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The recently investigated `asso model predictive control (MPC) is applied to the terminal phase of a spacecraft
rendezvous and capture mission. The interaction between the cost function and the treatment of minimum
impulse bit (MIB) is also investigated. The propellant consumption with `asso MPC for the considered scenario
is noticeably less than with a conventional quadratic cost and control actions are sparser in time. Propellant
consumption and sparsity are competitive with those achieved using a zone-based `1 cost function, whilst
requiring fewer decision variables in the optimisation problem than the latter. The `asso MPC is demonstrated
to meet tighter specifications on control precision, and also avoids the risk of undesirable behaviours often
associated with pure `1 stage costs.
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1 Introduction

Recently, applications of model predictive control (MPC) to a variety of manœuvres occurring
in spacecraft rendezvous have been investigated (Richards and How 2003, Breger and How 2005,
2006, 2007, 2008, Larsson et al. 2006, Saponara et al. 2011, Hartley et al. 2012, Di-Cairano et al.
2012, Gavilan et al. 2012, Kolmanovsky et al. 2012, Sauter and Palmer 2012). MPC offers the
ability to explicitly handle physical and operational constraints whilst (approximately) opti-
mising a given performance metric through repeated solution of a fixed, but receding horizon
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constrained optimal control problem (e.g. Maciejowski (2002), Camacho and Bordons (2004),
Rawlings and Mayne (2009)). Whilst readily acknowledged as more computationally demanding
than classical control methods, ever improving computational capabilities and algorithmic de-
velopments (e.g. to name a few, Bemporad et al. (2002), Wang and Boyd (2008), Ferreau et al.
(2008), Jerez et al. (2011), Mattingley and Boyd (2012), Richter et al. (2012), Domahidi et al.
(2012)) increase the range of feasible applications.

As well as efficiently using propellant to satisfy core mission objectives, it can be prudent to
consider the number of times the thrusters are switched on/off to avoid excessive mechanical wear
on the valves. This paper explores how the recently investigated l1-regularised MPC (Ohlsson
et al. 2010, Nagahara and Quevedo 2011, Annergren et al. 2012, Gallieri and Maciejowski 2012,
2013) —which amalgamates the classical quadratic cost function with an additional 1-norm
penalty on the control input to induce temporal and spatial control sparsity—might perform
for this application. This class of cost function is informally dubbed `asso-MPC in Gallieri and
Maciejowski (2012, 2013). Also, in the present paper, `asso-MPC is compared with classical linear
quadratic MPC, `1 MPC and MPC with a zone-based (Larsson et al. 2006) cost function.

For simplicity, in this paper only translational control is considered, with the assumption that
attitude control is handled by an independent system. A single positive and negative thruster is
assumed on each of 3 axes, each providing a commanded force, and zero torque.

The main body of this paper is structured thus: Section 2 summarises the background moti-
vating the investigation; Section 3 defines the control scenario in which the controllers will be
evaluated; Section 4 details the tuning methodology used to meet design requirements with each
class of cost function; Section 5 presents numerical results; and Section 6 concludes.

2 Background

2.1 Predictive control

Consider a linear state space model of the plant of form x(k + 1) = Ax(k) + Bu(k), where
u(k) ∈ Rnu and x(k) ∈ Rnx are the input and state at discrete time step k, and A and B
are appropriately sized matrices with the pair (A,B) stabilisable. Let xi denote a prediction of
x(k+ i), FN : Rnx → R+ be a terminal cost, ` : Rnx ×Rnu → R+ be a stage cost, and xr and ur
be state and input reference setpoints. An archetypal (linear) predictive controller solves:

J∗ = min
ui,xi

FN (xN − xr) +
N−1∑
i=0

`(xi − xr,ui − ur) (1a)

s.t. x0 = x(k) (1b)

xi+1 = Axi + Bui (1c)

xi ∈ X, ∀i ∈ {1, . . . , N − 1} (1d)

ui ∈ U, ∀i ∈ {0, . . . , N − 1} (1e)

xN ∈ T. (1f)

