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The use of spin-pure and non-orthogonal
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Simon Smart

Abstract

Full Configuration Interaction Quantum Monte–Carlo (FCIQMC) al-

lows for exact results to be obtained for the ground state of a system

within a finite-basis approximation of the Schrödinger equation. Work-

ing within imposed symmetry constraints permits dramatic reductions

in the size and internal connectivity of the Hilbert space considered,

with associated reductions in the computational cost involved, as well

as permitting exclusion of the natural ground state to extract a se-

ries of excited states of the system. As all converged solutions are

eigenfunctions of the square of the total spin operator, Ŝ2, as well as

the Hamiltonian and the projected spin, imposing spin-purity as an

additional ‘symmetry’ is a natural extension.

In this thesis, the use of various spin-pure spaces is compared to the

previously used determinental spaces. Variations on the FCIQMC al-

gorithm which work in non-orthogonal (and non-normalised) basis sets,

and with the arbitrary discretisation of imaginary time removed, are

considered along with the implications of the differences to the normal

FCIQMC algorithm.
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1 Introduction

1.1 Non-technical introduction

Chemistry can be accurately (if impractically) described as a subset of applied

physics. In this mindset, we are solely concerned with describing molecules from

the bottom-up — how do the constituent parts of a molecule (electrons, protons

and neutrons) interact with each other and with the environment to give the

behaviour we observe.

The devil is always in the details.

Unfortunately, it is incomprehensibly difficult to accurately model all of the parts

of a molecule fully, and theoreticians are required to make approximations which

compromise accuracy for tractability. Indeed, as Dirac famously stated in 1929:1

The underlying physical laws necessary for the mathematical theory of

a large part of physics and the whole of chemistry are thus completely

known, and the difficulty is only in that the exact application of these

laws leads to equations much too complicated to be soluble. It there-

fore becomes desirable that approximate practical methods of applying

quantum mechanics should be developed.

The most commonly used models, in particular Hartree–Fock theory, consider the

components of a molecule one-by-one, subsuming all of the other parts into an

averaged background. This works quite well, and explains a lot of chemistry, but

is not quantitatively accurate. In practice, electrons repel each other like poles on

a magnet, and will at any moment be found far apart from each other, even if their

average position is similar. The dynamic effects of such movement, and similar

instantaneous interactions, can never be described by a simple averaged model.

Improving on these approximations is necessary, but is a game of diminishing

1
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Accuracy

Computational
cost

HF DFT

MP2

CISD
MP4

CCSD
QCISD(T)

CCSD(T)

FCI

FCIQMC

Development

Reality

HF — Hartree–Fock theory2–4

DFT — Density Functional Theory5,6

MP2 — Møller–Plesset perturbation theory to second order7,8

MP4 — Møller–Plesset perturbation theory the fourth order9

CISD — Configuration Interaction Singles and Doubles10

QCISD(T) — Quadratic Configuration Interaction Singles and Doubles with
perturbative Triples11,12

FCI — Full Configuration Interation13,14

FCIQMC — Full Configuration Interaction Quantum Monte–Carlo15,16

CCSD — Coupled Cluster Singles and Doubles17

CCSD(T) — Coupled Cluster Singles and Doubles (with perturbative Triples)12

Figure 1.1: Hierarchy of quantum chemical methods. All quantum chemical develop-
ment is aimed at moving to the lower right of this diagram. FCIQMC
is capable of achieving the accuracy associated with Full Configuration
Interaction (FCI), using substantially less computational resources. This
permits it to make use of larger basis sets than FCI, and hence achieve
higher accuracy. Development is aimed at reducing the cost of this method
further, whilst extending the range of systems it may be applied to, and
the range of output values that can be calculated.
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returns. Firstly we have to find a language to describe these dynamic effects.

Then we have to analyse all of the components of this language, and the way they

connect to each other, to find the best possible description of the dynamic effects.

To do this systematically and fully for all molecules is nearly impossible — the

problem is just too big for even the biggest computers.

Instead of a fully systematic approach, we choose to play a game of chance. We

take a guess at a possible description of the molecule, and then we repeatedly make

random changes to our description which may be accepted as good, or rejected as

bad. It is our job to develop the rules of this game, so that our description will

always tend to get better, and do so efficiently. We also want these rules to be

able to incorporate anything that we already know about the molecule, so that

the computational effort can be minimised.

1.2 Thesis overview

Full Configuration Interaction Quantum Monte–Carlo (FCIQMC) is a recent ap-

proach to obtaining the electronic correlation energy for chemical systems (molec-

ular or otherwise). It is able to obtain Full Configuration Interaction results using

an approach that builds on methods similar to those of Diffusion Monte–Carlo,

but using a discrete antisymmetrised basis.

In this thesis, the position of FCIQMC within the ensemble of available quantum

chemical techniques is laid out. Following this, a novel derivation of FCIQMC,

applicable to systems that make use of non-orthogonal and non-normalised basis

sets is presented along with all of the necessary material to make use of FCIQMC

in an environment where the basis functions are eigenfunctions of the total spin

squared operator, Ŝ2. These methods are then applied to the nitrogen dimer.

For the remainder of this chapter the nature of the problem, i.e. electron corre-

lation, is discussed. Many quantum chemical methods have been developed to

approach the problem of electron correlation, and their strengths and weaknesses

are explored to shed light on the choices made in developing FCIQMC.

In chapter 2 FCIQMC is derived, then the choices made in terms of representation

of the evolving wavefunction, and the stochastic implementation of the method,

are discussed along with its basis set requirements.
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In chapter 3 the role of spin in FCIQMC is explored, before the general structure

of Configurational State Functions (CSFs), i.e. functions each constructed from the

product of a spatial wavefunction in an orbital basis and a total spin eigenfunction

in turn constructed from primitive spin functions, is laid out and the specific con-

struction of several sets of spin eigenfunctions which all map the relevant Hilbert

space are discussed. The consequences of the use of CSFs are explored, along with

any algorithmic modifications that are required.

In chapter 4 efficient schemes for calculating the Hamiltonian matrix elements

between arbitrary CSFs of the specified types are presented. For these to operate

efficiently they need careful integration with the excitation generation processes,

which efficiently generate random CSFs connected to a currently occupied one,

and are discussed in chapter 5. These techniques are then applied, in chapter 6,

to the nitrogen atom and molecule.

In chapter 7 the consequences of the discretisation of imaginary time for the pur-

poses of stochastic integration are discussed. Modifications to FCIQMC which

eliminate this requirement, and therefore operate in ‘continuous’ imaginary time

are considered.

Finally overall conclusions are discussed in chapter 8.

1.3 Electronic structure problems

The behaviour of chemical systems is normally well described by the Schrödinger

equation,18,19 ∗

ih̄
∂

∂t
Ψ = ĤΨ. (1.1)

The aim of (most) quantum chemical approaches is to find (a subset of) the ap-

proximate solutions to the time-independent Schrödinger equation,

ĤΨ = EΨ, (1.2)

∗This formulation does not take into account relativistic effects. In principle the Dirac
equation20 can be solved to find spinors rather than wavefunctions. The drastically increased
complexity of this problem is not generally needed to understand most chemistry. A substantial
component of the relativistic effects observed may be recovered by application of perturbation
theory to apply corrections to non-relativistic solutions21 or through the use of pseudopotentials.
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for the wavefunction, Ψ, and the energy, E. Additionally, the Born–Oppenheimer

approximation22 may be made, assuming that the motion of the electrons and the

nuclei are separable. As such the nuclear positions, {Ri}, are presumed do be

known. Subject to the above, for molecular systems the Hamiltonian is given by

Ĥ = −1

2

N∑

i

∇2
i −

N∑

i

Nn∑

j

Zj

Rij

+
N∑

i<j

1

rij

+
Nn∑

i<j

ZiZj

Rij

, (1.3)

in atomic units, where sums to N and Nn are over the electrons and nuclei in the

system respectively, rij, Rij and Rij give respectively the inter-electronic distances,

the electron-nuclear distances and the nuclear-nuclear distances, and Zi are the

nuclear charges. By separating out the nuclear-nuclear terms, this can be reduced

to a purely electronic view. The solutions, Ψ, must additionally satisfy the Pauli

principle23,24, in that they must be antisymmetric with respect to exchange of any

pair of the N electrons.

Because the non-relativistic Hamiltonian, Ĥ, is independent of spin, the physical

properties associated with spin must be directly imposed. Also as a consequence

of this independence, operators for the square of the total spin, Ŝ2, and its z-

axis projection, Ŝz, commute with Ĥ, and so it is possible to choose a complete

set of eigenfunctions of Ĥ that are also simultaneous eigenfunctions of these spin

operators.

Due to the rij terms, which couple pairs of electrons, it is impossible to find analytic

solutions to equation 1.2 for many-electron systems. Solutions are, however, still

highly sought after. The field of electronic structure therefore involves finding

approximations which best represent the solutions to equation 1.2.

Various schemes, of differing levels of complexity, have been proposed to help

find these solutions. Here, Hartree–Fock theory will be discussed, followed by a

discussion of why such solutions are insufficient when high accuracy is required.

Perturbative corrections on top of Hartree–Fock theory are discussed followed by

other methods building on top of Hartree–Fock theory for obtaining the correlation

energy.
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1.4 Hartree–Fock theory

Hartree–Fock theory2,3 is concerned with constructing the best possible approxi-

mate N -electron wavefunction out of only single-electron orbitals. In particular,

the wavefunction is represented as a single Slater determinant25, D0, which may

be expressed as

|D0〉 = A
N∏

i

φαi
i

=
∑

P

(−1)P P̂
N∏

i

φαi
i (i).

The method then attempts to optimise the set of single electron orbitals, {φi},
to produce the optimal Slater determinant. In this context, ‘optimal’ means the

orbitals that minimise the electronic energy,4 E0 = 〈D0|Ĥ|D0〉 (see table 4.1).

See section 2.7 for a fuller discussion of Slater determinants. The orbitals, {φi},
are constructed out of an underlying basis set (which is often constructed out of

contracted gaussian functions26), and the coefficients of these underlying terms

are varied systematically subject to the constraint that 〈φi|φj〉 = δij to find the

orbitals that give the minimal value of E0.

This problem may be recast into a different eigenfunction problem, known as the

Hartree–Fock equation,∗

f̂i |φi〉 = ǫi |φi〉 ,

where the Fock operator acting on the ith electron,

f̂i = ĥ(i) + vHF
i ,

is given by the one-electron kinetic energy term found in the Hamiltonian combined

with an effective one-electron potential,

vHF
i =

∑

b 6=i

∫

dx2φb(2)∗
1−P12

r12

φb(2).

∗In practice the Hartree–Fock equation is further recast into a matrix equation in an un-
derlying basis set. This leads to the Roothaan equations,27 or Pople–Nesbet28 for unrestricted
calculations, which are able to be tackled efficiently computationally. For the purposes of CSF de-
velopment we restrict ourselves to restricted closed shell (RHF) or restricted open shell (ROHF)
Hartree–Fock.
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This potential essentially includes the averaged electron-electron interaction be-

tween an arbitrary electron and all of the electrons which are occupying the cal-

culated orbitals.

This eigenvalue equation is complicated by the fact that the Fock operator, f̂i, itself

depends on the orbitals, {φi}. As such solutions must be found self-consistently,

i.e. iteratively with a trial solution used in constructing the Fock operator, which

is then used to obtain a new set of eigenfunctions, which are in turn used as the

trial solutions until the trial and resultant functions converge.

1.4.1 Electron correlation

In reality, electrons do not interact with each other in an averaged fashion. The

manner that their behaviour differs from averaged behaviour is generally split into

two components, static and dynamic correlation — although the division between

these is not entirely well defined.

Dynamic correlation

Electrons repel each other dynamically, and as a consequence are on average

found further apart than is predicted if they are considered to move inde-

pendently in an averaged repulsive field of other electrons. Their behaviour

is also coupled in more subtle ways.

To describe this, terms dependent on the instantaneous distance between

electrons must be added to the 3N -dimensional electronic wavefunction in

all positions where electrons are close to each other29.

Static correlation

It can be seen in a fully converged CI wavefunction (see section 1.5.2) that

multiple determinants can achieve similar and significant weightings. This

is especially true in systems with unpaired electrons in the ground state,

systems which are nearly dissociated or systems with multiple localised spins.

In these cases the wavefunction cannot be reasonably approximated by a

single determinant, even with corrections made for the dynamic behaviour

of electrons in each other’s vicinity, and perturbation based approaches will

fail.

The archetypal example of this is the failure of restricted Hartree–Fock the-
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ory to effectively describe bond dissociation. A dissociated system is effec-

tively made up of separate and non-interacting fragments. Unless all of the

generated fragments are closed shell, attempting to describe these with a sin-

gle determinant constructed from molecular orbitals over the whole system

is bound to fail as these molecular orbitals necessarily include inter-atomic

terms that should not appear. An example of this may be observed in fig-

ure 6.7, where the HF solution is not size consistent.

This problem may be approached using unrestricted solutions, permitting the

breaking of spin-symmetry and localising some of the contributions, but this

abandons any pretense that the wavefunction may represent an eigenfunction

of Ŝz or Ŝ2, and does little to address static correlation in other types of

system, such as localised spins in open-shell systems.

Slater determinants describe the behaviour of electrons according to an antisym-

metrised product of one-electron functions. These can never include a description

of dynamic electron-electron behaviour. Because the Hartree–Fock method can

capture all of the electronic behaviour describable using single-electron orbitals

in a given underlying basis set, it is used as a reference. The difference between

the exact energy for the system, as described by the underlying basis set, and

the Hartree–Fock energy may now be considered to describe only these coupled

electron-electron effects, and is therefore labelled the correlation energy,

EC = Eexact − EHF. (1.4)

The primary aim of post-Hartree–Fock electronic structure methods is to calcu-

late this correlation energy, and thus capture the consequences of the dynamic

behaviour of electrons.

1.5 Moving beyond Hartree–Fock theory

There have been many attempts made to move beyond Hartree–Fock solutions

and improve the accuracy of quantum chemical calculations. Generally there is a

trade-off between accuracy and computational cost as demonstrated in figure 1.1.

Here several general categories of approach are considered.
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1.5.1 Perturbative approaches, and Møller–Plesset

perturbation theory

The simplest correction to the Hartree–Fock solution is to apply a perturbative

correction using Rayleigh-Schrödinger perturbation theory7,30. The Hamiltonian

is written as

Ĥ = Ĥ0 + Ĥ1,

and the energy and wavefunction written relative to a known solution to the model

Hamiltonian, Ĥ0. If the model Hamiltonian is taken as the Fock operator,

Ĥ0 =
∑

i

f̂(i)

=
∑

i

[

h(i) + vHF(i)
]

,

and the zeroth order wavefunction Ψ0 = ΨHF, then a perturbation may be used

to ‘correct’ the overall Hamiltonian back to the true N -electron formulation, such

that

Ĥ1 =
N∑

i<j

1

rij

−
∑

i

vHF.

This formulation is known as Møller–Plesset Perturbation Theory (MPPT) or al-

ternatively as Many-Body Perturbation Theory (MBPT), especially by physicists.

The first and second order energy contributions can be extremely straightforwardly

obtained, such that

E
(1)
0 = 〈Ψ0|Ĥ1|Ψ0〉

= −1

2

∑

a, b

(

〈ab|ĥ|ab〉 − 〈ab|ĥ|ba〉
)

, and

E
(2)
0 =

∑

n6=0

∣
∣
∣〈0|Ĥ1|n〉

∣
∣
∣

2

E
(0)
0 − E

(0)
n

=
∑

a<b
r<s

∣
∣
∣〈ab|ĥ|rs〉 − 〈ab|ĥ|sr〉

∣
∣
∣

2

ǫa + ǫb − ǫr − ǫs

,

where {a, b, r, s} refer to orbitals and orbital energies, and n refer to the available

Slater determinants constructed out of these — the sum refers only to double

excitations of the ground state as these are the only ones that contribute. Higher
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order energy terms, and the expansion of changes in the coefficients, involve many

more terms but can also be obtained31. Commonly the energy contributions of Ĥ1

are calculated to second (MP28), third (MP332,33) or to fourth order (MP49).

Møller–Plesset theory does an excellent job of effectively describing the local

electron-electron behaviour throughout the system — it gets the electronic ‘cusp’

approximately right. It is also size-consistent in each order34. However, as a form

of perturbation theory, the final result can only be as good as the initial guess, the

Hartree–Fock solution, permits. Systematic improvement on this result requires

application of extremely high-order corrections, which rapidly becomes infeasible.

1.5.1.1 Other perturbative corrections

Perturbation theory is a powerful and general approach to obtaining more accurate

results than would othrewise be available with a given level of theory. Corrections

may be applied on top of any level of theory, and as such have wide applicability.

A few examples are given here.

Electronic cusp conditions

The functional form of the wavefunction where two electrons approach each

other can be obtained analytically35, and is proportional to the interelec-

tronic seperation. R12 and F12 theory can include terms of this form

perturbatively29,36, with varying long-range effects.

Coupled cluster

Adding additional excitation levels to the cluster operator (see section 1.5.3)

is both complicated and computationally expensive. CCSD(T)12 uses per-

turbation theory to approximate the effect of including triple excitations in

the cluster operator.

Relativistic corrections

By using the Schrödinger equation, it is implicit that the results will not

be relativistically correct. For spectroscopically accurate results, correcting

for relativistic effects may be required37, and this is most easily done using

perturbation theory.

Note that for all forms of perturbation theory, the quality of the final result is

dependent on the perturbation being ‘small’. Ultimately this critically depends on
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the quality of the underlying level of theory.

F12 and relativistic corrections can be applied to FCIQMC38 results to improve

convergence with respect to the dynamic correlation, and extend the theoretical

reach beyond non-relativistic quantum mechanics respectively.

1.5.2 (Full) Configuration Interaction

Configuration Interaction (CI) methods13,14 attempt to construct eigenfunctions of

the Hamiltonian within a basis set of 2M available spin orbitals. Wavefunctions are

constructed as a linear combination of antisymmetrised basis functions, frequently

Slater determinants, {Di}∗, which are in turn constructed as selections of N spin

orbitals from the 2M available, such that

|ΨCI〉 =
∑

i

cCI
i |Di〉 ,

where the coefficients {cCI
i } remain to be found. The CI coefficients satisfy an

eigenvector problem,
∑

j

〈Di|Ĥ|Dj〉 cj = ECIci,

where ECI is the energy of the given wavefunction, and the solutions can be found

by diagonalising the Hamiltonian matrix Hij = 〈Di|Ĥ|Dj〉 in the Slater determi-

nant basis. The eigenvectors of this matrix give the coefficients of wavefunctions

that are solutions to the Schrödinger equation within the given basis of Slater

determinants, and the lowest energy eigenvalue corresponds to the ground state.

In general CI methods are not size consistent39. If the complete set of Slater

determinants that can be constructed out of the available 2M orbitals is used,

then this calculation is known as a Full Configuration Interaction calculation.

This form of calculation is size consistent10, and the obtained correlation is energy

is known as the basis set correlation energy as it is the maximum value obtainable

for a wavefunction constructed out of the underlying basis set that the orbitals were

constructed from.† Up to this limit, CI calculations are systematically improvable

∗Throughout this thesis, indices into the Hilbert spaces used for CI are printed in bold,
whereas indices to individual orbitals electrons etc. are printed in italic as normal.

†FCI calculations, and as a consequence FCIQMC calculations, are insensitive to the quality
of the Hartree–Fock solutions used as input. Because a complete set of Slater determinants are
used, all contributions are considered regardless, and only the statistical quality of the results in
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by including a larger proportion of the available Slater determinants. The overall

physical accuracy can then be systematically improved by making use of larger

underlying basis sets to construct larger Hartree–Fock orbital bases. As the basis

set size is increased, convergence of the electronic cusp behaviour (the dynamic

behaviour of electrons in close proximity to each other) is slow40,41. This is because

trying to represent detailed local behaviour as a sum of long-range functions in

a manner similar to a Taylor expansion is not efficient, whereas the larger scale

structural components of the electron correlation are more easily converged.

Despite the exact nature of these results, the utility of the method is limited to

rather small systems. The number of determinants in an N -electron system with

2M spin orbitals is given by∗

Ndets =

(

2M

N

)

=
2M !

N !(2M −N)!
,

increasing roughly exponentially with both M and N (see figure 4.1). Determin-

istic diagonalisation of the Ndets ×Ndets matrix rapidly becomes impossible.

In practice several schemes exist to efficiently diagonalise these matrices, especially

as a great deal is known about the nature of the solutions, including Lanczos42

and Davidson43 diagonalisers. These have pushed the boundary of system size

such that the largest FCI calculation known to date is of N2 in a space of ≈
9.7·109 determinants44. This is many orders of magnitude smaller than the systems

that may be approached with more approximate methods, or with FCIQMC. The

application of these methods tends to be constrained by the memory requirements

of needing to store at least two vectors of coefficients the size of the overall Hilbert

space.

FCI results are extremely useful for providing both numerical and performance

benchmarks for further development work.

FCIQMC are affected.
∗This overestimates actual calculation size. Application of spatial symmetry, k-point sym-

metry spin and magnetic quantum number eigenfunctions radically cuts the size of the relevant
Hilbert space. It still scales in the same way.
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1.5.3 Coupled cluster approach

In order for Configuration Interaction calculations to be size consistent, all of

the Slater determinants which can be constructed out of the Hartree–Fock or-

bitals (both occupied and virtual) must be considered. The Coupled Cluster

Approach17,45 (CCA) is an attempt to provide an approximation to FCI that is

size consistent.

The arbitrary nth order excitation operator,

T̂n =
1

(n!)2

∑

i1...in

∑

a1...an

ca1a2...an

i1i2...in
a†a1

a†a2
· · · a†an

ai1ai2 · · · ain
,

removes electrons from orbitals {in}, and places them instead into orbitals {an},
while combining this with an unknown associated, coefficient. Some selection of

these operators are combined into the cluster operator

T̂ = T̂1 + T̂2 + T̂3 + · · · (1.5)

which provides a range of excitations with associated coefficients relative to the

reference determinant. The overall wavefunction is then constructed by application

of the ansatz

|Ψ〉 = eT̂ |D0〉
≈ (1 + T̂ + T̂ 2 + · · · ) |D0〉 .

The T̂ 2 and higher terms include excitations from combinations of multiple terms

in the cluster operator, with multiple coefficients combined. As such, if the cluster

operator in equation 1.5 is truncated to contain a subset of the relevant terms, the

overall expression approximates contributions from higher-level excitations than

are directly included through combinations of excitations with the associated prod-

ucts of their coefficients — i.e. the terms become coupled. As a consequence, the

equations are now non-linear and cannot be solved by a straightforward diagonal-

isation.

Writing the Schrödinger equation using the Coupled Cluster wavefunction gives

Ĥ |Ψ〉 = ĤeT̂ |D0〉 = EeT̂ |D0〉 .
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Multiplying by e−T̂ and projecting onto the entire set of excited determinants

generates a set of coupled equations,

〈D0|e−T̂ ĤeT̂ |D0〉 = E

〈Da1...
i1... |e−T̂ ĤeT̂ |D0〉 = 0

which can be solved for the coefficients {c} by a variety of means.

Different levels of theory can be obtained by various truncations of the sum in

the definition of the cluster operator (equation 1.5). If only the double excita-

tions, T̂2, are included, the theory is labelled CCD for “Coupled Cluster Doubles”.

Similarly, CCSD also includes single excitations in T̂1, and CCSDT and CCSDTQ

respectively include the triple- and quadruple-excitations although these are only

realistically applicable to extremely small systems. CCSD(T) extends CCSD by

approximating the effect of triples using perturbation theory, and is one of the

most well known highly accurate methods available. In the limit where all terms

up to T̂N are included in the cluster operator, then all terms in the FCI expansion

explicitly appear in the ansatz above, and the method produces the same results

as FCI, although less efficiently.

Coupled Cluster is an inherently single-reference method, in that the ansatz above

is applied only to one reference determinant. Multiple-reference versions have

been developed, although they increase the complexity substantially. Unlike FCI,

Coupled Cluster is not variational, although modified methods to ensure this do

exist46. As a consequence of the non-linearity, a very large amount of information-

mixing is present in any implementation, and as a result Coupled Cluster methods

tend to be extremely difficult to parallelise over large computational hardware.

Recent work by Thom47 has recast CCSD into a stochastic form, similar in both

derivation and implementation to FCIQMC. This permits the memory efficiency

of FCIQMC to be applied to the coupled cluster approach.

1.5.4 Monte–Carlo approaches

Most development in quantum chemical methods has focussed on increasingly

clever (and correspondingly complicated) means to perform calculations deter-

ministically in given basis sets, largely using extremely efficient matrix manipula-
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tions. Monte–Carlo approaches, such as Variational Monte–Carlo48, Path Integral

Monte–Carlo49, Coupled Cluster Monte–Carlo47, Green’s Function Monte–Carlo50,

Møller–Plesset Monte–Carlo51, Auxilliary Field Monte–Carlo52–54, Density Matrix

Monte–Carlo55 and others, represent a very different strand of thought, based

on repeatedly considering the effects of stochastic changes and obtaining results

through statistical analysis of output data. These approaches have various bene-

fits.

Reduction in size of solution representation

In deterministic schemes, the size of the representation of the solution tends

to be dependent on the size of the Hilbert space being considered. For

Monte–Carlo representations, the size of the representation depends on the

statistical accuracy desired, and in particular the number of ‘particles’ or

‘walkers’ that are going to be simulated in lieu of a wavefunction description.

Focussing of computational effort

In general, deterministic methods expend the same computational effort on

relatively insignificant regions of the Hamiltonian matrix and the correspond-

ing components of the wavefunction as they do on those that are critically

important.

In Monte–Carlo approaches, computational effort is focussed on the regions

that contribute the most, by concentrating either the representation (parti-

cle) density or the sampling in relevant locations. This causes computational

effort to be used more sparingly.

Systematic (statistical) improvability

As a result of output data being obtained statistically, the accuracy may be

improved systematically by either increasing the density of sampling (number

of particles), or running the calculation for longer to improve the statistical

accuracy of the results.



16 Introduction

Parallelisability

In general Monte–Carlo methods represent systems with discrete particles

that behave according to given rules such that the majority of the simulation

effort for each of these particles is independent. Consequently, the algorithms

tend to parallelise efficiently.

For the purposes of this thesis, the most illustrative commonly used Monte–Carlo

method is Diffusion Monte–Carlo56–58 (DMC). In a similar way to FCIQMC, Diffu-

sion Monte–Carlo attempts to find the long imaginary time limit of integrating the

imaginary time Schrödinger equation (see section 2.2.1). This limit corresponds

to the lowest eigenfunction of the Hamiltonian.

After substituting t = iτ into the Schrödinger equation (equation 1.1) and inserting

a ‘trial’ energy offset term, ET ,

∂Ψ

∂τ
= −(Ĥ − ET )Ψ

in atomic units. DMC treats this equation as a diffusion equation in imaginary

time, and attempts to solve this using Monte–Carlo integration.

The amplitude of a trial wavefunction in real space is represented by the density

of discrete ‘walkers’, each with its own position R, distributed throughout the

available space. These walkers move through real space by a series of random walks

which are selected according to the kinetic energy component of the Hamiltonian,

and created or destroyed by the potential component (V − ET ). ET is adjusted

throughout the simulation to control the number of walkers, and will equal the

energy of the ground state when the distribution of walkers has converged to

represent the ground state wavefunction.

The wavefunction converged on by DMC will be the lowest energy state available

under the boundary conditions. As electrons are fermions, one of these conditions

is the Pauli principle23,24 — this states that the wavefunction must be antisymmet-

ric with respect to exchange of any two electrons. However, DMC has no means to

represent negative values of the wavefunction or to ensure that a nodal-structure

exists throughout the space to generate this antisymmetry. As such, the solution

converged on will be the bosonic solution — one that is much lower in energy and

does not correspond to physical behaviour of electrons. It is not possible to simply

introduce negative walkers into the system as these will operate independently
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leading to a second copy of the same wavefunction! This is known as the fermion

sign problem.

The antisymmetry requirement may be dealt with using the fixed node approx-

imation57,59. This imposes a previously obtained nodal structure onto the evolving

wavefunction, providing the additional boundary condition to enforce antisymme-

try. The ground state may now be obtained if walkers are forbidden from moving

between the regions demarcated by the fixed nodes. However, the accuracy of the

energies obtained is highly dependent on the precise positioning of these nodes,

which are difficult to predict a priori. Errors introduced due to inaccuracies in

nodal surfaces generated using other forms of theory are difficult to systematically

reduce.

The real strength of DMC is that, due to representing the wavefunction in real

space, the local inter-electronic ‘cusp’ behaviour is well represented. As a conse-

quence, DMC calculations have been some of the most accurate ones performed us-

ing established quantum chemical methods, and have been used to predict ground

state energies, ionisation energies and similar properties to within ‘chemical accu-

racy’ (approx 1 kcal mol−1 ≈ 1.6 mEh
60).

1.6 Aims for further development

Considerable effort has gone into development of a Monte–Carlo based approach

to performing FCI calculations, known as Full Configuration Interaction Quantum

Monte–Carlo. This method aims to take the beneficial aspects of Diffusion Monte–

Carlo, namely its convergence after a stochastic integration of the imaginary time

Schrödinger equation and the representation of the wavefunction out of many

discrete particles, and to apply them in a method making use of the discrete

antisymmetrised basis sets associated with FCI, recasting the nature of the fermion

sign problem into something much more tractable.

This thesis is primarily concerned with the role of spin in FCIQMC calculations,

considering how spin is involved in convergence and how it can be used to manipu-

late the behaviour of the method. This requires some modifications to the existing

FCIQMC algorithms.
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Monte–Carlo

In this section two independent derivations of the Full Configuration Interaction

Quantum Monte–Carlo (FCIQMC) scheme are presented, along with the limita-

tions of their applicability. Specifically, the derivation and algorithm published

by Booth et al.15 is insufficient to generalise FCIQMC to cases where the Hilbert

space is spanned by a non-orthogonal basis set.

The derivations of FCIQMC result in fairly general iterations schemes. The

stochastic implementation of these schemes has a great deal of flexibility, and

many different choices may be made. A discussion of the nature of discretisa-

tion of the representation of the wavefunction and the stochastic spawning process

leads into an exposition of the ‘standard’ algorithm — which has been used in

the majority of published work so far. Some alternative choices are useful in the

following work and will be discussed as required.

An alternative FCIQMC scheme, re-interpreted to ask the question “when is the

next particle to be spawned” rather than the usual question of “how many par-

ticles are spawned in this unit of imaginary time” is explored in its own chapter

(chapter 7) later.

2.1 What is FCIQMC?

The Full Configuration Interaction Quantum Monte–Carlo (FCIQMC) method,

recently developed by Booth, Thom and Alavi15,61, stochastically integrates the

imaginary time Schrödinger equation to obtain a representation of the FCI wave-

function. Although the FCI wavefunction is never instantaneously represented, it

19
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is efficiently dynamically sampled to obtain the energy (or in principle the expec-

tation values of any other operator62,63) to arbitrary accuracy.

This approach shares much in common with Diffusion Monte–Carlo formulations

(see section 1.5.4). In particular;

• The wavefunction is constructed out of particles, or walkers∗, each of which

carry a miniscule proportion of the overall magnitude.

• The wavefunction is evolved stochastically, according to rules which modu-

late the distribution of these particles.

• Answers are obtained to a statistical level of accuracy, which is dependent

on the number of particles in the system, the length of time allowed for

equilibration and the number of iterations that output data are collected

over.

The substantive difference between DMC and FCIQMC is in the handling of the

fermion sign problem. In DMC, this is approached by making a fundamentally

uncontrolled approximation — the nodal structure is fixed according to a prior

reference calculation† — which introduces a source of error into the final wave-

function that is not systematically improvable.

It is no surprise that simulations get stuck on this hurdle. Troyer et al.65 have

demonstrated that the fermion sign problem is in the category of non-deterministic

polynomial complete decision problems (NP complete). As a consequence, any

method which reduces the fermion sign problem to a methodology which scales

polynomially would in principle provide a solution to all NP complete problems

and imply that NP = P. This is generally believed not to be true.

FCIQMC represents the wavefunction as a linear sum of intrinsically antisym-

metrised basis functions, and integrates the imaginary time Schrödinger equation

in this space rather than real space. This prevents the collapse of the wave-

∗The Monte–Carlo community is unable to agree on consistent terminology for the ‘particles’
used in simulations. These have often been labelled as ‘walkers’15 in a similar way to other similar
Monte–Carlo methods, but this seems inappropriate for FCIQMC as they do not move. The term
‘psips’ has been suggested by some,57,64 to indicate ‘psi-particles’, but has gained little traction.
‘Spawners’ would be a fairly accurate description. I have chosen to use the term ‘particles’ to be
both generic and avoid generating a preconception as to the dynamics within the system.

†Work has been carried out on developing DMC methods which work to improve this nodal
surface. This does not, however, remove the fundamental issues associated with having a nodal
surface.
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function to the bosonic solution, and recasts the fermion sign problem into an

attempt to determine the relative sign-structure of the coefficients of the given ba-

sis functions. This eliminates uncontrolled errors in the wavefunction at the cost

of restoring exponential scaling of the computational cost with basis set size — a

property of NP complete problems. Even when using the initiator approximation

(see section 2.4.4) the overall computational scaling is exponential. The initiator

approximation reduces the exponent, but it does not reduce the complexity to

polynomial.

Once a series of propagation equations are developed for coefficients within this

antisymmetrised Hilbert space, the coefficients are then represented by an ensemble

of particles. The efficiency of the stochastic representation of the dynamics of

these particles is a result of the shape of the Hilbert space — it is both very highly

connected and extremely local. Each site in the Hilbert space is connected to only

a few thousand others, and yet (in the same way as in the concept of “six degrees

of separation” in human population dynamics) it is possible to move from a point

in the space to any other point in N
2

steps, where N is the number of electrons in

the system.

In considering FCIQMC, it is important to consider the consequences of manip-

ulating the antisymmetrised basis set, the ways particles can be represented and

the trade-off between memory usage, computational time and statistical noise in

implementations.

2.2 Derivation of FCIQMC

Within FCIQMC an ensemble of particles is evolved stochastically according to a

series of simple rules. These rules simulate the evolution of a set of coefficients,

describing the wavefunction in terms of a basis set. Two different routes to ob-

taining functional rules are shown below. Note that the dynamics modelled in the

two approaches are subtly different, to avoid requiring application of the inverted

overlap matrix when using non-orthogonal basis functions.
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2.2.1 Orthogonal FCIQMC (Booth et al.)

