interpretation also clarifies the necessity of a prestress or
preload: energy must first be introduced to the structure before it can be redis-
tributed in the zero stiffness deformation mode.

The constant energy approach has proven to be an effective method to analyse
and design zero stiffness structures. For example, Walsh et al. [40] described the
perfect balancing of a two degree of freedom balancer with spatially arranged
springs using potential energy functions; approximately balanced spring-linkage
mechanisms can be designed by exploring energy landscapes [32,41]; and the
study of strain energy contours for cylindrical shell deformations led to the
discovery of zero stiffness shell structures [25,42]. The constant energy approach
is also used for spring-to-spring balancers, where mechanisms transfer energy
from one spring to the next. Barents et al. [38] proposed several designs for
spring-to-spring balancers, where one spring is used to counterbalance a payload,
and the second is available to store/release energy when the payload mass is
varied; this enables energy-free adjustment of a gravity balancer.
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Figure 6: In a Rolamite linear bearing a flat spring is wrapped around two
cylinders. For any displaced configuration of the two rollers the total stored
strain energy will remain constant; the structure therefore has no preferred
position and deforms with zero stiffness. Image from [43].

In other structures, a constant potential energy is maintained by ensuring a
constant amount of material deformation within the zero stiffness mode. A
classic example is the Rolamite linear bearing [43]; see Figure 6. A flat blade
spring is wrapped around two cylinders; for any displaced configuration of the
two rollers, the deformed spring length (and thus stored strain energy) remains
constant, and the mechanism therefore has no preferred position. The concept
was extended to a rolling hinge [44], and elegantly employed in a preloading
mechanism for a knife edge pivot [16, §10.2]. A similar configuration was also
proposed as a mechanical model for lotus receptacles [45]." Vehar et al. [46]
described closed-loop tape-spring mechanisms with multiple travelling elastic
hinges. Despite the non-linear and complex mechanics of the bending of a tape
spring [47], the constant strain energy in the mechanisms can be recognized
by the constant total material deformation. Lastly, the Thomson & Tait [3]
zero stiffness twisting ring, where any twisted configuration has identical strain
energy, was previously described in Section 2.1.

In certain types of zero stiffness structures the stored elastic energy is not con-
stant, but the working principle is nonetheless best understood by noting a
constant elastic deformation zone, Constant force springs (also known as nega-
tor springs [48, pp. 152]) are unstressed in their coiled configuration. The length
of the transition zone between coiled and straightened state is always constant,
and any further extension will therefore require no increase in force. Similarly,
propagating instabilities [49] can be regarded as zero stiffness deformations. A
classic example is the inflation of a long thin balloon [50]: after the initial infla-
tion stage there exists a constant deformation zone between the flat and inflated
section, and further inflation takes place at a nominally constant pressure.

3.3 Neutral Stability

In the stability of structures, buckling is said to occur when a structure can no
longer support a load and undergoes a sudden large displacement. In effect,
the structure has zero stiffness in the buckling mode, and one or more of the
eigenvalues of the stiffness matrix becomes zero [1]. A classic small-displacement
buckling analysis, however, cannot determine whether the structure is ultimately
stable, unstable or neutrally stable; therefore, an analysis of the postbuckling
bifurcation paths is necessary [1,2]. The neutrally stable postbuckling approach
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Figure 7: The zero stiffness elastic structure studied by Tarnai [45]; it will exhibit
a neutrally stable post-buckling path (2) if the balancing condition k1 k—4kiko+
kok = 0 is satisfied. For ki = kg = g, the critical buckling load is P., = 2k L.

to zero stiffness structures has primarily been studied within the context of
structural mechanics. However, the connection is increasingly recognised and
utilised in the field of mechanical engineering [51].