The first optimal input, denoted u∗0, is applied to the plant, the remainder of the solution is
discarded (or used for a subsequent warm-start), and the process is repeated at the next time
step with k ← k + 1. The input u can be a commanded value for a manipulated variable, or an
increment to the manipulated variable (often denoted as ∆u (Maciejowski 2002)), in which case
the accumulated value is included in the state x. In the scenario considered here a zero-valued
input is preferable to it being at any other steady state, so the former is used.
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Figure 1. Treatment of the minimum impulse bit

2.2 The minimum impulse bit

When using thrusters for spacecraft trajectory control, not only are there constraints on the
maximum force that can be applied at any given instant, and mission specific constraints on the
trajectory (e.g. visibility cone constraints, maximum approach velocity), but there is also the
physical constraint of a thrust “dead-zone” between the thruster being fully off, and delivering
its minimum non-zero thrust, often referred to as the “Minimum Impulse Bit” (MIB). This is
neglected or implicitly treated as a disturbance for purposes of control design in the majority
of the above-cited references. Unlike certain classes of non-smooth characteristics (del Carmen
Rodŕıguez Liñán and Heath 2012), this non-convex constraint cannot simply be inverted. Possible
remedies are:

(0) using continuous thrusters (evading the issue);
(1) rounding low thrust requests down to zero (implicitly modelling the MIB as an input

disturbance);
(2) using differential thrust with two opposing forces above the MIB with a net difference of

the control command;
(3) buffering the accumulation of low thrusts and delivering the command only once the

deficit of undelivered thrusts exceeds the MIB.

Option 0 presents a conceptual benchmark for comparison. Option 1 precludes small control
actions (thus increasing sparsity), but can limit the achievable control accuracy and for low
thrusts the plant trajectory will not match the predictions even in otherwise ideal conditions.
Option 2 recovers linearity of dynamics (under otherwise ideal conditions) and the ability for
fine-grained control at the cost of considerable fuel-burn for low thrusts. Option 3 introduces
some unpredictability and can cause the “same” correction to be requested repeatedly.

When inserted between a linear or piecewise-affine feedback control law and the actuators as a
“thrust management algorithm”, each of these options can require a different control tuning, due
to different assumptions about the relationship between the “real-world” plant dynamics and
the prediction model. In Larsson et al. (2006) it is noted that mixed-integer programming could
theoretically be used to encode the MIB in an open loop optimal control problem (to be applied
in a receding horizon manner), but the complexity grows combinatorially with the number of
binary variables.

2.3 Cost functions for predictive control

The most frequently used stage cost in MPC is a weighted quadratic function of the error
between the predicted state and input and their respective steady-state targets at current and
future sampling instants (letting ‖ • ‖2M , •TM•):

`(x,u) = ‖x‖2Q + ‖u‖2R, FN (x) = ‖x‖2P. (2)
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The weights Q ≥ 0, R > 0 and P ≥ 0 are tuned to suit the high-level objectives and levels of
uncertainty of a given application. The weight P is often chosen as the solution of the Discrete
Algebraic Riccati Equation (DARE) so that the MPC is equivalent to a linear quadratic regulator
when constraints are inactive (Chmielewski and Manousiouthakis 1996, Scokaert and Rawlings
1998). For many applications such a design works well. However in the particular spacecraft
rendezvous scenario considered here, it has a tendency to favour continuous levels of low-thrust,
which gives poor fuel economy if Option 2 is used to compensate for the MIB.

Alternative cost functions can be used to discourage long periods of low-level thrust (i.e. to
encourage short and sparsely located pulses of relatively large magnitude). In Rao and Rawlings
(2000), the properties of 1-norm and∞-norm cost functions are explored, and it is noted that very
careful tuning is necessary to avoid dead-beat (minimum time) or idle control. As an alternative
to the quadratic cost, Larsson et al. (2006) proposes a zone-based cost, penalising the 1-norm of
the thrust (since the magnitude of the force delivered is directly proportional to the propellant
consumption) and the 1-norm of deviations outside a given zone around a setpoint. A way to
represent this is with an additive slack variable on a constraint:

`(x,u) = ‖Qs‖1 + ‖Rλu‖1 (3a)

s.t. x ≤ b + s, −x ≤ b + s (3b)

s ≥ 0. (3c)

If the (whole) predicted trajectory is maintained within the target zone then no control activity
is necessary. This reduces unnecessary control actions, for example due to sensor noise and is
economical in terms of propellant consumption.