In common with Diffusion Monte–Carlo, FCIQMC is derived from the imaginary

time Schrödinger equation,

∂Ψ

∂τ
= −(Ĥ − ES)Ψ, (2.1)

where ES is an additional energy offset. Integrating this with respect to imaginary

time, τ , gives an iterable relationship,

Ψ(τ + δτ) ∝ e−δτ(Ĥ−ES)Ψ(τ). (2.2)

Writing the wavefunction as a linear combination of the eigenfunctions of the

Hamiltonian, φi, with eigenvalues Ei,

Ψ(τ) ∝ e−τ(Ĥ−ES)Ψ(τ = 0)

=
∑

i

cie
−τ(Ei−ES)φi. (2.3)

By noting that Ei ≥ E0 ∀i, where E0 is the lowest energy eigenvalue, it is clear

that the components of Ψ which do not correspond to the lowest eigenvalue decay

exponentially with τ more rapidly than φ0. As such the long time limit of the

projection,

Ψ0 ∝ lim
τ→∞ e−τ(Ĥ−ES)Ψ(τ = 0),

reveals the ground state.

It should be noted that if ES = E0, then the coefficient of φ0 no longer decays,

whilst those of the other eigenfunctions continue to do so, and a pure ground

state wavefunction is obtained. If ES < E0 the overall amplitude will decline,

and if ES > E0 it will grow, while the structure of the wavefunction continues to

converge. This provides a great deal of control over the simulation and provides a

measure of the energy, see section 2.3.2.

Generally the correlation energy, EC = E0 − Eref , is desired. As a consequence,

the substitution ES = Eref + EC is made.

If the time-step, δτ , is small, equation 2.2 can be approximated by the first-order
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Taylor expansion

Ψ(τ + δτ) ∝ (1− δτ(Ĥ − Eref − EC))Ψ(τ). (2.4)

At this point, the wavefunction is expressed as a linear combination of orthogonal

basis functions {Dj},

∑

j

cj,τ+δτ |Dj〉 = (1− δτ(Ĥ − Eref − ES))
∑

j

cj,τ |Dj〉 , (2.5)

from which the coefficient of each basis function can be projected out by integrating

over the relevant |Di〉;

ci,τ+δτ = ci,τ (1− δτ(Hii − Eref − ES))− δτ
∑

j6=i

Hijcj,τ

∆ci,τ→τ+δτ = −δτ(Hii − Eref − ES)ci,τ − δτ
∑

j6=i

Hijcj,τ ,

where Hij = 〈Di|Ĥ|Dj〉.

For the purposes of FCIQMC, the above iterable step is considered as two separate

processes,

Spawning ci,τ − δτ
∑

j←i
j6=i

Kijcj,τ −→ ci,τ+δτ , and (2.6a)

Death ci,τ − δτ(Kii − ES)ci,τ −→ ci,τ+δτ , (2.6b)

where Kij = Hij−Erefδij. j← i indicates the sites j that are connected to the site

i, such that the Hamiltonian matrix element Hij 6= 0.

2.2.2 Non-orthogonal FCIQMC

The spin-projected determinants, introduced as a basis set in section 3.3.5 form

an over-complete and therefore non-orthogonal basis. In addition, although they

can be normalised, a derivation that does not assume this is preferable. The

previous derivation of FCIQMC breaks down when being used with non-orthogonal

basis functions, as projecting out the coefficients of each basis function (from

equation 2.5) is no longer clean. As such, the derivation by Thom47 intended for
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Coupled Cluster Quantum Monte–Carlo (which was in turn inspired by FCIQMC),

is adapted back to FCIQMC. Note that the dynamics derived here are subtly

different to those for canonical FCIQMC. The same dynamics could be achieved

by applying the inverse overlap matrix, which would avoid the consequences of

the energy entering the off-diagonal terms and some of the observed pathological

behaviour. The complexity of doing this is avoided in this derivation.

Starting from the Schrödinger equation for the converged CI wavefunction,

(Ĥ − E) |ΨCI〉 = 0,

it is clear that the operator [1−δτ(Ĥ−E)], where δτ is some positive real number,

will project ΨCI onto itself,

(1− δτ(Ĥ − E)) |ΨCI〉 = |ΨCI〉 ,

and has the same eigenfunctions. This (converged) CI wavefunction is expressed

as a linear combination of an arbitrary set of basis functions, {Fj},

|ΨCI〉 =
∑

j

Cj |Fj〉 ,

and integrated across an arbitrary basis function Fi giving

∑

j

Cj 〈Fi|Fj〉 − δτ
∑

j

Cj 〈Fi|Ĥ − E|Fj〉 =
∑

j

Cj 〈Fi|Fj〉 (2.7)

Subtracting all of the overlap terms, Cj 〈Fi|Fj〉, where i 6= j, from both sides gives

Ci 〈Fi|Fi〉 − δτ 〈Fi|Ĥ − E|Fi〉Ci − δτ
∑

j←i
j6=i

〈Fi|Ĥ − E|Fj〉Cj = Ci 〈Fi|Fi〉 . (2.8)

j← i indicates the sites j that are connected to the site i, such that the Hamiltonian

matrix element, Hij − ESij 6= 0. This can be considered as an iterable process,

such that the converged coefficients are iterated and regenerate themselves.

If instead the set of coefficients {cj}, which are not necessarily converged to the
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FCI wavefunction, are considered then the iteration step

ci − δτ

(Hii − ESii)ci +
∑

j←i
j6=i

(Hij − ESij)cj

Sii

−→ ci (2.9)

defines a new process for evolution of the coefficients, where the Hamiltonian and

overlap matrix elements are given by Hij = 〈Fi|Ĥ|Fj〉 and Sij = 〈Fi|Fj〉. This

process may be split into two component processes,

Spawning ci,τ − δτ

∑

j←i
j6=i

(Kij − ECSij)cj,τ

Sii

−→ ci,τ+δτ , and (2.10a)

Death cj,τ − δτ
(Kii − ECSii)ci,τ

Sii

−→ ci,τ+δτ , (2.10b)

where Kij = Hij − ErefSij, for implementation in a similar way to the original

FCIQMC scheme. It is worth noting that the original FCIQMC scheme is obtained

as a special case of this process where Sii = δij. The overlap matrix terms enter the

equations as a consequence of projecting the coefficients back onto the basis set

being used. In cases where this is not done, such as in Auxilliary-Field Quantum

Monte–Carlo54, this term does not arise and the associated problems such as non-

local death disappear.

Although equation 2.8 demonstrates that if this propagation is applied to the CI

wavefunction, it will project out the same wavefunction, it does not demonstrate

that the system will converge given a different trial wavefunction. If the converged

CI wavefunction is not used, equation 2.7 does not represent the propagation step

well, as the coefficients on the left would refer to imaginary time τ , and on the

right τ + δτ , and the subtraction taken to reach equation 2.8 would not be valid.

As a consequence, if, and only if, simulations of this scheme converge, the obtained

wavefunction is an eigenfunction of the Hamiltonian. By analogy with the orthog-

onal scheme outlined earlier, this will be the ground state wavefunction for the

system. However, it is entirely possible for the scheme to be unstable even with a

small value of δτ . One of the consequences of this is explored in section 3.4.2.
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2.3 Energy estimators

The primary expectation value of interest for an FCIQMC simulation is the energy

of the resultant wavefunction. The expectation value of that is defined as

E(τ) =
〈Ψ(τ)|Ĥ|Ψ(τ)〉
〈Ψ(τ)|Ψ(τ)〉

for any instantaneous wavefunction. For the ground state, this metric has the

advantage of being variational, and so can provide an accurate upper bound on

the energy. However, this estimator is biased due to correlations in the terms

summed, especially in the denominator.55 There is no straightforward way around

this. This estimator also suffers from scaling problems similar to calculation of an

accurate instantaneous value of the total spin expectation value (see section 3.2.1)

in that the connectivity of every occupied site to every other occupied site through

the Hamiltonian operator must be considered — and this scales extremely poorly.

A number of different metrics for the energy of the system are used in FCIQMC;

the projected energy, EP , the shift, ES and weighted variants of those. These are

discussed below. A blocking error analysis66,67 is performed on the output of these

energy estimators to obtain the final output results.

Additionally, work by Cleland and Overy68 permits stochastic evaluation of the

one- and two-body density matrices during the output data collection phase of

the calculation. It is possible to obtain the energy of the wavefunction from this

metric. This is not discussed further in this report.

2.3.1 The projected energy, EP

Consider the projection of the time-independent Schrödinger equation onto any

arbitrary reference state;

EP (τ) =
〈α|Ĥ|Ψ(τ)〉
〈α|Ψ(τ)〉 .

It is important to note that this metric is no longer variational. Its quality as a

metric of the energy is strongly dependent on the choice of the projection state α —

essentially the better the overlap between the wavefunction and the state α, i.e. the

magnitude of the denominator of the expressed fraction, the better the estimate
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and the more stable it will be to stochastic fluctuations in the wavefunction through

a calculation.

In most cases the reference state, F0, is used for projection, such that

EP =
〈F0|Ĥ|Ψ〉
〈F0|Ψ〉

=

∑

i←0 H0ici
∑

i←0 S0ici

, (2.11)

where i← 0 indicates that only those sites with non-zero Hamiltonian or overlap

terms connecting the to the reference site need to be considered for the summa-

tion. In the case of orthonormal basis functions being used, the projected energy

simplifies to

EP =

∑

i←0 H0ici

c0

.

In the long imaginary time limit, an estimate of the ground state energy of the

system (as opposed to the instantaneous energy of an ensemble of particles may

be obtained by averaging both the numerator and the denominator independently;

〈EP 〉 =

〈

〈α|Ĥ|Ψ(τ)〉
〉

〈〈α|Ψ(τ)〉〉 .

It is important to note that the individual EP values should not be averaged them-

selves, as this will introduce biases to the final value and cause issues determining

statistical accuracy as inevitably there are correlations between the numerator and

denominator in the expression. Additionally, it is worth noting that the shift en-

ergy estimator (see section 2.3.2) can introduce a bias69 that affects the projected

energy estimator if it is permitted to vary too rapidly

If the reference is well chosen for the problem under consideration, as is generally

the case if the Hartree–Fock ground state is used as the reference, then it will carry

a substantial proportion of the overall wavefunction and the denominator will be

large, minimising statistical noise in this metric. Conversely, if the reference is

poor, either due to the system being highly multi-configurational or the Hartree–

Fock solution simply being poor, this metric for the energy will be poor. In some

cases an alternative site becomes the most strongly weighted within a simulation,

and in these cases the reference site should be changed on the fly.

It is possible to overcome these limitations by use of a more sophisticated trial

wavefunction α. This has been of particular use in the semi-stochastic representa-

tion of FCIQMC70, although this comes at additional computational cost.
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It has been demonstrated by Booth71 that the average of the non-variational pro-

jected energy used within FCIQMC converges much more rapidly to the correct

CI energy than the variational energy or any average of it. This is largely due to

the variational energy requiring a much better instantaneous representation of the

wavefunction to give a reasonable energies, and that it is skewed by being always

higher than the true energy.

2.3.2 The shift, ES

If the ensemble of coefficients, {ci}, associated with a converged CI wavefunction

is iterated according to the propagation equation defined in equation 2.9, the

difference in the coefficient ci between two steps is given by

∆ci = −δτ

∑

j cj(Hij − ESij)

Sii

.

Considering the time-independent Schrödinger equation,

(Ĥ − Eexact) |ΨCI〉 = 0,
∑

j

(Ĥ − Eexact) |Fj〉 cj = 0,

then adding zero to the expression for ∆ci yields

∆ci = −δτ

∑

j Cj(Hij − ESij)

Sii

+

zero
︷ ︸︸ ︷

δτ

∑

j cj(Hij − EexactSij)

Sii

=
E − Eexact

Sii

δτ
∑

j

cjSij.

If the energy term appearing in this expression is considered separately for the

diagonal and off-diagonal terms, then

∆ci = δτ(Ediag − Eexact)ci +
(Eoff−diag − Eexact)

Sii

δτ
∑

j6=i

cjSij. (2.12)
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If orthonormal basis functions are being used, such that Sij = δij, then

∆ci = δτ(Ediag − Eexact)ci, (2.13a)

|Ψ(τ + δτ)〉 = e(Ediag−Eexact)δτ |Ψ(τ)〉 . (2.13b)

As a consequence, the value of Ediag does not influence the convergence of the

wavefunction, it merely scales all of the coefficients by the factor e(Ediag−Eexact)δτ

per iteration. This means that it may be used as a variable parameter to investigate

the ground state energy of the system, and is labeled the ‘shift’, ES; Ediag ≡ ES.

Once there are enough particles in the simulation, the shift is (slowly) varied to

maintain the L1-norm of the wavefunction, Nw(τ) =
∑

i |ci(τ)|, by a weighted

measure of the fractional change in the L1-norm between iterations,

ES(τ) = ES(τ − nupδτ)− ζ

nupδτ
ln

Nw(τ)

Nw(τ − nupδτ)
,

where nup indicates the number of iterations between each occasion the ‘shift’

is updated, and ζ is a parameter indicating the strength of the adjustments and

hence controlling the relationship between the smoothness of the variations (which

is desirable because of its effects controlling the simulation dynamics) and its

effectiveness at maintaining the L1-norm. Additionally, if this parameter is too

large it may introduce a bias to the projected energy.69

The value that ES settles to provides a good estimate of the energy of the system,

although it is worth noting that it has a potential bias,55 especially in the low

particle count limit. If the particle distribution attempts to explore a favourable

area it will cause a (short-term) growth in particle count which this shift modifier

will work to suppress, and similarly it will actively feed particle growth as the

distribution moves into less favourable portions of the space.

2.3.3 The weighted energy estimator

If non-orthogonal basis functions are being used, i.e. Sij 6= δij, the energy modifies

the off-diagonal terms in the spawning as well as the diagonal ones. As demon-

strated in figure 2.1, it is necessary for this value to be correct in order for the

wavefunction to evolve correctly, and for the projected energy to tend to the cor-

rect value. As such, it is important that this value be independent of the shift
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Figure 2.1: A plot of the projected energy for a model system (He2 in a minimal ba-
sis set) where equation 2.9 is iterated exactly, relative to the exact CI
energy obtained by diagonalisation. In blue is the projected energy if
Eoff−diag ≡ ES as described in equation 2.12. It can be seen that until the
shift is allowed to vary (and converge to the correct energy) the projected
energy fails to converge to the correct value. If a weighted average of the
projected energy is used instead, Eoff−diag ≡ Eweighted, as in the red line,
then convergence occurs directly. This demonstrates that the off-diagonal
terms require a good estimate of the energy of the system even outside of
variable-shift mode, and that the off-diagonal terms and the shift should
be decoupled.

— the structure of the wavefunction must converge correctly whether the shift is

being used to encourage particle growth or to maintain particle number.

An estimator based on the projected energy is, conveniently, independent of the

shift. However, the projected energy can vary extremely rapidly, especially early

in the calculation when the denominator in equation 2.11 is small. It is important

that the estimator for the off-diagonal elements varies smoothly and slowly to

maintain sane behaviour in the particle dynamics whilst averaging to the correct

value in the long time limit. This is more important than producing good statistics

for analysing this particular value. As such, an exponentially weighted average of

the projected energy is used in this term,

Eoff−diag(τ + δτ) = Eweighted(τ + δτ) = βEP (τ) + (1− β)Eweighted(τ), (2.14)

where β is a parameter which determines how strongly variations in EP affect the
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averaged value.

Once this estimator is used, the cross terms in equation 2.12 (on average) disap-

pear as Eweighted ≈ Eexact, and the scaling behaviour described in equation 2.13

is recovered. This enables the shift to be used in the same manner when using

non-orthogonal basis sets.

2.4 The ‘standard’ FCIQMC algorithm

The propagation relations given in the above derivations (see equations 2.6 & 2.10)

give a very general definition of the processes involved. A naïve implementation

where the ensemble of coefficients {ci} are stored and iterated according to these

relationships requires at least one full vector of the full size of the Hilbert space

and the enumeration and calculation of all non-zero Hamiltonian matrix elements.

The benefits of FCIQMC are related to maintaining a sparse representation of the

wavefunction and having an efficient stochastic scheme for sampling the Hamil-

tonian. There are a large number of different choices which can be made in the

implementation of the processes described above. In the section below the range

of choices made for the ‘standard’ implementation of the algorithm are discussed,

along with some of the alternatives that have been used or considered.

2.4.1 Description, granularity and chance

The primary memory usage benefits of FCIQMC are related to the representa-

tion of the evolving wavefunction in memory – in particular the representation

of the coefficients associated with the basis functions in use. The wavefunction

is extremely sparse within the Hilbert space, and the majority of the non-zero

coefficients are very small.

It is important that the representation, and the dynamics, are sufficient that the

coefficients up to the double excitations of the reference determinant, i.e. those

which contribute to the projected measure of the energy (see section 2.3.1), are

represented accurately by their long term averages, while effectively reflecting the

sparsity of the wavefunction.
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There are a number of significant choices, and correspondingly a great deal of

flexibility, in the ways that moves are made throughout the Hilbert space, and in

how both spawned and stored particles are represented. These can be generally

summarised by noting that increasing the granularity generally makes the calcu-

lation faster while decreasing the statistical accuracy of the answer — and that a

balance needs to be struck between these competing priorities.

The two primary means of increasing the granularity of the calculation are;

Cutoffs

The sparsity of the wavefunction is represented by the existence of a mini-

mum coefficient size, cmin. Magnitudes smaller than this are stochastically

rounded, such that

c→







c if |c| > cmin

sgn(c)× cmin with probability |c|
cmin

if |c| < cmin

0 otherwise.

The value of the coefficient is represented on average across many iterations.

The computational and storage cost savings of representing a particle on a

few iterations, rather than a smaller particle on every iteration, are substan-

tial.

Discretisation

Similarly, for ease of representation, the coefficient may be discretised into a

multiple of a granularity constant, ω, such that

c→







ω ×
⌈

c
ω

⌉

with probability
(

c
ω
−
⌊

c
ω

⌋)

ω ×
⌊

c
ω

⌋

otherwise.

ω would normally be equal to one, such that the coefficients are restricted

to integers and any fractional parts stochastically rounded up or down. If

the representation of the coefficients is not being artificially discretisied, i.e.

ω = 0, then the above process (with its implicit division by zero) should not

be applied.
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2.4.1.1 Discretisation of represented wavefunction

In an algorithm intending to represent the wavefunction with an ensemble of dif-

ferent particles, it would be extremely awkward to restrict the representation of

the wavefunction such that 〈Ψ|Ψ〉 = 1. In practice there are two stages to any

FCIQMC calculation;

1. Initial growth. The overall amplitude of the wavefunction is allowed to grow

to encourage the representation to spread out into the entire Hilbert space.

2. Collection of data. The overall L1-norm, Nw =
∑

i |ci|, of the wavefunction is

constrained by permitting the value of ES to vary (see section 2.3.2). If the

wavefunction is converged, then this (on average) maintains the wavefunction

amplitude
∑

i |ci|2 .

The primary output of an FCIQMC calculation is an estimator of the correlation

energy of the system. Calculation of this using the projected energy (see sec-

tion 2.3.1) is sensitive to the quality of the representation of the coefficients. The

more granular the representation, the noisier the energy estimators will become

as the distribution and the output values will fluctuate more in order to maintain

the correct averages.

Conversely, a discrete representation of the coefficients is computationally more

efficient, especially as a very large proportion of sites are correctly represented by

amplitudes lower than the granularity will permit — and as a consequence only a

small fraction will be occupied at any particular instant. This drastically reduces

the computational cost per iteration, and the total memory requirements of the

instantaneous representation of the wavefunction, at the cost of decreasing the

statistical accuracy of the resultant energies.

The projected energy (see section 2.3.1) is dependent only on the coefficients of

the reference site and the direct connections to it via the Hamiltonian. No sites

which are more than double excitations away from the reference site contribute

directly to this energy metric. As such, in order to maintain the best possible

description of the wavefunction for the projected energy, whilst using memory

efficient dynamics, it is helpful to use a split representation where the sites up to

double or triple excitations from the reference site are represented using floating

point coefficients, whereas the remainder of the Hilbert space is discretised. This

can lead to up to 3 orders of magnitude of reduction in statistical noise72 compared
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to a fully discrete representation.

2.4.1.2 Discretisation of spawning

There is a choice of how spawning is to be carried out. The step described in

equation 2.10a is to be carried out stochastically for each of the sites in the occupied

list. There are a number of choices to be made based on a tradeoff between the

computational cost of each iteration and the associated stochastic noise.

Selection of target sites

It is necessary that equation 2.10a is faithfully reproduced on average through-

out the calculation. For implementation, this expression is reversed,

−δτ
(Kij − ESij)cj

Sii

−→ ∆ci ∀ i← j, i 6= j,

such that for each occupied site, j, the component of the value ∆ci cor-

responding to the connection i ← j is calculated, and the overall sum in

equation 2.10a is calculated when all of these components are combined.

It is not necessary for the full ensemble of connections to be considered each

iteration. Any stochastically determined subset, {k}, may be considered,

provided that each of the terms is adjusted by the likelihood of it being

selected in a given iteration, pgen(k|j), such that

−δτ
(Kjk − ESjk)cj

pgen(k|j) −→ ∆ck ∀ k ∈ {k} ∈ {i← j, i 6= j}. (2.15)

In the ‘standard’ case described below, the set {k} is reduced to containing

only one element, i.e. by only chosing one target, k, for each spawning event.

In the case of same-spatial structure spawnings, this is not always the best

choice (see section 5.5).

Subdivision of spawning

In equation 2.10a the magnitude of the connections made is multiplied by

the coefficient cj. Reducing the stochastic noise can be achieved by focussing

more attention on the most significant (highly weighted) regions of the space.

As such, the number of spawning attempts may be made in proportion with

the magnitude of the coefficients, such that the expression in equation 2.15
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is approximated to

|cj|
γ
×
[

−δτγ
(Kjk − ESjk) sgn cj

pgen(k|j) −→ ∆ck ∀ k ∈ {k} ∈ {i← j, i 6= j}
]

.

(2.16)

where γ indicates the weight given to each spawning step. If γ does not

divide cj exactly, then
|cj|
γ

is rounded up to the nearest integer with prob-

ability equal to the fractional part, or down otherwise. This results in
|cj|
γ

independent spawning steps being performed. In the most frequently used

implementation, γ = 1 and FCIQMC may be considered to use discrete,

unit, signed particles as the source of spawns.

Discretisation of spawned particles

Discretisation and truncation of spawned particles serves the purpose of re-

ducing the number of particles which have to be combined with the main

particle list during annihilation (see section 2.4.3). This is significant as this

list of spawned particles contributes the majority of data to communicate

between computational nodes on a parallel machine. The parameter, cmin, is

labelled ns,min when applied to spawned particles.

The more aggressively cutoffs are applied as described above, the lower the

computational cost — but at a cost of stochastic noise.

2.4.1.3 Sensible choices of granularisation and cutoffs

Canonical FCIQMC

The majority of FCIQMC calculations discussed in the literature make use of

the original formulation of FCIQMC, such that all particles are considered

to be the same, with integer weight. This can be considered as setting

cmin = ns,min = ω = γ = 1 for both storage and spawning. For each integer

particle located on a site, one spawning attempt is made to a (non-uniformly)

randomly selected connected site during each iteration.

Real-coefficients

As demonstrated by Overy72, FCIQMC may be implemented by relaxing

cmin and ω for both the stored and spawned particles. Generally cmin is set

extremely low for spawned particles, such that small incremental spawning

effects occur slowly and only essentially zero sized spawns are trimmed to
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reduce communication overhead, whereas cmin is maintained for particle stor-

age to maintain the sparsity of the representation. ω is set to zero, such that

above the threshold all detail in the representation is retained. This results

in a substantial improvement in the statistical quality of the results.

Partial real-coefficients

The vast majority of the statistical benefit of the real-coefficient scheme is

obtained by representing the ‘core’ of the wavefunction — those close to the

reference site which contribute directly to the projected energy, or strongly

influence those sites that do. A computational saving may be made by

only representing those sites with real coefficients, and using the canonical

FCIQMC scheme for the remainder.

Semi-stochastic FCIQMC

Umrigar et al. have demonstrated70 that treating the ‘core’ of the wavefunc-

tion deterministically is beneficial. The region of the space to consider in

this way should be obtained through lower cost calculations, but is generally

highly populated with particles — as such treating it exactly does not in-

cur the substantial overhead it would in the sparsely occupied regions of the

space. This region of exact integration of the imaginary time Schrödinger

equation is then coupled with an FCIQMC scheme for the remainder of the

space.

The use of CSFs will require some further modifications of the granularisation of

FCIQMC calculations. In particular the subsets of connected sites spawned to in

each spawning attempt are modified, as described in section 5.5. The majority of

calculations in this thesis are performed using the partial real-coefficients scheme.

2.4.2 Initialisation (trial wavefunction)

The derivation of FCIQMC gives an algorithm that may be used to iterate the en-

semble of particles. The quality of the initial distribution of particles, representing

a trial-wavefunction, determines how far the simulation has to evolve to converge

to a sensible result, and therefore how much computational effort is required.

There are two primary approaches used for initialising calculations
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Single particle

A single particle (or a few particles, to reduce the likelihood of all the par-

ticles in the simulation dying) are placed on one site, and the shift is set

so that the total particle population grows. The computational cost grows

proportionally with the total number of particles in the system73 and, espe-

cially if the initiator approximation is used, this encourages the population to

grow coherently. This avoids computational time being unnecessarily spent

on generating a coherence from an incoherent wavefunction through annihi-

lation.

Approximate wavefunction

Alternatively, an approximate wavefunction calculated by a cheaper method,∗

may be used to initialise the wavefunction. It is assumed that the major-

ity of the wavefunction weight described by these approximate solutions is

sign-coherent and as such it can avoid the unnecessary computational cost

associated with developing this sign structure through annihilation.

Previous FCIQMC calculation

The dumped output of a previous FCIQMC calculation may be loaded, and

the calculation resumed either to collect additional data to improve the the

statistical quality of the output, or to grow the number of particles.

2.4.3 The ‘standard’ algorithm

Once an initial distribution is established, the ensemble is iterated by repeatedly

applying the following three processes for each timestep, δτ . This is also demon-

strated in figure 2.2.

1. Spawning

For each occupied determinant Di, the stored coefficient is discretised into

units of γ, with the remainder rounded to ⌈ci⌉ with probability equal to the

fractional part of the coefficient if it is non integer, otherwise ⌊ci⌋. For each

of these particles, a coupled site, Dj, is selected with a normalised probability

pgen(j|i) and a particle with weight ns is created and stored in the spawned

∗A variety of alternative methods may be used. In particular either a Complete Active Space
SCF (CASSCF) calculation is used to populate a subset of the Hilbert space, or particles are
distributed according to the MP2 wavefunction.
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Figure 2.2: A diagrammatic representation of Full Configuration Interaction Quantum
Monte–Carlo (FCIQMC). This shows the three components of the algo-
rithm; (1) spawning, where the sign of the spawned particles depends on
the sign of the connection, Kij −ESij, (2) death, where particles on a site
are destroyed depending on the diagonal matrix element, and (3) annihila-
tion, where particles with opposite signs are removed from the simulation.

list, where

ns(j|i) = −δτγ
Kij − EweightedSij

pgen(j|i)Sjj

. (2.17)

If the magnitude of this is lower than a cutoff ns,min then it is rounded to an

amplitude of ns,min with probability |ns|
ns,min

or discarded otherwise. If purely

integer coefficients are being used, ns is stochastically rounded to an integer

value as described above.

2. (Diagonal) death

Reduce the magnitude of the coefficient on each occipied site by

nd(i) = δτ
Kii − ESSii

Sii

ci. (2.18)

If integer coefficients are being used, then this value should be stochastically

rounded to an integer value. If this value is negative, the coefficient is instead

augmented (particles are cloned).

3. Annihilation

The list of newly-spawned particles is combined with the list of particles

remaining after (diagonal) death. All pairs of particles which occupy the

same site but with differing signs are removed from the simulation. After

this, remaining particles with coefficients smaller than cmin are rounded as

described above. It is at this stage in the algorithm that various other

control measures (see the initiator approximation and non-local death in
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sections 2.4.4 and 3.4.2) are implemented.

Implementationally, this step is extremely important. When working with

parallel computational resources, the communication of spawned particles

from their origin to the processor containing any existing particles on the

same site is the only step which must be performed synchronously on all

processors — and as such its scaling is of critical importance. The use of hash

functions to distribute particles efficiently across computational resources is

discussed in a great deal more detail in other published work73.

If Sij = δij this algorithm reduces to the orthogonal algorithm which has been

previously published. A general overview of the implementation of the standard

FCIQMC algorithm is found in figure 2.3.

2.4.4 The initiator approximation

A modification to the above proposed algorithm has been suggested by Cleland

Booth and Alavi74, known as Initiator Full Configuration Interaction Quantum

Monte–Carlo (i-FCIQMC). This method attempts to approach the problem of low

productive wavefunction development in the (very noisy) rapid particle growth at

the start of a calculation, and avoid the formation of an annihilation plateau (see

section 2.4.5).

The new method introduces an additional survival criterion for spawned particles.

The occupied basis functions in the space are split into two sets; initiators, where

the amplitude on that site is larger than a specified threshold such that |ci| > ninit,

and non-initiators, which includes all other sites. When a new particle is spawned,

it survives only if

• its parent is located on an initiator site,

• the target site is already occupied, or

• more than one spawn, with non-initiator parent sites, occurs onto the same

site with the same sign on the same iteration.

This modification to the algorithm is based on a single premise, that sites occupied

by a large weight of particles are more likely to have the correct sign structure,

and as such should be given precedence during spawning. In the many-particle

limit, the approximation disappears.
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Figure 2.3: Overview of the FCIQMC algorithm, showing spawning, death and anni-
hilation steps of the main iteration loop.
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Figure 2.4 demonstrates the primary benefit of the initiator approximation — by

favouring growth from sites that are more likely to be sign coherent, the initial in-

coherent growth of particles that results in the annihilation plateau is suppressed.

This results in substantially faster convergence onto the correct wavefunction both

in terms of particle count (the wavefunction becomes coherent with fewer parti-

cles), and computational time (the area between the annihilation plateau and the

trajectory with the initiator approximation is essentially wasted). The growth of

particles on the reference site is very similar, in line with the coherent growth

of the resultant wavefunction. The number of particles on the reference site in

i-FCIQMC represent a larger proportion of the total number of particles due to

multitudinous low weight spawns into sparsely occupied regions of the Hilbert

space being suppressed.

The benefits associated with the initiator approximation come at a cost. Restrict-

ing the spawning from insufficiently occupied sites effectively soft-truncates the

Hilbert space as a function of the particle count. If there are insufficient particles

in the system, the energy will not converge to the correct value, and the restriction

on the statistical average of this value is not variational. This introduces an error,

dependent on the particle number, known as the initiator error. Furthermore, due

to the absence of the annihilation plateau, there is no straightforward means to

determine that a simulation has sufficient particles, other than running it with

many more particles and observing that the convergence does not change.

Prior analysis of the initiator approximation has been carried out in the canonical

FCIQMC scheme, with unit particles — in this regime it is clear that if ninit = 0

the simulation is equivalent to canonical FCIQMC as all occupied sites will be

initiators, and for ninit = 1 a substantial threshold has been introduced.

Using real coefficients permits a subtly closer analysis. It appears that the onset

of initiator approximation induced behaviour occurs as a phase change — it is

sudden. This is illustrated by the two choices in figure 2.4. In the first case,

ninit = 0.9, which is smaller than the smallest permissible particles size — as

such the behaviour is as for canonical FCIQMC. As soon as ninit = 1.0, and sites

must have more than the minimum occupation by some amount, the annihilation

plateau is suppressed. This is despite the minimum spawn size being 0.2 in this

simulation. Beyond this value, i-FCIQMC is very insensitive to the value of ninit,

with the choice of this primarily influencing the size of the initiator error.
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This is a somewhat unexpected result, but it can be explained by consideration

of the initial behaviour of the simulation. In a normal FCIQMC simulation, each

of the particles may spawn progeny, which will spawn progeny and so forth. This

results in a particle growth rate which is roughly proportional to the number of

particles, and is eventually matched by an annihilation rate that instead grows

quadratically.64 Instead, in an i-FCIQMC simulation, as soon as the threshold

is above the minimum particle size, the initial set of particles spawned from a

site cannot successfully spawn progeny. They are only able to spawn once their

magnitude increases (even infintessimally), as a result of further spawning. As

such, repeated pairs of spawns are required to generate new structure in the Hilbert

space, resulting in a reduction of the spawning progress to more closely match the

growth of annihilation.

From this it is reasonable to conclude that sign incoherent spawning in FCIQMC

may be controlled by considering an entirely marginal preference for particles with

some metric for being more sign coherent.

2.4.5 A typical FCIQMC calculation

A typical FCIQMC simulation contains two stages, particle growth and the con-

stant amplitude stages. These have various characteristics, and differ substantially

between normal and initiator FCIQMC calculations. Figure 2.4 shows a canonical

FCIQMC simulation and an i-FCIQMC simulation for comparison.

Growth phase in FCIQMC

For a typical FCIQMC simulation, the growth phase contains three distinct

sections. Firstly the simulation starts with rapid particle growth. As there

is no developed sign structure, and few particles across the Hilbert space

to annihilate with, the spawning patterns are dominated by the amplitude

of the Hamiltonian matrix elements, and the simulation heads towards a

pseudo-bosonic solution64.

Once a sufficient number of particles have been scattered through the Hilbert

space, spawning begins to cause annihilation. This phase brings the growth

of the total number of particles to a halt in the annihilation plateau. Dur-

ing this stage the structure of the wavefunction develops, as noted by the

improvements in the projected energy estimator and the growth of particle
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Figure 2.4: The trajectories of two i-FCIQMC simulations of Ne in an aug-cc-pVDZ
basis set with different values of ninit = 0.9, 1.0. The simulations are run
with cmin = 1.0 and ns,min = 0.2. The top plot shows the projected energy
estimator, which is joined by the shift energy estimator when the total
number of particles in the simulation is constrained. The lower plot shows
the total particle weight in the two simulations, along with the number
of particles on the reference site for each simulation. Note that as 0.9 is
smaller than the minimum particle size, the simulation with ninit = 0.9 is
indistinguishable from non-initiator FCIQMC.
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weight on the reference site.

At some point, sufficient structure develops in the wavefunction that new

spawns are sign-coherent, and build overall particle weight. Once the growth

of overall particles becomes roughly parallel to the growth on the reference

site on a log plot, i.e. the whole wavefunction is scaling together, the simu-

lation is converged.

Growth phase in i-FCIQMC

In i-FCIQMC the initial uncontrolled growth of particles is suppressed. Par-

ticle growth occurs more smoothly, and more coherently, with a gradual pro-

gression to a converged wavefunction with the growth of the total particle

weight parallel to the growth on the reference site in the log plot. In keeping

with the coherent growth, the projected energy estimator tends towards the

correct value much more rapidly, with far less noise.

The extent to which the number of particles needs to be grown to converge

the wavefunction well is not immediately obvious. See section 6.1.2 for ex-

amples of how to determine when this growth phase has generated enough

particles.