Tarnai [45] provides an elegant analysis of the neutral stability of a rigid-linked
pin-jointed structure under an external load, as shown in Figure 7. By studying
analytical expressions for the first differential and the Hessian of the potential
energy function, it was shown that there exists a transition from an unstable
to a stable symmetric bifurcation as the ratio ko/k; is increased. In between,
for a specific combination of spring stiffnesses (k1k — 4dk1ks + kok = 0), the
structure is neutrally stable over a finite range of motion. Tarnai includes a
brief history of the analysis of this zero stiffness structure, which suggests it
to be the earliest known example of a neutrally stable postbuckled structure;
Gaéspér [52] and Hegediis [53] analysed simplified versions of Tarnai’s structure,
and provide further examples. Steinboeck et al. [54] studied the imperfection
sensitivity of postbuckling behaviour in terms of symmetric, anti-symmetric and
zero-stiffness bifurcations, within the framework of Koiter’s initial postbuckling
analysis. An example zero stiffness structure was described, which showed that
zero stiffness does not necessarily lie at the boundary of imperfection sensitiv-
ity and insensitivity. Continued work [55-58] revealed further examples, and
provides necessary and sufficient conditions for neutrally stable postbuckling
behaviour.
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While neutral stability in postbuckling has become a subject of study in its
own right, it may also elucidate the underlying mechanics of other zero stiff-
ness structures. For example, the neutrally stable shell structure described by
Guest et al. [25] was best understood by means of the parallel with the post-
buckling behaviour of a bimetallic disc subject to a change in temperature [28]
(see Section 2.3). This insight explained the critical level of prestress for the
neutrally stable behaviour, which had previously been found empirically by
studying strain energy contours.

As a closing example, Van Eijk [59] described a zero stiffness platform supported
on buckled blade springs. The postbuckling behaviour, however, is stable and
the zero stiffness displacements would thus be infinitesimal. Examples of such
quasi-zero stiffness structures can be found in precision engineering applications.

3.4 Zero Stiffness

Lastly, the stiffness equations of an elastic structure can be analysed directly,
in search of zero stiffness conditions. In essence this is identical to the buckling
analysis discussed previously, where zero stiffness identifies the point of buckling
of the structure. Nevertheless, many problems in structural mechanics are for-
mulated directly in terms of stiffness equations, and a link to buckling is often
non-obvious.

In general, stiffness formulations are in the form of a linearised tangent stiff-
ness matrix. Any singularities in the stiffness matrix will therefore only reveal
infinitesimal zero stiffness modes, and further effort is required to find con-
ditions for a finite zero stiffness path. For example, this was done for zero
stiffness tensegrity structures (i.e. prestressed pin-jointed frameworks), by ex-
ploiting the specific nature of the zero stiffness deformations [60]. For the zero
stiffness tensegrity structures, the connection with stability and critical load
was revealed by Guest [61]. When the level of prestress in a tensegrity structure
is increased, the overall stiffness first increases, before dropping off in certain
deformation modes, reaching zero (when making use of tension members with
zero rest length) and eventually becoming negative. This illustrates that the
zero stiffness tensegrities are at the cusp of stability and instability for a critical
level of self-stress; a small change in prestress would result in either a stable or
unstable structure. In practise, however, insensitivity to the precise level of pre-
stress may be provided by friction in the structure [62]. It is important to note
that the stiffness matrices must correctly take into account any prestressing or
preloading of the structure, to be able to correctly identify zero-stiffness modes.
While stiffness matrices are traditionally the tool of structural mechanics, they
have been adapted for use in the design of statically balanced mechanisms [63].

Alternatively, rather than looking for zero eigenvalues in the stiffness matrices,
a zero stiffness structure can be designed by explicitly combining structures
with a positive and negative stiffness [64,65]. The necessary negative stiffness
is often-derived from the postbuckling solution of a (multi-stable) elastic struc-
ture [66]. This technique is increasingly used in the design of compliant mech-
anisms. Such mechanisms rely on the elastic deformation of their structural
members for motion, thereby eliminating friction and backlash. However, the
elastic deformations introduce a parasitic stiffness which impacts the operating