The recently considered l1 regularised (`asso) cost function for MPC (Ohlsson et al. 2010,
Nagahara and Quevedo 2011, Annergren et al. 2012, Gallieri and Maciejowski 2012, 2013) could
also be an appropriate tool for this application. This cost augments a classical quadratic stage
cost with a 1-norm regularisation term:

`(x,u) = ‖x‖2Q + ‖u‖2R + ‖Rλu‖1. (4)

The term ‖Rλu‖1 induces a level of temporal (and spatial in the case of multiple inputs) sparsity
in the control action. One way to perform the `1 norm minimisation is through introduction of
a slack variable s:

`(x,u) = ‖x‖2Q + ‖u‖2R + 1T s (5a)

s.t. s ≥ 0, s ≥ Rλu, s ≥ −Rλu. (5b)

When R > 0 and Rλ > 0 are diagonal, the problem can also be formed as:

`(x,u) = ‖x‖2Q + ‖u−‖2R + ‖u+‖2R + 1TRλu− + 1TRλu+ (6a)

s.t. u = u+ − u−, u− ≥ 0, u+ ≥ 0. (6b)

If the decision variables are u+ and u−, with net input u = u+−u− formed as a postprocessing
step then, unlike with form (5), the cost function in a condensed MPC will have a strictly
positive definite Hessian matrix if R > 0 and Q ≥ 0. Matrix Rλ only affects the linear term in
the quadratic program.
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Table 1. Prediction model parameters

Name Symbol Value Unit
Gravitational constant G 6.673× 10−11 Nm/kg2

Mass of mars M 6.4191× 1023 kg
Semimajor axis a0 3893.4× 103 m
Eccentricity e0 0 –

Gravitational parameter µ 4.2835× 1013 m3s−1

Orbit angular velocity ν̇ 8.5193× 10−4 rad s−1

Chaser mass mchs,0 1575 kg

x
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Target

Figure 2. Visualisation of relative co-ordinate system in target-centred reference frame
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Figure 3. Nominal reference trajectory (not to scale)

3 Control scenario

A relatively simple control scenario based on the final capture phase of the Mars Sample Return
(MSR) mission (Beaty et al. 2008, Mura 2007, Saponara et al. 2011, Hartley et al. 2012) is
investigated. The linearised relative dynamics of a controller chaser spacecraft with respect to
a passive target in a circular orbit are described by the Hill-Clohessey-Wiltshire equations (e.g.
Fehse (2003), Sidi (1997)). The parameters used are are given in Table 1.

The chaser’s position is described in a relative reference frame centred on the target with the
x axis aligned with the target velocity, z axis pointing towards the central body, and y axis
completing the right-handed set and normal to the orbital plane (Figure 2).

The chaser spacecraft starts at zero velocity, 200 m behind a passive target in a circular orbit
around Mars and 7.7 cm below the x-axis (positive z). The objective is to track a step increase
in velocity in the x direction to 0.2 ms−1 until the separation has reduced to 100 m and then
reduce to 0.1 ms−1 whilst keeping the position component in the y-axis near zero and in the
z-axis near 7.7 cm. Once a separation of ≤ 3 m is achieved, the remainder of the manœuvre
must be carried out passively. Hence, the value 7.7 cm comes from the distance the chaser will
travel in the z direction over 30 s when its velocity in the x direction is 0.1 ms−1 and no control
is applied. The manœuvre is summarised in Figure 3.

The prediction model in the controller omits the x position, since only the velocity ẋ is to
be regulated. A sampling time Ts = 1 s is used, and the continuous-time model is discretised
using a zero-order-hold, with inputs corresponding to thruster forces. For simplicity, no state or
terminal constraint is imposed (X = T , R5), and box constraints are imposed on the inputs:
U , {u : ‖u‖∞ ≤ umax}, where umax = 8 N. A fixed (receding) prediction horizon of N = 20
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is used. Navigation error due to sensor noise is modelled as additive, Gaussian and white, with
3σ values of [0.0247 m, 0.0247 m, 0.009 ms−1, 0.007 ms−1, 0.007 ms−1] on [y, z, ẋ, ẏ, ż] respectively.
As well as the MIB (selected at 0.544 N), thrust on each axis is subject to a multiplicative
uncertainty with σ = 0.01.