Constant amplitude phase

Once the wavefunction is converged, and there are sufficient particles in the

simulation, the shift estimator of the energy, ES, is permitted to vary in a

damped fashion to maintain the total number of particles in the system. If

the overall and reference particle weights do not both track horizontally on

the plot, then the wavefunction is not well converged.

2.5 Issues for consideration

When developing Monte–Carlo algorithms, one of the nice features is that, pro-

vided that the deterministic propagation equations are simulated correctly in a

statistical limit, the correct answer will be resolved given sufficient particles to

represent the solution and enough computational time, and in principle the many

possible implementational decisions described above do not matter. However, the

trick for algorithmic development is to ensure that “enough computational time”

is in practice reasonably short. To that end some specific issues are discussed in
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this section that have a bearing on efficient implementation — and on the areas

that have not yet been satisfactorily resolved.

Convergence onto states other than the ground state

FCIQMC, by integration of the imaginary time Schrödinger equation, projects

out the ground state wavefunction subject to the available basis set. A con-

sequence of this is that FCIQMC is not generally suitable for finding excited

states. Some headway can be made by utilising symmetry to exclude low

lying excited states.

Other portions of the excitation spectrum can, in principle, be obtained

by other related means. These include explicit orthogonalisation schemes,

inverse Laplace transformation of the decay of the estimated energy through

imaginary time and (real) time dependent modifications of FCIQMC. Work

to approach these is ongoing.

Parallelisation

Other than annihilation, which only requires communication of the newly

spawned particles between computational processes, FCIQMC processes par-

ticles individually and independently. As such, FCIQMC lends itself ex-

tremely well to efficient parallelisation.

Current schemes distribute the occupied sites uniformly across across the

available MPI processes73. In practice the non-uniformity of occupation of

these sites determines the limit of efficient scaling with the number of com-

putational processes. Work is ongoing in collaboration with James Spencer

to overcome this limitation and distribute particles efficiently based on both

the number of sites and the occupation level of these sites.

Number of particles required

In the canonical expression of FCIQMC, convergence is fairly straightfor-

ward to demonstrate — if a simulation has passed through the annihilation

plateau, and exponential growth has resumed such that the entire wavefunc-

tion is scaling together, then the simulation is converged. This can be seen

on a log-plot of particles against imaginary time as the gradient of the total

number of particles becomes equal to the gradient of the number of particles

on the reference site.

When making use of the initiator approximation, this is no longer so straight-
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forward. It is necessary that the exponential scaling criterion as above is

fulfilled, but there is no longer a clear metric for how many particles are

required. In particular, it is necessary for there to be a certain number of

particles in the system before the initiator approximation stops skewing the

results by its restrictions on spawning. At present the only means to deter-

mine convergence by particle number is to run a series of calculations with

different numbers of particles and observe the asymptotic behaviour.∗

It is also worth noting that, independent of the convergence of the wave-

function, it is strongly advantageous to grow the simulation until there is a

substantial weight of particles (1000-10000 particles) on the reference site. As

this coefficient forms the denominator in the projected energy expression, this

works to reduce the magnitude of the stochastic fluctuation in the projected

energy. Some of the algorithmic trade-offs that influence the stochastic noise

dramatically influence the number of particles that are realistically required.

Poor convergence of electronic cusp conditions

FCIQMC, in the same way as FCI, constructs wavefunctions by combining

basis functions. In the same manner as a Taylor series, describing local de-

tail in the wavefunction is much more difficult than describing the overall

macroscopic ‘shape’ of the solution. As such, while the long-range correla-

tion effects are well described, the convergence of the local electron-electron

behaviour, i.e. the electronic ‘cusps’, with respect to the size of the basis set

is very slow. DMC does a much better job at this.

Perturbation theory may be used to apply corrections to the FCIQMC wave-

function and inject the effect of explicit formulations of short-range inter-

electronic behaviour. The formulations of R12 and F12 theory may be

used29,36,38, and these substantially improve the quantitative accuracy of

FCIQMC calculations with smaller basis sets.

Low lying excited states

As demonstrated by equation 2.3, the rate of convergence of the wavefunction

to the ground state in imaginary time is dependent on the size of the energy

gap between the ground state and (especially) the first excited state of the

∗It is possible to effectively perform this procedure within one calculation, by performing a
calculation with the shift energy parameter set so as to grow the particle weight extremely slowly.
This is equivalent to running multiple calculations, although it requires somewhat different error
analysis75.
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system.

The use of symmetry subdivides the Hilbert space and block-diagonalises the

Hamiltonian matrix, such that any individual calculation is only considering

one block. If a basis set includes symmetry, then this permits selection of

specific solutions, as above, but it also permits the exclusion of low-lying ex-

cited states that interfere with convergence and as such improve the efficiency

of the calculation.

Cost per unit imaginary time

The computational cost of performing an FCIQMC simulation is ultimately

dependent on three factors; a) the length of imaginary time required, b) the

computational cost per iteration, and c) the imaginary time step, δτ . Point

(a) is influenced by consideration of excluding excited states, as well as ear-

lier trade-offs between memory usage and stochastic noise. The noisier the

simulation, the more data collection will be required to obtain the same sta-

tistical accuracy. Point (b) is critically influenced by the number of particles

required, and is thus similarly influenced by statistical noise issues. The

cost of each iteration is also heavily influenced by the efficiency of excita-

tion generation (see chapter 5) and Hamiltonian matrix element calculation

(see chapter 4). The choice of the imaginary timestep, (c), is also influ-

enced by the basis set and the choices regarding dynamics and is discussed

in section 2.6.

2.6 The imaginary time step, δτ

In equation 2.4 it is assumed that the imaginary time step, δτ , is ‘small’. This is

similar to saying that the rate of particle production in the spawning step in sec-

tion 2.4.3 must be low, normally less than 5% of the stored wavefunction magnitude

per iteration. The choice of δτ is important as it has very significant consequences

for the efficiency of a calculation. There are several restrictions on its value;

Death rate

Particle death is carried out on every iteration. The desired behaviour is a

gradual exponential decline in coefficient magnitude on each site, with the

fractional decrease given by fd = δτ Kii−ESSii

Sii
(see equation 2.18).
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If fd < 1, then smooth exponential decay is observed. If 1 < fd < 2 then

the coefficient on the site is “more than killed”, with its sign inverting and

it magnitude decreasing by the fraction 2 − fd. If fd > 2 then convergence

becomes impossible, as the magnitude of the affected coefficients will increase

while their sign will flip between each iteration!

It is important that δτ is chosen such that strictly fd < 2, i.e. δτ < 2Sii

Kii−ESSii
,

for all sites. For the simulation to be well behaved, δτ should be chosen such

thatfd < 1, i.e. δτ < Sii

Kii−ESSii
, for all sites with significant, non-fleeting,

occupation.

Spawning step

In principle there is no restriction on the magnitude of spawns that occur.

In order to minimise statistical noise, the number of particles spawned in

any one step should be smaller than the average occupancy of the affected

sites. Given that the majority of sites will only ever contain low single-digit

occupancy, then the maximum spawning size should be similar.

If the initiator approximation is in use, this requirement becomes even more

stringent. If individual spawns are of sufficient size that the occupancy of

a target site becomes larger than the initiator threshold in one step, this

causes the approximation to cease working correctly. Consider the case of

an unoccupied site in a region of the Hilbert space that should contain little

amplitude. If one of these sites becomes, inadvertently, an initiator, it is

able to continually spawn particles into its surrounding region — and the

initiator approximation has suppressed any other sites from being able to

spawn in this region, so it takes a long time before annihilation brings this

under control.

As a consequence, δτ is normally (dynamically) adjusted to maintain the

maximum spawn size as ninit − 1 at a maximum. As the maximum spawn

size depends on Kij and pgen(j|i) as described in equation 2.17, this means

the largest spawn is roughly proportional to the largest Hamiltonian matrix

element, Kij, and inversely proportional to the smallest generation probabil-

ity, pgen(j|i). This is sometimes a slightly too aggressive criterion, as there

can be a few very strong connections well inside the occupied region of the

space. The value of δτ may be manually relaxed to permit only a few of

these ‘too large’ spawns to occur.
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There is one major problem with any method for choosing a globally unique time

step in an FCIQMC calculation. In most cases the maximum value will be de-

termined by the diagonal matrix elements corresponding to the highest energy

basis functions available — a value which is strongly dependent on the size of

the underlying Hartree–Fock basis set. However, very few particles ever occupy

these extremely high-lying sites, resulting in the vast majority of computational

effort being expended unnecessarily. In chapter 7 a novel approach is explored for

minimising this cost, albeit with other implications.

2.7 Basis sets for FCIQMC

The FCIQMC algorithm will converge on a set of coefficients, {Ci}, such the ground

state wavefunction is best represented by

|Ψ〉 =
∑

i

Ci |Di〉

for a set of basis functions {Di}. There are a large range of suitable basis sets

available.

The Pauli principle23 states that fermionic wavefunctions must be anti-symmetric

with respect to exchange of any two electrons. The simplest general set of functions

obeying this are the Slater determinants,25 constructed from an antisymmetrised

linear combination of spin-orbitals, {φαj

j },

|Di〉 = A
nelec∏

j

φ
αj

j ,

where the antisymmetriser, A = (
√

N !)−1∑

p(−1)P P, generates a signed sum over

all permutations of the electronic (and spin) coordinates. Given a structure with

g spatial orbitals doubly occupied (both α and β), and No orbitals occupied by

one electron of which nβ have ms = −1
2

and nα have ms = 1
2
, there are

ndet(No) =

(

No

nα

)

=

(

No

nβ

)

ways of choosing the spins α, β to assign to a given choice of spatial orbitals {φ}.
More generally, a basis function may be written as the product of a spatial and
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spin component of the wavefunction

|Di〉 = A




nelec∏

j

φj



 θi(nelec, Ms), (2.19)

where θi(nelec, Ms) is an eigenfunction of Ŝz for nelec electrons.

The dynamics of particles in FCIQMC are determined by the pattern of connec-

tivity, and the magnitudes of the Hamiltonian matrix elements associated with

these connections, throughout the Hilbert space. It is clear that these are strongly

dependent on the choice of basis set used — even if exploring the same Hilbert

space. As an example, the convergence of a system modelled using plane waves

will be different to one using localised orbitals. Similarly, a basis which recognises

the symmetry associated with a problem will behave much more happily than

otherwise.

2.7.1 Symmetry

The solution to the Schrödinger equation must obey the symmetry of the problem.

For each relevant symmetry, each of the eigenfunctions of the Hamiltonian will

transform according to one of the irreducible representations of the point group

corresponding to the symmetry of the problem.

If the elements of the basis set in use transform according to elements of the

relevant symmetry group, then it is straightforward to partition the Hilbert space

into those basis functions which transform according to the desired irreducible

representation, and those that do not. The Hamiltonian matrix is block diagonal,

with the blocks defined by the different irreducible representations, as

〈Fi|Ĥ|Fj〉 = 0

〈Fi|Fj〉 = 0






if Γi 6= Γj,

where Γj is the irreducible representation of basis function Fj under the relevant

symmetry group. Where the symmetry group contains degenerate irreducible rep-

resentations, multiple blocks will be equivalent to each other, e.g. being related

to each other by a rotation, with the only impact being to reduce the size of the

calculation. Otherwise blocks will correspond to physically distinct symmetries
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with different solutions.

In order to make use of this symmetry effectively, the excitation generators used to

generate random steps through the Hilbert space need to be written to explicitly

take these symmetries into account. Doing so has two major benefits;

Reduced size of Hilbert Space

Reducing the overall side of the Hilbert space has several different advan-

tages, all of which correspond to a general decrease in size of the computa-

tional problem;

• The connectivity around each site is reduced, increasing the generation

probabilities for each step and increasing the timestep, δτ , that may be

used (see section 2.6).

• Reducing the size of the space reduces the number of particles needed

to effectively explore it.

• The reduced size of the space and connectivity tends to increase the

rate of convergence of the wavefunction.

Discrimination between eigenfunctions

FCIQMC converges the wavefunction onto the ground state of the Hamil-

tonian under the basis set in use. If the effective basis set is restricted by

symmetry, the ground state under this symmetry will be found. As such, a

series of excited states, distinguished by symmetry, can be calculated.

The basis sets utilised in FCIQMC are constructed as antisymmetrised products

of orbitals. The symmetries of the basis functions, {Fi}, are determined from the

properties of these orbitals, according to rules associated with the particular types

of symmetries.

Spatial symmetries

For molecular systems, the basis functions in use should transform according

to the irreducible representations of the point group in use. The number of

irreducible representations contained in the point group, and thus the extent

to which the Hilbert space can be subdivided, depends on the symmetry of

the molecule. In general the more symmetric a molecule is the more that the

space can be subdivided according to spatial symmetry.

If the orbitals, {φi}, contained in a basis set transform according to the

irreducible representations of the applicable symmetry groups, Γφi
, then the
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symmetry of the basis functions {Fj} used in the calculation is given by

Γj =
⊗

i

Γ
φ

(j)
i

.

If the point group of the system in question is Abelian then the ⊗ operator

is equal to its inverse, and implementationally may be performed using an

XOR operation.

z-component of the total spin quantum number, Ms

If Slater determinants are used, or any other basis functions which can be

expressed as a linear combination of Slater determinants, they have a well

defined secondary spin quantum number

Ms =
∑

i

ms(i)

where ms(i) is the secondary spin quantum number corresponding to the

i-th electron (the spin-projected on an arbitrary z-axis). The total Ms value

of all basis functions in use is preserved by the excitation generators.

Magnetic quantum number, Ml

For atomic or linear systems, if the basis set in use specifies (projected)

magnetic quantum numbers for each of the orbitals in use, then a well defined

(projected) magnetic quantum number

Ml =
∑

i

ml(i)

defines independent blocks in the Hamiltonian. The excitation generators

can ensure that this value is maintained.

Total spin quantum number, S

Although the square of the total spin operator, Ŝ2, commutes with the Hamil-

tonian operator, and as a consequence any eigenfunction will also be an

eigenfunction of Ŝ2, determinental basis functions are not eigenfunctions of

Ŝ2 — they do not transform according to irreducible representations of the

symmetric group under permutation of the spin indices (see section 3.3).

This means that Slater determinants do not have a well defined symmetry

label associated with total spin.
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In order to block diagonalise the Hamiltonian matrix, linear combinations

of Ŝz eigenfunctions (i.e. determinants) must be used as the basis functions.

These can be constructed in a number of ways, and are the subject of sec-

tion 3.3. Further chapters 4 and 5 discuss implementational issues.

Total orbital angular momentum, L

For atomic or linear systems, total orbital angular momentum eigenfunctions

can be constructed out of determinental L̂z eigenfunctions in a similar way

as Ŝ2 eigenfunctions. These eigenfunctions are not discussed further here.

Time-reversal symmetries

As discussed in the following section (section 2.7.2), time-reversal symmetry

gives restrictions on the coefficients of related determinants within the sys-

tem. These are not symmetries in the same sense as the others, but they do

subdivide the space in a related way.

Other symmetries

The symmetries available ultimately depend on the properties of the system

being examined. For example, if the system is modelling a solid using plane

waves, the momentum of each basis function, described by the k-vector, needs

to be maintained. These symmetries need to be included in the relevant

excitation generator for efficient computation.

2.7.2 Time-reversal (and similar) symmetries

For systems with an even number of electrons, every spin state, S, contains a

degenerate eigenfunction with an Ms value of zero. A time-reversal symmetry

may be applied in this domain, as detailed in Ref. [16], relating the coefficients

of spin-coupled pairs of determinants related by flipping the spin associated with

each electron. The associated coefficients differ only by a sign-change,

CIαJβ
= (−1)S+ No

2
+1CJαIβ

,

where I and J represent the string of orbitals associated with α and β electrons

respectively76,77.∗ The relative sign of these coefficients depends on the desired

∗Note that this corresponds to flipping all of the spins. As a consequence, this will put all of
the spin orbitals in the closed shell section of the representation out of order. The permutations
involved in restoring the normal ordering (section 3.4.1) must be considered in obtaining a
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total spin of the system and the number of unpaired electrons. If all orbitals are

doubly occupied, there is no associated pair.

A basis of these spin-coupled pairs of determinants, alternatively known as Half-

Projected Hartree–Fock (HPHF) functions78, |XIJ〉, may be used,

|XIJ〉 =







|DIαJβ
〉 if I = J

1√
2

[

|DIαJβ
〉+ (−1)S+

nunpaired
2

+1 |DJαIβ
〉
]

I > J
, (2.20)

containing roughly half the number of elements of the underlying determinental

basis. This may be represented implementationally by picking one of the paired

determinants as the ‘standard’ representation, and excluding the other from the

simulation.

The use of these HPHF functions results in an approximately 3-4 fold73 saving in

overall computational cost as a result of a reduction in the size and complexity

of the space which a) roughly halves the number of particles required to converge

the simulation, b) allows a roughly doubled timestep to be used, and c) reduces

the duration of imaginary time required to converge the solution. The confluence

of beneficial effects observed strongly indicates that these spin-reversal functions

should be used whenever the system has an even number of electrons. It also

strongly suggests that using full spin-eigenfuctions as a basis could be beneficial.

2.7.3 Mixed schemes

An FCIQMC simulation will tend towards representing the ground state wavefunc-

tion within the Hilbert space spanned by the basis set. As any state which can

be represented with CSFs can be represented using the underlying determinental

basis, there is no issue with mixing the two representations in the same calcula-

tion. It is critically important to ensure that the entire Hilbert space remains well

mapped, and that the boundary between the two representations is well defined.

All of the CSF regimes explored have some scaling issues associated with an in-

crease in the number of unpaired electrons, beyond those generally experienced

with Slater determinants. As such it is useful to consider the mixed scheme where

sites are represented in CSFs (Kotani-Yamanouchi, Serber or spin-projected) for

sign relationship between the normal determinants involved. Thus care is needed to get the
hamiltonian matrix elements in section 4.1.
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all spatial structures with No,max or fewer unpaired electrons, and in Slater deter-

minants for all other sites.

Making the description dependent on the spatial orbitals ensures that there is no

overlap between the regions of the space represented in CSFs or in Slater determi-

nants.

There are two elements which must be attended to in this mixed scheme. Firstly

the Hamiltonian matrix elements between the Slater determinants and the CSFs in

use must be easily calculable (section 4.7). In all of the cases considered here, the

expansion of the CSFs into a linear combination of determinants is well known, and

as such the Hamiltonian matrix elements across this boundary can be calculated

in, at worst, O(ndet(No,max)) time.

Secondly, excitation generation across this boundary needs careful consideration

(section 5.6). It is important to not excessively inhibit the operation of the exci-

tation generators within their own regions of the space, where the majority of the

excitations occur, but they must generate all connections with non-zero Hamilto-

nian matrix elements with the correct probability.





3 The role of spin in FCIQMC

The role of spin in FCIQMC simulations is the primary topic of this thesis. This

first requires thinking about several different aspects of spin — what is spin phys-

ically, and how does this interact with the representation and implicit meanings

ascribed to spin in the context of computer simulation. After discussing this, ob-

servations are made as to the evolution of the spin associated with the ensembles

of particles in an FCIQMC simulation, and as a consequence of this evolution, why

using Configurational State Functions (CSFs) might be a useful modification.

A number of different schemes exist for the construction of total spin eigenfunctions

out of primitive spin functions, and several are presented, followed by a brief

discussion of a few immediate implementational consequences.

Other schemes were considered for projecting out chosen spin components stochas-

tically during FCIQMC calculations. These proved to be ineffectual within FCIQMC

calculations and so have not been discussed here.

3.1 Physical and practical views of spin

Spin is a somewhat ephemeral property — although measurable79 and well char-

acterised, it is difficult to give a good explanation of what spin actually is given

that humans habitually live in a very classical world.

Spin is a intrinsic property of matter associated with relativistic quantum mechan-

ics, as presented by Dirac20. Interestingly, it does not appear in non-relativistic

quantum mechanics, where the Hamiltonian operator may be considered to be

spin-free. The effects of spin are observed as an angular momentum, with its

associated magnetic moment, whose total magnitude, S, is quantised according

to specific rules and for which any measurement will only register the quantised

projection, Ms, onto a given (experimental) axis. As the square of the total spin

57



58 The role of spin in FCIQMC

operator, Ŝ2, and the projected spin operator, Ŝz, commute with the Hamiltonian

operator, physical solutions of the Schrödinger equation are eigenfunctions of all

three operators.

Slater determinants, as used in Hartree–Fock theory, are constructed as antisym-

metrised products of single electron orbitals with defined spin z-projection values,

ms, associated with each electron. As a consequence the z-component of the total

spin, Ms =
∑

ms, is well defined. These functions are not, however, eigenfunctions

of the overall spin operator,80 Ŝ2 — they are merely the best solutions available

within the basis set paradigm. They may be expanded as linear sums of eigen-

functions of the square of the total spin operator, Ŝ2, with differing eigenvalues, S,

and the reverse is also true — spin eigenfunctions of chosen S may be constructed

out of combinations of Slater determinants.

In this context, it is most important to consider spin from the perspective of the

roles that it fulfils, and its consequences for the implementation of calculations.

Spin as a quantum number

The total spin is a quantum number, corresponding with measurable prop-

erties of a physical system. In particular, the total spin of a system directly

dictates a substantial portion of its magnetic properties.

In addition to the magnetic properties, the different spin states available to a

system correspond to physically distinct electronic states of molecules. Elec-

tronic transitions can be measured between these states spectroscopically.

Understanding the relative properties of different spin states in a molecule,

especially those involving complex elements such as transition metals, is im-

portant to unlocking their chemical behaviour.

Spin as a symmetry label

From the perspective of an FCI calculation, symmetry is the process of for-

mally block-diagonalising the Hamiltonian matrix. If two particles in an

FCIQMC simulation occupy sites with different symmetry labels, they be-

long to two entirely non-interacting subsets of the simulation that will evolve

independently.

The total spin, S, is a property of a spin eigenfunction that behaves in this

way. The Hamiltonian matrix element between any two spin eigenfunctions

with differing total spin eigenvalues is zero — the Hamiltonian matrix is
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block diagonalised. This has several consequences for FCIQMC calculations:

• The total spin, S may be specified as a parameter to a calculation.

This permits convergence to states with a given spin even if they are

not the global ground state (the ground state of the relevant block of

the block-diagonal Hamiltonian is found).

• Consequently, the reference state for the projected energy and the trial

wavefunction for initialisation of the calculation must be of the correct

spin, or the ground state will not be found.

• The overall size of the Hilbert space is reduced, as only the sites with the

correct symmetry need to be considered. This reduces the magnitude

of the problem being attempted, and should lead to a reduction in the

number of particles required, and the height of the plateau in non-

initiator calculations.

Spin eigenfunctions as labels

For a molecular system, the non-relativistic Hamiltonian does not contain

any spin dependent terms. Indeed, for an FCIQMC calculation the primary

input is a dump file containing one- and two- electron integrals across spatial

orbitals from another computational package. Although the Slater–Condon

rules (table 4.1) do refer to the relative values of ms for each electron, it

is clear that the overall specification of the system is spin-free even if the

wavefunction is not.

As a consequence, it is possible to formulate the quantum mechanical be-

haviour of such a system without reference to spin. Each concept in a con-

ventional spin-based formulation is replaced with a corresponding spin-free

concept81. The form of the available spin-free functions depends on the

permutational symmetry of the Hamiltonian, and the state is labelled by

a particular permutation in the same way that spin-states are constructed

within the range permitted by the total spin, acting as a symmetry.

If both spin-free and standard spin-dependent formulations of quantum chem-

istry are constructed, they may be mapped directly on to each other. A

consequence of this is that spin may be viewed as an indicator that mod-

ulates the form of functions constructed according to the symmetry of the

symmetric group under the constraints of the problem being examined —
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and nothing more. The different spin eigenfunctions that are available, and

discussed later, are merely labels on the permutational behaviour which may

be applied to the spatial components being considered.

This gives a strong indication that group-theoretical approaches to expressing

and implementing the behaviour of spin eigenfunctions should be considered

seriously. Further work may consider expressions of FCIQMC in an explicitly

spin-free formulation at a later date.

3.2 Evolution of spin in FCIQMC

In all FCIQMC calculations the projected spin value, Ms, remains constant through

the calculation even if it is not constrained to be so as all matrix elements between

Slater determinants with an Ms value other that of the reference determinant are

zero. The same cannot be said of the total spin value, the eigenfunction of the

operator Ŝ2.

As the calculation progresses, the wavefunction tends towards an eigenfunction of

the Hamiltonian and, as this commutes with the square of the total spin operator,

it also tends towards an eigenfunction of Ŝ2. The permitted eigenvalues of Ŝ2

are both discrete and well known, with permitted values of S(S + 1) where S is

half-integral and |S| ≤ No

2
where No is the smallest number of unpaired electrons

in any occupied basis function. As such the evolution of this value through the

calculation gives a good insight into the progression of the calculation and the

extent of convergence.

3.2.1 Calculation of instantaneous spin eigenvalues for Slater

determinants

The instantaneous expectation value of Ŝ2 may be obtained by

〈Ŝ2〉 =
〈Ψ|Ŝ2|Ψ〉
〈Ψ|Ψ〉 .

The normalisation factor is already (trivially) calculated by summing the values of

|c2
i | during the main computational loop. The operator can be expanded in terms
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of the spin raising and lowering operators, Ŝ−, Ŝ+ and the z-component of the total

spin operator, Ŝz, such that Ŝ2 = Ŝ−Ŝ+ + Ŝz(Ŝz + 1) = Ŝ+Ŝ− + Ŝz(Ŝz − 1)82. As

a consequence,

〈Ψ|Ŝ2|Ψ〉 =
∑

ij

c∗i cj 〈Di|Ŝ−Ŝ+ + Ŝz(Ŝz + 1)|Dj〉

=

∑

ij c∗i cj 〈Di|Ŝ−Ŝ+|Dj〉
〈Ψ|Ψ〉 + Ms(Ms + 1). (3.1)

The operators Ŝ−, Ŝ+ are further defined as

Ŝ− =
∑

m

ŝ−,m ŝ−,m |φα
m〉 = |φβ

m〉 ŝ−,m |φβ
m〉 = 0

Ŝ+ =
∑

m

ŝ+,m ŝ+,m |φα
m〉 = 0 ŝ+,m |φβ

m〉 = |φα
m〉 .

where s+,m and s−,m act on the mth electron in the determinant. Application

of the raising operator generates a linear combination of determinants each with

one β electron raised to α. Application of the lowering operator then generates

a sequence of nβ(nα + 1) determinants. All of the terms where the raising or

lowering operator returns zero are dropped. This results in a list of determinants

where every possible pair of sites, one with an α spin and one with a β spin, have

had their spins swapped. As such

〈Di|Ŝ−Ŝ+|Dj〉 =







1 if Di and Dj have the same spatial structure,

and have either the same spin structure or

differ only by swapping two spin labels

0 otherwise.

To perform the sum in equation 3.1, each determinant in the occupied list is

considered. For each determinant the list of connected determinants is generated

and each of these is looked up in the occupied list and the relevant value of c∗i cj

added to the sum. When working on a multi-processor machine, with multiple

MPI threads, there are two sensible options;

1. Transmit the determinants to all relevant processors to perform the calcula-

tions, or

2. Use a determinant distribution scheme such that the processor that a deter-

minant is located on depends only on the spatial structure.
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For small systems the poor load-balancing caused by scheme (2) causes the system

to operate inefficiently, whereas for larger systems it is the optimum scheme to

reduce communication overhead. It is worth noting that this calculation (clearly)

scales badly. Work by Cleland and Overy permits the approximation of the total

spin expectation value by calculation of the density matrix within FCIQMC68.

This method scales much better, and is appropriate for determining the spin of

a converged wavefunction within FCIQMC, but is not effective for obtaining an

instantaneous value for the total spin expectation value within a calculation, and

therefore of little use for analysing the trajectories of FCIQMC simulations with

an eye to development.

An instantaneous value of the spin expectation value for the ensemble of particles

is not a good estimator for the spin of the converged wavefunction. There are

correlations between the numerator and the denominator in the expression cal-

culated, and these would need to be averaged separately to generate an actual

estimator. Furthermore, there are correlations between the terms included in each

of the numerator and denominator, leading to systematic bias in the same way as

the variational energy55 (see section 2.3). This is particularly notable if the state

being considered has S = 0, as the expression defined is positive definite and any

averaged values will be systematically skewed. Fortunately, the permitted values

for the spin are discrete and well defined, and it is trivially clear which value a

wavefunction is converging to. This metric is useful as a measure of the state of

convergence, and as an indicator of particle dynamics.

3.2.2 Calculation of instantaneous spin eigenvalues for HPHF

functions

Half-Projected Hartree–Fock (HPHF) functions are constructed from pairs of de-

terminants, as described in section 2.7.2, such that

|Xi〉 =







|Di〉 if no unpaired electrons

1√
2

[

|Di〉 ± |Di〉
]

otherwise,

where Di is Di with the spin of all the unpaired electrons flipped. The sign

relationship between the two is known (see section 2.7.2). The relevant term in
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the sum is now transformed with the change of basis, such that

∑

ij

c∗i cj 〈Di|Ŝ−Ŝ+|Dj〉 =⇒
∑

ij

c∗i cj 〈Xi|Ŝ−Ŝ+|Xj〉 .

, where

〈Xi|Ŝ−Ŝ+|Xj〉 =
1

2
〈Di ±Di|Ŝ−Ŝ+|Dj ±Dj〉

=
1

2

[

〈Di|Ŝ−Ŝ+|Dj〉+ 〈Di|Ŝ−Ŝ+|Dj〉

±
(

〈Di|Ŝ−Ŝ+|Dj〉+ 〈Di|Ŝ−Ŝ+|Dj〉
)]

which by symmetry

= 〈Di|Ŝ−Ŝ+|Dj〉 ± 〈Di|Ŝ−Ŝ+|Dj〉 .

Each of these terms is equal to one or zero as previously discussed. Notably, for

spatial structures with more than four unpaired electrons, only one of these terms

can ever be non-zero, as application of Ŝ−Ŝ+ generates a string of determinants

which differ by at most two electrons. These determinants are then all inverted

by the inversion used in HPHF functions, resulting in No − 2 inversions.

For each HPHF function, Xj, consider the associated determinant Dj. Each of the

determinants, Di, which are connected to it by Ŝ−Ŝ+ are generated, and for each

of these, if it is the determinant which is used as the canonical representation for

the HPHF, then c∗i cj should be included in the sum, otherwise ±c∗i cj should be

used (depending on the sign associated with the HPHF).

3.2.3 Spin trajectories and the initiator approximation

Examining the trajectories of the expectation value of the Ŝ2 operator in FCIQMC

simulations makes it obvious that the role of spin ought to be of interest.

In figure 3.1a it can be observed that the sign-incoherent growth of particles at the

start of a normal FCIQMC simulation, resulting in the annihilation plateau, also

results in substantial disorder in the spin structure of the wavefunction with an

expectation value of 〈Ŝ2〉 ≈ 3.17. By contrast, the ground state of the Ne atom is

known to have a spin of zero — making any non-zero component a good measure
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Figure 3.1: Spin trajectories in FCIQMC and i-FCIQMC simulations of Ne in an aug-
cc-pVDZ basis set. The sign-incoherent growth, resulting in the annihila-
tion plateau, in the FCIQMC simulation corresponds to a large value of
the spin expectation value. This begins to fall before the overall number of
particles begins to grow again. In i-FCIQMC, this unconstrained growth
never occurs, and the overall structure is always more sign coherent, with
overall much lower values obtained. The spin values associated with only
the initiator sites are noticeably lower, corresponding to their better con-
vergence.
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of error. As the wavefunction coalesces during the annihilation plateau, indicated

by the steady growth of particles on the reference site, the associated spin begins

to fall. This occurs before a noticeable growth in the total number of particles

occurs.

By contrast, in figure 3.1b i-FCIQMC behaves significantly differently. By sup-

pressing the initial incoherent growth of particles, the corresponding growth in

spin expectation value is also not observed. The additional coherence of the over-

all wavefunction may be observed in the fact that the final spin expectation value

associated with 1 million particles is nearly an entire order of magnitude smaller

than for normal FCIQMC. It is notable that when considered on their own, the

ensemble of initiators have an even lower value, indicating that assumptions about

their internal sign coherence are likely to be correct.

Figure 3.2 confirms the picture of the trajectory taken to convergence of the spin.

These histograms from an i-FCIQMC calculation demonstrate the projection of

the ensemble of determinants associated with the most highly occupied spatial

structure with eight unpaired electrons onto all of the available Kotani-Yamanouchi

CSFs (see section 3.3.3) with the given value of Ms. During the initial growth of

particles (even with the initiator approximation in use) the growth of components

in CSF space is fairly chaotic. These additional components die away as substantial

order and symmetry exert themselves in determinental space resulting in a final

solution which scales up as the number of particles grows, containing essentially

no components on the CSFs with values of S 6= 0, and a resulting structure on the

determinantal coefficients.

This thesis attempts to answer the following question:

Does restricting the basis set to prevent spin-incoherent growth assist

in the convergence of the wavefunction in the remaining space, or is

spin primarily useful as a metric of convergence?
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Figure 3.2: Occupation of the determinants in the most highly occupied spatial struc-
ture with eight unpaired electrons in an i-FCIQMC calculation for Ne in
an aug-cc-pVDZ basis set. In blue are the instantaneous occupations of the
determinants, and in red are the projections of these coefficients onto the
Kotani-Yamanouchi CSFs (see section 3.3.3) with the same spatial struc-
ture. The two left-most CSFs are associated with S = 0, the remainder are
associated with higher spin states. The initial growth of particles is spin-
incoherent, and as the simulation progresses, the components projected
onto the incorrect spin eigenfunctions tend to zero. Note the resultant
symmetry in the distribution of the determinants.
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3.3 Spin eigenfunctions

Although Ŝz and Ŝ2 commute, eigenfunctions of Ŝz are not generally eigenfunctions

of Ŝ2. As the Hamiltonian operator, Ĥ, is spin-free it commutes with both the

operators Ŝ2 and Ŝz — thus eigenfunctions of the Hamiltonian are eigenfunctions

of both of these spin operators too. As a consequence it is possible to write

eigenfunctions of Ŝ2 as linear combinations of those of Ŝz.

The elements of the basis set are required to transform under exchange of spin-

labels in the same manner as Ŝ2 transforms — that is to say they must transform

internally as linear combinations of degenerate eigenfunctions,

P̂Ψα = ǫ(P )Ψα

P̂σΨα =
∑

β

Ψβ[P ]NS
βα ,

where [P ]NS
βα is the element of the permutation representation matrix of the per-

mutation P , as defined in equation 4.8. The eigenfunctions now transform under

permutations of the electronic spin coordinates according to an irreducible repre-

sentation of the symmetric group. Under simultaneous permutation of the spin

and space coordinates they still transform according to the antisymmetric repre-

sentation.