11



energy of the mechanism. By coupling the compliant mechanism with a nega-
tive stiffness component, the parasitic stiffness can be counterbalanced and the
mechanism’s operating force is reduced. The resulting zero stiffness structures
are referred to as Statically Balanced Compliant Mechanisms (SBCM) [17,67].
The structural behaviour of compliant mechanisms is often strongly non-linear
and matching the opposing stiffness of two non-linear structures is challenging;
as a result the zero stiffness mode will generally be imperfect, and restricted
to a limited range of motion. In order to avoid problems with stress relaxation
in prestressed structures, an initial loading step can be used to introduce the
negative stiffness necessary for the zero stiffness regime. The results of the
analysis of a simplified quasi-zero stiffness compliant mechanism are shown in
Figure 8. For designs with compliant hinges where beam bending dominates,
finite element analysis is necessary to produce the force-displacement profiles
and optimise the mechanism geometry [65,67].

In designing for zero stiffness, one can also study the dynamic behaviour of the
structure, and design for a low (or zero) natural frequency. This approach is
used in the design of passive vibration isolation systems. An extensive body of
research is available, and a detailed review by Ibrahim [18] covers a wide range
of non-linear passive vibration isolators, including mechanical structures such
as postbuckled beams, as well as magnetic quasi-zero stiffness systems [20]. For
most vibration isolation applications, the use of a quasi-zero stiffness structure
will suffice, as often only small amplitude vibrations are encountered. In fact,
quasi-zero stiffness structures may even be preferable for vibration isolation, as
they can combine a high overall static stiffness with a low dynamic stiffness
around the quasi-zero stiffness configuration [19,39]. Nonetheless, applications
for large-displacement vibration isolation systems exist, including the Steadicam
[21], and accurate gravity measurement devices [23].

12
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Figure 8: A compliant mechanism with zero stiffness can be obtained by com-
bining the positive and negative stiffness of two elastic structures. In (a-i) are
shown two coupled Von Mises trusses [1] in their unstressed configuration; the
bars are elastic and the Euler load is assumed sufficiently large to avoid buck-
ling. Due to their differing rise «, the two arches will snap through at different
displacements d during the preloading. The configuration considered here has
a1 =10°, as = 19.4° and beam thickness to = 0.52 - t; (to ensure that the op-
posing stiffness of the two structures is equal at the zero stiffness point). In (b)
is shown the force-displacement profile of the two arches. Around d/h = 2 the
positive stiffness of arch 1 and negative stiffness of the post-buckled arch 2 add
up to produce zero stiffness over a limited working range; see (a-ii) for the zero
stiffness configuration. Note that this quasi-zero stiffness point is ultimately
unstable.

13



A

» &
> <

v

Figure 9: The basic spring-to-spring balancer consists of a rigid link connected
to two zero-free-length springs [32]. The geometric parameters are a1, ag, 11,
ro, with spring stiffnesses ki, ko; note that the attachment points at the base
are collinear. The zero-stiffness condition ai1ki71 = asksrs will be derived in
this section.

4 Example: Zero Stiffness Four Ways

To illustrate the equivalence of the different interpretations of zero stiffness, this
section details the mechanics of the classic spring-to-spring balancer shown in
Figure 9. We extend an earlier analysis by Herder [32] and describe the spring-
to-spring balancer in terms of 1) continuous equilibrium, ii) constant potential
energy, iii) neutral stability and iv) zero stiffness. Each method will be used
to derive the combined geometric and stiffness conditions for zero stiffness (the
level of prestress is implied by the use of zero-free-length springs), and each
method provides different insights into the mechanics of the structure.

4.1 Continuous Equilibrium

For a spring-to-spring balancer with zero-free-length springs, the spring forces
acting on the connecting link are straightforwardly resolved into a horizontal
component and a component parallel to the direction of the link; see Figure 10.