4 Controller tuning

To use the same numerical control weightings for all formulations would be insufficient to make
a valid comparison. Each of the cost functions and scenarios should be tuned to achieve some
metric of “best” performance in terms of high-level mission objectives, in their own way. Our
definition of “best” performance here is:

• minimising propellant consumption to reach target;
• the Euclidean length of the tracking error vector in y–z direction must be within a prespecified

tolerance (the specification used by Hartley et al. (2012) is 20 cm, but tighter tolerances leave
a margin for further uncertainty);

• the velocity tracking error must be ≤ 0.01 ms−1 after 300 s from the start of the scenario, and
remain as such until the step change in velocity set-point;

• the velocity tracking error must be 0.01 ms−1 at 3 m from the target; and
• the 3 m point from the target must be passed by the end of a 2000 s simulation.

Following from ideas presented in Kawai et al. (2007), Vega et al. (2008), Joelianto and Her-
nawan (2009), where stochastic optimisation is used to tune the MPC cost weightings to achieve
higher-level objectives (since these are not necessarily convex with respect to the tuning param-
eters), a Simulated Annealing algorithm (ASA) (Ingber 2012) is used via the Matlab MEX
interface ASAMIN to obtain control parameters satisfying these specifications (with violations
of requirements penalised linearly in the cost function, with a weight of 103). Other than lim-
iting the number of trials to 3500 (4500) and the number of acceptances to 350 (450), for
non-zone (zone) based controller cost functions other configuration parameters retain their de-
fault values. The matrices Q, R and Rλ are structured as Q = diag(Qyz, Qyz, Qẋ, Qẏż, Qẏż),
R = diag(Rx, Ryz, Ryz), Rλ = diag(Rλ,x, Rλ,yz, Rλ,yz), and the parameters Qyz, Qẋ, Qẏż, Rx,
Ryz, Rλ,x and Rλ,yz are chosen using ASA. The base-10 logarithms of these parameter are used
as the decision variable, to reflect that each element may be of a different order of magnitude.
This is constrained between −4 and 4, and initialised as 3 for Q• and −3 for R• and Rλ,•. For
zone-based costs, the elements (actual, not logarithm) of the vector b , [byz, byz, bẋ, bẏż, bẏż]T are
also decision variables, constrained between 10−4 and 0.2. For LQ and `asso controllers, Qẏż = 0
and FN (xN ) = xTNPxN where P solves the DARE. For `1-based controllers FN (xN ) = `(xN , 0).

Each cost evaluation within the Simulated Annealing algorithm is taken as the maximum
over four 2000 s simulations where the simulation model takes on each of the four extreme
points of a = a0±50 km and mchs = (1±0.15)mchs,0 as a measure to prevent “over-tuning” (the
prediction model retains nominal values) and to provide some practical, if not formal, robustness.
In these scenarios, the actual capture is not performed and the tracking continues until the end
of the simulation. The tracking accuracy over the full trajectory is used as a related measure.
This metric is considered over the full simulation rather than performing a single capture per
simulation (i.e. it is considered that the capture might happen at any point in the simulation).
In addition, a 30 s open-loop propagation is performed at every point at which the chaser is
closer than 75 m from the target. Any lateral (y − z) error of the propagated point from the
origin, greater than the desired capture tolerance (tolerances of 10 cm, 12.5 cm, 15 cm, 17.5 cm
and 20 cm were used) is then penalised with a weighting of 103 in the Simulated Annealing
cost function. If this measure were not taken, it would be necessary to dramatically increase the
number of simulations carried out within the Simulated Annealing process to prevent over-tuning
to the specific disturbance sequence used. This would make it computationally intractable. Fuel
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Table 2. Number of slacks and decision variables per time

step

Cost States Inputs Slacks

Linear quadratic (LQ) 5 3 0
`asso (LASSO)a 5 6 0

`1 (L1) 5 6 5
`1 with zone (L1Z) 5 6 5

aAssuming inputs are split into positive and negative
components where needed.