θNS
β , defined in equation 2.19 obeys the spin symmetry constraint

PσθNS
α =

∑

β

θNS
β [P ]NS

αβ .

If this condition is satisfied by expanding the spin eigenfunction as a linear com-

bination of primitive spin functions (eigenfunctions of Ŝz), then these are known

as Spin-Adapted Antisymmetrised Products (SAAPs)83. The following sections

demonstrate several different schemes for constructing SAAPs out of primitive

spin functions. When these SAAPs are combined with a specific set of spatial

orbitals in a given basis set, i.e. the overall wavefunction can be constructed out of

Slater determinants, these are known as Configurational State Functions (CSFs).

All eigenfunctions with a given S are represented degenerately in all choices −S ≤
Ms ≤ S. The regime S = Ms is used for all calculations, unless otherwise specified,

as this simplifies the expansion and representation of the associated spin eigenfunc-
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tions by minimising the number of primitive spin functions they are constructed

from.

For use in FCIQMC, random excitation generation and Hamiltonian matrix ele-

ment evaluation are also required. For discussions of these, see chapters 4 and 5.

Implementation is made more straightforward by the fact that the structure of

CSFs is strongly related to that for determinants. As the infrastructure for ma-

nipulating, storing and transmitting Slater determinants is already mature, it may

be readily co-opted.

3.3.1 Size of the Hilbert Space

The number of CSFs is most easily obtained by considering primitive spin functions

with nα unpaired spin ‘up’, and nβ unpaired spin ‘down’ electrons such that No =

nα + nβ and Ms = 1
2
(nα − nβ). From these eigenfunctions of Ŝz, eigenfunctions of

Ŝ2 may be constructed with S = 1
2
No,

1
2
No−1, · · · , Ms +1, Ms with the dimension

of the subspace being
(

No

nα

)

≡
(

No

nβ

)

.

All of the states in the subspace Ms + 1 have related functions with the same total

spin in the subspace Ms, and as a consequence the number of unique functions

with S = Ms is given by

ncsf(N, S) =

(

No

nα

)

−
(

No

nα + 1

)

=

(

No

nβ

)

−
(

No

nβ + 1

)

=

(

No

1
2
No − S

)

−
(

No

1
2
No − S − 1

)

=
4S + 2

No + 2S + 2

(

No

No−2S
2

)

.

This formula can also be verified by induction by considering the genealogical

construction (see section 3.3.3).

3.3.2 Spin paired (Rumer) spin eigenfunctions

For a two electron spin function, the singlet state for electrons i, j is given by

v(i, j) =
1√
2

[α(i)β(j)− β(i)α(j)].
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An N -electron spin eigenfunction may be constructed by considering products

of singlet-terms for g pairs of electrons, where g = 1
2
(N − 2S), followed by 2S

single-electron terms α, such that

Vk =
g
∏

i

1√
2

v(ek(2i− 1), ek(2i))
N∏

i=2g+1

α(ek(i)),

where {e} specifies an ordered choice of electrons. Any doubly occupied spatial

orbitals must be placed in the paired region. The number of spin paired eigen-

functions available is given by

ν(N, S) =

(

N

2g

)

(2g − 1)!! =
N !

2g(N − 2g)!g!
,

which is significantly larger than the number of independent spin eigenfunctions,

ncsf . A substantial number of these are related to each other by symmetry, but this

still leaves a massively over-complete set. If ncsf linearly independent functions

could be systematically generated, then these would form a basis which spans the

entire Hilbert space.

Rumer et al.84–86 have described a procedure based on a series of diagrams known

as Extended Rumer Diagrams. As shown in an example for a 5-electron system in

figure 3.3, the numbers 1 to N are arranged on the circumference of a circle, along

with an additional point, known as the pole, P . g arrows are drawn between the

g pairs of coupled electrons, and all remaining uncoupled electrons are connected

to the pole. If Rumer spin eigenfunctions are constructed with the linked pairs

coupled, and the remaining electrons assigned to α spins, then the number of

functions constructed is equal to ncsf , and they are all linearly independent.

If Schmidt orthogonalisation is applied to this series of functions, starting with

the first Rumer function V1, then the Kotani-Yamanouchi branching functions

(see section 3.3.3) are obtained86. Similarly, the Serber functions (see section 3.3.4)

may be obtained by Schmidt orthogonalisation while enforcing symmetry and anti-

symmetry in pairs87.

The expansion of these spin eigenfunctions into products of one-electron spin func-

tions is particularly compact. While this benefits algorithms that depend on ex-

pansions into determinants, these algorithms are not really suitable for use deep

within tight computational loops as they scale badly. As such these functions
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Figure 3.3: Extended Rumer diagrams, branching diagrams, and leading terms for
N = 5, S = 1

2 . The paired electrons are indicated by arrows, dashed lines
and square brackets respectively. Note that the Rumer functions indicated
by the extended Rumer diagrams with no crossed arrows can be labelled
with the same branching diagram labels as the Kotani-Yamanouchi spin
eigenfunctions, which are produced by performing a Schmidt orthogonali-
sation on these functions.
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are primarily useful for their relationship to the other types of spin eigenfunction.

In particular, it is more straightforward to calculate the representation matrices

for permutations in this space, and they are therefore useful for calculations in

Kotani-Yamanouchi and Serber-type spaces.

3.3.3 Genealogical (Kotani-Yamanouchi) spin eigenfunctions

Kotani88,89 suggests a means to construct spin eigenfunctions in a stepwise fashion,

constructing an eigenfunction with N electrons and given total and projected spins

S, Ms from those available with N − 1 electrons, and corresponding spins S ± 1
2
,

Ms ± 1
2
:

Addition

X(N, S, M ; k) = [(S + M)
1
2 X(N − 1, S − 1

2
, M − 1

2
; k′)α(N)

+ (S −M)
1
2 X(N − 1, S − 1

2
, M +

1

2
; k′)β(N)](2S)−

1
2 . (3.2a)

Subtraction

X(N, S, M ; k) = [−(S −M + 1)
1
2 X(N − 1, S +

1

2
, M − 1

2
; k′)α(N)

+ (S + M + 1)
1
2 X(N − 1, S +

1

2
, M +

1

2
; k′)β(N)]

× (2S + 2)−
1
2 (3.2b)

States labelled k can be constructed from as many states k′ with the properties of

S± 1
2

and Ms± 1
2

as can be found. This continues until there is only one unpaired

electron where the only primitive spin functions are α(1) and β(1). Note that it is

not physically possible to construct a spin function with total spin S < 0, thus the

construction of states with spin S from S− 1
2

is only possible for S ≥ 1
2
. This limits

the number of genealogical construction pathways. See figure 3.4 for a diagram

showing the permitted branching pathways90.

The construction of each spin function Xi can be labelled by a Yamanouchi symbol,

Bi. This is represented by a string of digits, either 1 or 2, representing addition and

subtraction respectively. Each element, r, of Bi may equivalently be represented

by the term bir = ±1
2

for addition and subtraction respectively (equation 3.2), as

used below.
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Figure 3.4: Branching diagram for Kotani-Yamanouchi spin functions. The circled
numbers indicate the number of possible construction routes, and therefore
the number of available eigenfunctions, with spin S for N electrons. These
correspond to the number of routes from the origin to the given point,
whilst only moving right, where ‘up’ and ‘down’ respectively correspond to
1 and 2 in the Yamanouchi symbol. Note that routes are not permitted to
pass through any point with S < 0.

The coefficients of the primitive spin functions in each Kotani-Yamanouchi spin

eigenfunction can be obtained more directly than by following the genealogical

construction. It can be shown inductively that the coefficient of the primitive spin

function θj in the spin eigenfunction Xi, where Xi =
∑

j Aijθj, is given by

Aij =
N∏

r=1

C(bir, mjr; Sir, Mjr),

where mjr = ±1
2

is the ms eigenvalue associated with the rth element in the prim-

itive spin function θj, Mjr =
∑r

s=1 mjs is the partial resultant projected spin asso-

ciated with the first r elements in the primitive spin function and Sir =
∑r

s=1 bis.
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The relevant Clebsch–Gordan coefficients are given by89

C(b, m; S, M) =







√
S+2mM

2S
if b = 1

2

−2m
√

S+1−2mM
2(S+1)

if b = −1
2
.

3.3.4 Serber-type spin eigenfunctions

An alternative scheme for the construction of spin eigenfuctions may be obtained

by considering adding pairs of electrons sequentially, rather than individually.

States constructed in this manner are known as Serber functions.91 States with

N electrons, total spin S and its z-projection Ms may be constructed from those

with N − 2 electrons and spins S, S ± 1 and Ms, Ms± 1 in a total of four ways.

Addition of singlet state

Z(N, S, M ; k) = Z(N − 2, S, M, k′)g0(N − 1, N), (3.3a)

(S − 1)→ S by addition of a triplet state

Z(N, S, M ; k) = {[(S + M)(S + M − 1)]
1
2 Z(N − 2, S − 1, M − 1; k′)g1(N − 1, N)

+ [2(S + M)(S −M)]
1
2 Z(N − 2, S − 1, M ; k′)g2(N − 1, N)

+ [(S −M)(S −M − 1)]
1
2 Z(N − 2, S − 1, M + 1; k′)g3(N − 1, N)}

× [2S(S − 1)]−
1
2 , (3.3b)

S → S by addition of a triplet state

Z(N, S, M ; k) = {−[(S + M)(S −M + 1)]
1
2 Z(N − 2, S, M − 1; k′)g1(N − 1, N)

+ 2
1
2 MZ(N − 2, S, M ; k′)g2(N − 1, N)

+ [(S −M)(S + M + 1)]
1
2 Z(N − 2, S, M + 1; k′)g3(N − 1, N)}

× [2S(S + 1)]−
1
2 , (3.3c)

(S + 1)→ S by addition of a triplet state

Z(N, S, M ; k) = {[(S −M + 2)(S −M + 1)]
1
2 Z(N − 2, S + 1, M − 1, k′)g1(N − 1, N)

− [2(S −M + 1)(S + M + 1)]
1
2 Z(N − 2, S + 1, M ; k′)g2(N − 1, N)

+ [(S + M + 1)(S + M + 2)]
1
2 Z(N − 2, S + 1, M + 1; k′)g3(N − 1, N)}

× [(2S + 2)(2S + 3)]−
1
2 , (3.3d)
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Figure 3.5: Branching diagram for Serber spin eigenfunctions. The circled numbers in-
dicate the number of possible construction routes, and therefore the number
of available eigenfunctions, with spin S for N electrons. Note that steps are
taken by addition of pairs of electrons, and that paths are not permitted
to pass through any point with S < 0. When S = 0, only the addition of
a singlet is permitted to retain the same spin value.

where N is even and the additional pairwise spin components (geminal spin

functions83) are given by

g0(N − 1, N) = 2−
1
2 [α(N − 1)β(N)− β(N − 1)α(N)]

g1(N − 1, N) = α(N − 1)α(N)

g2(N − 1, N) = 2−
1
2 [α(N − 1)β(N) + β(N − 1)α(N)]

g3(N − 1, N) = β(N − 1)β(N).

If the total number of electrons is odd, the final term is added in the genealogical

manner as per Kotani-Yamanouchi spin functions (equations 3.2). Each of the

possible construction steps is equivalent to a pair of steps in the genealogical

scheme, and as such the rules for acceptable pathways and the total number of

functions are retained. Specifically, if a state has S = 0, then there are only two

steps which may be made: S → 1 and one of the S → 0 cases.



3.3 Spin eigenfunctions 75

The construction of each Serber function, Zi, can be labelled by a Serber branching

diagram symbol, Bi. This is represented by a string of letters, ABCD correspond-

ing to singlet and triplet components in the listed order, with the additional term

α and β for the last term if there are an odd number of electrons. Each element,

r, of Bi may equivalently be represented by the term bir = 0, 1, 2, 3 respectively,

as used below.

In a similar manner to the Kotani-Yamanouchi spin eigenfunctions, the coefficients

of the contributing primitive spin functions can be directly obtained. In this case

the spin eigenfunctions are no longer constructed from Slater determinants, but

from Geminal Spin Product functions (GSPs). These GSPs are in turn constructed

from the product of the geminal spin functions, g0 · · · g3,

G(SP ) =
n∏

r=1

gSPr
(2r − 1, 2r),

where n is the number of pairs of electrons, and SP is a vector of terms spr =

0, 1, 2, 3 indicating the sequence of geminal functions. The coefficient of each of

these GSPs in the Serber function Zi is given by,

Aij =
n∏

r=1

C(bir, spjr; Sir, Mjr),

where Zi =
∑

j AijG(SPj). Mjr =
∑r

s=1 mjs is the partial resultant projected spin

associated with the first r terms in the geminal spin function where mjs = −1, 0, 1

correspondingly. Sir =
∑r

s=1 provides the same measure for the serber spin label.

The relevant coefficients are given by

C(0, 0; S, M) = 1

C(1, 1; S, M) = c(1)
√

(S + M)(S + M − 1)

C(1, 2; S, M) = c(1)
√

2(S + M)(S −M)

C(1, 3; S, M) = c(1)
√

(S −M)(S −M − 1)

C(2, 1; S, M) = −c(2)
√

(S + M)(S −M + 1)

C(2, 2; S, M) = c(2)M
√

2

C(2, 3; S, M) = c(2)
√

(S −M)(S + M + 1)

C(3, 1; S, M) = c(3)
√

(S −M + 2)(S + M + 1)
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C(3, 2; S, M) = −c(3)
√

2(S −M + 1)(S + M + 1)

C(3, 3; S, M) = c(3)i
√

(S + M + 1)(S + M + 2)

and

c(1) =
1

√

2S(2S − 1)

c(2) =
1

√

2S(2S + 1)

c(3) =
1

√

(2S + 2)(2S + 3)
.

It is worth noting that for the Hamiltonian matrix element evaluation it is impor-

tant that these spin functions are considered to be constructed out of N electrons,

with the paired electrons being restricted to occupying singlet terms, rather than

only considering the unpaired electrons as for Kotani-Yamanouchi spin functions.

This is as a consequence of the matrix element evaluation depending on the full

N -electron permutations between basis functions.

3.3.5 Spin-projected (Slater) determinants

In the previous two sections, spin eigenfunctions were constructed by building

them up out of component fragments with fewer electrons. Here an alternative

approach is examined, where the CSF corresponding to the components of the

correct spin of an N electron function is obtained by a projection process on this

function.

Löwdin92 defined a spin projection operator,

ÔS =
∏

k 6=S

Ŝ2 − k(k + 1)

S(S + 1)− k(k + 1)
,

in which the components of the eigenfunctions of Ŝ2 (other than the one chosen)

are subtracted out sequentially, and some normalisation is applied so that the

spin component selected retains its magnitude∗. In practice this operator can be

∗It is worth noting that the same approach may be taken to obtain total angular momentum



3.3 Spin eigenfunctions 77

applied by performing a resolution of the identity through Kotani-Yamanouchi

spin functions (or Serber functions), X, of the given spin, S, such that

ÔS =
∑

X

|X, S〉 〈X, S| .

If the spin-pure components of a spin eigenfunction are projected out, the eigen-

function is returned unchanged, thus ÔS is idempotent. If this operator is applied

to a basis of Slater determinants, a new basis of ‘spin-projected’ determinants,

{Fi},
|Fi〉 = ÔS |Di〉 ,

is generated. The primary benefit of this basis set is that the Hamiltonian and

overlap matrix elements are directly calculable, as laid out in section 4.6.

It should be clear that, unless the chosen value of Ms is maximal for the system,

as the number of possible eigenstates of Ŝz exceeds the number of eigenstates of

Ŝ2, then the newly formed basis must be over-complete. An orthonormal basis

can be constructed from these new functions, but in doing so all other advantages

over CSFs constructed using the Genealogical scheme are lost.

3.3.5.1 Normalisation

The spin-projected functions described above are not only non-orthogonal, they

are not normalised. The self-overlap elements are given in section 4.6.6 as

Sii = Ck(S, Ms, No),

and depend primarily on the number of unpaired electrons, No, as the spin is

specified and constant for all sites in a given simulation. A consequence of this is

that the amplitude of a coefficient, ci, in the main list is of differing significance

depending on its location within the Hilbert space.

If decisions regarding granularisations and coefficient cutoffs are going to be made

in a meaningful sense for the ensemble of particles within a calculation, it is helpful

to maintain a constant ‘weight’ for each site in the system. As such, the basis

eigenfunctions, generally starting with a projected angular momentum eigenfunction93.
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functions can be optionally redefined such that

Fi −→
1√
Sii

Fi.

In practice this does not have a qualitatively large impact on the effectiveness

of simulations. Quantitatively, using normalised basis functions reduces the total

number of particles required, and thus reduces the overall computational cost.

3.3.5.2 Truncated spin-projected spaces

If a spin-projected space is constructed in the regime S = Ms = 0 the space may

be simplified to remove the over-completeness, even though this does not eliminate

the non-orthogonality.

Considering the two determinants, Di, Di, associated with an HPHF function,

where the spins corresponding to each electron have been flipped, the two spin-

projected functions are related such that Fi = ±Fi, with the sign being the same as

the sign linking the two determinants in the relevant HPHF function. As these two

functions are representing exactly the same region of the Hilbert space an arbitrary

choice can be made between them, and only one included in the simulation. This

is done in the same way as for HPHF functions.

This simplification cannot be straightforwardly applied outside of the regime S =

Ms = 0 as inverting all of the spins results in a determinant, and hence a spin-

projected determinant, where Ms(Di) = −Ms(Di) and as such is not in the space

being considered.

3.4 Implementation of spin eigenfunctions in

FCIQMC

The main structure of the FCIQMC algorithm is well defined by previous work.

However, efficient usage of spin eigenfunctions requires modification to several

portions of the algorithm and its implementation.
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Hamiltonian matrix element evaluation

Various schemes can be used to calculate the diagonal and off-diagonal matrix

elements used for the death and spawning steps respectively. In the case

of Serber spin-functions there is a clear trade-off between computational

cost and memory usage, and in all cases careful integration between the

excitation generator and the matrix element evaluation routines is required

to avoid unnecessary work. Matrix element evaluation schemes are outlined

in chapter 4.

Excitation generation

The excitation generation scheme required for spin eigenfunctions is struc-

turally similar to that for Slater determinants. The connectivity of the

Hilbert space is noticeably different, requiring different acceptance rules, and

substantially different generation probabilities. This is discussed in chapter 5.

Spawning and death

When using non-orthogonal or non-normalised basis functions, the terms

included in the spawning and death steps need careful consideration. This is

particularly true when considering the nature of spawning between multiple

sites with the same spatial structure and a non-zero overlap term, where

spawning could be considered to implement non-local death. This is discussed

below in section 3.4.2.

Energy calculation

It is important to include all of the relevant terms in the projected en-

ergy calculation. The contributing terms differ from those in determinen-

tal FCIQMC. Calculation of a stable energy estimate is extremely important

for non-orthogonal FCIQMC, where this estimate enters into the off-diagonal

terms used for spawning.

3.4.1 Representation of spin eigenfunctions

When performing FCIQMC calculations using Slater determinants or HPHF func-

tions, two equivalent representations of the individual sites are used;

Expanded (natural) integer representation

For calculation of Hamiltonian matrix elements, and excitation generation, a

list of the occupied spin-orbitals associated with a given determinant, or with
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the canonical determinant in the HPHF function, is required. This is made

up of a list of spin-orbitals in increasing numerical order. These spin orbitals

are ordered such that all of the odd numbers represent β spin-orbitals, and

the even ones α, with each pair of integers representing a spatial orbital.

Compacted bit-representation

A compact representation may be obtained as

ξ(Dν) =
∑

i

2φ
(ν)
i
−1,

where one bit is set for each occupied spin orbital. This representation

requires 2M bits, one for each available spin-orbital in the basis set. This

requires substantially less memory than the expanded form, and is used

for storage of particles between iterations and especially for communication

between computational nodes, as required in the annihilation step. The

coefficient on a site and any associated flags may be stored and appended

immediately following this compact orbital bit representation.

If spin eigenfunctions are being used, this representation needs to change a little.∗

The representations must now store the spatial structure of the spin eigenfunction

and a label describing which spin structure is being used.

The numbering for the integer representation is adjusted, such that each pair of

integers still represents one spatial orbital, but the odd integer now corresponds to

the first electron occupying a spatial orbital, and the even integer is now only used

to represent the second electron in a doubly occupied orbital. This relabelling also

carries through to the bit-representation. For a spatial structure with g doubly

occupied spatial orbitals and No unpaired electrons, the integer representation is

now ordered beginning with

1. all 2g orbitals associated with the g pairs of doubly occupied orbitals, sorted

in numerical order, followed by

2. No unpaired orbitals, in numerical order.

Both the expanded integer and the bit representations of the spatial structure are

immediately appended with an integer containing a label (or an index to a label)

for the spin structure of the relevant spin eigenfunction – either a Yamanouchi

∗With the exception of spin-projected determinants, where the Slater determinants to be
projected are stored as usual.
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Figure 3.6: A particle population explosion caused by non-local death-like terms ap-
pearing in the off-diagonal spawning expressions. This plot shows the tra-
jectory of the total particle population and the population on the reference
site in the course of an FCIQMC calculation, showing that once an incor-
rect non-local death-like spawn has occurred, the positive feedback induced
causes an explosion in the total particle population, whilst the reference is
unaffected.

symbol, or a Serber eigenfunction label.

3.4.2 Non-local death and population control

Testing FCIQMC using spin-projected determinants, which are non-orthogonal,

reveals extremely unexpected behaviour. As system size is increased, a dramatic

instability is observed. As illustrated in figure 3.6, at some point during a calcula-

tion, a very large and dramatic increase in total particle population is observed —

the total particle population grows by several orders of magnitude over the course

of only a few iterations.

The onset of this is clearly triggered by a specific process, which is accessed stochas-

tically, as it will occur at radically different times within a calculation with only

a change of the random number seed. Similarly, decreasing the granularity of the

representation or using much smaller values of the imaginary time step, δτ , has
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Figure 3.7: A histogram of the spawning connection strength,
Kij−EweightedSij

Sjj
, for the

spawn i→ j, using spin-projected determinants for N2 with a bond length
of 6.00 a0 in a cc-pVDZ basis set. Note the much broader range of values
generated for same spatial structure spawns, and that the distribution is
somewhat asymmetric.

no impact on the emergence of this behaviour.

It is notable that this behaviour is not observed in two specific contexts;

• if spawning between sites with the same spatial structure is disabled, al-

though this leads to convergence on a wavefunction with an incorrect energy,

or

• if the correct wavefunction is converged on and there are many particles in

the simulation, either through seeding with the results of a previous calcu-

lation or switching the same spatial structure spawning on slowly once the

simulation has grown sufficiently.

This makes it clear that the spawning is related to the off-diagonal matrix elements

between sites with the same spatial structure, and to some degree to (stochastic)

deviations from the correct wavefunction. This is not entirely surprising; the

matrix elements associated with same spatial structure spawns,
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〈Fµ|Ĥ|Fν〉 =
∑

i, j

c
(µ)∗
i c

(ν)
j 〈Di|Ĥ|Dj〉

=
∑

i

c
(µ)∗
i c

(ν)
i Hii +

∑

i, j
i6=j

c
(µ)∗
i c

(ν)
j Hij,

can be effectively approximated by noting that (according to table 4.1) 〈Di|Ĥ|Dj〉
between two determinants with the same spatial structure is very close to 〈Di|Ĥ|Di〉,
and that the number of contributing terms to the remaining double sum is likely

to be small (as the terms can differ by no more than two spatial orbitals). As a

consequence,

〈Fi|Ĥ|Fj〉 ≈ Sij 〈Di|Ĥ|Di〉+ small terms,

and the spawning matrix elements for same spatial structure spawns are largely

dictated by the diagonal matrix elements of the relevant Slater determinants and

the overlap matrix. This spawning could be considered to be equivalent to non-

local death — i.e. the effect of death on one site causing changes in coefficients for

other sites that represent the same region of the Hilbert space.

Because diagonal matrix elements for Slater determinants are much larger than

off-diagonal ones, the same spatial structure Hamiltonian matrix elements are

generally much larger than those associated with single or double excitations (see

figure 3.7). They therefore have a large impact on the dynamics of simulations,

place more restrictions on the choice of generation probabilities (see section 5.3)

and the permissible imaginary time step, δτ (see section 2.6).

It can be observed that the explosive growth of particles observed in figure 3.6

begins with a pair of sites where positive feedback causes particles to be mutually

spawned between them more rapidly than particles are killed by (local) death (see

figure 3.8).

3.4.3 Demonstration of non-local death

In this section we consider a model two site system being expanded to three sites

so as to generate non-orthogonality and overcompleteness. This is intended as

an illustration of the nature of spawning associated with non-orthogonal basis

functions, and it demonstrates that if the simulation converges, then the two cases

are only equivalent if the spawning associated with the non-orthogonal connections
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Figure 3.8: Correct and incorrect death-like spawning. In (a) spawns from Di to Dj,
and vice versa, create particles of opposite sign to those already present,
and therefore reduce the amplitude on the target site (the red particles are
‘killed’). In (b) the reverse happens, and spawns in both directions cause
amplitude to increase on both sites (the green particles are ‘born’). This
suffers from positive feedback, as next iteration the number of particles will
grow in proportion to those present.

is death-like. For the two site simulation given in figure 3.9a the change in the

coefficients associated with the two sites per iteration is given by

S11∆c1 = −δτc0H01 − δτc1[H11 − (Eref + ES)S11]

S00∆c0 = −δτc1H01 − δτc0[H00 − (Eref + ES)S00].

Similarly, for the model system where the second site is duplicated to create a

third with |D1〉 = − |D1〉, as in figure 3.9b, the expressions for the changes in the

coefficients may be reduced to

S11(∆c1 −∆c1) = −2δτc0H01 − δτ(c1 − c1)[H11 − (Eref + ES)S11]

− δτ(c1 − c1)[H11 − (Eref + EC)S11]

S00∆c0 = −δτ(c1 − c1)H01 − δτc0(H00 − (Eref + ES)S00)

by noting that H11 = H11 = −H11 = −H11 and S11 = S11 = −S11 = −S11.

It is clear that the trajectories followed by the two simulations are not the same

— there is a factor of two that appears in the simulation with the duplicated site.

However, if we consider the fully converged case, with the value of ES = EC , in

the two-site system ∆c0 = ∆c1 = 0. In the three site system, if the coefficients

are written such that c1− c1 = c1,two−site, then the same steady state behaviour is
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Figure 3.9: The possible spawning patterns in a model two-site system being expanded
to have three sites. Inter-site spawning is notated with blue arrows, and
diagonal death in red. In (b) the site |D1〉 is duplicated such that |D1〉 =
− |D1〉.

observed with ∆c0 = (∆c1−∆c1) = 0 and the same value of the projected energy

is recovered.

The terms associated with spawning between the duplicated sites, containing EC

directly, are clearly responsible for counteracting the doubling of the spawning

contribution from site 0. As a consequence, a linear combination of terms correctly

represent the same region of the Hilbert space, and spawning between them is

correctly considered to be equivalent to non-local death.
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3.4.4 Algorithmic changes to suppress population explosion

For non-orthogonal FCIQMC, the derivation presented in section 2.2.2 demon-

strates only that if a simulation converges, then it has converged on an eigenfunc-

tion of the Hamiltonian. It does not in any way imply that the trajectory taken

will converge — there is no direct connection with the integration of the imaginary

time Schrödinger equation as there is for orthogonal FCIQMC. This suggests that

algorithmic changes may be required to assist the calculation through the growth

phase until it has sufficiently converged.

It is clear that same spatial structure spawning is acting as non-local particle

death. Consequently, an additional rule is added at the annihilation stage:

All particles spawned onto a given target site, originating from sites

with the same spatial structure, are combined. If the target site is

empty, the spawns are rejected. If the sign of the combined spawn

is the same as the sign of particles already present, the spawns are

rejected. If the sign of the combined spawn is opposite to the sign of

the particles already present, and larger in magnitude to the weight of

particles already present, the magnitude of the spawn is truncated to

leave the site empty.

This rule may be summarised as “Ensure that the cumulative effect of same spatial

structure spawns is to kill existing amplitude, not grow it”, or more directly, enforce

that same spatial structure spawns cause non-local death.

This rule is extremely similar both implementationally and practically to the ini-

tiator approximation. Both place constraints on the particles which survive based

on a) where the particle comes from, and b) the occupation of the target site. It is

similar, also, in that in the many particle limit the approximation disappears —

if the wavefunction is correctly converged, this death-like behaviour is observed,

and it is notable that once a simulation has grown above a certain (generally un-

known) size this restriction may be switched off with no impact. Qualitatively this

has little detrimental impact on the simulation. Presumably it has a quantitative

impact on the initiator error.
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Figure 3.10: A plot of the total number of particles and the number of particles on
the reference site for a simulation of N2 in a cc-pVDZ basis set at 4.2 a0

using normalised spin-projected determinants. This demonstrates an un-
explained convergence failure.

3.4.5 Further isssues with spin-projected determinants

The derivation in section 2.2.2 demonstrates only the properties of a simulation

that has converged. The openness of this scheme to simulations that never converge

haunts this as a generally applicable method.

Even with the algorithmic adaptations made, there are some systems which lead

to pathological behaviour. Figure 3.10 demonstrates the failure of FCIQMC using

spin-projected determinants to converge for the nitrogen dimer in a cc-pVDZ basis

with a bond length of 4.2 a0. This failure is resiliant, and is not avoided by

1. suppression of the same spatial structure spawns,

2. reduction of the timestep, δτ ,

3. the use of continuous time FCIQMC (see chapter 7), or

4. any amount of the other fiddling and tweaking that have been tried.

This appears to be system specific behaviour — it is not observed at all bond

lengths, or all basis sets, for N2 — but it is certainly related to system size in some

respect.
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While spin-projected determinants promise a great deal of benefit in comparison to

other spin eigenfunctions (largely as a result of avoiding storage of uncontrollable

amounts of data) until the causes of this instability are understood they are not

safely and generally applicable.



4 Hamiltonian matrix element

evaluation

The FCIQMC algorithm depends strongly on two major components; excitation

generation — which is the process of taking random steps in the Hilbert space

between sites connected by non-zero Hamiltonian matrix elements, and matrix

element evaluation — which is the process of calculating Hamiltonian matrix ele-

ments between any two arbitrary sites. Both of these processes must be efficiently

implemented and integrated with each other for the overall simulation to be effi-

cient. The implementation of Hamiltonian matrix element evaluation is explored

in this chapter, along with a discussion of what information may be passed from

the excitation generators to enhance efficiency.

4.1 Slater determinants and HPHF functions

The Hamiltonian matrix elements between a pair of arbitrary Slater determinants

can be calculated using the list of the occupied orbitals of one of the two determi-

nants, along with the excitation matrix (two lists of orbitals that are respectively

only occupied in one of the two determinants) and a count of the excitation level

between the two determinants (how many spin orbitals they differ by).

If the Slater determinants differ by more than two spin orbitals, the Hamiltonian

matrix element between them is zero. Otherwise, the matrix elements are given by

the expressions in table 4.1. It is worth noting that the one- and two-electron terms

referenced in the table are indexed by spin-orbital. These are in a practical sense

stored indexed by spatial orbitals, as this reduces the storage overhead by a factor

of four. Consequently the spin restriction that 〈ab|ĥ|cd〉 = 0 if ms(a) 6= ms(c) or

ms(b) 6= ms(d) must be implemented explicitly.

89
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Integral Expression

〈D|Ĥ|D〉 1
2

∑

i

∑

j (〈ij|ĝ|ij〉 − 〈ij|ĝ|ji〉) +
∑

i hii

〈D|Ĥ|Dp
m〉

∑

i (〈mi|ĝ|pi〉 − 〈mi|ĝ|ip〉) + hmp

〈D|Ĥ|Dpq
mn〉 〈mn|ĝ|pq〉 − 〈mn|ĝ|qp〉

otherwise 0

Table 4.1: The Slater–Condon Rules94–96 for evaluating the Hamiltonian matrix ele-
ments of Slater determinants. The sums, {i, j} are performed over all oc-
cupied spin-orbitals in the determinant D, and the operator ĝ = r−1

12 . The
Hamiltonian operator is made up of one- and a two- electron terms. Any
determinants which differ by more than two orbitals have a Hamiltonian ma-
trix element of zero. If non-orthogonal orbitals are used, the more general
formulae given by Löwdin are required.97

HPHF functions (see section 2.7.2) are of the form

|Xi〉 =







|Di〉 if closed shell

1√
2
(|Di〉 ± |Di〉) otherwise,

where |Di〉 is obtained from |Di〉 by swapping all of the spins α and β of the

unpaired electrons. This results in several simple forms for calculating the matrix

elements between two arbitrary sites in an HPHF space;

〈Xi|Ĥ|Xj〉 =







〈Di|Ĥ|Dj〉 if Xi and Xj are closed shell

0 if one of Xi or Xj is closed shell and the total

spin is odd√
2 〈Di|Ĥ|Dj〉 if one of Xi or Xj is closed shell and the total

spin is even

〈Di|Ĥ|Dj〉+ 〈Di|Ĥ|Dj〉 if both Xi and Xj contain a +

〈Di|Ĥ|Dj〉 − 〈Di|Ĥ|Dj〉 if both Xi and Xj contain a −
0 otherwise

4.1.1 Excitation generation integration

The excitation matrix (which is formed of up to two orbitals, {m, n}, chosen to

excite electrons from, and the orbitals {p, q}, chosen to excite electrons into) and

the excitation level can be directly returned by the excitation generator, along with
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the parity of the two excitations calculated from the newly generated (encoded) bit-

representation of the target determinant. Given these and the source determinant,

it is possible to calculate the diagonal matrix element without ever generating the

expanded form of the target Slater determinant.

This can result in a significant computational saving, as the majority of the spawns

are stochastically rejected, so the computational cost of generating a large number

of determinant representations is avoided.

4.2 Configurational State Functions

When using CSFs, there are two fundamental approaches to evaluating the Hamil-

tonian matrix elements (which may then be developed into more specific cases for

the different types of CSF); the CSFs may be expanded in terms of Slater deter-

minants, or the matrix elements may be expanded as a sum over permutations.

Expansion in Slater determinants

It is possible to express each CSF, Fi, as a linear sum of appropriate Slater

determinants, such that

|Fi〉 =
∑

j

c
(i)
j |Dj〉 .

