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INVESTIGATING THE CONSEQUENCES OF CHROMOSOME ABNORMALITIES ARISING 

DURING PRE-IMPLANTATION DEVELOPMENT OF THE MOUSE 

SUMMARY 

The majority of human pre-implantation embryos created through in vitro fertilization (IVF) 

are mosaic as they are constituted of a mixture of diploid and aneuploid cells. Chromosome 

abnormalities are widely believed to contribute towards the relatively low success rates of 

IVF treatment. Consequently major efforts have been undertaken to develop effective tools 

to aid the selection of embryos with minimal abnormalities with the aim of improving 

clinical outcomes. However, the ultimate fate of mosaic embryos is not known. Human 

embryo research is limited by practical and ethical constraints, and directly relevant animal 

studies are sparse. 

To circumvent many of these limitations, a mouse model for pre-implantation chromosome 

mosaicism was developed. Acute chromosome segregation errors were induced in cleavage 

stage mouse blastomeres by bypassing the spindle assembly checkpoint (SAC). This model 

was used to investigate the fate of abnormal cells within the developing pre-implantation 

embryo, and the ultimate developmental outcome of mosaic embryos. 

Time-lapse imaging of pre-implantation development revealed that cells with chromosome 

abnormalities were progressively depleted during blastocyst maturation; inner cell mass 

(ICM) cells exhibited higher rates of apoptosis, while in the trophectoderm (TE) lineage 

effects on the cell-cycle predominated. Depletion continued throughout post-implantation 

development. Significantly, the presence of a critical number of control blastomeres within 

the embryo could rescue the early post-implantation lethality that occurred in embryos 

containing high rates of abnormalities. Thus it was demonstrated that mosaic embryos can 

achieve full developmental potential and that abnormal cells are progressively depleted as 

development proceeds.  

Finally, the mechanisms responsible for eliminating the abnormal cells from the embryo 

were investigated, revealing that embryos containing chromosome abnormalities may have 

increased metabolic requirements which could contribute to their clonal depletion; a 

feature previously characterised in aneuploid cells in the context of cancer research.  

Helen Bolton - Summary 
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INTRODUCTION 

 

1.1 BACKGROUND 

Aneuploidy is defined as the presence of too many or too few chromosomes and is an 

important cause of human disease; most notably cancer, reproductive health problems and 

developmental disabilities.  

Aneuploidy can refer to the chromosome status of a single cell, or to the genetic 

constitution of a population of cells such as the whole organism, specific tissues or cells in 

culture. The ploidy status of cell populations can be further categorized as either uniform or 

mosaic. In uniform aneuploidy, every cell within a single population shares an identical 

chromosome constitution. In contrast, mosaicism describes a population of cells containing 

clones with differing underlying chromosome constitutions. 

A wide range of reproductive health problems can be caused by aneuploidy including 

subfertility, miscarriage, confined placental mosaicism (CPM) and the birth of an abnormal 

child. Recent technological advances in aneuploidy assessment have resulted in the 

increased availability of rapid diagnostic tests, and also assessment of the chromosome 

status at higher resolutions than could previously be achieved with the classic techniques of 

cytogenetic karyotyping and fluorescent in-situ hybridisation (FISH). Although these 

advances have led to valuable improvements in diagnostic accuracy and clinical care, they 

have also resulted in more embryos being diagnosed with abnormalities of uncertain 

significance.  Chromosome mosaicism is one such situation that is clinically challenging, as 

the significance of mosaicism is often uncertain. This can lead to difficult decisions for 

couples and clinicians, and potentially unnecessary interventions which in some cases can 

result in harm. 

 

1.2 EARLY PREGNANCY LOSS IN HUMANS: THE ROLE OF ANEUPLOIDY 

Humans are relatively inefficient at reproduction. Even in the most optimal circumstances, 

the maximal chance of a clinically recognizable pregnancy is estimated to be 30-40% per 
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ovulatory cycle (Zinaman et al., 1996). This inefficiency is unlikely to be due to a failure to 

conceive; rather primarily due to a high rate of preclinical pregnancy loss, in which the 

conceptus fails to develop before the woman has any physical awareness that she may have 

been pregnant (Macklon et al., 2002). The first evidence that early pregnancy failure may be 

a frequent occurrence arose from studies on hysterectomy specimens acquired from fertile, 

ovulatory women (Hertig et al., 1956). Meticulous histological evaluation of the uterine 

contents was undertaken on specimens from women deemed to have the highest possible 

chance of conception just prior to their surgery. Clinical evidence of pregnancy was only 

apparent in approximately one-third of cases, and of these a further one-third were found 

to be abnormal. This provided the first direct evidence that early pregnancy failure was a 

frequent occurrence following human conception. The authors concluded that the failure to 

find early evidence of pregnancy in the majority of specimens could be a result of a failure 

of fertilization, or the early arrest of embryo development following fertilization.  Further 

evidence for pre-clinical pregnancy losses became apparent following the introduction of 

biochemical assays for early pregnancy. The most widely utilized marker is human chorionic 

gonadotrophin (hCG), a hormone secreted by the trophoblast cells that is detectable in 

maternal serum or urine from the time of implantation onwards. Using hCG as a 

biochemical marker for pregnancy, it became possible to detect ‘occult’ pregnancy losses, 

occurring in up to 30% of detected pregnancies (Wilcox et al., 1988). 

Collating all the available evidence together on early pregnancy loss, from studies on 

hysterectomy specimens, uterine lavage, biochemical assays and clinical miscarriage data, it 

has been proposed that in total approximately 70% of conceptions fail prior to birth: 30% 

prior to implantation, 30% following implantation but prior to delayed menstruation (ie pre-

clinical), and 10% as clinical miscarriages (Macklon et al., 2002).   

What could account for the high rate of early pregnancy loss in humans? This challenging 

question is almost impossible to address experimentally, and has consequently been 

described as the ‘black box’ of early pregnancy loss (Macklon et al., 2002). However with the 

advent of IVF and advances in cytogenetic techniques, the available evidence points to 

genetic abnormalities of the conceptus, such as aneuploidy, as the most likely cause of the 

majority of early pregnancy failures.  



Chapter I  INTRODUCTION 

3 
 

The potential importance of aneuploidy as the cause of early pregnancy loss was first 

recognised following the study of spontaneous miscarriage specimens. Cytogenetic analyses 

revealed that >50% of first trimester miscarriages are caused by aneuploidy (Hassold et al., 

1980, Fritz et al., 2001). These figures may even under-represent the true contribution of 

aneuploidy to first trimester pregnancy loss; karyotyping tissue obtained from failed 

pregnancies is technically difficult and can fail to yield a result.  

Further evidence for the potential role of aneuploidy in early pregnancy loss began to arise 

following the success of IVF in 1978 (Steptoe and Edwards, 1978); prior to this the 

chromosome status of pre-implantation embryos was completely unknown. The given 

prevalence rates of aneuploidy affecting pre-implantation embryos vary markedly between 

different studies due to wide variations in technical and experimental approaches, and 

study design. However the majority of studies conclude that aneuploidy in human pre-

implantation embryos is a frequent occurrence, with diploid-aneuploid mosaicism occurring 

in 73% of embryos, a figure attained from the most recent systematic review of the 

literature (van Echten-Arends et al., 2011). More recent studies have utilized advanced 

array-based karyotyping techniques, enabling a more comprehensive evaluation of the 

chromosome constitution of IVF embryos to be undertaken (Vanneste et al., 2009, Northrop 

et al., 2010, Schoolcraft et al., 2010, Johnson et al., 2010, Rabinowitz et al., 2012). One such 

study of 23 cleavage stage embryos from young, healthy couples found that only 9% of 

embryos had a normal chromosome constitution in all of the blastomeres (Vanneste et al., 

2009). As the study of in vivo conceived human embryos is not possible, the given 

aneuploidy rates in human pre-implantation embryos are always in the context of IVF. How 

closely these rates reflect the situation in vivo is not known. 