Table 3. ∆V usage

Tolerance 10 cm 12.5 cm 15 cm 17.5 cm 20 cm

LQR MIB0 0.91 0.88 0.87 0.86 0.86
LQR MIB1 0.75 0.73 0.72 0.71 0.71
LQR MIB2 3.23 3.23 3.23 3.23 3.24
LQR MIB3 0.91 0.88 0.87 0.87 0.86
LASSO MIB0 0.75 0.73 0.70 0.70 0.70
LASSO MIB1 0.74 0.73 0.72 0.70 0.70
LASSO MIB2 0.91 0.85 0.71 0.74 0.72
LASSO MIB3 0.76 0.72 0.71 0.74 0.71
LP MIB0 2.31 4.90 9.82 9.47 8.49
LP MIB1 8.72 4.69 8.72 1.77 8.58
LP MIB2 7.43 4.82 5.05 4.79 8.70
LP MIB3 4.62 8.52 4.63 8.53 8.52
LPZ MIB0 0.83 0.79 0.73 0.70 0.70
LPZ MIB1 0.87 0.79 0.70 0.70 0.70
LPZ MIB2 1.71 0.80 0.76 0.70 0.70
LPZ MIB3 0.81 0.78 0.72 0.70 0.70

usage is only counted until the point −3 m from the target is reached.
Due to the total number of simulations run, this method takes a substantial time (days) to

run, and was carried out on a multi-node compute stack. The primary focus here is neither to
advocate nor investigate the efficiency of tuning to meet high level objectives using this particular
algorithm over any other, rather simply to explore the degrees of freedom of the different cost
functions in an automated way based on the premise that such methods should be more effective
than manual tuning, due to the increased number of possible trials.

Since N = 20, and the large number of simulations means that fast QP solutions are desirable,
an uncondensed predictive control form (Rao et al. 1998) is used and a custom interior point
QP solver for the predictive controller within the simulations is generated using CVXGEN
(Mattingley and Boyd 2012). The numbers of states, slack variables and inputs required for each
class of cost function considered are presented in Table 2.

5 Results

Some metrics pertaining to the worst-case closed loop results from the trials used in the Simulated
annealing algorithm are presented in Tables 3, 4 and 5. ∆V (Table 3) represents the sum of the
absolute commanded velocity changes, the control density (Table 4) is the fraction of non-zero
elements in [uT+,u

T
−]. The density should usually be less than 0.5, except when differential thrust

is used to deliver commands from the MPC that are lower than the MIB. The capture accuracy
in Table 5 represents the worst case Euclidean deviation from the origin in the lateral (z and y)
directions, following a 30 s open-loop propagation from each point along the trajectory where
the x position is closer than 75 m from the target. Results in brackets indicate that the tuning
objective could not be achieved. From the tabulated results, the following observations can be
made:

• The pure `1 (LP) cost is uncompetitive in terms of ∆V usage in all scenarios examined. The
`asso and `1-zone based MPC controllers use similar or less ∆V to the basic constrained LQR
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Table 4. Control density

Tolerance 10 cm 12.5 cm 15 cm 17.5 cm 20 cm

LQR MIB0 0.48 0.48 0.48 0.48 0.48
LQR MIB1 0.12 0.11 0.11 0.11 0.11
LQR MIB2 0.83 0.83 0.85 0.85 0.83
LQR MIB3 0.48 0.48 0.48 0.48 0.48
LASSO MIB0 0.10 0.11 0.07 0.04 0.08
LASSO MIB1 0.11 0.10 0.11 0.05 0.03
LASSO MIB2 0.11 0.08 0.04 0.04 0.03
LASSO MIB3 0.10 0.09 0.08 0.14 0.10
LP MIB0 0.13 0.21 0.46 0.41 0.37
LP MIB1 0.35 0.17 0.35 0.05 0.34
LP MIB2 0.31 0.21 0.23 0.20 0.40
LP MIB3 0.17 0.37 0.18 0.37 0.37
LPZ MIB0 0.04 0.04 0.04 0.04 0.03
LPZ MIB1 0.04 0.04 0.03 0.03 0.03
LPZ MIB2 0.10 0.04 0.04 0.03 0.03
LPZ MIB3 0.04 0.04 0.04 0.03 0.03