FH = kyr1 + kora (41)
Fihor = a1k (4.2)
Fahor = azks (4.3)

By virtue of using zero-free-length springs, these forces are independent of the
link angle . The moment equilibrium around the bottom pivot is given by

aykiry sin @ = agkars sin (4.4)
and will hold, for any value of ¢, if the relationship

arkiry = agkars (4.5)

14



Figure 10: The forces of the zero-free-length springs can be decomposed into
their horizontal components and components parallel to the rigid link. Note
that these forces are independent of the link angle .

is satisfied. This is the zero stiffness condition for the spring-to-spring balancer
which describes the required relationship between the geometry and stiffness
parameters of the structure; the level of prestress is implicit in the use of zero-
free-length springs.

4.2 Constant Potential Energy

The total potential energy U in the spring-to-spring balancer depends solely
on the elongation of the springs. Using the cosine rule to calculate the spring
lengths, the energy stored in the zero-free-length springs is given by

1 1
U = §k1 [af +77 — 2a171 cos (1 — )] + §k2 [a3 + 13 — 2a2r cos @]
1 1
= §k1 (af+r?) + ikg (a3 4+ 13) = airy cos (m — @) — asra cos ¢
= C+ ayriky cosp — agraks cos @

which will be constant for any value of ¢ if the following equality holds:
ai ki1 = agkars

For the special case where k1 = ko = k and a1 = ags = r1 = r9 = R, the constant
energy solution is elegantly demonstrated geometrically using Thales’ theorem,
as shown in Figure 11.

4.3 Neutral Stability

Here we consider the basic balancer as a column loaded under a compressive
load P, with a zero-free-length spring providing a restoring force; see Figure 12.
For the axially loaded column with zero-free-length spring, the potential energy

15



e AN B
/ _ \
/ /// \\
/ -7 M
-~ \
L-_ &L o
A (0] C

Figure 11: For a spring-to-spring balancer with ky = ks = kand a; = as =11 =
ro = R the constant potential energy can be illustrated elegantly with Thales’
theorem: if A, B and C' are points on a circle where the line AC is a diameter
of the circle, then the angle ZABC is a right angle. Using Pythagoras’ theorem

it is then evident that the total spring energy in the system will be constant for
any angle ¢ of the rigid link.

Figure 12: A column is loaded under a compressive axial load P, with a zero-
free-length spring providing a restoring force. This will result in a neutrally
stable post-buckling configuration at the critical buckling load P, (right).
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function II is given by:
L2, 2
I = §k (r +a* — 2arc0sg0) — Pu
1
= ik (r* +a® — 2arcos p) — PL (1 — cos ¢) (4.6)

For equilibrium 0II/9¢ = 0, and thus:
oIl

9, =sinp (akr — PL) =0 (4.7)
which will hold for ¢ = 0, as well as for the critical buckling load:
akr
P,=— 4.
- (13)

The second derivative determines the stability of the solution:

2
2@1_2[ =cosp(Py — P)L (4.9)
and will be zero for any angle ¢ at the critical buckling load. It is easy to
verify all higher order derivatives of the potential function II will be zero at
the buckling load, and thus the structure is neutrally stable for any position
under the critical buckling load P.,. In effect, this becomes a constant force
generator, and can be used to counterbalance a mass [38]. Two such structures
can be coupled to form the statically balanced spring-to-spring balancer, as long
as they share an equal critical load. Using Equation 4.8 this requirement again
yields the balancing condition a1k171 = askory for the system shown in Figure 9.

4.4 Zero Stiffness

Here the spring-to-spring balancer is modelled as a prestressed pin-jointed truss,
where 1 = ro = r; see Figure 13. The tangent stiffness matrix K; can then be
constructed according to the derivation by Guest [68], which takes into account
prestressing of the members. The first component is the equilibrium matrix A,
which relates the internal tensions t to the external forces f:

At =f (4.10)

and is here given by:

a1+7l”cos<p _ag—?l”cosap cos @
A= rsi%lgo TSiIlZLp : (411)
— — Sm @
l1 lQ

with /; and ls the lengths of the respective springs. As the structure is statically
indeterminate, the nullspace of A provides the state of self-stress tg:

aoly
to = a1l2 (412)
—r(ai + as)

17



A

» &
>4

v

Figure 13: The spring-to-spring balancer with r; = ro =1 can be modelled as
a pin-jointed truss with two degrees of freedom, d, and dy.