In contrast to the pre-implantation embryo, aneuploidy in viable on-going pregnancies is 

infrequent, even in the first trimester. The proportion of viable pregnancies affected by 

aneuploidy drops from an estimated 4.2% at 8-weeks gestation, down to 2.4% at 12 weeks; 

figures calculated from a systematic review of five published studies evaluating the 

incidence of cytogenetic abnormalities in spontaneous pregnancy failures (Hook, 1981a). 

When tested by placental biopsy at the end of the first trimester, aneuploidy is detected in 

1-2% of all samples (Ledbetter et al., 1992, Hahnemann and Vejerslev, 1997). However, in 

the majority of these cases the aneuploidy is constricted to the placental tissue and the 
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fetus has a normal chromosome constitution. This finding is known as confined placental 

mosaicism (CPM), and usually does not result in major adverse effect on the outcome of the 

pregnancy or for the future child (Kalousek and Vekemans, 1996). As gestation proceeds, 

the prevalence of aneuploidy continues to decrease further, affecting an estimated 1.1% of 

pregnancies at 16 weeks and 0.8% at 20 weeks (Hook, 1981a). Finally, a cytogenetic survey 

of 11,680 newborn infants detected aneuploidy in only 0.6% of all live births (Jacobs et al., 

1974).   

Thus, observational evidence demonstrates a dramatic decline in the prevalence of 

aneuploidy as gestation progresses, with the steepest drop occurring early on during the 

pre- and early post-implantation stages of embryo development. When viewed together 

with the high rates of pre-clinical pregnancy loss, it is highly probable that aneuploidy is 

responsible for this ‘black box’ of human pregnancy loss (Figure 1.1). 

 

1.3 ANEUPLOIDY IN THE HUMAN PRE-IMPLANTATION EMBRYO 

Soon after the establishment of IVF as treatment for human infertility it became apparent 

that the high success rates of fertilization and in vitro culture were countered by the low 

rates of established viable pregnancies following embryo transfer (Steptoe and Edwards, 

1978). In view of the high rates of aneuploidy identified in first trimester miscarriages it was 

speculated that aneuploidy could be a major contributory cause of IVF failure, impairing 

embryo development beyond the pre-implantation stages. 

Early investigations into this hypothesis were hampered by technical challenges of 

karyotyping blastomeres. Classical cytogenetic approaches rarely yielded results, and the 

accurate visualisation of chromosomes within a single defined cell remains a formidable 

task. However in 1983 one of the first successful studies evaluating the chromosome status 

of early human embryos was published (Angell et al., 1983). This study attempted to 

karyotype 8-cell stage human embryos. Full karyotyping was achieved in only three 

embryos, however just one of these embryos contained a normal complement of 

chromosomes.  Further, the nature of the aneuploidy was unusual and not compatible with 

aneuploidies ever detected in clinical pregnancies, miscarriages or live births. By this time,  



Figure 1.1 The human pregnancy loss and aneuploidy icebergs (adapted from Macklon et al. 

2002). Approximately 30% of conceptions result in viable on-going pregnancies and live-births. 

The majority fail during early pregnancy, usually prior to a clinically recognised pregnancy and 

are therefore unrevealed. In parallel with the pregnancy loss iceberg, the prevalence of 

aneuploidy complicating pregnancies decreases with on-going gestation. In the pre-implantation 

stages of development chromosome mosaicism has been reported in up to 90% of embryos; 

maximal at the cleavage stages and declining thereafter. Less than 1% of live births are 

complicated by aneuploidy. There is virtually no data on the prevalence of aneuploidy in peri- and 

early post-implantation stages of pregnancy, except that >50% of spontaneous miscarriages are 

complicated by aneuploidy, and 1-2% of chorionic villous samples tested at the end of the first 

trimester are mosaic aneuploid. It is presumed that the prevalence decreases dramatically during 

this ‘black box’ stage of pre-clinical pregnancy loss.  
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over 100 babies had been born following IVF treatment without any reports of chromosome 

abnormalities. This led the authors to conclude that pre-implantation aneuploidy was the 

most likely cause of IVF failure following embryo transfer. 

Many other studies soon followed characterising the chromosome status of human IVF 

embryos, and continue to be published as improved and alternative methods for detecting 

aneuploidy are developed: cytogenetics (Zenzes and Casper, 1992, Zenzes et al., 1992, 

Clouston et al., 1997, Clouston et al., 2002), FISH (Munne et al., 1993, Delhanty et al., 1993, 

Harper et al., 1995, Harrison et al., 2000, Magli et al., 2000), comparative genomic 

hybridisation (CGH) (Voullaire et al., 2000, Wells and Delhanty, 2000), array-based CGH 

(Vanneste et al., 2009, Northrop et al., 2010, Schoolcraft et al., 2010, Johnson et al., 2010, 

Rabinowitz et al., 2012). FISH quickly replaced conventional karyotyping as the investigation 

of choice, bypassing some of the technical obstacles associated with karyotyping. In contrast 

to karyotyping, FISH yielded results in the vast majority of cells tested (>90%), and did not 

require the cell to be arrested in metaphase. One major limitation associated with FISH is 

the restriction on the number of chromosomes that can be evaluated at any one time. 

Consequently studies utilizing FISH were largely limited to the evaluation of chromosomes 

13, 18, 21, X and Y; with the rationale that these were the only chromosomes potentially 

responsible for human disease. More recent improvements in FISH technology have 

resulted in the potential to evaluate greater numbers of chromosomes simultaneously 

(Thornhill et al., 2005, Baart et al., 2006, Baart et al., 2007b, Munne et al., 2010). However 

increasing the number of FISH probes is associated with a decrease in the diagnostic 

accuracy of the test; this may result in an unacceptably high error rate when utilized for 

single cell diagnosis such as for pre-implantation aneuploidy detection (Scriven and Bossuyt, 

2010).  

More recently, single-cell array-based comprehensive chromosome screening technologies 

have been developed and used to evaluate aneuploidy in pre-implantation embryos (Harper 

and Harton, 2010). These technologies include array-based comparative genome 

hybridisation (CGH) and single nucleotide polymorphism (SNP) arrays and enable all 

chromosomes to be evaluated at high resolution (Treff and Scott, 2012). In CGH, DNA from a 

normal control genome and from the test sample are amplified separately using whole 

genome amplification (WGA) technologies, with each sample differentially labelled with a 
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fluorochrome. Both samples are then mixed and hybridised onto a bacterial artificial 

chromosome (BAC) DNA chip. Automated analysis of fluorescence then determines the ratio 

of each region of the chromosome present in the test sample compared to the normal 

control genome and will thus detect aneuploidies and regional chromosome losses or gains. 