Table 5. Capture accuracy

Tolerance 10 cm 12.5 cm 15 cm 17.5 cm 20 cm

LQR MIB0 0.100 0.124 0.137 0.148 0.162
LQR MIB1 0.100 0.125 0.145 0.173 0.170
LQR MIB2 0.064 0.062 0.064 0.066 0.062
LQR MIB3 0.100 0.123 0.137 0.149 0.165
LASSO MIB0 0.100 0.125 0.146 0.175 0.188
LASSO MIB1 0.100 0.121 0.150 0.149 0.175
LASSO MIB2 0.097 0.124 0.148 0.158 0.188
LASSO MIB3 0.100 0.125 0.145 0.139 0.198
LP MIB0 (0.184) (0.146) (0.184) (0.186) 0.184
LP MIB1 (0.182) (0.162) (0.182) 0.169 0.184
LP MIB2 (0.133) (0.167) (0.163) 0.146 0.185
LP MIB3 (0.182) (0.183) 0.134 (0.182) 0.183
LPZ MIB0 (0.118) 0.121 0.150 0.164 0.161
LPZ MIB1 (0.119) 0.125 0.146 0.168 0.168
LPZ MIB2 (0.118) 0.125 0.147 0.168 0.175
LPZ MIB3 (0.120) 0.125 0.144 0.154 0.186

cost function. In the MIB2 case (differential thrust for low values), `asso and `1-zone MPC
have substantially lower ∆V usage. The ∆V usage for `asso MPC and `1-zone MPC is similar
except for the tightest tolerance.

• In terms of control density, `asso MPC and `1-zone MPC exhibits substantially lower control
density, even when differential thrust is used for low thrust values. In contrast, the LQ MPC
uses a low, but non-zero level of thrust for a substantial proportion of the trajectory. `1-zone
gives a slightly sparser solution than `asso when the capture tolerance is tighter. With MIB1,
where thresholding is used to forcibly induce sparsity, this gives the best sparsity for LQR-
based MPC. It has little effect on `1-zone MPC but has an adverse effect on sparsity for `asso.
For the less tight capture tolerances, the `asso MPC gives sparser solutions than the LQ MPC
even when the former uses MIB2 (differential thrust) and the latter uses MIB1 (thresholding
to zero).

• The optimisation-based tuning was unable to find a suitable tuning for pure `1-based MPC
to meet capture tolerances for 10 cm, and 12.5 cm capture accuracy. Similarly, it was unable
to find parameters for the `1-zone based MPC to achieve the tightest 10 cm tolerance. `asso

and constrained LQR MPC were able to meet these tolerances. This does not guarantee that
suitable parameters do not exist, but demonstrates that finding them is sufficiently difficult
that the Simulated Annealing algorithm was unable to do so.

Figures 4 and 5 depict the trajectories for LQ, LASSO and L1Z control with the tunings
obtained for MIB 0 with 12.5 cm capture tolerance (as an ideal baseline) and the tunings obtained
for MIB 2 with the same tolerance, performed using the nominal scenario where plant and model
match (but sensor noise and thrust uncertainty are still present). As with `1 zone control, the
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Figure 4. Example closed-loop state trajectories for nominal scenario
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Figure 5. Example closed-loop input trajectories for nominal scenario
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Figure 6. Frequency spectrum of error in y − z direction

Table 6. Tuning parameters for 12.5 cm capture tolerance

Qyz Qẋ Qẏż Rx Ryz Rλ,x Rλ,yz byz bẋ bẏż

LQR MIB0 1.983 299.078 – 0.5942 0.4101 – – – – –
LQR MIB1 22.576 206.721 – 0.0728 1.6408 – – – – –
LQR MIB2 17.399 128.859 – 0.2445 0.0924 – – – – –
LQR MIB3 2.005 304.686 – 0.6076 0.4150 – – – – –
LASSO MIB0 26.860 1096.465 – 0.0230 0.3100 0.4734 2.4157 – – –
LASSO MIB1 855.990 6298.239 – 1.3363 48.0799 0.7679 5.3826 – – –
LASSO MIB2 0.474 331.488 – 0.0001 0.0005 0.1530 0.0236 – – –
LASSO MIB3 2.549 1264.017 – 0.0005 0.0159 0.5822 0.2026 – – –
LPZ MIB0 207.273 45.040 2.4167 – – 0.0370 1.0661 0.1035 0.0180 0.1970
LPZ MIB1 0.147 0.165 0.0072 – – 0.0007 0.0076 0.0900 0.0101 0.1976
LPZ MIB2 2681.102 3824.480 6.1223 – – 16.3400 7.1787 0.1027 0.0176 0.1775
LPZ MIB3 120.935 286.031 0.0155 – – 1.2174 5.8839 0.0900 0.0148 0.1316