It is then clear that it is possible to expand the calculation of Hamiltonian

matrix elements as a double sum over the matrix elements between determi-

nants with the same spatial structures, such that

〈Fµ|Ĥ|Fν〉 =
∑

i, j

c
(µ)∗
i c

(ν)
j 〈Di|Ĥ|Dj〉 . (4.1)

Any regime that involves this double sum can at best scale as O(n2
det), where

ndet scales exponentially with N (see figure 4.1). Consequently, as the num-

ber of electrons is increased, the computation is going to be increasingly dom-

inated by the matrix elements associated with highly excited states, which

have the most unpaired electrons. These are also where the least meaningful

wavefunction magnitude resides. This makes direct expansion an undesirable

scheme (see Kotani-Yamanouchi CSFs for an example, section 4.4).
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Summation over permutations

Starting from the most general formulation of the basis set obtained from a

given spatial function, Φ,

〈Fµ|Ĥ|Fν〉 = 〈AΦµΘµ|Ĥ|AΦνΘν〉 ,

and considering that the Hamiltonian operator is both spin-free (operates

only on the spatial coordinates), and symmetric in the coordinates of the

electrons (it commutes with every permutation and every element of the

symmetric group algebra), the matrix elements simplify98,

〈Fµ|Ĥ|Fν〉 =
1

N !

∑

P

(−1)P 〈Φµ|ĤP|Φν〉 〈Θµ|P|Θν〉 , (4.2)

where the antisymmetriser, A, has been explicitly written in terms of permu-

tations and parity elements. The overlap matrix elements can be obtained

in much the same way,

〈Fµ|Fν〉 =
1

N !

∑

P

(−1)P 〈Φµ|P|Φν〉 〈Θµ|P|Θν〉 .

As is outlined in figure 4.1, and the following section, algorithms that scale

with the number of available permutations necessarily perform poorly. The

number of permutations available scales factorially, i.e. super-exponentially,

and as such a scheme that explicitly expands the CSFs in Slater determinants

will actually scale better!

However, there are two specific instances in which this permutation scheme

is of implementational utility;

1. if explicit, and small, limits are able to be placed on the permutations

that need to be included, either through demonstration of which terms

will be zero, or which ones will cancel, or

2. if group theory permits transformation of this expression into a more

tractable form.

The use of Serber functions (sections 3.3.4 and 4.5), or spin-projected de-

terminants (sections 3.3.5 and 4.6) are desirable, since their Hamiltonian

matrix elements are made tractable through group theory when expressed in

the form here.
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Figure 4.1: Scaling of representation components. For a given number of electrons,
N , the plot shows the number of available electronic permutations, along
with the number of available unique CSFs with the lowest available total
spin, the number of corresponding Slater determinants and the number
of electrons. The squares of these values are also plotted. Algorithms
are preferred to scale depending on the number of electrons, and then
CSFs present, and then the number of determinants required. Even scaling
dependent on the squares of these values is preferable to being dependent
on all permutations.

4.2.1 Scaling of matrix element calculations

There are numerous different parameters that could influence the scaling of matrix

element evaluation, and thus be a factor in the overall scaling of an implementation

of FCIQMC. It is worth noting that there is a degree of choice available, both in the

choice of CSFs used, and to a lesser extent in the choice of implementation. The

terms that the scaling could depend on are discussed here in order of preference

here, and illustrated in figure 4.1.

Number of electrons, N

Calculating the Hamiltonian matrix elements between arbitrary Slater de-

terminants scales in the worst-case as O(N2), with the most commonly used

cases being O(1) and O(N). Once the permutation representation matri-

ces are known, the matrix elements corresponding to Serber functions (sec-



94 Hamiltonian matrix element evaluation

tion 3.3.4) can be reduced to a similar formulation. The matrix elements for

spin-projected determinants scale similarly, but without the dependence on

representation matrices.

Number of CSFs, ncsf

Although there are a great many elements of an FCIQMC simulation involv-

ing CSFs that depend on the number of CSFs, Hamiltonian matrix element

generation is not directly one of these. The size of the permutation represen-

tation matrices is n2
csf , and the cost of calculating each of them scales in the

same way. However, the potential permutational number of them required

is a stricter limiting factor.

Number of Slater determinants, ndet

The trivial expansion of CSFs into linear combinations of determinants leads

to O(n2
det) computation, although by careful enumeration of determinants

that differ by at most two spin-orbitals this can be reduced to O(ndet) in a

lot of cases.

Number of permutations, N !

The pathological scaling of the number of permutations means that no realis-

tic implementation of matrix element calculation can rely on explicit expan-

sion in terms of permutations. It is notable that the number of permutation

representation matrices required for the use of Serber functions (in princi-

ple) scales as N !. In practice, due to the limits on a maximum of two spatial

orbitals being excited, only a tiny subset of these are ever required, and

if necessary even these could be shrunk by judicious use of symmetry (see

section 4.5.3).

It should be noted from the logarithmic scale of figure 4.1 that it is strongly pre-

ferred to opt for scalings towards the top of this list.

4.3 Rumer-type CSF

Rumer-type CSFs are non-orthogonal, and the matrix elements are relatively com-

putationally complicated — with the most straightforward means being an ex-

pansion into Slater determinants. Although there are means to do this more

efficiently99, it was not perceived as immediately worthwhile to implement Hamil-
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tonian matrix elements for these CSFs, and will not be considered further here.

The primary purpose of considering Rumer-type spin eigenfunctions is as a means

to calculate permutation representation matrices efficiently, see section 4.5.2. This

is relatively efficient as the expansion into Slater determinants is more compact

than for other types of spin eigenfunction.

4.4 Kotani-Yamanouchi CSFs

For two CSFs, {Xµ, Xν} (see section 3.3.3), the matrix elements, 〈Xµ|Ĥ|Xν〉, may

be calculated according to the double sum over determinants expressed in equa-

tion 4.1. Various special cases for evaluating the CSF matrix elements can be used.

Note that in these subsections there are many sums over one and two electron in-

tegrals of the form
∑N

i ,
∑No

i and
∑g

i . These sums are written from index 1 for

notational convenience, meaning “the ith orbital”, “the ith singly occupied orbital”

and “the ith doubly occupied orbital” respectively.

4.4.1 Xµ and Xν share the same spatial structure

As the spatial structure of the two CSFs is identical, all contributing determinants

have g doubly occupied orbitals (2g paired electrons) and No singly occupied spa-

tial orbitals. The Hamiltonian matrix elements can be constructed out of a number

of components.

4.4.1.1 Diagonal terms in sum

Consider first the diagonal terms in equation 4.1 (i = j) and break the resultant

expression into several pieces. Each of the component terms,

c
(µ)
i c

(ν)
i 〈Di|Ĥ|Di〉 ,

may be considered in terms of the Slater–Condon rules given in table 4.1,

1

2

∑

i,j

(〈ij|ĝ|ij〉 − 〈ij|ĝ|ji〉) +
∑

i

hii,
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broken down into sums over spatial rather than spin orbitals.

One electron terms

The one electron terms depend only on the spatial orbitals occupied;

〈Di|Ĥ|Di〉 =
N∑

k

hkk.

This sum is over all occupied spin-orbitals in Di, such that any doubly occu-

pied spatial orbitals are counted twice. As the spatial orbitals are the same

for all considered determinants, this term is conserved in the sum across

determinants. The overall contribution therefore becomes

Hcontrib =
∑

i

c
(µ)
i c

(ν)
j 〈Di|Ĥone el|Di〉

=

(
N∑

k

hkk

)(
∑

i

c
(µ)
i c

(ν)
i

)

=

(
N∑

k

hkk

)

δµν . (4.3)

Two electron terms, from the same orbital

For the diagonal terms in equation 4.1, consider the two electrons integrals

in the same doubly occupied spatial orbital, k;

1

2

∑

i, j

(

〈ij|ĝ|ij〉 − 〈ij|ĝ|ji〉
)
∣
∣
∣
∣
i=kα,kβ ;j=kα,kβ

=
1

2

[

〈kαkα|ĝ|kαkα〉 − 〈kαkα|ĝ|kαkα〉+

〈kαkβ|ĝ|kαkβ〉 − 〈kαkβ|ĝ|kβkα〉+
〈kβkα|ĝ|kβkα〉 − 〈kβkα|ĝ|kαkβ〉+
〈kβkβ|ĝ|kβkβ〉 − 〈kβkβ|ĝ|kβkβ〉

]

= 〈kk|ĝ|kk〉 .

where k includes all g doubly occupied orbitals. Note that for singly occupied

spatial orbitals the coulomb and exchange contributions cancel. As 〈kk|ĝ|kk〉
depends only on the spatial orbitals, this term is invariant between different

determinants being considered. Thus the overall contribution is given in
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spatial orbitals by

Hcontrib =

(
g
∑

k

〈kk|ĝ|kk〉
)
(∑

c
(µ)
i c

(ν)
j

)

=

(
g
∑

k

〈kk|ĝ|kk〉
)

δµν . (4.4)

Two electron terms, doubly occupied — doubly occupied interactions

For the diagonal terms in equation 4.1, consider the two electron integrals

between doubly occupied spatial orbitals k, l;

1

2

∑

i, j

(

〈ij|ĝi|ij〉 − 〈ij|ĝ|ji〉
)
∣
∣
∣
∣
i=kα,kβ ;j=lα,lβ

=
1

2

[

〈kαlα|ĝ|kαlα〉 − 〈kαlα|ĝ|kαlα〉+

〈kαlβ|ĝ|kαlβ〉 − 〈kαlβ|ĝ|kβlα〉+
〈kβlα|ĝ|kβlα〉 − 〈kβlα|ĝ|kαlβ〉+
〈kβlβ|ĝ|kβlβ〉 − 〈kβlβ|ĝ|kβlβ〉

]

+ terms k ↔ l

= 4 〈kl|ĝ|kl〉 − 2 〈kl|ĝ|lk〉 ,

where the final expression is in terms of spatial orbitals, and thus invariant

between different determinants. The overall energy contribution is thus

Hcontrib =





g
∑

k<l

4 〈kl|ĝ|kl〉 − 2 〈kl|ĝ|lk〉


 δµν . (4.5)

Two electron terms, doubly occupied - singly occupied interactions

For the diagonal terms in equation 4.1, consider the two electron integrals

between doubly occupied spatial orbital k and singly occupied orbital l. Each

determinant has a well defined spin component for each orbital, labelled σ,

taking the value α or β (ms = ±1
2
). Thus the matrix element component for
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orbitals k and l is given by

1

2

∑

i, j

(

〈ij|ĝi|ij〉 〈ij|ĝ|ji〉
)
∣
∣
∣
∣
i=kα,kβ ;j=lσ

=
1

2

[

〈kαlσ|ĝ|kαlσ〉 − 〈kαlσ|ĝ|lσkα〉+

〈kβlσ|ĝ|kβlσ〉 − 〈kβlσ|ĝ|lσkβ〉
]

+ terms k ↔ l

= 2 〈kl|ĝ|kl〉 − 〈kl|ĝ|lk〉 .

As this expression is in terms of spatial orbitals, it is invariant between

different determinants. Thus the final expression is given by

Hcontrib =
( g
∑

k

No∑

l

2 〈kl|ĝ|kl〉 − 〈kl|ĝ|lk〉
)

δµν . (4.6)

Two electron terms, singly occupied - singly occupied interactions

For the diagonal terms of equation 4.1, consider the two electron integrals

between singly occupied orbitals k and l. The coulomb term remains con-

stant, as it depends only on the spatial orbitals occupied. The exchange

term, however, is only observed if the two orbitals have the same spin (i.e.

σi
k = σi

l). To calculate this requires enumerating the determinants which will

be done using the methodology described in section 4.4.1.2

Hcontrib =
No∑

k<l

∑

i

c
(µ)
i c

(ν)
j

(

〈kl|ĝ|kl〉 − 〈kl|ĝ|lk〉 δσi
k

σi
l

)

. (4.7)

4.4.1.2 Off-diagonal terms in sum

Consider the off-diagonal terms in equation 4.1 (those with i 6= j). All of the

relevent determinants need to be enumerated, selecting those with non-zero Hamil-

tonian matrix elements and summing the relevant elements.

By the Slater–Condon rules, all matrix elements are equal to zero if the deter-

minants differ by more than two spin orbitals. The only differences between the

determinants being considered are the spin structures of the unpaired electrons.

The only way that a determinant can be changed by two or fewer spin orbitals,

whilst maintaining the total value of Ms, is to swap the spins of one orbital with

Ms = 1
2

and one with Ms = −1
2
. This will cause the determinants to differ by
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precisely two spin orbitals.

An algorithm thus presents itself. Iterate through the list of enumerated determi-

nants. For each determinant, iterate through the unpaired electrons, selecting all

possible pairs with Ms = ±1
2
. The excitation matrix m, n → p, q is then directly

obtainable, along with the corresponding matrix element.

The first step is to enumerate all possible determinants. This is equivalent to

generating all the combinations of nα electrons with spin ms = 1
2

selected from

nopen unpaired electrons. The ordered set of combinations is generated as the

lexicographic combinations using an algorithm presented by Knuth100. These have

the convenient property that, given a particular combination, its position in the list

can be obtained directly. Due to the heavy use of the choose function, calculation

of the index in the list is quite slow.

If the selected positions (pos) of the β electrons (ms = −1
2
) within the set of un-

paired electrons are stored, then the sum
∑

pos 2pos−1 is monotonically increasing

through the set of combinations. This value is calculated for each of the permuta-

tions generated, and stored. Given any arbitrary permutation this value may be

calculated easily giving its index in the list by performing a binary search. This is

substantially faster than calculating the index directly.

The required sum is

Hcontrib =
∑

i6=j

c
(µ)
i c

(ν)
j 〈Di|Ĥ|Dj〉

=
∑

i<j

(c
(µ)
i c

(ν)
j + c

(ν)
i c

(µ)
j ) 〈Di|Ĥ|Dj〉 .

The contribution of each of the pairs of determinants only needs to be calculated

once, with the c
(ν)
i c

(µ)
j term summing in the reverse interaction. Therefore each

pair of determinants need only be generated once. A condition may be added

that two spins will only be swapped if the first has ms = 1
2
, and the second has

ms = −1
2
. This ensures that if the connection A→ B is made, B → A is rejected,

and double counting is avoided.

The algorithm chosen is as follows:

1. Enumerate all determinants which may be components of CSFs Xµ and Xν .

2. Select the first determinant, Di, in the list.
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3. Generate all pairs, (s, t), of unpaired electrons in Di such that the first

electron in the pair has ms = 1
2
, and the second has ms = −1

2
.

4. For each of these pairs the associated double excitation is sαtβ → sβtα.

5. The matrix element, 〈Di|Ĥ|Dj〉, can be calculated using the Slater–Condon

rules. It is multiplied by (c
(µ)
i c

(ν)
j + c

(ν)
i c

(µ)
j ) and added to the overall sum.

6. If there are more determinants, select the next determinant in the list and

return to item 3.

4.4.2 Xµ and Xν differ by one spatial orbital

This is the least frequently used case, but also the hardest to simplify in any

meaningful way. It is calculated according to the general formula expressed in

equation 4.1.

4.4.3 Xµ and Xν differ by two spatial orbitals

All of the component determinants of the two CSFs must differ by at least two spin

orbitals. By the Slater–Condon rules (table 4.1), the only pairs of determinants

that contribute to the sum in equation 4.1 are those which differ by precisely 2

spin orbitals.

Therefore the only spin orbitals which may differ between pairs of determinants

being considered are the differing spatial orbitals. The remainder of the two de-

terminants must share the same spin structure. This allows all of the contributing

pairs to be directly generated, rather than performing the double sum and rejecting

the components which do not contribute (a much slower process).

If one determinant has a doubly occupied orbital, which is singly occupied in the

other determinant, then both of the orbitals in the second determinant can have

their spin structure permuted, whereas neither of the doubly occupied orbitals

may be (as this would not change the determinant, see figure 4.2). This leaves a

maximum of four orbitals which may vary per determinant. The number of these

is labelled γ. The orbitals which may vary can be obtained straightforwardly from

the spatial structures of the CSFs provided.

The spin structure of a determinant may be represented as a binary string (for

ms = ±1
2
). Using the lexicographic combinations, a sequence of spin structures
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α

β

α

β

0 01 12 23 34 45 56 67 7

Figure 4.2: Determinants differing by one spin orbital; occupied spin orbitals are repre-
sented in green with spatial orbitals enumerated along the base. Note that
due to the difference being caused by a doubly occupied orbital becoming
two singly occupied orbitals, there are two spatial orbitals whose spins may
be varied whilst the two determinants only differ by one spin orbital. In
the case of CSFs differing by 2 spatial orbitals, as discussed, the maximum
number of orbitals whose spins are allowed to vary is 4.

where the last bits change the most rapidly may be generated — in particular for

every combination of the first N − γ bits, all of the allowed combinations of the

last γ bits will be explored before before the any of first N − γ bits change.

Assigning these rapidly changing bits to the spatial orbitals which are allowed to

change within a determinant, whilst remaining connected to another determinant

with the same majority spin structure, it then becomes straightforward to access all

of the connected determinant pairs. Two lists of (carefully ordered) determinants

for the two CSFs being considered are obtained.

All of the contributing terms in the sum (equation 4.1) are now roughly diagonal

(see figure 4.3). By the properties of the lexicographic combinations, all of the

majority spin structures appear in the same order in both of the two lists. Not all

of the majority spin structures may be present in each list as there may be different

numbers of unpaired electrons in each CSF giving subtly different constraints on

the spin structures allowed. These non-allowed terms may be avoided by consid-

ering the summed Ms values of the N − γ orbitals. The CSF with the ‘additional’

determinants will always be the one with the larger number of unpaired electrons,

as this gives more combinatorial freedom for selection of determinants.

The process is as follows for CSFs Xµ, Xν , containing sorted lists of determinants

D
(µ)
i , D

(ν)
j .

1. Set i = j = 1

2. Consider determinants D
(µ)
i , D

(ν)
j . If

∑N−γ(µ,k)
k ms(k, µ) =

∑N−γ(ν,l)
l ms(l, ν)

go to step 4.

3. If Xµ has more unpaired electrons than Xν , increment i unless i is the last

determinant of list D
(µ)
i when the sum is complete. If Xν has more unpaired
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Figure 4.3: Summation of matrix element components for Xµ and Xν which differ
by two spatial orbitals. Terms are summed roughly diagonally between
determinants. Only those orbitals which differ spatially are allowed to
vary in terms of spin across the summed blocks (shaded green). When any
change, other than within a block, is made to one CSF, another block is
required for the other CSF, making a move roughly diagonally. This avoids
calculation of a (potentially) large number of terms which are known to be
equal to zero.

electrons, then similarly for j. Return to step 2.

4. Perform the sum
∑

i′

∑

j′ c
(µ)
i′ c

(ν)
j′ 〈D(µ)

i′ |Ĥ|D(ν)
j′ 〉, where i′ >= i, j′ >= j and

i′, j′ are constrained such that the majority components of the spin structure

are not allowed to change. Add this to the overall matrix element.

5. Set i, j to the values i′ + 1 and j′ + 1 from the last term in the above sum

(i.e. change the spin structure of both determinants at once). If this moves

past the end of either list, then exit the sum. Otherwise go to step 2.

The matrix elements 〈D(µ)
i |Ĥ|D

(ν)
j 〉 depend only on two 4-index, 2-electron inte-

grals by the Slater–Condon rules, characterised by the excitation matrix m, n →
p, q. The values of 〈mn|ĝ|pq〉 and 〈mn|ĝ|qp〉 are numerically invariant to changes

within the same spatial orbitals. Some of these values are, however, negative and

some disappear due to constraints imposed by the ms values.

The value required may be expressed as a standard coulomb interaction 〈mn|ĝ|pq〉
and an exchange interaction 〈mn|ĝ|qp〉. When the exchange interaction is forbid-

den by the component ms values, and when the overall sign must be inverted to

represent the spin orbital excitation matrix rather than the ‘standard’ excitation

matrix (which assumes all unpaired electrons have ms = −1
2

as a result of the

standard representation ordering, see section 3.4.1) needs to be determined. This

can be considered in two parts, the exchange integral components and the overall

parity.
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Exchange Integral

The ms values for for the target orbitals p, q are given by the determinental

excitation matrix. The ms values for m, n can be obtained by examining the

two determinants. There are three cases.

1. The excitation is from a singly occupied orbital. The ms value de-

pends on the ms value of the orbital in the second determinant being

considered as part of the pair.

2. The excitation is from a doubly occupied orbital. The ms value is

opposite to the ms value of the remaining half of the pair in the same

determinant.

3. Both excitations have occurred from the same doubly occupied orbital.

The ms value choices for m, n are then arbitrary, as long as one is

assigned 1
2

and the other −1
2
.

When considering a pair of determinants D
(µ)
i , D

(ν)
j , the exchange interaction

can now be included if ms(m) = ms(q) and ms(n) = ms(p).

Overall Parity

The overall sign of the interaction is known as the parity. If the orbitals

are sorted in increasing numerical order (this is arbitrary but must be the

same order used when storing integrals), then the number of permutations

of adjacent orbitals required to line up the determinants will either be even

(in which case the parity is positive) or odd (in which case the parity is

negative).

Initially the parity is calculated for the ‘standard’ representation with all

electrons in the beta position, this is done by considering the lineup operation

in full. For every singly occupied orbital in Xµ which corresponds to a doubly

occupied orbital in Xν (see figure 4.4b), if that orbital has ms = 1
2

then the

parity is inverted. The effect on the parity of each of the determinants in

both lists can be calculated by considering this, and the parity of the overall

element in the sum is then given by the product of these values.

This process is substantially quicker than calculating the parity from scratch

for every pair of determinants.

Once the parity has been obtained and the exchange interaction determined, the



104 Hamiltonian matrix element evaluation

1β1α2β3β3α

1β1α 3β3α4α

2 swaps, even. R = +1

1β1α 3β3α4β

2 swaps, even. R = +1

(a) If two determinants differ such that
a singly occupied orbital is merely
moved, the number of steps in a
lineup operation is not dependent on
the spin of the resultant orbitals.

1β1α2β2α3β3α

1β1α2β 3β3α4α

2 swaps, even. R = +1

1β1α 2α3β3α4β

3 swaps, odd. R = −1

(b) If two determinants differ such that
a doubly occupied orbital is con-
verted to a singly occupied orbital,
the number of steps in a lineup op-
eration depends on if the remaining
orbital has ms = ± 1

2
.

Figure 4.4: Dependence of the parity of matrix elements on the relative spin configu-
ration of the associated determinants.

contribution of each orbital is given by

〈D(µ)
i |Ĥ|D

(ν)
j 〉 = R ·

(

〈m′n′|ĝ|p′q′〉 − δms(m)ms(q)δms(n)ms(p) 〈m′n′|ĝ|q′p′〉
)

where R = ±1 indicates the parity, and m′, n′, p′ and q′ index the spatial orbitals

associated with the excitation (i.e. these are constant for all D
(µ)
i and D

(ν)
j ).

4.5 Serber-type CSFs

Salmon et al.83 have demonstrated that the Hamiltonian matrix elements between

Serber CSFs can be expressed by formulae which are extremely similar in structure

to those for Slater determinants as displayed in table 4.1. In particular, the matrix

elements are expressed as a sum over electronic terms of the Hamiltonian matrix

elements between spatial orbitals — the only difference is that these terms are

multiplied by factors dependent on the line-up permutation between the two CSFs

and the spin eigenfunction labels applied.

There are several pieces of information that are required to generate the matrix

elements;

• the ordered list of spatial orbitals occupied in one of the two CSFs,

• the Serber function label for each of the CSFs,

• the list of orbitals differing between the two sets of spatial orbitals, and
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• the line-up permutation between the (natural orders of the) two sets of spatial

orbitals.

All of these pieces of information may be obtained directly from the excitation

generators, or as explained in the next sections. These can then be passed to the

matrix element calculation routine proper (section 4.5.4).

4.5.1 Line-up permutation

The spatial component of the CSFs is represented as a list of occupied spatial

orbitals, in a defined order (g doubly occupied orbitals followed by No singly

occupied orbitals, see section 3.4.1). For the two CSFs Xµ and Xν , the line-up

permutation, L is represented as a vector, L, of indices such that Li is

• the index of the ith orbital of Xν in Xµ, if the orbital is found in both

functions, or

• the index of the ith orbital in Xµ which is not found in Xν , if this is the ith

orbital in Xν that which is not found in Xµ.

This permutation can be found in O(N) time for any two arbitrary, ordered CSFs.

It may also be found directly when generating an excitation.

4.5.2 Generation of permutation representation matrices

For the calculation of these matrix elements, the permutation representation ma-

trix elements,

[P]NS
θiθj

= 〈θi|Pθj〉 , (4.8)

are required. Calculation of these matrix elements is time-consuming. The most

obvious manner to do this is to expand the Serber functions in terms of deter-

minants, and then to permute the electrons and to sum the components of the

resultant overlap terms.

Given that the transformation matrix between Serber and Kotani-Yamanouchi spin

eigenfunctions is readily available, it is possible to generate the permutation repre-

sentation matrices for the Serber functions from those for the Kotani-Yamanouchi

functions, Uθiθj
(P). There are several efficient means to calculate the represen-

tation matrices for the Kotani-Yamanouchi functions, and the O(n2
csf ) operation
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to transform the matrices is more efficient than the O(n2
det) operation involved in

expanding into determinants.

Wu and Zhang101 presented an algorithm for determining the representation ma-

trices of the Kotani-Yamanouchi functions as a product of three matrices, two of

which are triangular, and all of which are trivially obtained. The representation

matrices of arbitrary permutations may also be obtained by combining the trans-

positions (i, j). These can in turn be reduced to a dependence on the primitive

transpositions

(i, j + 1) = (j, j + 1)(i, j)(j, j + 1) j 6= i

Uθlθk
(i, j + 1) =

∑

m,n

Uθlθm
(j, j + 1)Uθmθn

(i, j)Uθnθk
(j, j + 1) j 6= i.

Rettrup102 provides a direct means to obtain the representation matrix elements

for the primitive transpositions, and permit the above double sum to be reduced

to (a maximum of four) contributing terms;

Uθlθk
(i, j + 1) = ρl

j,j+1ρ
k
j,j+1Uθlθk

(i, j)− ρl
j,j+1γ

k
j,j+1Uθlθn(i,j)

− ρk
j,j+1γ

l
j,j+1Uθmθk

(i, j) + γl
j,j+1γ

k
j,j+1Uθmθn

(i, j)

where n, m are only included for terms such that

θn = (j, j + 1)θk,

θm = (j, j + 1)θl

are valid Kotani-Yamanouchi functions, and

Uθlθl
(j, j + 1) =

1

dl
j,j+1

≡ −ρl
j,j+1

Uθlθm
(j, j + 1) =







√

1− (ρl
j,j+1)

2 ≡ γl
j,j+1 if Sm = (j, j + 1)Sl

0 otherwise

where dl
j,j+1 is the axial distance between the numbers j and j + 1 in the lth stan-

dard Young tableau103,104 (correponding to θl). Other authors have also provided

efficient means for calculating these elements105,106, or for representations of cyclic

permutations107,108. The use of all of these methods for arbitrary permutations is

difficult.
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Alternatively, the permutation matrices for the Kotani-Yamanouchi functions may

be obtained by transformation from those for the Rumer functions. As the expan-

sion of Rumer functions into combinations of Slater determinants is especially

compact, this route to generating the matrices is particularly efficient.

A highly efficient code, called SPINS, has been written by Karadakov et al.109 to

manipulate different forms of spin function and associated permutation representa-

tion matrices. Sections of this code have been integrated into the Alavi group code,

called NECI, to facilitate working with arbitrary permutation matrices of Serber

functions. This code generates entire permutation representation matrices, first

in a Rumer function basis, before transforming them into a Kotani-Yamanouchi

function basis and finally into a Serber function basis. There is no straightforward

means to generate only specific elements of these matrices efficiently.

4.5.3 Storage of permutation representation matrices

Although the computational cost for producing each element of the permutation

representation matrices is relatively low, it is necessary to calculate entire matrices

at a time. The size of these matrices is n2
csf , and the cost of calculating multiple

entire permutation representation matrices for each evaluated Hamiltonian matrix

element quickly becomes prohibitive as the number of electrons increases.

Consequently it is important to only calculate each of the representation matrices

once, and to store them for later access. In principle there are N ! available per-

mutation matrices, but as the non-zero Hamiltonian matrix elements correspond

to CSFs differing by a maximum of two spatial orbitals only a tiny fraction of the

permutations are ever required (see figures 4.5 and 4.6).

Permutation representation matrices are generated on a calculate-on-demand basis

— a process otherwise known as memoisation. A unique identifier, η, for each

permutation may be calculated as

η(P) =
N∑

i

(Pi − 1)×N i−1

and is used as the index to a map∗ which allows efficient lookup of previously

∗The map function used is either std::map110 or, if a sufficiently recent compiler is avail-
able, std::unordered_map111 as defined by the C++ standard. Wrapper code is available to
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Figure 4.5: The proportion of the available N -electron permutations required in
FCIQMC simulations as the number of electrons is increased. All of these
calculations used cc-pVDZ basis sets with core electrons frozen, such that
N varies from three to ten.

calculated matrices. If 64-bit integers are used, all possible permutations can be

given a unique value with no possibility of collisions caused by integer overflows

for up to 16 electrons. This permits each of required permutations to be only

calculated (and stored) once∗, saving substantially on resources. See figure 4.6.

integrate this efficiently with Fortran dynamic memory management.
∗‘Once’ in this context means ‘once per MPI process’. In reality the vast majority of per-

mutations required on each processor are shared across all of them. It is perfectly possible to
share this memory across all processors situated on each physical node. This requires careful use
of resource locking and synchronisation, as only one process can be permitted to write to the
shared data structure at a time. Fortunately writing is a rare occurrence.
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(a) Generation of permutations in an i-FCIQMC run using Serber functions. It is worth noting
the shoulder in the total permutation count graph, showing how the number of permutations
required rises rapidly as a new region of the Hilbert space becomes accessible.
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(b) Generation of permutations after resuming the calculation in 4.6a from a dump file after
43225 iterations. Note the huge spike as most required permutations are calculated in one
iteration. Resuming these calculations takes longer than for other types of basis function.

Figure 4.6: The on-the-fly generation of permutations for a stretched N2 system in
a cc-pVDZ basis set, in a calculation using 10 electrons. The number of
permutations available is 10! ≈ 3.6 · 106, whereas only just under 3 · 104

permutations are made use of (i.e. fewer than 1%).
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4.5.4 Evaluation of matrix elements

The normalisation constant for the matrix elements is given by

N(φi
a, φi

b; φj
r, φj

s) =

(

n(φa, Φi)n(φb, Φi)n(φr, Φj)n(φs, Φj)

[1 + δ(φa, φb)]3[1 + δ(φr, φs)]3

) 1
2

,

where n(φa, Φi) is defined to be the occupancy number of orbital φa in the spatial

function Φi. For most of the cases considered this simplifies into a more tractable

form as given in each of the expressions below. The formulae used to calculate

matrix elements, 〈Xi|Ĥ|Xj〉, depend on how many spatial orbitals differ between

the two CSFs83. If they differ by more than two spatial orbitals, the matrix

elements must equal zero. The remainder of this section presents formulae for

the matrix elements between Serber functions differing by different numbers of

spatial orbitals.

Same spatial structure

If the two spatial structures are identical, Φi = Φj, the two basis functions

can differ only by their Serber functions,

〈Xi|Ĥ|Xj〉 = 〈Φiθi|Ĥ|Φjθj〉
= δ(θi, θj)

∑

φa

{n(φa)hii + [n(φa)− 1] 〈φaφa|ĝ|φaφa〉}

+
∑

φa<φb

n(φa)n(φb) {δ(θi, θj) 〈φaφb|ĝ|φaφb〉

−[(a, b)]N,S
θi,θj
〈φaφb|ĝ|φbφa〉

}

.

Differ by one spatial orbital

If the two spatial structures differ by one orbital, such that φµ in Φi becomes

φσ in Φj,

〈Xi|Ĥ|Xj〉 = 〈Φiθi|Ĥ|Φjθj〉

=
√

n(φµ, Φi)n(φσ, Φj)

×
[

(−1)l[L]N,S
θi,θj

{

hφµφσ
+ [n(φµ, Φi)− 1] 〈φµφµ|ĝ|φσφµ〉

+[n(φσ, Φj)− 1] 〈φσφσ|ĝ|φµφσ〉}
+

∑

φj 6=φµ,φσ

n(φj, Φi)
{

(−1)l[L]N,S
θi,θj
〈φµφj|ĝ|φσφj〉

−(−1)l[(µj)L]N,S
θi,θj
〈φµφj|ĝ|φjφσ〉

}]

.
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Differ by two spatial orbitals

If the two spatial structures differ by two spatial orbitals, such that φµ, φν

in Φi becomesφσ, φτ in Φj,

〈Xi|Ĥ|Xj〉 = 〈Φiθi|Ĥ|Φjθj〉
= N(φµ, φν ; φσ, φτ )

{

(−1)l[L]N,S
θi,θj
〈φµφν |ĝ|φσφτ 〉

−(−1)l[(µ, ν)L]N,S
θi,θj
〈φµφν |ĝ|φτ φσ〉

}

.

These formulae are extremely useful, as they reduce the calculation of the Hamil-

tonian matrix elements to a form which is essentially the same as the standard

Slater–Condon rules modified only by the addition of components from the repre-

sentation matrices.

4.6 Spin-projected determinants

Using spin-projected determinants as a basis set introduces a number of com-

plexities, most notably those associated with non-orthogonality. The reason for

considering this additional complexity is due to the efficiency of the matrix element

calculation, as presented by Harris112.

It is necessary to both be able to calculate matrix elements between arbitrary spin-

projected determinants — mainly for debugging purposes — and more normally to

evaluate diagonal matrix elements and off-diagonal matrix elements in conjunction

with excitation generation. In order to evaluate these matrix elements a significant

amount of information is required. In this chapter, the means of generating this

information are explored first, followed by the matrix element calculation itself.

The first step of a calculation is to select which of the determinants, Fi, Fj, has the

most pairs of electrons. The determinant with the most paired electrons is labelled

as Fµ, and the other determinant is labelled as Fν . If both of the determinants

have the same number of unpaired electrons, it doesn’t matter which way around

this selection is made.

As described in section 3.3.5.1, if the spin-projected determinants are being ex-

plicitly normalised, such that Sνν = 〈Fν |Fν〉 = 1, the matrix elements (along with
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the overlap elements) must be adjusted to take this into account, such that

Hµν −→
1

√

SµµSνν

Hµν

Sµν −→
1

√

SµµSνν

Sµν .

The efficiency of this scheme for evaluating matrix elements depends very strongly

on tight integration with the excitation generator. In particular the most compu-

tationally expensive step in the general case is aligning Fµ to meet the require-

ments of the following section. Within the excitation generator, the number of

orbitals which change are known along with all details of the excitation — and

as a consequence the information outlined below may be obtained directly. See

appendix 4.6.4.

4.6.1 Alignment

All spin-projected determinants, Fi, are stored in a standardised form, such that

the first N − No electrons are pairs of doubly-occupied orbitals in increasing nu-

merical order, followed by the remaining No unpaired electrons also in increasing

numerical order.

Given a pair of spin-projected determinants, Fµ, Fν , ordered in this way, the per-

mutation P0
∗ is defined such that

1. P0θµ contains the sequence αβαβ · · · for all spins corresponding to doubly

occupied orbitals in Φν .