Polyploidies and balanced translocations or inversions cannot be detected. SNP-array 

technologies also involve WGA however the SNP-array probes evaluate the genome at an 

even higher resolution than CGH. Both technologies offer the potential for rapid, 

comprehensive, high resolution molecular karyotyping that may be more accurate than FISH 

(Treff et al., 2010). 

Whatever technical approach used, all studies concur with the earliest reports, that 

aneuploidy is a frequent finding in human cleavage stage embryos, with the most commonly 

reported pattern being diploid-aneuploid mosaicism. Mosaicism was first reported in human 

embryos in 1993 (Delhanty et al., 1993, Munne et al., 1993). Since then numerous studies 

have characterised the patterns of mosaicism and there is almost unequivocal agreement 

that mosaicism is the most commonly occurring chromosome constitution in human IVF 

embryos (van Echten-Arends et al., 2011). Figure 1.2 summarises the classification of 

chromosome constitutions in human pre-implantation embryos. 

Reported prevalence rates for mosaicism have ranged from 15% (Harper et al., 1995) to 

more than 90% (Vanneste et al., 2009). The wide variation between studies in their reported 

mosaicism rates can be understood by considering the differing contexts of each study. 

There are multiple variables that can affect the measured rate of aneuploidy, and these 

differ enormously between individual studies and therefore impact upon their measured 

prevalence of mosaicism. Table 1.1 lists these variables and summarises their potential 

influence on the evaluation of aneuploidy rates. Thus, it is not representative to define an 

overall rate of aneuploidy or mosaicism in the pre-implantation embryo, and as such 

aneuploidy rates should not be declared without caveat.  

  



Figure 1.2. Classification of pre-implantation embryos according to their 

chromosome constitution. (A) Euploid embryos occur when all blastomeres contain a 

normal underlying chromosome constitution (B) Uniform aneuploid embryos contain a 

single identical abnormality in their chromosome status, with the abnormality affecting all 

blastomeres. This abnormality arises secondary to an error of meiosis in one of the 

gametes, usually the oocyte. (C) Mosaic aneuploidy occurs when the embryo contains 

more than one clone of blastomeres with differing chromosome constitutions, and arises 

secondary to an error during mitosis, post fertilization. The degree of mosaicism can be 

highly variable, and in some cases there are no normal cells. Aneuploidy is the most 

common form of chromosome abnormality, but polyploidy and haploidy can also occur, 

although less frequently. 

 
Colour scheme: blue represents normal chromosome constitution; red & purple represent differing 

aneuploidies 
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  Potential increase in 

aneuploidy rate 

Potential decrease in 

aneuploidy rate 

Additional comments 

Embryo status Developmental 

history & 

morphology 

Abnormal or arrested 

embryo 

Normal developing 

embryo 

The scarcity of human embryos 

often results in over-representation 

of poor quality discarded embryos 

Timing of analysis Cleavage stage embryos Blastocysts Highly dependent upon how 

aneuploidy is reported. Cleavage 

stage embryos tend to have a higher 

proportion of abnormal cells, while 

blastocysts have a lower proportion, 

but more whole embryos are 

affected 

Preservation 

status 

Thawed following 

cryopreservation 

Fresh embryos With significant improvements in 

technology, this may be less 

applicable to more recent studies 

Patient 

characteristics 

Parental age Increased maternal age Younger maternal age Uniform aneuploidies strongly 

related to maternal age, mosaicism 

less so. 

Indication for 

assisted 

reproduction 

Male factor & ICSI, 

recurrent implantation 

failure, known 

chromosome translocation 

carrier 

Not subfertile (for 

example requiring PGD 

for single gene disorder) 

The most variable parameter and 

difficult to control for in studies 

without significantly limiting the 

number of embryos available for 

analysis 

Test 

characteristics 

Method of 

analysis & number 

of chromosomes 

analysed 

High resolution tests that 

assess the full 

complement  of 

chromosomes (e.g. array-

based assays) 

Fewer chromosomes 

assessed (e.g. FISH)  

First generation tests such as 

interphase FISH were limited to the 

assessment of only a few 

chromosomes. However, the 

decreased accuracy of FISH 

compared to newer array-based 

techniques may slightly offset the 

potential for under-diagnosis of 

aneuploidy 

Number of cells 

assessed 

Highly dependent upon true chromosome constitution 

of whole embryo 

  

The greater the number of cells 

assessed per embryo, the greater 

the accuracy of the test – i.e. results 

representative of the true 

constitution of the embryo 

Blastomere 

characteristics 

Not known Not known Evaluation of polar body, pluripotent 

cleavage stage blastomeres and 

trophectoderm cells have all been 

used to represent the embryo status  

Definitions  Classification of 

mosaicism 

- Less strict criteria for 

abnormality 

Different definitions of mosaicism in 

the literature: some researchers 

require a minimum of half assessed 

cells to contain errors for the embryo 

to be classified as abnormal 

Table 1.1  
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1.3.1 How does chromosome mosaicism arise? 

The majority of mosaic embryos contain a mixture of diploid and aneuploid cells, and 

therefore are likely to arise secondary to an error occurring during mitosis, during the first 

few cleavage divisions following post-fertilization (van Echten-Arends et al., 2011). Uniform 

aneuploidy in embryos arises secondary to errors of meiosis and this phenomenon is 

strongly related to advanced maternal age (Hook, 1981b). In contrast, chromosome 

mosaicism is independent of maternal age, with no evidence of lower rates occurring in 

embryos from younger women (Baart et al., 2006, Vanneste et al., 2009). Why early stage 

embryos are error prone, and whether the IVF embryo is representative of the in vivo 

embryo, are important questions that remain to be answered. 

The chaotic nature of the abnormalities observed in mosaic embryos has led to speculation 

that they may originate as a direct result of deficiencies in cell-cycle checkpoints during the 

first few cleavages (Delhanty and Handyside, 1995, Harrison et al., 2000, Ambartsumyam 

and Clarke, 2008, van Echten-Arends et al., 2011, Mantikou et al., 2012). If so, these 

deficiencies may be related to the timing of zygotic genome activation (ZGA). ZGA occurs at 

the 4- to 8-cell stage in the human embryo (Braude et al., 1988). Prior to ZGA the embryo is 

solely dependent upon maternally derived transcripts and proteins that were stored in the 

oocyte. Therefore, in theory, the reserves of the cell-cycle checkpoint pathway components 

will be maximal during the first cleavage and decrease in subsequent cleavages until the 

onset of genome activation, when the embryo can replenish the transcripts and proteins. 