`asso controls the position in the z direction with sparse pulses rather than a continuous low-
level thrust. Similarly, velocity control in the x direction is sparser. For both options shown,
the velocity trajectory more closely resembles that of the `1 zone control than the LQ, with
acceleration performed with a few large pulses. However the lateral error trajectory is slightly
smoother as evidenced by Figure 6 which shows the fast fourier transform (Figure 6) of the
lateral error amplitude, evaluated as the average of a moving 64 element block multiplied by a
Kaiser window. The response drops off slightly faster with `asso than with the `1-zone (L1box)
control. (Note that the pure LQ control has unfavourable sparsity and/or ∆V use for these
scenarios.)

Finally, a Monte-Carlo simulation is carried out to evaluate the variability in performance for
the obtained tunings for a capture tolerance of 12.5 cm for LQ MPC, `asso MPC and `1 zone MPC
with MIB 2. (This is the tightest tolerance for which a compliant tuning was found for all of these
three classes of cost function.) The random number seed for navigation and thrust uncertainty is
varied, and offsets in orbital radius (equal to semimajor axis for circular orbits), chaser mass and
additive perturbations to initial conditions are sampled from independent uniform distributions
with bounds shown in Table 7.

The numerical values of the tuning parameters for a tolerance of 12.5 cm are presented in
Table 6 and the plots of the final captures are shown in Figure 7. Key observations are that
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Table 7. Simulated plant model parameter error distributions

Variable Description Minimum value Maximum value

∆x Initial rel. position err. -1 m 1 m
∆y Initial rel. position err. -1 m 1 m
∆z Initial rel. position err. -1 m 1 m
∆ẋ Initial rel. velocity err. -5 cm s−1 5 cm s−1

∆ẏ Initial rel. velocity err. -5 cm s−1 5 cm s−1

∆ż Initial rel. velocity err. -5 cm s−1 5 cm s−1

∆a Orbital semimajor axis err. -50 km 50 km
∆mchs Chaser mass err. -236 kg 236 kg
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Figure 7. Capture accuracy for tuning with 12.5 cm capture tolerance

MIB1 (thresholding inputs) appears to lead to more bias in the LQ and `asso MPC than the
other options, but has little effect on the `1 zone-based MPC. Also, with MIB0, MIB2 and MIB3,
both the LQ and `asso MPC satisfy capture tolerance for each of the 2000 simulations. However,
the `1 zone-based MPC implementation behaves less reliably. It is not clear whether this is an
inherent feature of the cost function, or whether the method chosen for tuning is simply less well
suited to this structure of cost function.

6 Conclusions

The key observation of this paper is that when differential thrust is used to circumvent the
non-convex minimum impulse bit, unlike with a standard LQ cost function, it is possible to
find a set of tuning parameters for this application such that a `asso stage cost function can
offer similar performance in terms of propellant consumption, sparsity of control action and
control accuracy to the zone-control based `1 cost function advocated by Larsson et al. (2006).
With `asso, there is no need to explicitly define the limits of the target zone, thus avoiding an
additional set of tuning parameters, and an additional set of slack variables which would increase
the computational burden of the online optimisation. In other words, the `asso cost requires fewer
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decision variables for tuning and online solution. Whilst for the given tunings, the `asso cost gives
a slightly higher “steady state” tracking error, this is offset by a slightly quicker roll off of the
spectral content of the error with increasing frequency. As tolerances become tighter, the tuning
of the `asso cost causes a slight increase in ∆V usage, but is able to reliably achieve 10 cm
capture accuracy. In contrast, a suitable tuning was not achieved for `1 or `1-zone MPC. As a
final potential advantage, as with standard linear quadratic MPC, the MPC with `asso cost can
be formed in a strictly positive definite way so that the results of Richter et al. (2012) could be
invoked during the certification process of a controller. Further investigation would be needed
to determine whether the `asso cost function could offer any further advantages when combining
attitude and translational control with the same set of actuators and how the controllers respond
to larger initial errors.
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