2. subject to (1), all spatial orbitals in P0Φµ correspond as closely as possible

to those in Φν .

The parity is given by ǫP = (−1)P where P is defined as the number of primitive

transpositions required to construct the permutation P. P is not unique, but is

well defined as odd or even, and can be obtained by an O(N2) operation (best

case O(N)). The following algorithm performs a line-up operation, shuffling the

remaining terms up as each successive orbital is found and removed.†

∗In the literature the reverse of this permutation is defined, such that the given conditions
apply to P−1

0 . As we are not attempting derive the expressions for evaluating the matrix elements,
and are only interested in the parity and value of k (see later), the simpler expression is used.

†If the extra line Φtmp(i) = orb were added after line 10, then Φtmp would become ordered.
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1: Φtmp ← P0Φµ

2: par ← 1

3: for i = 1 to N do

4: orb← Φµ(i)

5: for j = i to N do

6: if Φtmp(j) = orb then

7: break

8: end if

9: if j 6= i then

10: Φtmp(i + 1 : j) = Φtmp(i : j − 1)

11: if mod (j − i, 2) = 1 then

12: par ← −par

13: end if

14: end if

15: end for

16: end for

Implementationally, performing an actual line-up operation, and calculating the

parity long-hand is extremely inefficient. Given that the system is restricted to

double spatial excitations, once the excitation generator has selected a target spin

structure, determining the optimum aligned determinant (and hence the parity) is

straightforward — although it requires considering all possible ‘shapes’ of excita-

tion.

4.6.2 Sanibel coefficient

It can be shown113 that matrix elements between Fµ and Fν depend only on the

difference in the spatial structures and on the value k, which is defined as the

number of α spins in P0θµ that match with β spins in θν (and vice versa).

This value enters the energy expressions through the Sanibel coefficient.∗ These

have been extensively studied, and various formulae have been given for calculating

them. The Sanibel coefficient may be defined as the overlap of the kth spin-

∗The different formulae for these coefficients were presented and discussed at a conference at
Sanibel, on Sanibel Island, in 1962.
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projected determinant with a reference one,

Ck(S, Ms, No) = 〈θk|ÔSθ0〉 ,

where θ0(nα, nβ) = [αnα ][βnβ ], and to construct θk, the final k β terms are swapped

with the final k α terms; i.e. θk(nα, nβ) = [αnα−k][βk][βnβ−k][αk]. Löwdin114

obtained recurrence formulae for these coefficients, but more direct approaches

have been obtained since. Sasaki and Ohno115 found

Ck(S, Ms, No) =
(2S + 1)(No −Ms − k)!k!

(No + S + 1)!

×
∑

l

(−1)k+l (No + Ms − k + l)!(S −Ms + k − l)!

l!(k − l)!(S −Ms − l)!(No − S − k + l)!
.

A similar derivation was given by Pauncz116, although his expression was deter-

mined only up to a constant (with the exception of Ms = 0). Via a (somewhat

exciting) series of integrals, Smith117,118 obtains

Ck(S, Ms, No) =
4S + 2

2S + No + 2

×
S−Ms∑

j=0

(−1)S−Ms+k−j

(

S −Ms

j

)(

S + Ms

S −Ms − j

)(
No

2
+ S

nα + j − k

)−1

for nα ≥ nβ, to which Harris112 agrees, although giving a subtly different form,

Ck(S, Ms, No) =
4S + 2

2S + No + 2

S−|Ms|∑

j=0

(−1)k+j

(

S −Ms

j

)(

S + Ms

j

)(
No

2
+ S

k + j

)−1

.

Smith and Harris119 demonstrate that all these different forms for the Sanibel

coefficient are equivalent.

As the spin-pure subspace is always smaller than the deterministic Hilbert space

with a given Ms, it is always beneficial to work in the regime where S = Ms. This

gives the smallest possible deterministic space to project. As such the relevant

Sanibel coefficients simplify to an expression without a sum (j = 0),

Ck(S, No) =
4S + 2

2S + No + 2
(−1)k

(
No

2
+ S

k

)−1

.

Particular permutations that are required to be considered in deriving the energy
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expressions may modify the value of k. k(tu|vw) is defined as the k value resulting

when the spins associated with orbitals t and u in θµ are exchanged, where v and

w are the orbitals corresponding to t and u in Φνθν . The changes in the value of

k are dependent on the spins associated with t, u, v, w as follows;

k(αα|αα) = k(αα|ββ) = k(ββ|αα) = k(ββ|ββ) = k

k(αβ|αβ) = k(βα|βα) = k + 1

k(αβ|βα) = k(βα|αβ) = k − 1

4.6.3 Element classification

Once the spin-projected determinants, Fµ, Fν , have been chosen, aligned and the

spin-mismatch parameter, k, measured then the category of the matrix element

must be determined. The matrix elements for spin-projected determinants were

presented by Harris (see table 4.2) as a large number of special cases (and all

symmetry related cases) that are non-zero, with specific expressions provided for

the non-zero cases.

Classifying these matrix elements requires certain information about the relation-

ship between the determinants Fµ and Fν ;

i, j correspond to (up to two) spatial orbitals that are doubly occupied in Fν and

not in Fµ. If these spatial orbitals are singly occupied in Fµ then it is required

to keep track of the spin of this singly occupied orbital, which is stored as

ipair or jpair.

r, s correspond to (up to two) spin orbitals belonging to singly occupied spatial

orbitals in Fµ that are not occupied in Fν .

l, m correspond to (up to two) spin orbitals belonging to singly occupied spatial

orbitals in Fν , that are required for categorising the pair. This can be for

several reasons;

• they could be unoccupied in Fµ, or

• they could be doubly occupied in Fµ, or

• they could have a specified spin in Fµ by having a well defined spin

relative to ipair, jpair, r or s.
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An example of the last of these cases is given by

1β1α2β −→ 1β2β3α matrix element is zero

−→ 1β2α3β category 8, l = 2α (see table 4.2),

−→ 1α2β3β category 3

where the spin of the orbital matched with l after alignment enters into the

k(αβ|lm) expression for the energy, and so an assignment of orbital l is required.

Once these lists of orbitals are generated, the category may be found by reference

to the first column of table 4.2, and the expressions for the Hamiltonian matrix

elements by the third column. If a suitable category does not exist for the lists

generated (nor for any case where the spins are all inverted), then the matrix

element is zero.

4.6.4 Integration with excitation generation

If matrix elements are being calculated in the process of spawning, the required

information can be directly extracted from the excitation generator.∗ The pro-

cess of categorisation involves identifying which of a large number of special cases

applies — see table 4.2, and returning the data specified in section 4.6.5.

At the end of the excitation generation process, there are a number of pieces of

information that are directly available:

• The excitation matrix. That is the (up to two) electrons, m, n, that are

the source of the spatial excitation and their corresponding orbitals, φm, φn,

along with the target orbitals, p, q.

• The source spin projected determinant, FI, in both its expanded form in the

standard order presented in section 3.4.1 and its bit representation.

• The target spin projected determinant, FJ, in an expanded form that is not

sorted in the standard order, but in the order corresponding to FI with the

∗If multiple-structure spawning (see section 5.5) is in use, this process is complicated by
having to pass parallel information about all the spawns independently. As the choice of matrix
element category can depend on the spin structure chosen, all of the terms within a multiple-
structure spawn may have different data. ‘Blob-to-blob’ (section 5.5.1) spawning hasn’t been
attempted for spin-projected determinants.



Category Element1 Expression2,3

Overlap 4

1 (|) Ck

One-electron operator 5

1 (|) Ck [2
∑

i hii +
∑

l hll]
2 (rα|l) Ckhrl

3 (iαr|β|iαiβ) Ckhri

3 (iαlβlα|β|iαiβl) Ckhli

Two-electron operator 6

1 (|) Ck{
∑

ij[2 〈ij|ĝ|ij〉 − 〈ji|ĝ|ij〉]
+
∑

il[2 〈il|ĝ|il〉 − 〈li|ĝ|il〉]
+
∑

l<m 〈lm|ĝ|lm〉}
−∑l<m Ck(ml|ml) 〈ml|ĝ|lm〉

2 (rα|l) Ck{
∑

i[2 〈ir|ĝ|il〉 − 〈ri|ĝ|il〉]
+
∑

m6=l 〈mr|ĝ|ml〉}
−∑m6=l Ck(rm|lm) 〈rm|ĝ|ml〉

37 (iαrβ|iαiβ) Ck{
∑

j[2 〈jr|ĝ|ji〉 − 〈rj|ĝ|ji〉]
+
∑

l 〈lr|ĝ|li〉 −
∑

l 〈rlβ|ĝ|li〉}
47 (iαlβlα|iαiβl) Ck{

∑

j[2 〈jl|ĝ|ji〉 − 〈lj|ĝ|ji〉]
+
∑

m 〈lm|ĝ|im〉}
+
∑

m[Ck(αβ|lm) − Ck] 〈mβl|ĝ|im〉
5 (rs|lm) Ck 〈rs|ĝ|lm〉 − Ck(rs|lm) 〈sr|ĝ|lm〉
6 (rαsβ|iαiβ) Ck 〈rs|ĝ|ii〉
7 (rαrβ|iαiβ) Ck 〈rr|ĝ|ii〉
87 (iαlβrα|iαiβl)

∑

m Ck(αβ|lm) 〈mβr|ĝ|im〉
9 (iαrβsβ|iαiβl) Ck[〈rs|ĝ|il〉 − 〈sr|ĝ|il〉]

10 (iαrβsα|iαiβl) Ck 〈rs|ĝ|il〉
11 (iαrβrα|iαiβl) Ck 〈rr|ĝ|il〉
12 (iαlβlαrα|iαiβlm) Ck 〈lr|ĝ|im〉
13 (iαlβlαrβ|iαiβlm) Ck 〈lr|ĝ|im〉+ [Ck(αβ|lm) − Ck] 〈rl|ĝ|im〉
14 (iαrβjαsβ|iαiβjαjβ) Ck[〈rs|ĝ|ij〉 − 〈sr|ĝ|ij〉]
15 (iαrβsαjβ|iαiβjαjβ) Ck 〈rs|ĝ|ij〉
16 (iαrβrαjβ|iαiβjαjβ) Ck 〈rr|ĝ|ij〉
17 (iαlβjαrβlα|iαiβjαjβl) Ck[〈lr|ĝ|ij〉 − 〈rl|ĝ|ij〉]
18 (lαiβjαrβlβ|iαiβjαjβl) Ck 〈lr|ĝ|ij〉
19 (iαlβjαmβlαmα|iαiβjαjβlm) Ck[〈lm|ĝ|ij〉 − 〈ml|ĝ|ij〉]
20 (iαlβmαjβlαmα|iαiβjαjβlm) Ck 〈lm|ĝ|ij〉 − Ck(αβ|lm) 〈ml|ĝ|ij〉

1 These terms describe the relationship between the two spin-projected determinants being con-
sidered, those corresponding to Fµ are on the left, and Fν on the right. i, j, l, m, r, s are as
described in the text in section 4.6.3.

2 Ck is the Sanibel coefficient with parameters Ck(S, Ms, No), as defined in section 4.6.2. All
entries are to be multiplied by the parity of P0, (−1)P0 .

3 All terms which are symmetry (spin-inverted, or µ and ν reversed) related to those given are
also non-zero.

4 To calculate the overlap term, the operator B = I, a zero-electron operator.
5 The terms hia are the one electron integrals.
6 The terms 〈ij|ĝ|ab〉 are the two electron integrals, with ĝ = r−1

12 .
7 The term lβ and mβ indicate that m, l should only be included in the sum if they have the same

spin as that labelled β in the ‘element’ term.

Table 4.2: Non-zero spin-projected Hamiltonian matrix elements
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source and target orbitals swapped. It is also available in the bit represen-

tation form.

From this information, there is a direct but extremely complicated mapping to the

information required to generate the Hamiltonian matrix elements. The length

and complexity of this mapping prevent it from being effectively presented in full

here. Further (more explicit and long winded) details are available on request.

There are a number of specific component pieces of information that are required,

and the general approach to obtaining these is consistent, whatever the ‘shape’ of

the particular excitation being considered:

Number of unpaired electrons

The number of paired and unpaired electrons in the target determinant is

directly available by knowledge of the source site, and which orbitals are

being excited.

Choosing a Hamiltonian matrix element category

Table 4.2 presents an extremely specific list of categories of Hamiltonian

matrix element that are non-zero. The excitations need to be mapped onto

this list carefully, taking note of all of the symmetry related cases. This is

done through an (extremely large) branching structure, that takes account

of:

• The number of spatial orbitals that are excited.

• If these excitations are coming from, or creating, singly occupied or

doubly occupied orbitals.

• If two excited electrons are coming from, or going to, the same spatial

orbital as each other.

• The ms relationship between any orbitals that are excited from or to,

and the residual orbitals that they interact with.

Assigning µ and ν

One of the symmetries that needs careful attention is that either of the

spin projected determinants, FI, FJ, can be selected as Fµ or Fµ (and vice

versa). In the branching structure required to choose the category, there is

normally only one way of making this choice at each entry. In some cases,

this choice can be made in multiple ways (sometimes corresponding to two

different categories that could be used to calculate the same Hamiltonian
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matrix element). In these cases the implementationally simpler choice is

made.

Orbital assignment

The orbitals φm, φn, p, q, and those directly spin-related to them, can be

directly assigned to the relevant terms i, j, ipair, jpair, l, m, r, s as required.

There are a number of cases where other orbitals are required to correctly

provide the description needed for the entry in table 4.2. In a few cases the

position of this orbital in FI is determined by the position of one of the target

orbitals in the aligned determinant FJ. The O(N2) alignment operation can

be avoided by considering all of the available ‘shapes’ of excitation explicitly,

which reduces the possible searching for the correct index to a maximum of

an O(N) operation.

Mismatch parameter, k

The generated determinant, FJ, is not sorted into the standard order pre-

sented in section 3.4.1. A baseline mismatch parameter is calculated by

finding the mismatch parameter for these mis-aligned determinants, which

is then corrected for according to the specific ‘shape’ of the excitation cor-

responding to its location in the branching structure described above.

Parity, ǫP

The alignment permutation is never explicitly needed, and as such never

needs to be generated (in contrast to the use of Serber functions). The

parity of this permutation can be obtained directly from a few pieces of

information. The offsets between the source indices of excitations and the

target locations need to be found, and carefully considered. In particular, in

the same way (and at times in the same step) as the searching required for

orbital assignment, the ON2 alignment operation can be avoided by specific

consideration of all the possible ‘shapes’ of the excitation including:

• Do the excited electrons move into or out of the doubly and singly

occupied regions of the standard representation?

• If there are multiple electrons being excited, does the path of one elec-

tron cross the other?

• The movements of other orbitals between sections of the standard rep-

resentation, in particular between the doubly occupied and singly oc-

cupied regions, need to be accounted for.
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• The possibility of out-by-one errors needs to be carefully managed when

either the source, or target, orbitals (or both) are at the ends of the

sorted list of orbitals in either representation.

Similarly to finding particular orbitals as described above, the worst case

examples for determining the parity scale as O(N). This is the slowest

element of the classification process, but it is a substantial improvement on

the explicit alignment operations required otherwise.

4.6.5 Matrix element generation

Harris shows that the matrix element of an arbitrary operator, B, can be reduced

to

〈Fµ|B|Fν〉 = 〈AÔSΦµθµ|B|AÔSΦνθν〉
= 〈Φµθµ|ÔSBA|Φνθν〉

=
1

N !

∑

P

(−1)P 〈Φµ|BP|Φν〉 〈θµ|ÔSP|θν〉 .

Note that this is the same as equation 4.2, but expressed for an arbitrary operator,

B. The general spin function, Θµ, is replaced with ÔSθµ, and the expression

is simplified by noting that ÔS is idempotent and commutes with an arbitrary

permutation.

Harris continues to show that the spin and spatial parts of this expression may be

sensibly reduced into forms that are O(1) and (at worst) O(N2) respectively. Once

the relationship between two determinants has been determined, and categorised

according to the ‘Element’ column of table 4.2, then all of the terms required to

calculate the matrix elements (also given in the same table) are known;

1. The spin-projected determinants, Fµ and, if necessary for the given matrix

element category, Fν . Note that the newly spawned determinant does not

need to be aligned.

2. The excitation category.

3. The spin mismatch parameter, k.

4. The parity of the line-up operation, ǫP = (−1)P . Neither the actual line-up

permutation nor the aligned determinant are required.
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5. A list of pairs of doubly occupied orbitals, i, j, which are present in Fν , and

if relevant, a list of the corresponding singly occupied orbitals, ipair, jpair, in

Fµ.

6. A list of orbitals r, s that are singly occupied in Fµ and do not appear in Fν .

7. A list of orbitals l, m that are singly occupied in Fν , and are required for

categorising the pair, either by being doubly occupied, not present or of

specified (possibly different) spin in Fµ.

8. A list of the orbitals in Fµ corresponding to orbitals l, m in Fν , if required

for calculating k(tu|vw).

These may be provided as elucidated above, or through the excitation generation

routines.

Once this information is known, the matrix element can be trivially calculated

given the entries in table 4.2.

4.6.6 The overlap matrix

As spin-projected determinants are non-orthogonal, the overlap matrix elements

enter the spawning terms, as described in equations 2.10a and 2.17. As spin-

projected determinants can be written as a linear sum of Slater determinants with

the same spatial structure, it is trivial to see that the overlap matrix elements are

only non-zero between spin-projected determinants with the same spatial structure

(this can also be seen from the section for zero-electron operators, i.e. B = I only

containing category 1 in table 4.2).

In the case of same-spatial-structure spawning, the overlap matrix element is given

by the Sanibel coefficient,

Sµν = Ck(S, Ms, No),

for the spin-mismatch value k associated with this pair of determinants. For single

and double excitations the overlap matrix element is zero.
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4.7 Mixed Hilbert spaces

If a mixed representation of the Hilbert space is being used, such that the space

is split into regions represented by different types of basis function, the calcu-

lation of matrix elements between sites in the different regions requires careful

consideration.

The mixed spaces considered in this thesis are those with CSFs representing re-

gions of the space with fewer than No,max unpaired electrons, and either Slater

determinants or HPHF functions representing the remainder. These matrix ele-

ments are most straightforwardly broken down in terms of the expansion of the

CSFs in Slater determinants,

〈Dµ|Ĥ|Fν〉 =
∑

j

c
(ν)
j 〈Dµ|Ĥ|Dν〉 ,

where the matrix elements between Slater determinants can be found as usual.

This operation can be performed in O(ncsf ) time.

If HPHF functions are used instead of Slater determinants, the same coefficient

symmetry is necessarily found between the determinants within a spin eigenfunc-

tion as within the HPHF function, and as such the matrix elements may be ob-

tained by straightforward multiplication by
√

2 for all cases where the HPHF

function being considered is not closed shell.

4.8 Summary

Due to poor computational scaling, the use of Kotani-Yamanouchi CSFs is not

realistically viable. This leaves us with two different schemes, both of which are

computationally tractable, and scale roughly as O(N2) in the worst case. They

have different strengths and weaknesses;

Serber CSFs

Once the pre-computation cost of generating the desired permutation repre-

sentation matrices has been paid (this can be done once, and the resultant

output stored) Serber function matrix elements are extremely efficient to

calculate. The use of Serber functions makes a deliberate trade-off to use
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Figure 4.7: A histogram of the spawning connections strength, Kij−ESδij, using Serber
functions for N2 with a bond length of 6.00 a0 in a cc-pVDZ basis set. This
histogram should be compared to figure 3.7.

substantially more memory than other schemes, in return for a simplification

of the matrix element calculation. There are two problems with their more

general use; a) the permutation representation matrices get rapidly larger

and more numerous, such that the maximum size of system that can be con-

sidered is probably 14 or 16 electrons, and b) Integration with the excitation

generator is less efficient than for spin-projected determinants, as the actual

line-up permutation is required, rather than just its parity.

Figure 4.7 shows the main advantage of Serber functions over spin-projected

determinants. The distribution of Hamiltonian matrix elements correspond-

ing to same spatial structure spawns is compact and similar in magnitude

to those for the single and double excitations. This is in contrast to spin-

projected determinants (see figure 3.7, it is worth noting that the density

of these two histograms is the same) for which the same spatial structure

spawns have wildly vary magnitudes. As a consequence, particle dynamics

for Serber functions are substantially more manageable.
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Spin-projected determinants

Hamiltonian matrix element evaluation for spin-projected determinants is

extremely efficient from a computation point of view, and it integrates well

with excitation generation. In particular, they pose no additional storage

overhead. Their most obvious weakness is their non-orthogonality — this

leads to problems controlling the simulation as the system size increases (see

sections 3.4.2 and 3.4.5).



5 Excitation generation using CSFs

Within FCIQMC, ‘excitation generation’ is one of the most interesting and impor-

tant considerations. An implementation of the propagation equation 2.10a using

stochastic spawning depends on efficient and random exploration of the Hilbert

space. There are two properties that are required for this to be efficient;

1. the excitation generator must be able to generate all sites, {Fj}, that are

connected to the starting site, Fi, by a non-zero Hamiltonian matrix element,

〈Fj|Ĥ|Fi〉, and

2. the generation probability, pgen(j|i) of a connected site must be calculable.

This includes accounting for all possible ways that a connection could be

generated.

Within this scheme it is permissible for the excitation generator to abort an at-

tempted generation — normally as a result of internal choices that lead to there

being no available target sites. In this context, the result is treated as though it

were a site with a zero connecting Hamiltonian matrix element, and so no particles

are spawned. It is not possible to attempt spawning again, as this would require

renormalising all of the generation probabilities to account for all possible ways of

having to retry.

There are several additional details which are desirable, but not in any sense

required;

• the distribution of connections generated should be sensible. The permitted

value of the time-step, δτ , is dependent on the combined distribution of

matrix elements and generation probabilities. It is beneficial if the excitation

generator assists in smoothing this combined distribution. See section 5.3.

Also,

• the excitation generator should make as much use of symmetry as possible.

125
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Given the symmetry of the problem, a great deal is known about which ma-

trix elements, 〈Fj|Ĥ|Fi〉 must be zero. Avoiding generating these increases

the generation probabilities, maximising the possible value of δτ , and min-

imising wasted computational time,

• the excitation generators should be fast — in particular they should use as

few random numbers as possible, and should scale as favourably as possible

with increasing system size, and

• as no excitation is generated for which the associated Hamiltonian matrix el-

ement is not also generated, any information which can be easily determined

during the process of excitation generation, and communicated directly to

the matrix element generation routines is beneficial.

A scheme for efficiently generating excitations from arbitrary spin eigenfunctions

is presented in this chapter. An overview is given in flowchart form in figure 5.2.

The boxes in the flowchart are numbered — these boxes are referenced as numbers

in rounded brackets in the text.

5.1 Comparison to determinental excitation

generators

Within all of the CSF schemes used, each basis function is an antisymmetrised

product of a spatial and a spin eigenfunction.∗ As such the process for generating

excitations is the same in all of these cases. An overview of the whole process is

shown in figure 5.2.

The excitation generation process is similar to that used in determinantal and

HPHF bases, which have been published and discussed previously73. An example

determinental excitation and CSF excitation are shown in figure 5.1, demonstrating

the similarities and differences. In the determinental case, two spin orbitals are

chosen to excite from and to, and in the spin eigenfunction case the same process

∗The spin-projected determinant scheme differs slightly, in that a representation of the oc-
cupied spin-orbitals in the determinant to be projected is maintained, whereas in the other cases
the spatial orbital structure and the spin eigenfunction label associated with the are stored sep-
arately. The excitation process is, however, logically the same, with a spatial excitation being
made and a spin structure ‘chosen’ as the final step.
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(a) An example of a determinant excitation. Two electrons are chosen, and
placed into two vacant spin-orbitals, whilst maintaining spatial symmetry
and projected spin value Ms.

Serber: AAAAA Serber: AAABD

(b) An example of a CSF excitation. A spatial excitation is generated by
choosing two electrons and placing them into two vacant orbitals, whilst
maintaining symmetry. A new spin eigenfunction label (in this case for
a Serber function) is selected and applied. Note that the projected spin
of the electrons is not considered for the spatial excitation.

Figure 5.1: The difference between determinental and CSF excitation generators.

is performed with spatial orbitals and in addition a spin structure corresponding

to the correct number of unpaired electrons is chosen.

5.2 Generating an excitation

When generating an excitation a process of several steps is followed;

1. If a mixed scheme is in use, the correct determinental, HPHF or CSF ex-

citation generator is selected depending on the portion of the Hilbert space

currently in use.

2. Symmetry information associated with the spatial orbitals for the current
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site is calculated, in O(N) time.

3. A choice is made between a same-spatial-structure, single or double spatial

excitations (1—2).

4. The spatial excitation is performed (3—14 and 8—14).

5. A spin structure corresponding with the generated spatial structure is chosen

at random (16—17).

The following sections explore these actions in detail. If they are all considered

sequentially, the overall generation probability is given by

pgen(j|i) = ptype × pspatial × pspin.

For the work contained in this thesis, the systems considered are molecular, with

spatial point-group symmetry. In principle, CSFs can be implemented for other

types of systems with other symmetry requirements (such as the Uniform Electron

Gas, Hubbard model, solids or anything requiring non-abelian symmetries),∗ but

this is not explored further here.

5.2.1 Spatial symmetry information

Working with molecular systems, for a CSF with spatial component Φs = A∏N
α φ(s)

α

the symmetry of the spin eigenfunction is given by Γs =
⊗N

α Γαs. Symmetry indi-

cates that the Hamiltonian matrix element between two CSFs Fs and Ft can only

by non-zero if Γs ⊗ Γt = Γ1, or alternatively

〈Fs|Ĥ|Ft〉 = 0 ∀ Γs 6= Γt, (5.1)

where only spatial symmetries are considered.

The spatial symmetries of each orbital in the basis set are known, and three lists

containing the number of singly occupied, doubly occupied and vacant spatial

orbitals associated with each symmetry class may be constructed for any given CSF

in O(N) time (the list of occupied orbitals is constructed, and their symmetries

∗For exploring the properties of the nitrogen atom, conserving the magnetic quantum number,
Ml, is required to distinguish between states. This has been implemented purely by rejecting
generated excitations with incorrect total values of Ml. It can be implemented more fully as
discussed for determinental systems by Booth et al. [73].
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of electrons with
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allowed) excitations

4. Are there
excitations
available?

no

5. Select an elec-
tron with avail-
able excitations
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6. Select an unoc-
cupied orbital with
the same symmetry

8. Pick a pair of
electrons, i, j†
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ber of orbitals, a,
with no available
paired orbitals, b

10. Are there
excitations
available?

7. Abort excitation
no

11. Select an unoccu-
pied orbital, a, with
available orbitals,
b, with symmetry

Γb = Γφi
⊗ Γφj

⊗ Γa

yes

12. Select an or-
bital, b, with the
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13. Generate new
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14. Calculate gen-
eration probability

15. Using
multiple-
structure
spawning?

18. Return gen-
erated excitation

yes

16. Select a spin
structure with the
correct number of

unpaired electrons§

no

17. Adjust gener-
ation probability

† Unlike for determinental excitations there is no unique triangular mapping to select a pair
of electrons with one random number, as some electrons are spatially equivalent. This must
be considered in the generation probabilities.

‡ It is at this stage that alignment permutations and parity for Serber function excitation
generation can be extracted. This is done by generating the correctly aligned structure
explicitly from the original structure.

§ It is at this stage that characterising the excitation type, and obtaining the parity, is per-
formed for spin-projected determinants.

Figure 5.2: Random excitation generation overview
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used to increment the required symmetry lists). For symmetry Γ, these are labelled

as Ns(Γ), Nd(Γ) and Nv(Γ).

Where there are multiple particles on one site, these lists only need to be calculated

once, and may be stored between multiple calls to the excitation generators.

5.2.2 Choice of excitation type

When generating an excitation, the first step involved is to choose the type of exci-

tation to be generated. All known excitations to unconnected sites, i.e. 〈Fi|Ĥ|Fj〉 =

0, are excluded, leaving only three categories of excitation as a consequence of the

Slater–Condon rules96. Given an initial basis function, a new one may be selected

with either a) the same structure, b) a structure which differs by one spatial or-

bital, or c) a structure which differs by two spatial orbitals. A random selection is

made according to a pre-selected distribution which is constant across the entire

Hilbert space such that the probability is given by

ptype =







psame if same spatial structure

(1− psame)× psingle if single (spatial) excitation

(1− psame)× pdouble if double (spatial) excitation.

The probability psame is dependent on the properties of the source site being con-

sidered. If it has connected sites with the same spatial structure, then it is non-

zero and specified as a global constant, otherwise it is zero (1). The probabilities

psingle + pdouble = 1 and determine the type of excitation to be selected given that

the same spatial structure is not being generated (2). This scheme is used because

psame is required to be significant to reduce the impact of this form of excitation on

δτ , potentially resulting in substantial waste of resources when considering sites

that have no excitations to other sites with the same spatial structure.

If a single or double excitation is selected, then either one or two occupied or-

bitals and one or two unoccupied orbitals needs to be selected, as discussed in

sections 5.2.3 and 5.2.4. The bit-representation of the site is then easily updated

by setting and clearing the relevant bits. The decoded representation never needs

to be directly generated, as all of the information required for generating the off-

diagonal matrix elements can be obtained without it.
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Once the target spatial structure has been selected, then a spin structure must be

selected (see section 5.2.5).

5.2.3 Generation of (spatial) single excitations

To generate a single excitation an electron, i, located in orbital φi, must be selected

along with a vacant or singly occupied (spatial) orbital, a, for it to be excited to.

This is performed in several stages.

Selecting an electron (3)

In order to satisfy the condition in equation 5.1, that Γ(Fi) = Γ(Fj), then it

is necessary that Γφi
= Γa. As a consequence of the basis set being finite, for

any given choice of electron, i, there may not be any available target orbitals

to choose from. The number of these electrons is counted (3). Iterating over

the symmetry classes, Γ, there are three cases to consider;

1. if Nv(Γ) = 0 and Ns(Γ) = 1, there are no excitations available from the

singly occupied orbital as it cannot excite to itself,

2. if Nv(Γ) = Ns(Γ) = 0, there are no excitations from the doubly occupied

orbitals, and

3. only one electron out of each of the doubly occupied orbitals may be

selected as both would lead to the same spatial excitations.

Combining these gives a total number of electrons which cannot be excited

of

nno excit =
∑

Γ

Nd(Γ)

+ Ns(Γ) if Nv(Γ) = 0 and Ns(Γ) = 1

+ Nd(Γ) if Nv(Γ) = Ns(Γ) = 0.

If none of the electrons have a valid excitation (4), i.e. nno excit = N , then the

excitation is aborted. Otherwise an electron, i, may be selected uniformly

from those permitted by the above constraints with probability

pelec =
1

N − nno excit

.
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Selecting an Orbital

Once an electron i has been chosen from an orbital φi with symmetry Γφi
,

a spatial orbital with the same symmetry needs to be picked at random (6).

The only permitted choices are either

1. vacant orbitals, or

2. singly occupied orbitals (other than the source orbital).

This gives the available number of choices as

navail =







Ns(Γ) + Nv(Γ)− 1 if exciting from a singly occupied orbital

Ns(Γ) + Nv(Γ) otherwise.

and an associated probability of

porb =
1

navail

.

Constructing the final function

The final spatial structure is now constructed by clearing the bit associated

with orbital φi, and setting the bit associated with the target orbital a (13).

The generation probability (14) is given by

pspatial(φi → a) = pelec × porb

=
1

(N − nno excit)navail

.

5.2.4 Generation of (spatial) double excitations

To generate a double excitation a pair of electrons, i and j, located in orbitals φi

and φj, must be selected along with a pair of vacant or singly occupied (spatial)

orbitals, a and b, for them to be placed in to. This is performed in several stages.

Symmetry constraints

To retain the overall symmetry of the molecule, the constraint on the orbital

symmetries for the excitation φi, φj → a, b becomes

Γφi
⊗ Γφj

= Γa ⊗ Γb. (5.2)
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Picking a pair of electrons (8)

Excluding the cases of extremely small basis sets, there are very few pairs of

electrons with no allowed excitations. The symmetry constraint expressed

in equation 5.2 is more easily met than in the single excitation case, and it

is now not worthwhile to count the cases with no electrons and renormalise

the probabilities to take this into account.

Defining Nsing, Ndoub and Nvac as the number of singly-, doubly- and un-

occupied spatial orbitals respectively, which may be calculated as
∑

Ns(Γ),
∑

Nd(Γ), and
∑

Nv(Γ) (section 5.2.1), the number of possible electrons to

pick for the first, i, and second, j, choices respectively are given by

Navail(i) = Nsing + Ndoub

Navail(j|i) =







Nsing + Ndoub − 1 if i singly occupied

Nsing + Ndoub otherwise.

Unless the two electrons picked are from the same spatial orbital, there are

two ways to generate both pairs of electrons — i, j is equivalent to j, i —

and this must be accounted for in the generation probability. Noting that

Navail(i) = Navail(j),

ppair(i, j) =







1
Navail(i)

· 1
Navail(j|i) if i, j from same spatial orbital

1
Navail(i)

[
1

Navail(j|i) + 1
Navail(i|j)

]

otherwise.

The orbitals φi, φj from which the excitation occurs are obtained from these

electrons, and the required symmetry product, Γp = Γφi
⊗Γφj

, is calculated.

As singly occupied orbitals which are being excited from are not available to

excite to, an array, ∆Ns(Γ), indicating the change in the number of singly

occupied spatial orbitals available to excite to for each symmetry class, Γ, is

created.

Picking the first orbital

An orbital a is required which satisfies the following conditions:

• A spatial orbital cannot be excited to if it is being excited from.

• A doubly occupied orbital cannot be excited into.

• An orbital, a, cannot be selected if there are no orbitals, b, of the correct
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symmetry such that Γb = Γp ⊗ Γa.

Iterating over all symmetries, Γ, the number of orbitals which cannot be

chosen, Nno pair, is counted (9). If Nno pair is equal to the number of available

orbitals (10), the excitation is rejected (7).

Orbitals a are then selected at random (11) until one is found which meets

the above conditions. The probability of having picked orbital a is then given

by

p(a) =
1

Nsing + Nvac −Nno pair

Picking the second orbital

Due to the selection above, there exists at least one suitable b orbital where

Γb = Γp ⊗ Γa. Orbitals with symmetry Γb are now picked at random until

one is found which matches the same selection criteria as for orbital a (12).

In addition, if Γa = Γb then the location of orbital a must be considered. If

orbital a has been excited into a singly occupied orbital, it becomes a doubly

occupied orbital, and that orbital is no longer available to choose for orbital

b. This leaves a probability of

p(b|a) =







1
Nv(Γb)+Ns(Γb)+∆Ns(Γb)

if Γa 6= Γb,

or a→ vacant orbital

1
Nv(Γb)+Ns(Γb)+∆Ns(Γb)−1

if Γa = Γb,

and a→ singly occupied.