Any deficiencies in maternal transcripts or proteins required for effective checkpoint 

function will risk the occurrence of genomic errors arising in daughter blastomeres until the 

onset of embryonic genome activation. In addition, further confounding factors could 

exacerbate maternal deficiencies such as IVF treatment-related effects including ovarian 

stimulation regimes (Baart et al., 2007a, Munne et al., 2007). In the case of the mouse, pre-

implantation embryos cultured in vitro have been shown to exhibit higher aneuploidy rates 

than those in vivo derived embryos (Bean et al., 2002, Sabhnani et al., 2011). These findings 

suggest that in some instances culture conditions could influence the prevalence of 

aneuploidy.  
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The hypothesis that delayed ZGA may lead to deficiencies in cell-cycle checkpoint 

components offers a plausible explanation for how mosaicism may arise, but has not been 

tested directly and thus remains speculative. Does the comparison of aneuploidy rates in 

the embryos of other mammals add any support to this hypothesis? The timing of major 

ZGA varies between different species, occurring at the 2-cell stage in the mouse (Latham 

and Schultz, 2001), the 4- to 8-cell stage in the rabbit and cow (Manes, 1973, Schultz and 

Heyner, 1992, Brunet-Simon et al., 2001) and the 8- to 16-cell stage in the pig (Schultz and 

Heyner, 1992). Thus the mouse embryo undergoes the earliest ZGA, and aneuploidy rates in 

mouse pre-implantation embryos are reported as low, typically between 1 and 4% (Bond 

and Chandley, 1983, Glenister et al., 1987, Liu et al., 2008). Rabbit and cow embryos 

undergo ZGA at a similar stage to human embryos. Reported rates in rabbits range between 

54.7 and 56% in cleavage stage blastomeres (Shi et al., 2004, Curlej et al., 2010), and in cows 

the rates range between 15% and 42% in cleavage stage embryos and blastocysts 

(Yoshizawa et al., 1999, Viuff et al., 2000). In pig embryos, aneuploidy rates range between 

14.3% and 74% at the cleavage stage and between 4.7% and 62% at the blastocyst stage 

(Hornak et al., 2009, Hornak et al., 2012). The rates of abnormalities detailed above appear 

to show that species in which ZGA occurs later than the 2-cell stage tend to be susceptible 

to higher rates of aneuploidy. However, on more detailed consideration of these and other 

studies, this association is less conclusive. As discussed in section 1.3 above, the accurate 

assessment of chromosome status in human pre-implantation embryos is technically 

challenging, and these challenges also apply to all other mammalian embryos. Further, 

making direct comparisons of given aneuploidy rates between different studies is misleading 

as there are multiple different factors that can affect the outcome including the 

developmental stage and morphology of the embryo, the number of cells evaluated and the 

experimental techniques and classifications used to measure aneuploidy rates. These 

factors also influence given rates in animal studies, and with additional variables including 

the availability of in vivo conceived and cultured embryos. Finally, there are very few 

published animal studies that systematically characterise aneuploidy rates in embryos and 

thus the available data for direct comparison is sparse. Indeed the non-murine studies cited 

above used a range of different techniques (FISH, CGH, metaphase spreads) on in vivo or in 

vitro derived embryos at developmental stages ranging from the early cleavage stage 

through to blastocysts (Yoshizawa et al., 1999, Viuff et al., 2000, Shi et al., 2004, Curlej et al., 
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2010). In the mouse, there are surprisingly few published studies that specifically evaluate 

aneuploidy in the pre-implantation embryo, given its widespread use as a model system for 

mammalian development. In addition, the frequently cited studies giving the low rates of 

aneuploidy were limited to embryos prior to the 8- cell stage and all used karyotyping to 

assess chromosome number (Bond and Chandley, 1983, Glenister et al., 1987, Liu et al., 

2008). More recently, aneuploidy rates of 25% were detected in a group of 44 wild-type 

control mouse blastocysts evaluated by spectral karyotyping (SKY) (Lightfoot et al., 2006) 

and of 31% (20 of 64) in blastocysts in a study that used 2-probe FISH (Sabhnani et al., 

2011). This is discussed in greater detail in Section 1.4; however these rates are significantly 

higher than expected and provide evidence to suggest that additional mechanisms, 

unrelated to ZGA, may be involved in the origins of pre-implantation aneuploidy in embryos. 

 

1.3.2 Improving IVF outcomes by screening for aneuploidy 

The first child conceived by IVF was born in 1978 (Steptoe and Edwards, 1978); a remarkable 

achievement recognised by the award of the Nobel Prize in 2010.  Since then it is estimated 

that over 5 million children have been born as a result of IVF, and now account for greater 

than one percentage of all births in the UK.  Perhaps surprisingly, over 30 years later is that 

IVF success rates are still considered to be relatively low, with successful outcomes expected 

in less than half of all cycles even in the most favourable circumstances. 

Chromosome abnormalities are widely believed to play a major role in IVF failure, given the 

high rates identified during pre-implantation development. Aneuploidy is associated with 

reduced pre-implantation developmental potential in human embryos and it is considered 

likely that the majority of these embryos cannot develop to term (Magli et al., 2000, 

Sandalinas et al., 2001, Rubio et al., 2007). Therefore it was hypothesized that successful 

identification of abnormal embryos would result in improved IVF outcomes by enabling 

embryos with the best developmental potential to be selected for embryo transfer (Zenzes 

et al., 1992, Delhanty and Handyside, 1995, Wilton et al., 2001, Harper and Harton, 2010). 

Many techniques designed to identify aneuploid embryos have been pioneered but have 

largely produced disappointing results. Non-invasive methods include embryo morphology 
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grading and, more recently time-lapse imaging (Wells, 2010, Racowsky et al., 2010, 

Machtinger and Racowsky, 2013). Human pre-implantation embryos vary widely in their 

morphological development and various grading systems have been devised in an attempt 

to classify embryos and correlate morphology with likelihood of IVF success (Fisch et al., 

2001, Boiso et al., 2002). Embryos may be scored according to the number of cells, 

symmetry of blastomere size, degree of fragmentation, presence of compaction, blastocyst 

cavitation and expansion, hatching and morphology of the ICM and TE (Racowsky et al., 

2010, Machtinger and Racowsky, 2013). Many studies have evaluated the relationship 

between embryo morphology and aneuploidy, and most conclude that while an association 

exists, it is weak (Wells, 2010, Alfarawati et al., 2011).  Aneuploid embryos frequently 

undergo apparently normal development, and likewise, a normal chromosome complement 

does not always ensure normal development (Rubio et al., 2007, Magli et al., 2007, Munne 

et al., 2007, Eaton et al., 2009, Alfarawati et al., 2011). An extension of morphology 

assessment is the more recent application of time-lapse imaging systems, enabling the 

dynamic evaluation of embryo development in real-time (Cruz et al., 2011). Several early 

studies have reported promising correlations between early developmental kinetics and 

successful blastocyst formation (Wong et al., 2010, Hashimoto et al., 2012) and with 

implantation rates (Meseguer et al., 2011). To date, only one published study has directly 

evaluated the association between developmental kinetics and chromosome status (Chavez 

et al., 2012). Zygotes were imaged until the 4-cell stage. Precise cell-cycle parameter timings 

were observed in all euploid embryos; in contrast, only 30% of aneuploid embryos exhibited 

timings within that same window. Further and more detailed studies on greater numbers of 

embryos are still required to characterise the link between aneuploidy and abnormal 

developmental kinetics. If confirmed, whether these differences will be specific enough to 

translate into a clinically useful tool remains to be seen. 

In contrast to the non-invasive approaches used, pre-implantation genetic screening (PGS) is 

an invasive test designed to detect abnormal embryos. The fundamental principle of PGS is 

the removal of one or more cells from the embryo for assessment of the chromosome 

status; embryos that are identified as aneuploid are discarded, and those identified as 

normal are selected for transfer.  
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In 1990 the first pregnancies were reported after embryo biopsy and genetic testing for 

couples at risk of X-linked recessive diseases (Handyside et al., 1990). Pre-implantation 

genetic diagnosis (PGD) soon became an established clinical test for single gene disorders 

(Sermon et al., 2004). As technologies for aneuploidy assessment evolved, pregnancies 

following PGS were soon reported (Verlinsky et al., 1995, Wilton et al., 2001, Wilton, 2002). 