When using zero-free-length springs with k; and ks, the zero stiffness condition
a1k, = agks follows directly from this state of self-stress. The specific self-stress
t thus becomes

l1ky
t= Ioko (4.13)
—’I“(kl + kg)

A modified axial stiffness §is formulated for each of the members, taking into
account the prestress:

N t

9=9-7 (4.14)

where g is the axial stiffness of the member. For zero-free-length springs this
modified axial stiffness will be zero [60], and the diagonal matrix G becomes:

) 0 0 0
G=10 0 0 (4.15)
0 0 (ki +ky E4)

The modified material stiffness matrix K is given as:
K=AGA” (4.16)
which results in

o EA cos? ¢ cos psing

K= (hitht =2) | o CGne in® o (4.17)

The tangent stiffness matrix K; requires a further component, the stress matrix
S, to represent the stiffness due to the reorientation of the prestressed members.

K, =K+8 (4.18)
The total stress matrix S is composed of the stress matrices S; for the individual
members,
t; I I
S, = L [ 11 } (4.19)
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where I is the identity matrix. After removing the appropriate rows and columns
for constrained nodes, the combined stress matrix for the spring-to-spring bal-
ancer becomes:

S—{g 8] (4.20)

and the tangent stiffness matrix K; is thus equal to Equation 4.17. The tangent
stiffness matrix has a nullity of one, and the nullspace has a basis vector:

v = [ ta_nf } (4.21)

This basis describes the infinitesimal zero-stiffness displacement mode. It exists
for every configuration ¢, and is always orthogonal to the rigid link (with unit
vector r):

r-v=/_[cosp sing | [ tanlgp ] =0 (4.22)
The stiffness analysis shows that for any cenfiguration ¢ of the spring-to-spring
balancer there exists an infinitesimal zero-stiffness mode which is orthogonal
to the rigid link; the infinitesimal modes are thus connected in a finite zero-
stiffness path. The geometric-stiffness balancing condition for the spring-to-
spring balancer was here derived from the state of self-stress of the structure.
While more elaborate than the previous methods in describing this example
structure, the stiffness matrix approach has proven to be powerful in analysing
more complex zero-stiffness structures [60].

It is interesting to consider the parallel of this'example to a cable-stayed mast,
where the tension in the guy-ropes is increased. Intuitively, an increase in
pretension would serve to stabilise the mast, and while it is true that this will
help prevent cable slackening under load, actually the horizontal stiffness of the
system decreases as tension is increased. To reach the critical level of prestress
required for zero stiffness will, however, require specially constructed stays and
mast.

5 Discussion and Conclusions

This paper has focused on the surprising and fascinating phenomenon that cer-
tain structures can deform elastically without external work. These singular
structures are said to have zero stiffness, and their remarkable behaviour relies
on a specific combination of geometry, stiffness and prestress.

Several equivalent descriptions for these structures exist, and examples from
the literature have been discussed in terms of the following interpretations: i)
continuous equilibrium, ii) constant potential energy, iii) neutral stability, and
iv) zero stiffness. Each interpretation can yield alternative insights, and provide
different methods of design and analysis. By rephrasing examples from the
literature in different interpretations, disparate examples can be united by the
same underlying principle. In cases where this is not straightforward — for
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example, the Thomson and Tait twisting ring is not easily interpreted as a
neutrally stable buckling solution — the most general description is that of zero
stiffness, which covers all examples presented in this review.

The design of zero stiffness structures, i.e. finding the appropriate combination
of geometry, stiffness and prestress, remains a specialised field. We hope that
the present review will provide new insights and serve as a source of inspiration
for the development of new and exciting examples of zero stiffness structures.
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