Constructing the final function (13)

If a, b are in a closed pair, i.e. a new doubly occupied orbital has been cre-

ated, a, b can only have been picked in one way. Therefore the generation

probability is given by (14)

pspatial(φi, φj → a, b) = ppair(i, j) · p(a) · p(b|a).

If a, b are not in a closed pair, then the choices a, b and b, a are equivalent

and both must be considered in the generation probability;

pspatial(φi, φj → a, b) = ppair(i, j) [p(a)p(b|a) + p(b)p(a|b)] .
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5.2.5 Selection of spin structure or label

In all cases of excitations involving spin eigenfunctions, the choice of spin structure

is independent of the spatial excitation that has been made. The number of spin

structures available, nspin, depends on the number of unpaired electrons, No, and

on the type of spin functions in use,

nspin =







ncsf (No) if using Kotani-Yamanouchi or Serber CSFs

ndet(No)
2

if using truncated spin-projected determinants

ndet(No) if using spin-projected determinants.

In all cases except for the spin-projected determinants, these values are equal. If

the target CSF has the same spatial structure as the source function, then the spin

structure must change in order to ensure that an off-diagonal (spawning) term is

generated (16). The probability of selecting a given spin structure is given by (17)

pspin =







1
nspin−1

if same spatial structure excitation

1
nspin

otherwise.

The generated excitation is now returned to the main spawning loop (18).

If multiple-structure spawning is used (see sections 5.5 and 5.5.1), then the selec-

tion of a specific spin structure is omitted (15).

5.3 Determining type probabilities

As described in section 2.6, the maximum permissible value of the imaginary

timestep, δτ , is inversely proportional to the maximum spawning strength. Be-

cause the generation probability, pgen appears in the denominator of the spawning

expressions, it is important to select the values of psingle, pdouble and psame such that

the smallest generation probability values are maximised, and more directly, such

that the range of the largest values of ns are minimised.

The choice of these values impacts the overall efficiency, but so long as they are

within the correct ballpark region the simulation is relatively insensitive to the

absolute values. Empirically it is found that enumerating the number of connected
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single and double determinental excitations from the reference site, and setting the

single and double excitation generation probabilities such that

psingle + pdouble = 1.0

works well, with

psingle =
nsingle

nsingle + ndouble

.

For determinants with existent connections to same spatial structure sites, the

setting of psame is complicated by the massive range of values that the Hamiltonian

matrix elements may take (in some basis sets, see particularly figure 3.7 for spin-

projected determinants). As such, psame should be chosen such that the maximum

extent of the distribution of ns values for same spatial structure spawns (when

histogrammed) remains within the bounds of the values for single and double

excitations.

As the role of same spatial structure spawns appears to be somewhat significant

in correctly converging local structure within the evolving wavefunction, it may

be beneficial to increase the proportion of spawns which are to sites with the

same spatial structure. Certainly a value of psame = 0.05 is more than adequate

for most cases, while having little proportional impact on the dynamics of the

single and double excitations, and is a safe default value in lieu of system-specific

examination.

5.4 Integration of excitation generators and

Hamiltonian matrix element calculation

The process of spawning a new particle requires three pieces of information; a) the

source basis function, b) the target basis function, and c) the Hamiltonian matrix

element between these sites. Once the excitation generation process has been com-

pleted, the first two of of these are directly available. Calculating the Hamiltonian

matrix element can, however, be a relatively involved process.

The very nature of the excitation generation process means that a great deal of in-

formation about the two basis functions involved, and their relationship, is already

known. This knowledge can make a great deal of difference to the computational
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complexity of calculating the Hamiltonian matrix elements.

The precise information that is required is discussed in the subsections of chapter 4,

as this is dependent on the particular choice of spin functions in use.

5.5 Multiple-structure spawning

When CSFs are used instead of determinants or HPHF functions, this has sub-

stantial impacts on the spawning dynamics. Determinants are permitted to dif-

fer by a maximum of two spin orbitals, but CSFs are permitted to have spatial

structures which differ by two spatial orbitals. Generally the number of spatial

excitations from a CSF is similar to the number of spin excitations from a deter-

minant. As a consequence the potential number of CSFs connected to a starting

spin eigenfunction is larger than the number of connected determinants by a factor

of approximately ncsf(No, S), where No is the number of unpaired electrons of the

target site.

As explained in section 2.6, the maximum value for the time step, δτ , is inversely

proportional to the maximum strength of each of the connections in equation 2.17,

and as a consequence is proportional to the minimum generation probability pro-

duced.

The restrictions on δτ tend to be due to sites with large numbers of unpaired

electrons, which are extremely highly excited in comparison to the reference site

(and also to the majority of occupied sites which contribute substantially to the

calculated wavefunction). This is a consequence of spatial structures with large

numbers of unpaired electrons having many available spin structures, and thus

correspondingly lower generation probabilities. A perverse consequence of this is

that a lot of unnecessary computational effort is spent treating the majority of

occupied sites with a δτ value orders of magnitude below that which they require.

For an alternative approach to dealing with restrictions on δτ , see chapter 7.

If the restriction on one-to-one spawning is lifted, this problem may be mitigated.

This corresponds to letting the set {k} considered in equation 2.15 contain all sites

which share the same spatial structure. From an occupied site, a spatial excitation

is made, and then spawning is attempted to all sites associated with the target
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(a) Site-to-site spawning. A specific CSF asso-
ciated with the target of a spatial excitation
is selected.

(b) Multiple-structure (‘site-to-blob’) spawn-
ing. The Hamiltonian matrix elements
between the source particle and all CSFs
sharing a target spatial structure are con-
sidered.

(c) ‘Blob-to-blob’ spawning. The sum of the
Hamiltonian matrix elements between oc-
cupied sites in a source spatial structure
and all CSFs sharing a target spatial struc-
ture are considered.

Figure 5.3: Spawning between different combinations of the CSFs within the source and
target spatial structures associated with a spatial excitation. This gener-
ates spawning between multiple different sites during the same spawning
step. The source spatial structure is shown to be sparsely occupied (only
a few crosses). If a cross is black it is being considered as the source of a
spawn, if it is grey it is not. All of the target sites being considered are
indicated in grey.

spin structure∗ as demonstrated in figure 5.3b. The consequence of this is that the

probability of generating site j given site i,

pgen(j|i) = pgen(J|i) = pgen(J|I),

is now given by the probability of making the spatial excitation from spatial struc-

ture I to spatial structure J, increasing the generation probabilities by a factor of

ncsf (No).

This has the advantage that for the highly excited sites, with many unpaired

electrons, which dominate the time step dependence, the generation probabilities

are increased by the most — preventing these highly excited states from causing

an increase in the cost of the low-lying states that do not require such a small

time step. It is worth noting that this also improves the overall cost scaling of the

∗If the spawn being attempted is a same spatial structure spawn, spawning is attempted at
all sites that would give spawning-like behaviour, i.e. the source site is excluded from attempting
to spawn to itself. This behaviour is already covered under the death step.
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system — the total computational cost is inversely proportional to the time step,

and as a consequence multiple-structure spawning removes an O(ncsf ) ≈ O(eN)

term from the computational scaling. Figure 5.4 demonstrates clearly the benefit

of using multiple-structure spawning on the time step values that may be used.

The permitted time steps are still smaller than those available for determinental

calculations, but they are substantially larger than if multiple-structure spawning

were not available. As a consequence, Serber functions become comparable to

HPHF functions in terms of computational cost.

When using Serber CSFs it is especially advantageous to make use of a multiple-

structure spawning scheme. As described in section 4.5, once a Hamiltonian ma-

trix element between two CSFs has been generated, generating the matrix element

between different CSFs with the same spatial structures is the same, with only

the indices into the permutation matrices used changing. The majority of the

computational cost involved is spent generating the spatial excitation, and ma-

nipulating the line-up permutations. It is trivial to return the matrix elements

corresponding to one column of each of the permutation matrices used — giving

substantially more convergence ‘bang’ for your computational ‘buck’ than other-

wise. This modification of the algorithm is essentially computationally free, while

permitting comparable values of δτ to determinental and HPHF calculations.

As an aside, it is worth noting that the total weight of particles spawned per unit

imaginary time remains roughly the same if multiple-structure spawning is used. A

substantial number of additional spawning attempts are made, but the generation

probabilities are increased in proportion. As a consequence of this, the acceptance

ratio (the ratio of spawned particles to attempted spawns) appears to plummet

when multiple-structure spawning is in use.

5.5.1 ‘Blob-to-blob’ spawning

A logical extension of multiple-structure spawning is to consider all possible con-

nections between source and target spatial structures in each spawning step. The

sum over coefficients, cj, in equation 2.10a is considered in re-approximating equa-
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Figure 5.4: Variation in the ratio between the maximum δτ permitted without blooms
of three or more particles occurring between determinental calculations
and those involving Serber functions, with or without multiple-structure
spawning, as the number of electrons is increased. All of theses systems
are modelled using a cc-pVDZ basis set. δτ is found by searching, as
described in section 2.6. The lighter first row atoms are not included, as
determining a bound on δτ for such a small system becomes meaningless.

tion 2.16, to give

∑

j∈J |cj|
γ

×




−δτγ

∑

j∈J
j6=k

(Kkj − ESkj)cj

pgen(K|J)
∑

j∈J |cj|
−→ ∆ck ∀ k ∈ K ∈ {I← J}




 .

As shown in figure 5.3c, all of the occupied sites, j, in a source spatial structure, J,

are considered in generating the spawns to each of the available sites, k, associated

with a target spatial structure, K. The total number of spawns attempted is

determined from the cumulative weight on all of the occupied sites being spawned

from, with the magnitude of each spawning attempt, γ, being determined as before.

By including as many terms, containing information from as many occupied sites

and as many matrix elements as possible, blob-to-blob spawning acts to smooth

out the stochastic changes in the wavefunction and thus to minimise the statistical

noise.
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Figure 5.5: Histogram of pgen values for stretched N2 (bond length 4.2 a0) in a cc-
pVDZ basis, using Slater determinants, HPHF functions and Serber CSFs
(as a prototypical spin eigenfunction). Note the substantial improvement
in generation probabilities when making use of multiple-structure spawning
with Serber functions.

It is worth noting that such ‘blob-to-blob’ spawning has no substantial impact

on the maximum time step that may be used compared to the normal multiple-

structure spawning, as the generation probability depends only on the spatial

excitation such that pgen(j|i) = pgen(J|I), and is therefore unchanged.

5.6 Spawning in mixed representation schemes

When using a mixed representation scheme, any spawning which crosses the bound-

ary needs careful consideration. In the mixed schemes in use with CSFs, the par-

titioning of the space is performed according to the number of unpaired electrons,

No. Below a threshold the basis functions are CSFs, and above this threshold

either determinants or HPHF functions are used.

Special considerations must be made for exciting out of the CSF portion of the

space (increasing No) or back into it (decreasing No).
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Increasing No

If spawning is occurring from a site within the CSF portion of the space,

the normal CSF excitation generator is used. Once the spatial structure has

been selected, and before the eigenfunction label is applied (see flowchart in

figure 5.2), the change in the number of unpaired electrons, ∆No, is con-

sidered. If this does not take the excitation over the threshold, the normal

excitation process is continued. If the new value of No > No,max, a random

spin structure is selected and applied to the spatial structure, and it is now

considered to be a Slater determinant.

As the CSF excitation generators specifically generate spatial structures with

the correct probability, there is only one way of generating each Slater de-

terminant and so the generation probability is given by pgen = pspatial,csf ×
1

ndet(No,new)
.

Decreasing No

If spawning is occurring from a site within the Slater determinant portion of

the space, the normal Slater determinant excitation generator is used. Once

a target Slater determinant is selected the change in the number of unpaired

electrons, ∆No, is considered. If this reduces No such that it falls below

No,max, the occupied spatial orbitals are extracted from the spin-orbital rep-

resentation of the generated determinant, and then a random spin function

(with the correct number of unpaired electrons) is applied.

As the Slater determinant excitation generators must work in spin orbitals,

there are multiple ways in which the same spatial structure may be gener-

ated from a given starting determinant. This degeneracy must be considered

in the generation probability — the probabilities of generating each of the

possible determinants with the same spatial structure must be summed. For-

tunately, as demonstrated in figure 5.6 where all of the classes of excitation

are enumerated, all of the cases where the number of unpaired electrons is

reduced have a degeneracy of one. As such the generation probability for

these excitations can be given as pgen = pgen,det × 1
ncsf(No,new)

.

This same analysis may be performed for HPHF functions (section 2.7.2) instead of

Slater determinants. As HPHFs are represented by a subset of Slater determinants

(matched with their spin-paired determinants with the same spatial structure) the

only change to the excitation generation process is that the number of permit-
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ted spin functions to choose from when increasing No is halved, and as such the

generation probabilities are doubled. As the parity within a HPHF matches that

within any CSFs within the same space, the matrix element is simply multiplied

by a factor of
√

2.
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Figure 5.6: Degeneracy of spatial excitations within the determinental excitation gen-
erator considering all of the classes of excitation which may be generated,
categorised by their effect on spatial-excitations. Each pair of spin orbitals
is represented by two stacked boxes. On the left, electrons which may be
selected are in green, with alternatives in blue. Electrons which are present
but may not be selected are in grey. On the right, electrons which are al-
ready present are in grey, and newly placed electrons are in green. The
change in unpaired electrons and the degeneracy of the choice are indi-
cated. All selections which reduce the number of unpaired electrons are
listed in bold.
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6.1 The nitrogen atom

The nitrogen atom is particularly interesting from the perspective of using spin

eigenfunctions with FCIQMC. It has two unusual properties;

High spin ground state

The ground state of the molecule has configuration 1s22s22p3, with all of the

unpaired electrons spin-aligned. As a consequence, this state has a spin of
3
2
, with excited states existing with lower total spin. This means that the

excited states cannot be isolated solely by restricting the Ms value of the

Slater determinants used.

Odd number of electrons

Because Nitrogen has 7 electrons, it does not have any Ms = 0 states, and as

a consequence HPHF functions may not be used. This means that any non-

ground state spin states obtained are not otherwise obtainable by FCIQMC.

The nitrogen molecule has been extensively characterised experimentally, and some

appropriate experimental results are summarised in table 6.1. The ground state

is the 4S state, with S = 3
2

and orbital angular momentum L = 0. Restricting the

total spin to S = 1
2
, should extract the first excited state of the system labelled 2D

with L = 2. This state could also be obtained by restricting Ml in a determinental

calculation. Simultaneous restriction of Ms or S = 3
2

and L = 1 or 2 should extract

the 4P and 4D states respectively. It is expected that as finite basis sets are being

used these states are likely to be less quantitatively accurately obtained than the

lower states.

In the cc-pVDZ122 basis set, the behaviour of spin-projected determinants and

Serber functions are compared to Slater determinants, and it is demonstrated that

the different energy levels may be obtained with each. The values obtained are

145
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Term
Configuration symbol Energy / cm−1 Energy / Eh

2s22p3 4S 0.000 0.000 000
2s22p3 2D † 19 224.464 0.087 593

19 233.177 0.087 633
2s22p3 2P † 28 838.920 0.131 400

28 839.306 0.131 402
2s22p2(3P)3s 4P † 83 284.070 0.379 470

83 317.830 0.379 624
83 364.620 0.379 837

2s22p2(3P)3s 2P † 86 137.350 0.392 471
86 220.510 0.392 850

2s2p4 4P † 88 107.260 0.401 446
88 151.170 0.401 646
88 170.570 0.401 735

2s22p2(3P)3s 2S 93 581.550 0.426 389
2s22p2(3P)3s 4D † 94 770.880 0.431 808

94 793.490 0.431 911
94 830.890 0.432 081
94 881.820 0.432 313

† Multiple energetic values associated with a single configuration
and term symbol are caused by spin-orbit coupling. In particular
the total angular momentum, J , has permitted values in integer
steps in the range |S − L| <= J <= |S + L|. This effect is
not observed with a non-relativistic Hamiltonian, and so the
coupling is not reproduced in further calculation here.

Table 6.1: Experimentally obtained values120,121 for selected energy levels of N. The
term symbols are included to indicate which states are obtainable by by
making use of the various symmetries available within NECI.

compared to those obtained by diagonalising the Hamiltonian matrix explicitly.

The underlying contracted gaussian basis set is then increased from the double-

zeta cc-pVDZ basis set through to the quintuple-zeta cc-pV5Z basis set122, and

the convergence relative energies of the atomic states obtained are compared to

the experimental values available.

All Hartree–Fock calculations were performed using Q-Chem123 with modifica-

tions to dump integrals with L̂z symmetry preserved by Alex Thom. At present,

the version of Q-Chem available does not support angular momentum functions

high enough to go beyond cc-pV5Z basis sets. In all of the FCIQMC simulations

the core (1s) orbitals are frozen, to reduce the calculation to one involving only
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five electrons.

6.1.1 Different types of CSF

Before any further considerations can be made about the different available CSFs, it

is important to demonstrate that FCIQMC works in the different regimes available.

In the case of the nitrogen atom, it is important to demonstrate that the simulation

is able to converge onto all of the states that can be selected using the spin and

angular momentum symmetry available using all of the available types of CSF.

The trajectories of the projected energy converging onto the 4S and 2D states are

presented in figure 6.1 for each of the basis sets. In imaginary time, the behaviour

of each of these CSFs is essentially indistinguishable – all of them converge at

roughly the same rate with the same degree of accuracy to the same energy levels.

One of the presumed benefits of using CSFs was the potentially more compact

representation of the converged wavefunction, as a consequence of the radically

smaller region of the Hilbert space being considered after implicitly block diago-

nalising the Hamiltonian matrix. If the coefficients are plotted in reverse order

of occupation size, this would be expected to result in a dramatic reduction in

the ‘tail’ of the wavefunction, implying that the representation has become more

compact. Figure 6.2 presents the structure of the coefficients associated with the

two lowest energy states that are available.

It is clear that the wavefunction representations are to all practical purposes ex-

actly the same for the ground state. As the ground state is high spin, and the

determinental space is restricted to only use determinants where Ms = 3
2
, the size

of the CSF space is similar to the size of the determinental space (there are still

determinants with five unpaired electrons, and the spin eigenfunction space with

S = 3
2

and five unpaired electrons is smaller than the determinental one). This

suggests that the restriction of the space to high spin states by use of Ms has a

very similar impact on the simulation to restricting the total spin by using spin

eigenfunctions, resulting in canonical determinental FCIQMC already evolving its

coefficients to produce an efficient representation of these spin states.

The representation of the excited 2D state using Serber functions is also essentially

identical to that for Slater determinants. In this case, the means used to restrict

the space are different. Using Serber functions, the total spin is restricted such
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(d) 2D, Serber functions
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(e) 4S, spin-projected determinants
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(f) 2D, spin-projected determinants

Figure 6.1: The convergence of the projected energy onto the available eigenstates for
N in a cc-pVDZ basis set. This demonstrates convergence onto multiple
available states using the different available spin eigenfunctions with S

restricted, and Slater determinants with Ml restricted. The known FCI
energy is a dotted black line.



6.1 The nitrogen atom 149

100 101 102 103 104

Particle Number

100

101

102

103

104

105

106
O
cc
u
p
at
io
n

(a) 4S state

100 101 102 103 104

Particle Number

100

101

102

103

104

105

106

O
cc
u
p
at
io
n

(b) 2D state

Figure 6.2: Plots of the coefficient on the nth most populated site for the different
CSFs compared to the determinental solutions. The first excited state is
obtained by restricting S for the spin eigenfunctions, and by restricting Ml

for the determinental solution. The occupations for Slater determinants
are plotted in blue, Serber CSFs in green and spin-projected determinants
in red.

that S = 1
2
. When using Slater determinants, the projected magnetic quantum

number is restricted such that Ml = 2. It is possible to conclude, therefore, that

the effect of the two symmetries on the Hilbert space is extremely similar.

The representation of the excited 2D state using spin projected determinants is

worse than the representations using Slater determinants or Serber functions, re-

quiring substantially more particles to be located on a larger number of sites. This

is probably a consequence of the over-complete nature of the basis set, and suggests

this as a disadvantage for further use of spin-projected determinants.

The remainder of calculations performed have made use of Serber spin eigenfunc-

tions, as they have the best computational performance, and the most controlled

behaviour, of any of the implemented CSFs.

6.1.2 Convergence of errors

There are three primary sources of error involved in an i-FCIQMC calculation

that need to be controlled to obtain meaningful results; errors associated with the

statistical analysis of the results, the initiator error which depends on the number
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of particles in the simulation, and the errors associated with the basis set.

Statistical accuracy

The first element of improving the statistical quality of the results is to

reduce the magnitude of the fluctuations in the results. Primarily this has

been approached by using a mixed coefficient representation scheme, with the

coefficients that contribute to the projected energy, and those immediately

connected to them, represented by real numbers (ω = 0), and all other

coefficients fully discretised as integers (see section 2.4.1).

Beyond this, the approach is depressingly empirical and twofold. Firstly, it is

important to ensure, by visual inspection, that data is only considered after

the wavefunction has converged. Secondly, if the error bars in the collected

results are too large, the calculation should be resumed and run for longer

to reduce the errors.

Initiator error

As discussed previously, in section 2.4.4, the only systematic approach to

eliminating the initiator error is to run increasingly large calculations until

it is clear that the error has been eliminated. Fortunately the nitrogen atom

is a relatively small system, having only five electrons, and even in the larger

basis sets does not require vast numbers of particles to converge effectively.

Figure 6.3 includes some sample plots demonstrating the convergence of the

resultant energy onto the FCI energy obtained by diagonalisation.

Basis set error

No FCI method can obtain a larger fraction of the physical, experimental,

correlation energy than may be represented by the basis set.∗ It can be

observed as the basis set is increased that a larger proportion of the total

energy is resolved.

This analysis of the nitrogen atom makes use of the sequence of basis sets

developed by Dunning122. These present a systematic increase in complexity

of the representation of the wavefunction, and can in principle provide the

basis for extrapolation to the infinite basis set limit124 by writing the energy

E(X) = Eexact + AX−3

∗A larger proportion may be obtained, along with some relativistic corrections, by application
of perturbative corrections in addition to the FCI methodology.21,36
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(b) First excited state, 2D
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Figure 6.3: Convergence of energies for the nitrogen atom with particle count in a
cc-pVDZ basis set. This demonstrates the reduction in both random and
initiator error as the number of particles is increased. Projected energy
values are plotted in green, shift values in red and the known FCI energy
is a dotted black line. Note that the shift energy estimator is much less
well behaved than the projected energy.
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Basis State / Eh

set 4S 2D 4D, Ml = 1 4D, Ml = 2

cc-pVDZ −54.478 581(5) −54.378 72(1) −53.557 75(2) −53.557 746(5)
cc-pVTZ −54.514 891(6) −54.422 688(9) −53.8013(2) −53.801 61(1)
cc-pVQZ −54.525 037(9) −54.435 58(2) −53.904 06(2) −53.908 02(4)
cc-pV5Z −54.528 13(2) −54.439 84(3) −53.9986(8) −54.001 87(8)

Extrapolated V(Q5)Z −54.531 38 −54.444 29 −54.097 89 −54.100 34

Basis Excitation energy / Eh

set 4S → 2D 4S → 4D, Ml = 1 4S → 4D, Ml = 2

cc-pVDZ 0.099 85(2) 0.920 82(2) 0.920 83(1)
cc-pVTZ 0.092 20(2) 0.7135(1) 0.713 27(1)
cc-pVQZ 0.089 44(3) 0.620 97(3) 0.617 01(5)
cc-pV5Z 0.088 29(6) 0.5294(8) 0.5262(1)

Extrapolated V(Q5)Z 0.087 08 0.4334 0.4310
Experimental 0.087 61 0.432 03 0.432 03

Table 6.2: A progression of converged state and excitation energies for the Nitrogen atom in a series of Dunning basis sets. The
extrapolated limit is included for comparison. It is worth noting that the 4P state is not resolved in any of these simulations,
implying that within the basis sets considered it is not straightforwardly accessible, or has crossed to a higher energy than
the 4S state. As such, both the simulations with Ml = 1 and Ml = 2 converged to the same state. The absence of this
state agrees with the FCI result from explicit diagonalisation in the cc-pVDZ basis set. The experimental results provided
for comparison are the averaged values of those provided for the excitation (ignoring spin-orbit coupling) in table 6.1.
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(a) Ground state, 4S
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(b) First excited state, 2D
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(c) Higher state, 4D, Ml = 1
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(d) Higher state, 4D, Ml = 2

Figure 6.4: Convergence of energies for several states of the nitrogen atom with basis
set size. The projected energy is plotted in green, and the shift in red. Error
bars are included. The extrapolated infinite basis set limit is included as a
dashed black line.
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where X is the cardinal number of the basis set. This can then be fitted to

the data being considered.∗

Table 6.2, with results plotted in figure 6.4, presents the convergence of

the total energy associated with the four states being considered with the

increase in basis set size. The asymptotic behaviour can be clearly seen,

although the V5Z basis has not yet reached the converged value.

It is worth noting that the 4P state has not been resolved. This state was

also missing from the full diagonalisation performed in the cc-pVDZ basis

set, which implies that it is either not well represented in these bases or that

it has crossed the 4D state to be higher in energy, and therefore not appearing

in the correct place. As such, all of the Ml = 1 and Ml = 2 simulations with

S = 3
2

have converged on the 4D state.

For comparison with experiment, the differences between the energy levels

need to be considered. The convergence of the difference between two energy

levels does not occur at the same rate as the convergence of the energy levels

themselves. Figure 6.5 presents the convergence on these energy gaps with

basis sets size relative to the known experimental values. The extrapolated

limits for all of the states considered are within ‘chemical accuracy’60 of the

experimental values (1 kcal mol−1).

6.1.3 Summary

It is clear that FCIQMC using CSFs is able to obtain results to an accuracy useful

for comparison to experiment, including some excited states. This is quite exciting

for further work.

In the context of the nitrogen atom, it turns out that all of the available states

may be obtained by applying restrictions on the total values of Ms and Ml asso-

ciated with the determinants in use. While this is extremely convenient for the

benchmarking of spin-pure FCIQMC, it fundamentally reduces its effectiveness.

To be noticeably useful for restricting the state that is converged to, it would

be necessary to implement L̂2 eigenfunctions to work in conjunction with the Ŝ2

∗In this case only the data corresponding to the highest two cardinal numbers calculated are
used. More sophisticated extrapolation schemes may be used, in principle, and may improve
accuracy.
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(b) 4S → 4D using Ml = 2
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(c) 4S → 4D using Ml = 1

Figure 6.5: The convergence of the excitation energies for the states being considered
with increases in basis set size. The projected energy and the value
obtaining by extrapolating the cc-pVQZ and cc-pV5Z (V(Q5)Z) results
are plotted in green, the shift likewise in red. The experimental values
are plotted using a black dashed line, surrounded by a band which
indicates ‘chemical accuracy’60 of 1 kcal mol−1. The energies associated
with the different spin-orbit couplings are indistinguishable on the scale of
stochastic error and convergence in these simulations.

Note that the ground state of the atom is better represented in the basis
set than the excited state, and hence its energy is more accurate. As the
energies converge from above, so does the difference between the two states.
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eigenfunctions currently available.

It is also disappointing that the changes caused to the representation of the wave-

function by restricting the space to CSFs do not appear to have any greater impact

on the representation of the wavefunction than using other forms of symmetry to

attain the same states.

6.2 The nitrogen dimer

The nitrogen dimer, N2, is a very strongly bonded homonuclear diatomic (it has

an effective triple bond). Its ground state electron configuration is (1s)σ2
g(1s)σ2

u

(2s)σ2
g(2s)σ2

u(2p)π4
u(2p)σ2

g , and it has several excited states while still maintaining

the overall configuration 1s42s42p6, the relevant configurations are, with distinct

S values, are shown in figure 6.6.

By inspection of the orbitals structure, it would be expected that as the required

value of the total spin is increased, the energy of the excited states will increase

in this order. This would mean that the energy levels could all be obtained by

making use of normal determinental FCIQMC and restricting the projected spin

value, Ms — the opposite of what made the nitrogen atom interesting. There

are, however, several reasons why the binding curves of nitrogen are potentially

interesting.

Four different spin states

As a consequence of the relatively high number of electrons in p-orbitals,

and consequently the potential number of electrons that can singly occupy

p-orbitals, there are four different spin states that are physically and com-

putationally interesting to obtain the binding curves for (and two different

spatial symmetries associated with some of these spin states). This provides

an excellent test for the ability of FCIQMC to operate correctly in different

CSF regimes.

Dissociates to two nitrogen atoms

The dissociated limit under all of the total molecular spin states is two non-

interacting nitrogen atoms in their ground state. This is of interest for several

reasons:
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Figure 6.6: Reference Slater determinants for N2 with different Ms values and sym-
metries. These correspond to the different excited spin states, with the
associated value of S. Only the electrons in 2p orbitals have been consid-
ered. Note that at short bond lengths, the σg orbital is higher in energy
than the πu orbitals due to sp mixing, resulting in the 3Πg and 5Πu being
lower in energy. At longer bond lengths, this mixing reduces, and the 3Σ+

u

and 5Σ+
g states become lower respectively (as drawn).

1. These are the atoms studied above, and as a consequence the ground

state is well characterised.

2. This ground state requires all of the electrons to be unpaired. As a

consequence, only the S = 3 state should dissociate correctly in the

Hartree–Fock calculation, as its electrons are dissociated throughout

the binding curve as shown in figure 6.6f.

3. The energy levels converge as the bond length becomes long, making

some of the calculations extremely difficult using Slater determinants.

Using CSFs removes the low-lying excited states and accelerates con-

vergence.
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4. In the fully stretched limit, the two Nitrogen atoms exist in a four fold

degenerate state, in which S = 0, 1, 2, 3 are all permitted.

Do the states cross?

In the Hartree–Fock solutions the excited states corresponding to the same

value of S, but different spatial symmetries, cross. It appears to be a rea-

sonable assumption that within spatial symmetries the states corresponding

with different values of S do not cross — even though this is not true for the

Hartree–Fock states. Considering the spin states separately with CSFs gives

a great deal more confidence in the results in this respect.

All of the calculations in this basis set make use of the cc-pVDZ basis set, with the

underlying Hartree–Fock calculations performed by MOLPRO125,126. In all of the

FCIQMC simulations the core (1s) orbitals are frozen, to reduce the calculation

to one involving only ten electrons.

6.2.1 Hartree–Fock solutions

Before FCIQMC simulations can be performed, the antisymmetrised basis set is

generated through Hartree–Fock simulations for each of the bond lengths. In

principle, as the underlying basis set is the same in each case, there is no benefit

to running Hartree–Fock simulations for the different Ms values. FCIQMC will

generate the same overall wavefunction. These simulations are, however, useful for

three primary reasons.

1. They obtain an optimised Hartree–Fock ground state, rather than just what

is left over in the virtual orbitals. This can be used to demonstrate the failure

of Hartree–Fock methods at obtaining useful binding curves.

2. The optimised Hartree–Fock states for each Ms value and spatial symmetry

can be used as the reference sites in FCIQMC simulations. This ensures

maximum weight on the reference site and improves the statistical quality of

the results.

3. If the ground state Hartree–Fock solution is used to generate all FCIQMC

results, it is not trivially obvious what the reference site should be. Obtaining

this from the Hartree–Fock solver simplifies calculations, especially as this

site changes across the space as the molecule dissociates.
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Bond Length Energy / Eh

/ a0
1Σ+

g
3Πg

3Σ+
u

5Πu
5Σ+

g
7Σ+

g

0.90 −102.004 558 −101.474 672 −100.815 801 −100.953 134 −99.505 009 −99.606 125
1.00 −104.125 525 −103.507 401 −103.009 579 −103.036 524 −101.834 707 −101.817 955
1.10 −105.641 086 −105.002 042 −104.650 290 −104.570 638 −103.620 182 −103.450 042
1.20 −106.716 470 −106.092 594 −105.836 150 −105.692 887 −104.934 189 −104.611 210
1.30 −107.475 068 −106.882 645 −106.694 785 −106.510 569 −105.907 383 −105.509 203
1.40 −108.005 991 −107.451 838 −107.317 145 −107.104 883 −106.632 382 −106.170 565
1.50 −108.372 715 −107.859 195 −107.767 561 −107.535 218 −107.174 705 −106.657 809
1.60 −108.620 490 −108.147 774 −108.091 800 −107.844 551 −107.581 177 −107.016 435
1.70 −108.781 847 −108.348 989 −108.322 855 −108.064 105 −107.885 809 −107.279 951
1.80 −108.880 433 −108.485 906 −108.484 859 −108.216 786 −108.113 715 −107.473 581
1.90 −108.933 613 −108.575 599 −108.595 687 −108.295 491 −108.283 681 −107.534 462
2.00 −108.954 210 −108.630 781 −108.668 680 −108.402 047 −108.409 873 −107.692 558
2.10 −108.951 709 −108.660 940 −108.713 820 −108.478 503 −108.502 998 −107.828 491
2.20 −108.933 108 −108.673 151 −108.738 567 −108.532 514 −108.571 140 −107.951 445
2.30 −108.903 553 −108.672 672 −108.748 483 −108.569 838 −108.620 398 −108.064 465
2.40 −108.866 811 −108.663 396 −108.747 709 −108.594 797 −108.655 373 −108.166 648
2.50 −108.825 632 −108.648 184 −108.739 330 −108.610 627 −108.679 538 −108.256 921
2.60 −108.782 016 −108.629 126 −108.725 640 −108.619 744 −108.695 522 −108.335 335
2.70 −108.737 400 −108.607 731 −108.708 340 −108.623 948 −108.705 318 −108.402 742
2.80 −108.692 801 −108.585 075 −108.688 684 −108.624 569 −108.710 430 −108.460 331
2.90 −108.648 921 −108.561 911 −108.667 588 −108.622 591 −108.711 995 −108.509 349
3.00 −108.606 226 −108.538 754 −108.645 709 −108.618 736 −108.710 868 −108.550 975
4.00 −108.270 952 −108.345 254 −108.442 590 −108.547 577 −108.641 523 −108.737 146
6.00 −107.962 749 −108.607 731 −108.219 370 −108.440 476 −108.506 778 −108.776 132
8.00 −107.852 633 −108.086 814 −108.133 456 −108.445 499 −108.776 842

10.00 −107.807 876 −108.058 348 −108.100 918 −108.425 155 −108.776 829

Table 6.3: Hartree–Fock energies for N2 in a cc-pVDZ basis set at a variety of bond-lengths with specified values of the projected spin
eigenvalue, Ms = 0, 1, 2, 3. The data in this table are plotted in figure 6.7.
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Figure 6.7: Binding curves for N2 in a cc-pVDZ basis set using Hartree–Fock. Note that
the ground state bond length is reasonable. However, only the (unbound)
7Σ+

g dissociates to the correct energy. Note also the energy crossings, where
the different states with the same Ms value cross.