Early PGS protocols involved cleavage stage embryo biopsies and used FISH to assess 

chromosome status. Thus, there were limitations on the number of chromosomes that 

could be evaluated although subsequent improvements in FISH technology soon enabled 

greater numbers to be assessed simultaneously (Thornhill et al., 2005, Baart et al., 2006, 

Baart et al., 2007b). PGS was embraced with enthusiasm, and has since been widely used 

within IVF clinics. However, its rapid introduction into the routine clinical setting has 

resulted in perhaps the fiercest academic debate within the IVF community during the last 

two decades (Donoso P, 2007, Jansen et al., 2008, Fauser, 2008, Harper et al., 2008, Gleicher 

et al., 2008, Ly et al., 2011, Gleicher and Barad, 2012, Hens et al., 2012).  

The aim of PGS was to improve implantation rates, decrease spontaneous miscarriages, and 

ultimately increase the success of IVF by increasing live birth rates. More specifically, 

patients with a poor prognosis after IVF were those anticipated to gain the most; such as 

those with advanced maternal age, recurrent IVF failures, severe male factor infertility and 

unexplained recurrent miscarriages. Indeed, some of the first few observational studies 

were encouraging, with improvements reported in implantation rates, live births (Gianaroli 

et al., 1999, Munne et al., 1999, Munne et al., 2003) and fewer miscarriages (Munne et al., 

2006). As a consequence of early promising results, PGS was advocated as a tool to improve 

IVF outcomes, although there was still limited evidence of its clinical efficacy.  

Multiple studies have subsequently been published attempting to address the impact of PGS 

on IVF outcomes (Twisk et al., 2006, Mastenbroek et al., 2007, Jansen et al., 2008, Meyer et 

al., 2009, Schoolcraft et al., 2010, Forman et al., 2012, Scott et al., 2012). It is almost 

impossible to reach definitive conclusions regarding efficacy of PGS from single studies 

alone due to the multiple variables that could potentially influence the outcome of PGS. 

Patient characteristics, stage of biopsy, number of cells assessed, diagnostic test applied, 

number of chromosomes assessed, criteria for embryo transfer, superovulation regimes are 

just some examples of the many variables that potentially influence PGS outcome results, 
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and also vary widely between the different individual studies. However, despite the early 

promising reports from small observational studies, evidence soon began to emerge that 

PGS may not be as beneficial as initially hoped (Staessen et al., 2004). In 2006 a Cochrane 

Review of published randomised controlled trials (RCTs) was conducted to evaluate the 

effectiveness of PGS in improving live birth rates following IVF or ICSI treatment (Twisk et 

al., 2006). Only nine trials met the inclusion criteria; however analysis of the available 

evidence showed that PGS was actually associated with a decrease in live birth rates, rather 

than the improvement that was intended, and as a result recommended that PGS should 

not be routinely used in clinical care. Shortly afterwards a large, multicentre, double-blinded 

RCT also concluded that PGS was detrimental to IVF outcome, and presented data showing a 

significant association between PGS and lower pregnancy and live birth rates (Mastenbroek 

et al., 2007). Further, the negative impact of PGS on IVF outcome was confined to patients 

with the poorest prognosis; the same group for which PGS was anticipated to help. Even in 

patients with good prognosis, PGS was not shown to provide any additional improvement in 

their outcomes (Staessen et al., 2008, Meyer et al., 2009). The routine role of PGS in IVF 

treatment was reassessed following these publications, with calls for the withdrawal of use 

in routine clinical practice and urgent recommendations for further well conducted clinical 

trials (Mastenbroek et al., 2007, Gleicher et al., 2008, Practice Committee of Society for 

Assisted ReproductiveTechnology and Practice Committee of American Society for 

Reproductive Medicine, 2008, Harper et al., 2010). 

A number of potential reasons to explain why PGS failed to deliver the anticipated 

improvements in IVF outcome are possible. These include technical limitations of the test, 

differing technical competencies between laboratories, detrimental effects of biopsy, timing 

of the test and the presence of embryo mosaicism (van Echten-Arends et al., 2011). PGS 

requires embryo biopsy and the removal of one or more blastomeres, and this in itself may 

be detrimental to the embryo (Cohen et al., 2007, De Vos et al., 2009). Both the 

developmental stage at the time of biopsy and the number of blastomeres removed may 

have an impact upon future developmental potential of the biopsied embryo.  When PGS is 

conducted on cleavage stage embryos the aim is usually to evaluate only one blastomere. 

However, in some cases diagnosis is not technically possible from that blastomere and it 

may be necessary to remove a second blastomere, which may be further detrimental to 
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future pregnancy rates (Cohen et al., 2007). Indeed, when compared with single cell, two 

cell biopsy has been shown to have small but significant detrimental effects on blastocyst 

formation (Goossens et al., 2008), and live birth rates (De Vos et al., 2009). In addition to 

embryo biopsy, the type of test used to evaluate chromosome status may be responsible for 

the poor outcomes following IVF. Any clinical test has intrinsic limitations, the potential for 

failure and an error rate; all of which could offset the desired benefits of the test. The 

majority of PGS studies published to date have used interphase FISH to interrogate 

chromosome status. FISH requires the use of fluorescently-labelled DNA probes that are 

then hybridised to DNA segments specific to individual chromosomes. Chromosome copy 

number is determined by the number of probe-specific fluorescent signals detected visually 

using a fluorescent microscope. FISH can fail during biopsy, fixation or analysis; and unlike 

the analysis of most other clinical biological samples where hundreds of cells are readily 

accessible, usually only one or two cells are available for evaluation, significantly increasing 

the chances of error (Scriven and Bossuyt, 2010). Reported failure rates vary between 

studies, but tend to be around 10% (Munne et al., 1993, Munne et al., 1998). In addition, a 

major intrinsic limitation of FISH is the number of chromosomes that can be assessed 

simultaneously. Although technological advances have enabled greater numbers of 

chromosomes to be tested, the potential benefits may be offset by a concomitant decrease 

in efficiency secondary to an increased error rate; each chromosome probe has an accuracy 

rate between 92-99% due to signal errors, hybridisation failure and probe inefficiencies 

(Ruangvutilert et al., 2000, Daphnis et al., 2005, Scriven and Bossuyt, 2010). Additionally, the 

optimum chromosome probe combination to use is unknown. More recently array-based 

molecular karyotyping techniques have been used instead of FISH, and these allow a more 

comprehensive evaluation of chromosome status, and may be less error prone (Treff et al., 

2010, Treff and Scott, 2012). The potential impact of replacing FISH with these newer 

techniques is currently unknown, although early reports are promising (Schoolcraft et al., 

2010, Forman et al., 2012, Scott et al., 2012).  

Another major factor that may significantly impact upon the efficacy of PGS is the high 

prevalence of chromosome mosaicism. PGS was routinely carried out on cleavage stage 

embryos, with the permanent removal of a single cell for aneuploidy assessment. The 

results obtained from that one individual cell are used to infer the underlying chromosome 
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status of the entire remaining embryo. In the case of mosaicism the principle of this strategy 

is erroneous, as clinical decisions are based on the findings from a cell that no longer 

contributes to the embryo (illustrated in Figure 1.3). By definition, mosaicism requires there 

to be a minimum of two different clones within the embryo therefore evaluation of just one 

cell is insufficient to draw any justifiable conclusions on the likelihood of mosaicism in the 

remaining embryo. Moreover, removal of the cell may fundamentally alter the constitution 

of the remaining embryo, either by increasing or decreasing the proportion of aneuploid 

cells, with the potential to alter the long term developmental potential of that embryo. In 

the case of mosaics comprising a clone of diploid and aneuploid cells, biopsy of an aneuploid 

cell will lead to discarding a potentially viable embryo. Conversely, biopsy of a diploid cell 

may result in transfer of an embryo with curtailed developmental potential secondary to its 

removal. This may be the underlying reason why those patients with the poorest IVF 

prognosis have the least to gain from PGS; they have fewer embryos in total and in addition 

a greater proportion of these are abnormal. Diploid-aneuploid mosaicism is the most 

commonly reported pattern of mosaicism, and therefore may be the most significant factor 

contributing to the inefficiency of PGS (van Echten-Arends et al., 2011).  

The failure of PGS to improve clinical outcomes has prompted a re-evaluation of clinical 

strategy. New efforts are focussing on the role of blastocyst biopsy combined with 

comprehensive molecular karyotyping approaches instead of FISH. Unlike FISH, 

comprehensive molecular karyotyping techniques enable every chromosome to be 

evaluated simultaneously and thus improve the scope of aneuploidy screening. In addition, 

early reports suggest that these may be more accurate tests than FISH thus minimising the 

risk of inaccurate results (Treff and Scott, 2012). Blastocyst biopsy involves the removal and 

analysis of trophectoderm (TE) cells from the embryo, and offers several potential 

advantages compared to biopsy at the cleavage stage. Blastocyst biopsy allows for several 

cells to be removed for analysis, without significantly altering the constitution of the 

embryo; therefore there may be less impact upon future developmental potential. Hence a 

greater number of cells can be assessed from the same embryo and thus the presence of 

mosaicism evaluated with greater certainty. Mosaicism may also be less problematic at 

blastocyst biopsy than in the cleavage stage embryo, as the degree of mosaicism in the  

  



Figure 1.3. Pre-implantation aneuploidy screening in diploid-aneuploid mosaic embryos.  (A) 

Single cell biopsy of cleavage stage mosaic embryos can yield different results depending upon the 

cell assessed by biopsy. For example, embryos containing a 1:1 ratio of normal to aneuploid 

blastomeres are equally likely to be diagnosed as normal or abnormal, and transferred or discarded 

respectively. The removal of the cell for diagnosis results in a change in the constitution of the 

remaining embryo, potentially altering its developmental prospects in the opposite direction than 

predicted by biopsy result. (B) Embryo profiles of different IVF groups. The impact of the effects of 

PGS is greater in poor prognosis patients who are likely to have higher prevalence of aneuploidy, 

and fewer embryos than those with a good prognosis.  

 
Colour scheme: blue represents normal chromosome constitution; red represents aneuploidy 

 

(A) 

(B) 

Diploid 
blastomere 

biopsied 

Embryo 

transferred 

Embryo 

discarded 

Diploid-aneuploid mosaic 
 single cell biopsy 

Aneuploid 
blastomere 

biopsied 

Sa
m

e 
em

b
ry

o
 

D
if

fe
re

n
t 

b
io

p
sy

 r
es

u
lt

 
D

if
fe

re
n

t 
o

u
tc

o
m

e 

Good prognosis IVF patients 

Many 
embryos 
 
Lower 
aneuploidy 
rates 

Few embryos 
 
Higher 
aneuploidy 
rates 

Poor prognosis IVF patients 

PGS reduces IVF success No affect of PGS on IVF outcome 

18 

Chapter I   INTRODUCTION 



Chapter I  INTRODUCTION 

19 
 

blastocyst is significantly lower than at the cleavage stage (Evsikov and Verlinsky, 1998, 

Clouston et al., 2002, Coonen et al., 2004, Santos et al., 2010, Johnson et al., 2010, Capalbo 

et al., 2012, Fragouli et al., 2008).TE biopsy offers theoretical advantages for future fetal 

development, as biopsy does not interfere with the inner cell mass (ICM), and hence the 

future fetal lineage. Conversely, it is possible that biopsy from the TE could also reduce the 

accuracy of the test, as the biopsy results will not be directly reflective of the future fetus. 

However, there is no experimental evidence that aneuploid cells are enriched within the TE 

lineage when compared with the ICM. This will be further investigated experimentally in this 

thesis. 

Despite the theoretical advantages of these new clinical approaches to PGS, it is essential 

that they are subject to robust clinical evaluation before being introduced widely into 

clinical practice (Gleicher and Barad, 2012). 

 

1.3.3 The developmental fate of mosaic embryos 

Despite the high prevalence of mosaicism in human pre-implantation embryos and their 

proposed impact upon IVF outcomes, the ultimate developmental potential or fate of these 

embryos is poorly understood. The major research aim of this thesis is to investigate the 

developmental fate of mosaic embryos, using a mouse model of chromosome mosaicism. 

It is reasonable to suppose that mosaic embryos containing no normal cells may share a 

similar fate to uniformly aneuploid embryos; it is highly improbable that they will result in a 

viable on-going pregnancy, with developmental arrest occurring at the very early stages of 

pregnancy. However many mosaics contain a complement of diploid cells (van Echten-

Arends et al., 2011). The outcome for these embryos is less certain. No study has directly 

evaluated this question in human embryos; however useful inferences can be drawn from 

scrutinising data attained from less direct questions. How does the prevalence of mosaicism 

change as gestation proceeds? How does the prevalence of mosaicism compare with the 

prevalence of uniform aneuploidy? What are the overall success rates of IVF in comparison 

to the prevalence of chromosome abnormality?  
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Peaking at the cleavage stage of pre-implantation development, chromosome mosaicism 

declines as gestation proceeds, and despite the high prevalence of pre-implantation 

mosaicism, mosaicism in post-implantation embryos is rare. Less than <10% of first 

trimester spontaneous miscarriages are mosaic (Warburton et al., 1978, Hassold, 1982, 

Robberecht et al., 2009, Martinez et al., 2010); significantly lower than the prevalence of 

uniform aneuploidy (Hassold et al., 1980, Fritz et al., 2001). Chromosome mosaicism is 

identified in 1-2% viable pregnancies when tested by chorionic villous sampling (CVS) at the 

end of the first trimester (Ledbetter et al., 1992, Hahnemann and Vejerslev, 1997). Finally, 

the reported prevalence of mosaicism in live births is extremely rare at less than 0.2% 

(Hansteen et al., 1982) and notably less prevalent than uniform aneuploidy (Jacobs et al., 

1974). In those individuals born with trisomy 21 (Down’s syndrome), the mosaic variation 

accounts for a less than 4% of all cases (Devlin and Morrison, 2004). Further, it is worthwhile 

noting that the majority of chromosomal aberrations identified in pre-implantation embryos 

are never detected in clinical pregnancies, spontaneous miscarriages or in live births 

(Nagaoka et al., 2012). 

However it is possible that the true prevalence of mosaicism in post-implantation 

pregnancies and live births is underestimated; diagnoses are usually based upon the 

aneuploidy status of a small number of cells obtained from an accessible tissue, usually a 

blood sample. Identification of low level mosaicism by classic cytogenetic techniques or FISH 

is technically challenging as many cells have to be examined. At least 20 cells must be 

assessed to detect a mosaicism level of 14% with 95% confidence (Hook, 1977). Greater 

numbers of cells are not usually assessed unless there is a clinical reason to suspect 

mosaicism. In addition, cytogenetic analysis techniques that require cell culture may 

underestimate the true rates of mosaicism if the aneuploid cells proliferate less efficiently 

than their euploid clone, with metaphase assessment resulting in a biased view of the true 

chromosome constitution. Therefore occult mosaicism affecting other tissues, or low level 

mosaicism, is likely to be missed.  