The Hartree–Fock energies obtained are listed in table 6.3, and plotted as bind-

ing curves in figure 6.7. Entirely apart from quantitative errrors, it is clear that

there are fundamental issues with the Hartree-Fock solution. In particular, the

dissociation behaviour of restricted Hartree–Fock calculations is known to be ex-

tremely perverse. RHF calculations will not split electrons that are paired at

the equilibrium geometry, resulting in energies for the dissociated species that are

substantially higher than two times the atomic ROHF energy, and increasing with

separation.

The severity of this problem increases with the number of paired electrons in the

problem, resulting in a rough inversion of the energetic order of the orbitals. Only a

state with all of the valence electrons unpaired is capable of dissociating into two

high-spin nitrogen atoms, resulting in the only state with plausible dissociation

behaviour being the S = 3 state.
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There are also couple of slight discontinuities in the binding curves, most notably

in the 7Σ+
g state. These correspond to the points in the simulation where the

distortion of the geometry causes the orbital energies to cross further — in partic-

ular, at very short bond lengths, the 2s orbitals cross with the lowest bonding 2p

orbitals, resulting in a change of symmetry. In practice, this involves leaving the

configurations that we are interested in solving for.

Once the simulation is no longer near the Hartree–Fock ground state, the Fock

space becomes a soup of different local minima. It is entirely possible that using

Hartree–Fock metadynamics127 would produce better and smoother curves. For-

tunately, FCIQMC should be able to obtain the ground state in a given symmetry

irrespective of the quality of the Hartree–Fock solution.

6.2.2 Binding curves for excited states

Using the Hartree–Fock solutions obtained above as the input data for the calcu-

lations, binding curves for N2 can be obtained using FCIQMC. In this case Serber

CSFs have been used to restrict the total spin value to be equal to the Ms value

used in obtaining the Hartree–Fock solutions. This provides a degree of protection

from any potential energy crossings, and simplifies convergence in the long bond

length regime where the energy levels are extremely close together.

The best estimates of the energies are included in table 6.4 and plotted in figure 6.8.

The estimated stochastic error bars are included in the binding curve plot, although

they are not noticeably visible on the scale of the overall binding curve. There are

several things to notice about these results:

‘Missing’ data points

The aim of this project was to determine the binding curves of the lowest

energy state for each value of S. It turns out that some of the binding curves

corresponding to the same value of S but different spatial symmetries cross.

In the regions where a binding curve is the higher energy of the states with a

given S, and the geometry is at the more extreme distortions of the molecule,

the calculations become extremely difficult in a number of ways;

• The Hartree–Fock state is no longer the correct reference state for the

FCI solution. It is difficult to find a reasonable reference site to use.∗

∗A UHF solution would work well, but cannot be used with the CSF paradigm used here.
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0.90 −102.198 69(2) −101.675 36(3) −101.105 80(7)
1.00 −104.325 92(1) −103.723 46(1) −103.193 62(5)
1.10 −105.850 155(8) −105.229 90(3) −104.734 83(5)
1.20 −106.935 569(7) −106.331 24(3) −105.866 07(1)
1.30 −107.704 83(1) −107.132 09(3) −106.929 47(9) −106.692 398(9)
1.40 −108.246 776(8) −107.711 94(3) −107.553 22(8) −107.295 70(8)
1.50 −108.624 707(9) −108.129 68(3) −108.0102(1) −107.734 26(1) −107.371 32(2)
1.60 −108.883 89(1) −108.428 37(4) −108.341 45(3) −108.051 71(1) −107.779 97(2) −107.177 701(9)
1.70 −109.056 93(1) −108.639 21(7) −108.579 47(8) −108.279 15(1) −108.087 12(3) −107.446 87(2)
1.80 −109.167 56(2) −108.785 53(6) −108.748 71(7) −108.439 60(2) −108.317 72(3) −107.646 36(1)
1.90 −109.233 26(2) −108.884 04(6) −108.866 87(4) −108.540 88(2) −108.490 48(2) −107.757 53(1)
2.00 −109.266 93(4) −108.9480(1) −108.9476(1) −108.651 15(2) −108.619 64(2) −107.911 51(2)
2.10 −109.278 13(2) −108.9865(1) −109.0006(1) −108.731 09(2) −108.715 73(3) −108.043 85(2)
2.20 −109.273 87(4) −109.007 01(9) −109.0336(2) −108.788 25(5) −108.787 02(3) −108.163 43(2)
2.30 −109.259 36(4) −109.0145(1) −109.052 70(7) −108.828 50(4) −108.839 47(3) −108.273 04(2)
2.40 −109.238 40(5) −109.0130(1) −109.0614(1) −108.856 02(3) −108.877 74(3) −108.371 96(2)
2.50 −109.213 67(5) −109.0059(1) −109.062 95(9) −108.874 12(3) −108.905 19(4) −108.459 31(2)
2.60 −109.187 07(4) −108.9947(1) −109.0594(1) −108.885 35(3) −108.924 67(3) −108.535 11(1)
2.70 −109.160 29(5) −108.981 16(8) −109.0528(2) −108.891 52(4) −108.938 00(3) −108.600 21(1)
2.80 −109.134 11(6) −108.966 77(8) −109.0441(3) −108.894 13(4) −108.946 81(4) −108.655 73(1)
2.90 −109.109 19(1) −108.951 98(9) −109.0356(2) −108.894 07(4) −108.952 29(5) −108.702 91(1)
3.00 −109.086 13(5) −108.9376(1) −109.0260(4) −108.892 34(6) −108.955 31(5) −108.742 91(2)
4.00 −108.9720(4) −108.9653(8) −108.9507(1) −108.920 62(2)
6.00 −108.959(1) −108.957(1) −108.9570(6) −108.956 79(1)
8.00 −108.958(1) −108.953(2) −108.9559(5) −108.957 27(2)

Table 6.4: FCIQMC energies for N2 in a cc-pVDZ basis at a variety of bond-lengths for a number of different states. Spin is restricted
using Serber CSFs, and spatial symmetries in the normal way. The data in this table are plotted in figure 6.8.
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Figure 6.8: Binding curves for several different states of N2 in a cc-pVDZ basis set.
The statistical errors are included on the plot. Note that near the extreme
geometries, some of the states where two curves with the same total spin S

cross do not have all points considered. As the geometries become more ex-
treme, orbital crossings in the higher energy states cause the configuration
to change, and convergence of an FCIQMC simulation becomes extremely
difficult.

• The solutions become highly multi-reference, with many sites carrying

similar, large coefficients.

• The permitted time steps begin to fall dramatically, and the number

of particles required to obtain a statistically accurate result becomes

extremely high.

As such, some of these curves have been truncated in these limits, such that

only the important region is considered.

Dissociation behaviour

The simulations become noticeably larger and more difficult as large bond

lengths are approached, with the converged wavefunction taking on sub-

stantially more multi-reference character. Through all of this, however, the
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lowest energy state corresponding to each value of S correctly tends to twice

the atomic energy of Nitrogen in a cc-pVDZ basis as obtained in the previous

section.

Bond lengths

It is worth noting that the equilibrium bond length in the ground state

matches the experimental value well.

Comparison to experiment

As these results are performed in a cc-pVDZ basis set, even though quali-

tatively they are good, they do not provide a particularly good quantitative

description of the energy levels in the Nitrogen molecule. It has already

been demonstrated that FCIQMC can obtain good results for this system,

although to get physically meaningful results requires going beyond cc-pVQZ

basis sets128. As the purpose of the study was to demonstrate the functional-

ity of FCIQMC using CSFs, it is difficult to justify spending the large amount

of computational time this would require.

6.2.3 Summary

Although doing so has consumed a substantial amount of computational time, it

is clear that Serber functions are able to be used to effectively generate binding

curves for multiple spin states in non-trivial sized systems.

This opens up the developmental capacity to use Serber functions for larger sys-

tems and to apply them to (arbitrarily sized) model systems such as the Uni-

form Electron Gas and the Hubbard model. These systems will be interesting

to study, as their Hilbert spaces contain a very large number of sites of similar

energy to the reference state, and as such their converged wavefunctions are very

multi-configurational. However, to do this will require a substantial amount more

development work to overcome the strict size limitations of the systems that can

be considered using Serber functions before running out of memory to store the

permutation representation matrices.



7 A brief aside — Continuous Time

FCIQMC

7.1 Motivation

The performance of FCIQMC is strongly dependent on the magnitude of the (imag-

inary) time step, δτ . If this is too small, significant computational resources are

wasted to progress the simulation sufficiently far. Conversely, if it is too large the

imaginary time integration in eqn. 2.2 is not well approximated by 2.4, and the

simulation never accurately settles on the target wavefunction. This results in an

incorrect energy being reported. The restrictions on the value of δτ are described

in section 2.6.

In this section we develop a variant of FCIQMC, known as Continuous Time

FCIQMC, or ct-FCIQMC, which removes the direct dependence of the dynamics

of the simulation on the time step. This new methodology asks the question

“when is the next particle to be spawned” rather than the more usual question of

“how many particles should I spawn this iteration”. The consequence of this is to

concentrate the computational effort on those sites which spawn the most particles

— the equivalent of making the time step a property which varies depending on

the site in the canonical scheme.

7.2 Derivation

As suggested by Spencer129, instead of calculating how many particles are spawned

from a given particle within a time period, the length of time until a given particle

will spawn a child may be calculated.

165
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Starting from the imaginary–time Schrödinger equation (eqn. 2.1) adjusted for the

energy of the reference determinant and the shift,

∂Ψ

∂τ
= (−Ĥ + Eref + S)Ψ,

the coefficient of each determinant Di is projected out to give the diffusion equation

dci

dτ
= −

∑

j

[Hij − (Eref + S)Sij] cj

= −
∑

j

ΞijRijcj,

where Ξij and Rij are the sign and magnitude of Hij−(Eref +S)Sij respectively. Rij

gives the rate at which a particle on determinant j spawns onto site i. Considering

a time interval ∆τ , the probability, pij, of the first child of site j being spawned

onto site i within the nth period, (n− 1)∆τ < τ = n∆τ , is

pij =

(
∏

k

(1−Rkj∆τ)

)n−1

︸ ︷︷ ︸

prob. no children spawned
in n-1 time periods

×
∏

k 6=i

(1−Rkj∆τ)

︸ ︷︷ ︸

prob. no children spawned on
determinants k 6= i in n-th period

× Rij∆τ
︸ ︷︷ ︸

prob. child spawned
on determanint i

in n-th period

(7.1)

=
∏

k

(1−Rkj∆τ)n

(

Rij∆τ

1−Rij∆τ

)

(7.2)

≈
∏

k

(

1− Rkjτ

n

)n

Rij∆τ For small ∆τ . (7.3)

Allowing ∆τ → 0, and correspondingly n→∞, this becomes

pij =
∏

k

exp(−Rkj)Rij∆τ (7.4)

= exp

(

−
∑

k

Rkjτ

)

Rij∆τ. (7.5)

Thus

pij(1st spawn to determinant i is between τ and τ + dτ) = e−Rjτ Rijdτ (7.6)

where Rj =
∑

k Rkj. Summing this over all target determinants i gives

pj(1st spawn is between τ and τ + dτ) = e−Rjτ Rjdτ, (7.7)
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which may be used as a probability distribution function for when the next spawn

occurs. The cumulative distribution function is

Pj(τ) =
∫ τ ′

0
pj(τ

′)dτ ′

= 1− e−Rjτ , (7.8)

which can be seen to be normalised. This is easily inverted so that the time until

the next spawning from determinant j can be selected as

τ = − 1

Rj

ln(u) (7.9)

where u is a random number selected from the uniform distribution on [0, 1).

7.3 Implementing continuous time FCIQMC

7.3.1 Performing annihilation

As has been demonstrated by Spencer et al.64, annihilation is necessary for con-

vergence of the wavefunction. If each particle is tracked through imaginary time

individually, along with its progeny, annihilation between particles that are simul-

taneously present in imaginary time must be performed explicitly.

To resolve this, periodic “annihilation barriers” are positioned throughout imagi-

nary time, separated by a period δτ , and the simulation paused at each of these.

Each time the next spawn from a particle is calculated to occur after the next

annihilation barrier, no spawn is performed, and the particle’s time is set to be at

the barrier. This does not affect the statistics of spawning as the probability of a

particle at time τ spawning its next particle at time τ ′, after the barrier located

at time τa, is

p(τ ′) = Rje
−Rj(τ

′−τ)dτ

= Rje
−Rj(τa−τ)e−Rj(τ

′−τa)dτ

= p(τ ′ > τa)× p(τ ′|τa),

(see equation 7.8) such that the likelihood of spawning at any specific time is
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unaffected.

Synchronising the annihilation of all particles at given times, facilitates the imple-

mentation of this algorithm across multiple MPI processes. All newly generated

particles may be communicated to the correct MPI process and annihilated with

particles found there. The calculation is then resumed as normal. Whilst the

simulation is extremely insensitive to the period of imaginary time between each

of the annihilation barriers, the number of new particles spawned is exponential

with passing imaginary time, so a substantial amount of memory is required to

store these particles if the time interval is too large.

7.3.2 Generating new particles

The derivation above requires knowledge of an overall spawning rate from any

given site (including particle death), and the ability to generate spawns which are

distributed according to the distribution of connection strengths between particles.

Both of these imply enumeration of the connections from each of the sites in the

system when they are considered:

Overall spawning rate

To obtain the overall spawning rate, all connections must be enumerated,

and the Hamiltonian matrix elements between the source and all connected

sites must be generated and their absolute values summed. The sum of

the absolute values of the off-diagonal matrix elements, and separately the

diagonal matrix element, can be stored with the particles such that the total

spawning rate for a particle can be given as

Ri = |Kii − ES|+ Ri,off−diag.

If non-orthogonal and non-orthonormal basis functions are used, this ex-

pression is further complicated as the weighted energy estimator enters the

off-diagonal terms, and

Ri =
∣
∣
∣
∣

Kii − ESSii

Sii

∣
∣
∣
∣+

∑

j←i
j6=i

∣
∣
∣
∣

Kij − EweightedSij

Sii

∣
∣
∣
∣

must be frequently regenerated.
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Spawning site selection

To generate the correct distribution of new particles, given a correct at-

tempted spawning rate, a random number on [0, 1) should be chosen, and

then the connected sites enumerated one by one, summing in
Rij

Ri
until this

sum exceeds the random number chosen. The site then being considered is

spawned to. This enumeration may be optimised slightly by considering the

diagonal (death-like) spawn first, as the diagonal matrix element is likely to

be the largest and this reduces the likelihood of needing to enumerate lots

of connections.

As a consequence of this, as noted by Spencer, the algorithm is unsuitable for use

in any systems other than those model systems such as the Hubbard model where

the summations may be performed analytically. It is certainly highly impractical

for molecular systems where some of the matrix element calculations are relatively

costly, and efficient enumeration is complicated by considerations of symmetry and

so forth.

Fortunately a subtly different approach may be taken. One advantage of the

continuous time scheme is that all spawns are accepted, whereas in the normal

FCIQMC scheme the vast majority of spawns are rejected. The distribution of

particles may be generated computationally more efficiently by loosening this ad-

vantage; if a parameterised (and adjustable) guess of the correct total spawning

rate is made, such that we oversample the required spawning rate, then random

excitation generators may be used to generate connections and the correct distri-

bution generated by discarding excess spawns (see figure 7.1).

This scheme rewards the use of maximally uniform excitation generators, as the

rate of oversampling required is determined by the combination of lowest non-

uniform generation probability combined with the highest related Hamiltonian

matrix element, so improving the worst case (very low generation probabilities) has

disproportionate benefit. The more parameterised the guess for the oversampling

rate is, the more efficiently the scheme works as the discard rate is very strongly

linked to it. For the testing in this thesis the following scheme was used:

• As the diagonal matrix elements are stored anyway, these and the shift are

included directly.

• If same spatial structure spawns are permitted, i.e. non-orthogonal basis

functions are being used, the sampling rate for same spatial structure exci-
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Connected sites

Spawning
frequency

Figure 7.1: Oversampling of spawning rates in ct-FCIQMC. The required distribution
of spawned particles is coloured orange, with the stochastically generated
one in green. The largest spawning rate is from a site to itself — this
is equivalent to particle death in normal FCIQMC, and can be sampled
exactly. For the remainder of the connections, the (non-uniform) random
excitation generator is called sufficiently frequently to generate each of the
connections at least as frequently as required, and the remaining excess
spawns in green are discarded. So long as the excitation generators are
sufficiently uniform, the discard rate is less wasteful than the acceptance
rates in normal FCIQMC.

tations is calculated as a multiple of the diagonal Hamiltonian matrix element

with a factor parameterised by the number of unpaired electrons present and

the excitation level relative to the reference site.

• Single and double excitations are considered separately, as the excitation

generators are parameterised by the relative rate of single and double exci-

tations. These are categorised by the number of unpaired electrons present,

and the excitation level relative to the reference determinant.

For each excitation generated the generation probability, pgen(j|i), returned by

the excitation generator can be multiplied by the sampling rate to generate the

frequency f(j|i), which can be compared to the required frequency Rij. The particle
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is then spawned with probability
Rij

f(j|i) or discarded otherwise. If f(j|i) < Rij

then the relevant parameter (indexed by the number of unpaired electrons and the

excitation level of the source of the excitation relative to the reference determinant)

must be updated to ensure that on future iterations f(j|i) = Rij.

7.3.3 Algorithm overview

This algorithm is implemented in a recursive way, such that each particle generates

particles which are processed similarly. This tree of generated particles is inter-

rupted when an annihilation barrier is reached. Most elegantly, if a particle dies

before it reaches the annihilation barrier, the routines back out of the recursive

structure — if this is a newly spawned particle then no further reference to it is

required, and if it was in the main lists, its coefficient can be decremented.

For each of the particles stored in the occupied list, on site i, with associated time

τ and attempted spawning rate Ri, the following process is performed;

1. The time until the next spawning attempt from this particle is calculated

according to equation 7.9 such that

τ → τ − 1

Ri

ln(u),

where u is a random number on [0, 1).

2. If the calculated time, τspawn, is after the next annihilation barrier, the time,

τ , associated with the source particle is advanced to the annihilation barrier.

If this particle is a newly spawned one, it is stored in the spawned list. The

processing loop now ends.

3. A connected site, j, is selected with the probability pgen(j|i) =
Rij

Ri
. See

section 7.3.2.

• If a null site is returned, nothing is done.

• If the same site is returned, by analogy with diagonal death, the particle

is destroyed, and the processing loop ends.

• If a new particle is obtained, its attempted spawning rate Rj is calcu-

lated if not using oversampling, and the new particle is processed in the

same way as its parent.
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4. If the particle has not been destroyed, its associated time, τ , is advanced to

the newly calculated value of τspawn, and these steps are repeated by returning

to step 1.

Once this process is complete, annihilation between the newly spawned list and

the remaining particles in the main particle list is performed as normal. It is worth

noting that due to the tree of spawned particles and their further progeny that is

generated prior to annihilation taking place, the amount of memory required to

store particles is exponentially dependent on the time period between annihilation

barriers. In real systems, this memory requirement is likely to provide the upper

limit on the choice of inter-annihilation barrier time period, rather than anything

fundamental about the algorithm dynamics.

7.3.4 The initiator approximation

Implementing the initiator approximation is trickier for ct-FCIQMC than for nor-

mal FCIQMC. The two primary criteria, as described in section 2.4.4, are difficult

to implement, as particle survival depends on:

Status of source site

The outcome depends on if the source site is an initiator, which in turn

depends on the number of particles present on the site. During normal

FCIQMC these statuses are determined after annihilation, where all particles

on a given site are located on the same MPI process and the main particle

list is compressed to one entry per site. As ct-FCIQMC recursively explores

the tree of spawned particles and their further progeny, it is not possible

to know the status of the sites associated with second or further generation

spawning.

Status of target site

If spawns occur from non-initiator sites, then the survival of their progeny

is dependent on the occupation status of the target site. As ct-FCIQMC

propagates the spawning recursively prior to annihilation taking place, it

is not possible to perform these tests before second or further generation

spawning.

This conundrum can be resolved by a couple of changes to the implementation of

the initiator approximation:



7.4 Acceptance ratios 173

• All particles are assumed to survive until the next annihilation barrier. The

spawn aborting behaviour is considered to be a function of annihilation,

rather than of spawning.

• All second and further generation spawns are considered to come from non-

initiator source sites.

These modifications have the advantage that the only time information about the

overall occupation of sites is required is during annihilation, when this information

is available. Similarly to normal FCIQMC, in the large particle limit all target

sites with non-zero coefficients are occupied, and the approximation tends to the

exact value.

In principle, due to the differing consideration of second and further generation

spawns, this approximation becomes less good as the gap between the annihilation

barriers increases — this is similar to the general behaviour of ct-FCIQMC in

decreasing the efficiency of annihilation. In practice, the simulation still appears

to be remarkably insensitive to gaps between annihilation barriers substantially

larger than the values of δτ required for normal FCIQMC.

7.4 Acceptance ratios

The predominance of rejected particles in FCIQMC provided the primary impe-

tus behind the development of ct-FCIQMC. In both FCIQMC and ct-FCIQMC,

particle spawns are accepted with a certain probability, and rejected otherwise.

However, in the two different cases, the meaning of this value is different.

FCIQMC

Particles are accepted or rejected to round the value of ns, the magnitude

of each spawn, up to the minimum acceptable value or down to zero as

appropriate. As such it is roughly a stochastic estimator of the average

value of ns

cmin
.

As δτ is an adjustable parameter, this metric becomes a measure of how

large the maximal spawn size is relative to the average spawn size, and is a

measure of how extreme the uppermost outlier is.
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Figure 7.2: A plot of the ratio of the spawn acceptance ratio for ct-FCIQMC divided
by that for FCIQMC for calculations of the ground state of the first row
atoms in a cc-pVDZ basis set. The dashed line is positioned at 1.0, where
the acceptance ratio is the same for both methods.

ct-FCIQMC

All particles spawned according to the distribution pgen(j|i) =
Rij

Ri
are ac-

cepted, barring abortion via the initiator approximation. The acceptance

ratio in this context is the proportion of spawns generated by the random ex-

citation generator that are kept to generate this required distribution. This

is a metric of the mismatch between two distributions, both of which are

fairly non-uniform, and as such is substantially more dependent on the num-

ber of electrons and the basis set size than the acceptance ratio in canonical

FCIQMC.

It is notable from figure 7.2 that, as the system size is increased, the acceptance

ratios in ct-FCIQMC deteriorate relative to those in canonical FCIQMC. This

implies that the rate at which the mismatch between the generated distribution

of spawns and the required distribution of spawns deteriorates is worse than the

behaviour of the number of rejected spawns caused by non-uniformity in the matrix

elements in FCIQMC. A consequence of this is that ct-FCIQMC radically improves

the efficiency of small calculations, that can already be easily performed, but
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rapidly makes larger (and more interesting) calculations more difficult than they

already were.

In principle the acceptance ratio, and hence the computational cost of ct-FCIQMC

simulations, is systematically improvable. The more accurately the generated dis-

tribution of particles matches the required distribution, the more efficient the

simulation. The estimation of the oversampling factors and the distribution of

generation probabilities given those factors are in principle arbitrarily parameter-

isable. In practice this is tricky, but it could be interesting to investigate what

parameters could be used.

7.5 Comparison of FCIQMC and ct-FCIQMC

The primary consideration of any methodological adaptation is whether it works.

In this case, ct-FCIQMC works well, producing accurate FCI energies in much the

same way as canonical FCIQMC. This shifts the primary interest to whether the

adaptation works better than the original method. There are a number of different

components to be considered in this case. The dynamics of the simulations should

be compared, as well as the behaviour of the output variables. Ultimately, the

computational cost of the new method is of interest.

General calculation profile

The overall calculation profile of a ct-FCIQMC calculation is extremely sim-

ilar to that of a canonical FCIQMC calculation. Figure 7.3 plots the total

number of particles and the number of particles on the reference site for an

FCIQMC simulation, with the largest timestep permissible to avoid parti-

cle blooms, and a ct-FCIQMC simulation with δτ = 0.01, nearly ten times

larger.

What is evident is that, apart from the initial phase of the calculation when

the oversampling factors in ct-FCIQMC are rapidly changing as they are

discovered empirically, the dynamics are essentially the same. This demon-

strates that these dynamics, with rapid initial growth and wavefunction con-

vergence during an annihilation plateau, are a property of integrating the

imaginary time Schrödinger equation in a discrete antisymmetrised space,

rather than being an artefact of the canonical FCIQMC algorithm.
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Figure 7.3: The total number of particles and the number of particles on the reference
site in both a canonical FCIQMC and a ct-FCIQMC simulation of Ne in
an aug-cc-pVDZ basis set. For canonical FCIQMC, δτ = 0.00217, which
is the largest value possible to avoid particle blooms. For ct-FCIQMC,
δτ = 0.01.

When the initiator method is used, from the perspective of overall calculation

profile, i-ct-FCIQMC and i-FCIQMC are also identical.

Height and length of the annihilation plateau

The ct-FCIQMC algorithm works by spawning a ‘tree’ of particles, sign

incoherently, for a period of imaginary time, and periodically generating

sign coherence through annihilation. As the time periods are increased, an

increasing distribution of incoherent particles presents itself for annihilation

on each occasion, and the effectiveness of annihilation is reduced. This has a

tendency to increase the height of the plateau, as demonstrated in figure 7.4.

Interestingly, the length of the plateau in imaginary time does not display

monotonic behaviour, instead displaying a distinct optimum which is shorter

than in canonical FCIQMC. Consequently, at this optimum, ct-FCIQMC

both requires less imaginary time to escape the plateau, and fewer iterations

per unit imaginary time, than FCIQMC.
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Figure 7.4: Dependence of the plateau height and length on δτ in ct-FCIQMC com-
pared to FCIQMC for Ne in an aug-cc-pVDZ basis set. For the FCIQMC
simulation, δτ = 0.00217, which is the largest value possible to avoid par-
ticle blooms.

Does the initiator method still make sense?

The initiator method appears to work as effectively in i-ct-FCIQMC as in

i-FCIQMC in terms of suppression of the annihilation plateau.

Computational cost

The computational cost of the simulation may be measured in three strongly

interlinked ways; a) the cost per iteration, b) the cost per unit of imaginary

time, and c) the cost for a given statistical accuracy. The cost per iteration

is certainly going to increase as the gap between the annihilation barriers is

increased. In principle, an exponential growth of progeny from each particle

could be observed, leading to an exponential increase in computational cost
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Figure 7.5: The computation cost per unit imaginary time of ct-FCIQMC in both its
full and initiator approximation implementations compared to canonical
FCIQMC for differing values of the annihilation barrier separation, δτ .
The system is Ne in an aug-cc-pVDZ basis set with the particle count con-
strained to one million particles by the shift. For canonical FCIQMC, the
largest δτ to avoid particles blooms is 0.00217. The initiator approximation
is sensitive to the initial increase in δτ as the aborted particles are only re-
moved at the annihilation barriers giving an efficiency boost to simulations
which do this more often. This is also responsible for the increase in cost
of the initiator approximation past an optimum, which is less observable
in the full scheme.

with δτ .

In practice, at low values of δτ , the majority of sites do not spawn progeny

before the next annihilation barrier. As a consequence, increasing δτ does not

necessarily result in any additional work, and may even reduce the number of

calls to the excitation generator for this site. As such, the cost per iteration

initially grows sub-linearly, with exponential growth only picking up at higher

values of δτ .

This is observed in the behaviour of the computational cost per unit imagi-

nary time, as shown in figure 7.5, which initially falls with δτ , before levelling

out and eventually turning up again (this latter behaviour is only observed

in the initiator approximation plots).
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As δτ increases, the reduction in the number of annihilation barriers increases

the correlation between different iterations, and also decreases the number

of data points output. As a result of this, a longer period of imaginary

time is required to get statistically useful results (an effect clearly seen in

figure 7.6a, where the stochastic error associated with the last two data points

increases rapidly). The consequence of this is that, although the cost per unit

imaginary time is decreasing, there is an optimum value for δτ which obtains

useful results as rapidly as possible. For Ne in an aug-cc-pVDZ basis, this

appears to be approximately ten times larger than for canonical FCIQMC.

An interesting point worth noting from figure 7.5 is that the cost per unit

imaginary time is substantially higher when using the initiator approxima-

tion than otherwise. This is unexpected, as the only algorithmic change is to

throw away some more of the attempted spawns. This may be a consequence

of the wavefunction obtained in the initiator approximation — by restricting

spawning outside of the well converged region, to obtain the same number

of particles in the simulation as a simulation without the initiator method

means that there are more particles in the ‘core’ region of the wavefunction.

This results in a different subset of the oversampling factors being dominant

in the overall cost and a different spawning pattern.

Accuracy of the energy estimators

The accuracy of a simulation’s numerical results depends on a number of

factors. The first of these factors is wavefunction convergence. For all of the

results considered here, the shift has been permitted to vary once the simu-

lation contains 1 million particles — this is above the annihilation plateau in

all cases, and is sufficient to ensure that the wavefunction is converged when

the initiator approximation has been used.

Once there are enough particles in the simulation, the next criterion is

whether enough data has been collected to produce results with a sufficiently

high statistical accuracy. This is influenced by how long it takes to reach a

converged wavefunction, i.e. the height and length of the plateau, the cost

per iteration, the cost per unit time, how large the statistical fluctuations

are and the degree of correlation between different data points.

In an attempt to gain some insight into the combination of all of these factors,

the results in figure 7.6 are obtained from simulations that were all run for



180 A brief aside — Continuous Time FCIQMC

the same amount of real computational time; five hours across four MPI

processes.

For ct-FCIQMC, in figure 7.6a, the stochastic error in the values is roughly

the same as for canonical FCIQMC (marked by the green band) up to δτ =

0.01, and all of these values agree with the FCIQMC energy estimator and

the FCI energy to within error bars. Once δτ increases above this, the errors

increase extremely rapidly, as discussed above.

For i-ct-FCIQMC, it is notable in figure 7.6b that at small values of δτ ,

the stochastic error is smaller than for i-FCIQMC, with the values still in

agreement with the FCI energy. The errors rapidly become large past the

same limit as ct-FCIQMC.

Finally, note that as with canonical FCIQMC simulations, the shift energy

estimator is much less reliable than the projected energy estimator.

In conclusion, ct-FCIQMC and i-ct-FCIQMC simulations are similar to their

canonical parents, with the exception of being extremely insensitive to the value

of δτ chosen as the separation between the annihilation barriers. There is an

optimum value both in terms of efficiency of propagating the simulation through

imaginary time, and in terms of the cost of convergence of the stochastic errors,

but there is substantial leeway for determining this value with mild computational

cost and small stochastic error penalties.
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Figure 7.6: The projected and shift energy estimators, with error bars, for ct-FCIQMC
with differing values of the annihilation barrier separation, δτ . The system
is Ne in an aug-cc-pVDZ basis set with the particle count constrained to
one million particles by the shift — this is above the annihilation plateau.
For canonical FCIQMC, the largest δτ to avoid particle blooms is 0.00217.
Except at the largest value tested, the simulation is fairly insensitive to
the value of δτ . The values obtained for the shift are better than those
obtained for canonical FCIQMC.
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7.6 Summary

This section has presented a novel implementation of ct-FCIQMC which avoids

the need for enumeration of all connections to a site at any point in the simulation,

and an application of the initiator approximation to this method. It appears that

this method offers the opportunity to relax the dependence of FCIQMC on the

time step, δτ , and avoid some of the pitfalls associated with large variations in

connection strength across the Hilbert space.

However, as a consequence of the oversampling required to generate the correct

distribution of spawns, the acceptance ratio falls rapidly as the system size is

increased, aggressively cutting the efficiency. As a consequence, ct-FCIQMC im-

proves the efficiency of those calculations that were already straightforward to

perform. Unfortunately, in its current configuration, calculations that are chal-

lenging, and therefore interesting, become more difficult.

As a consequence, this method does not yet present itself for effective general

application. Hopefully it will provide insight and a source of ideas for further

algorithmic development.



8 Concluding remarks

This thesis has presented methods for the application of Hilbert spaces constructed

from spin eigenfunctions to FCIQMC, including the requisite algorithmic changes.

This permits control over convergence to states other than the natural ground state

in the basis set. Of the basis sets considered, Serber type spin eigenfunctions are

clearly the most applicable to calculations due to the extremely efficient expressions

for the Hamiltonian matrix elements and their suitability for spawning to multiple

related spin structures simultaneously.

Unfortunately, as a method, this is currently limited to an absolute maximum of

sixteen electrons. In practice, on most available computational resources, memory

limits will be reached well before this∗. It is clear that further implementational

work is required to share this effectively read-only data across multiple processes,

but this will not have a substantial qualitative impact on the sizes of systems that

can be considered. At present the full N -electron permutations are required, but

in principle this can be reduced to 4 + No,max-electron permutations for truncated

calculations. It is an open question as to how much of the space need be represented

in CSFs to be useful.

If the convergence issues associated with spin-projected determinants can be over-

come, they may provide the route to overcoming the memory induced upper bound

on the system size. The first step to understanding this probably involves imple-

mentation of the necessary algorithmic components to use Rumer type CSFs, in

order to determine the extent to which the pathological behaviour is a consequence

of the non-orthogonality, and to what extent it is a property of the spin-projected

determinants themselves.

It is worth noting that, as would be expected, using CSFs does not give a more

∗Operating on commonly available compute clusters, with 1024Mb of memory available per
MPI process, required only using a subset of the processors available to increase this memory
availability for the N2 calculations, in a cc-pVDZ basis set with core electrons frozen and ten
active valence electrons, used in this thesis.
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general solution to finding excited states. It is clear that an approach based on

subdividing the space according to symmetries can only ever reveal a very small

number of additional states. These functions also do not assist in representing the

short range electronic behaviour — the electronic cusps — which are as poorly

represented by linear sums of diffuse spatial functions when using CSFs as oth-

erwise. To some extent the inter-electronic behaviour will need to be considered

directly. Work is ongoing to address these issues using new methodologies.

There are a number of useful model systems, in particular the Uniform Electron

Gas and the Hubbard model, which are parameterisable to arbitrary size and

computational difficulty. These models are particularly dependent on capturing

the static correlation between a vast number of energetically similar basis func-

tions and states. The extent to which imposed spin structure might assist in

generating useful solutions is unclear, and needs investigation. This will involve

a certain amount of further implementational work, as the internal connectivity

of the relevant Hilbert spaces is notably different. This difference might lead to

more productive behaviour in conjunction with CSFs than has been observed in

molecular systems.

Returning to the question asked in the introduction; does restricting the basis set

to prevent spin-incoherent growth assist in the convergence of the wavefunction in

the remaining space, or is spin primarily useful as a metric of convergence? It

is clear that using CSFs does not, for molecular systems, substantially improve

the convergence of the wavefunction except in the specific, and rare, cases when it

permits convergence on states that are otherwise inaccessible. At least in molecular

systems, spin is far more useful as a metric of convergence than as a generator of

convergence.
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