Despite the potential shortcomings in evaluating the prevalence of mosaicism, the 

observational evidence presented above demonstrates an apparent rise and fall of 

mosaicism, confined to the very early stages of development.  Does this shift away from 

mosaicism towards normality arise secondary to the developmental failure of the whole 
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embryo? Alternatively, could this occur through the elimination of aneuploid cells from the 

mosaics resulting in a normal, on-going gestation? It is not possible to investigate these 

questions directly in the human embryo; however reviewing mosaicism levels in IVF 

embryos and comparing them with IVF success rates may be informative. One important 

study analysed 21 cleavage stage embryos using an array-based technology providing a 

comprehensive, high resolution assessment of the chromosome status of each blastomere 

within the embryo (Vanneste et al., 2009). Embryos were obtained from young, healthy 

couples with normal fertility that required IVF treatment for genetic conditions unrelated to 

fertility. Despite these favourable characteristics, the majority of embryos contained no 

normal blastomeres at all, 39% were mosaics containing at least one normal blastomere, 

but only 9% of embryos had a normal karyotype in every blastomere. IVF success rates in 

the authors’ clinic were reported to be in line with the average across IVF centres worldwide 

(>20% baby-take-home-rate per embryo transferred). A more recent study used the same 

array-based analysis of the chromosome status of 14 good quality embryos, and determined 

that 10 (71.4%) of these were diploid-aneuploid mosaics (Mertzanidou et al., 2013). 

Significantly, these embryos obtained from a cohort of young women who achieved a live 

birth using sibling embryos attained during the same IVF cycle. Therefore, these findings 

strongly suggest that some mosaic embryos have the potential to develop into viable, on-

going pregnancies.  

What mechanisms could account for the dramatic decline in the prevalence of mosaicism as 

gestation proceeds? Is mosaicism incompatible with on-going development, ultimately 

resulting in pregnancy failure? Alternatively, can mosaic embryos normalise through the 

elimination of the abnormal clone of cells as development proceeds, and thus result in a 

normal, non-mosaic, viable pregnancy? These important questions are difficult to address 

directly, however the observational evidence presented above suggests that both 

mechanisms are likely to occur. It is reasonable to speculate that if both outcomes are 

possible, then the ultimate outcome could depend upon the specific nature and degree of 

abnormality, particularly the number or proportion of normal cells present in the embryo at 

the peak of mosaicism. The major aim of this thesis is to address these questions directly, 

and determine the developmental fate of mosaic embryos, using a mouse model of 

mosaicism. 
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1.3.4 Self-limiting mosaicism & potential correction mechanisms 

As discussed above, it is possible that some mosaic embryos may develop into viable on-

going pregnancies with the initial mosaicism being self-limiting. If this is the case, how could 

the aneuploid cells become eliminated from the embryo? Leaving aside those mosaics that 

arrest, a number of potential mechanisms have been proposed to account for the 

normalisation of mosaic embryos, and can be categorised as either clonal-normalisation or 

cellular self-correction mechanisms (Figure 1.4). In the case of clonal-normalisation 

aneuploid cells may be eliminated from the future fetal lineage, either through apoptosis or 

senescence, and / or by the active segregation to the future placental tissue as the embryo 

develops and establishes the extra-embryonic lineages. In contrast, the cellular self-

correction hypothesis proposes that abnormal cells may self-correct their abnormality, 

either through trisomic rescue or chromosome duplication mechanisms.  

Providing direct evidence of self-limitation in human embryos is difficult. Several studies 

have attempted to address this issue through the sequential analysis of chromosome status 

at different stages of pre-implantation development in the same embryos (Li et al., 2005, 

Munne et al., 2005, Barbash-Hazan et al., 2009, Santos et al., 2010, Northrop et al., 2010). 

Although experimental approaches varied between studies, the overall findings were 

comparable; a significant proportion of embryos classified as aneuploid at cleavage stage 

biopsy were found to be euploid when re-assessed in culture at the blastocyst stage or 

beyond. Despite similar findings, the interpretation of the results varied between each 

study. Li et al. deemed FISH inaccuracies and embryo mosaicism as the most plausible 

explanations for their findings. Both Munne et al. and Barbash-Hazan et al. favoured cellular 

self-correction of chromosome abnormalities, although neither groups provided any direct 

evidence to support this conclusion. Santos et al. proposed that their data provided indirect 

support for the clonal-normalisation hypothesis. Finally, Northrop et al. concluded 

misdiagnosis by cleavage-stage FISH as the most likely explanation for their findings, and 

provided experimental data to rule-out alternative hypotheses of cellular self-correction or 

preferential segregation to the trophectoderm lineage.   
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Figure 1.4 Proposed hypotheses for the developmental fate of mosaic embryos. 

The viability of mosaic embryos may depend upon a threshold of abnormality related 

to the proportion and nature of the aneuploid cells. Four potential outcomes may be 

possible, either singly or in combination: i) Tolerance of mosaicism, where the 

conceptus continues to develop with mosaic clones. Tolerance may be global, or 

restricted to specific lineages. ii) Trophectoderm segregation – aneuploid cells are 

actively segregated to the TE lineage at the first fate decision during embryogenesis. 

iii)  Clonal normalisation, where the normal clone has a growth advantage, and the 

aneuploid clone becomes eliminated by senescence or apoptosis. iv) Cellular self-

correction, whereby aneuploid cells convert to euploidy by trisomic or monosomic 

rescue.  
Colour scheme: blue represents normal chromosome constitution; red represents aneuploidy 
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Further evidence for self-limiting mosaicism has been attained from studies on the 

derivation of human embryonic stem cell (hES) lines from IVF embryos. Several hES lines 

have been derived successfully from embryos diagnosed as chromosomally abnormal by 

embryo biopsy, and in the majority of cases the established hES line is euploid, rather than 

aneuploid (Munne et al., 2005, Peura et al., 2008, Lavon et al., 2008). When tested, earlier 

passages of stem cells during the derivation process were more frequently mosaic than later 

passages. In addition, stable aneuploid hES lines were much more difficult to establish than 

euploid lines, even from embryos diagnosed with aneuploidy, suggesting a selective growth 

advantage of diploid cells in the case of diploid-aneuploid mosaic embryos (Biancotti et al., 

2010). As described in the previous section, the results of these studies on hES cells may 

also be influenced by the presence of mosaicism and the inaccuracies of FISH.  

 

1.3.4.1 Preferential segregation of aneuploid cells to the TE lineage 

Confined placental mosaicism (CPM) was first described in 1983 (Kalousek and Dill, 1983) 

and is defined by the presence of one or more clones of cells with differing chromosome 

constitutions confined to the chorionic or placental tissues, and not present within the 

fetus. Mosaicism confined to the fetus is rarer, with reported rates at less than 0.2% 

(Hahnemann and Vejerslev, 1997).  

The origin of placental mosaicism is often attributed to events occurring during pre-

implantation development, when the ICM and TE lineages are established (Wolstenholme, 

1996, Kalousek and Vekemans, 1996). A more detailed discussion of pre-implantation 

development is presented in Section 1.6. In brief, the TE lineage gives rise to all of the fetal 

cells of the future placenta and the ICM segregates further into the epiblast (EPI) and 

primitive endoderm (PE). The EPI is the major lineage from which the embryo proper 

develops; and hence future fetus. By the time the blastocyst is formed, the outer TE cells are 

committed to their fate and their progeny do not contribute to the future fetus. Therefore, 

mosaicism exclusively confined to the placental tissues would occur if the aneuploid cells 

were confined to the outer TE lineages and absent from the ICM. This could arise through 

two potential mechanisms; either the preferential allocation of abnormal cells to TE lineages 

or by elimination of cells from the ICM, or a combination of both.  
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In animal models it is well established that tetraploid-diploid chimeric embryos develop with 

a restricted lineage distribution; tetraploid cells are excluded from the epiblast lineage by 

mid-gestation but are maintained within the placental tissues (Tarkowski et al., 1977, James 

et al., 1995, Goto et al., 2002, Viuff et al., 2002). One study evaluated the distribution of 

tetraploid cells within mouse diploid-tetraploid chimeras at the late blastocyst stage 

(Mackay and West, 2005). Tetraploid cells were present in all lineages, but were relatively 

depleted from the ICM when compared to the TE, and in addition the blastocyst cavity 

tended to form with the clone of tetraploid cells. Although not investigated experimentally, 

the authors proposed that such pre-implantation biases in lineage allocation of abnormal 

cells could also occur in human embryo development and thus provide a possible 

explanation for how confined placental mosaicism arises. However, the majority of 

chromosome abnormalities in human pre-implantation embryos are aneuploid, rather than 

tetraploid, and different mechanisms may underlie their respective fates. Indeed, the same 

group generated mouse trisomy3-diploid chimeras and triploid-diploid chimeras and did not 

find the classic confined trophectoderm fate that may be unique to tetraploid-diploid 

embryos (Everett et al., 2007). Therefore tetraploid-diploid chimeras are unlikely to be a 

representative model for aneuploid mosaic embryos, or for the pathogenesis of human 

confined placental mosaicism, which is usually trisomic (Ledbetter et al., 1992, 

Wolstenholme, 1996, Hahnemann and Vejerslev, 1997). 

Other studies have taken a different approach to address this hypothesis. Detailed analyses 

of human blastocysts were undertaken, using FISH to evaluate the chromosome constitution 

of cells within the TE and ICM. ICM mosaicism rates were equivalent to the rates within the 

blastocyst overall (Evsikov and Verlinsky, 1998, Magli et al., 2000) and also comparable 

between the ICM and TE (Derhaag et al., 2003). More recent studies have repeated these 

experiments in more detail, evaluating the chromosome constitutions of blastocysts using 

high resolution array-based karyotyping (Johnson et al., 2010, Northrop et al., 2010). The 

findings were complimentary to the earlier FISH-based studies; TE and ICM karyotypes from 

the same embryos were concordant, and aneuploidy rates were equivalent with no 

evidence of enrichment with the TE lineage.  
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Thus there is indirect evidence against the hypothesis proposing the preferential allocation 

of aneuploid cells to the TE lineage. This hypothesis will be evaluated more directly in this 

thesis. 

 

1.3.4.2 Cellular self-correction  

The cellular self-correction hypothesis proposes that aneuploid cells can revert to a euploid 

cell status, either by losing the extra chromosome in the case of trisomy (trisomic rescue), or 

by duplication of the single chromosome in the case of monosomy. Cellular self-correction is 

considered to be responsible for rare genetic disorders that result from the presence of two 

copies of a chromosome from a single parental origin (Kotzot, 2004, Conlin et al., 2010). 

How self-correction may occur at the cellular level is not known; a further mitotic error that 

happens by chance to act in the opposite direction to the original error is one possibility. 

Alternatively, anaphase lag and chromosome demolition have both been proposed as 

additional mechanisms for trisomic rescue. 

Is there any evidence of cellular self-correction occurring in human embryos? Most cases of 

cellular self-correction will be impossible to detect. However, some cases of self-correction 

will result in whole chromosome uniparental disomy (UPD) which can be detected, albeit by 

non-routine cytogenetic analyses. UPD describes a cell, or population of cells, that contain 

the correct number of chromosomes, but both copies of the chromosome originate from 

one parent. In the case of monosomic duplication, UPD is inevitable as all chromosomes will 

be copies of the single chromosome. In the case of trisomic rescue, one-third of rescues will 

result in UPD, and in two-thirds there will be bi-parental disomy. Whole chromosome UPD 

affecting fetuses has been reported from prenatal diagnosis biopsies, and is cited as 

evidence that cellular self-correction can occur; however it is extremely rare, highly 

chromosome specific and often lethal (Kotzot, 2004). The low prevalence of UPD may reflect 

the low frequency with which cellular self-correction occurs; however it is possible that 

given UPD rates could significantly underestimate the frequency of self-correction for three 

reasons. First, the majority of trisomic rescue events will not result in UPD and are therefore 

impossible to detect. Second, UPD is often lethal due to effects of imprinting and recessive 

mutations. Finally, UPD cannot be identified by classic cytogenetic techniques and specific 
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testing is usually undertaken only if there is any underlying clinical suspicion. Therefore 

many cases of UPD may never be detected, especially in the case of mosaicism.  

However, there are a few studies in embryos that have investigated the cellular self-

correction hypothesis directly by assessing prevalence of UPD using SNP-array technologies 

(Lavon et al., 2008, Vanneste et al., 2009, Northrop et al., 2010). As both chromosomes are 

derived from the same parent, the DNA sequences on each chromosome will be identical 

and will be lacking in heterozygous SNPs. The absence or loss of heterozygosity (LOH) in a 

chromosome is diagnostic of UPD.  Northrup et al. assessed 50 blastocysts for LOH and did 

not identify a single case of UPD, and Lavon et al. also failed to detect any cases of UPD in 

euploid stem cell lines that had been derived from aneuploid embryos.  Both groups 

concluded that cellular self-correction mechanisms were unlikely to account for the 

normalisation of aneuploid embryos. However, when Vanneste et al. evaluated cleavage 

stage embryos, they found two embryos with UPD in their cohort of 23, a rate of 9%. One 

embryo was diploid with uniform UPD, likely to represent a gamete complementation 

event, rather than self-correction. The other was mosaic in two of its blastomeres for two 

chromosomes, but surprisingly the UPDs were of different parental origin in each of the 

blastomeres. Taken together, these studies provide significant evidence that if cellular self-

correction does occur, it is likely to be an infrequent occurrence and therefore to account 

for a small minority of self-limiting mosaic aneuploidies.  

 

1.3.4.3 Clonal-normalisation 

In the absence of evidence to support a major role for cellular self-correction or preferential 

segregation to the trophectoderm lineage, the most plausible explanation for self-limiting 

mosaicism is clonal-normalisation. This occurs when the constitution of the embryo changes 

from a mosaic containing a mixture of normal and aneuploid cells, to a uniform clone of 

chromosomally normal cells. These normal cells have a growth advantage over the 

aneuploid cells, which become progressively depleted either through senescence or 

apoptosis, until the aneuploid clone is virtually eliminated.  Clonal-normalisation would 

require a mosaic embryo to contain a minimum proportion of normal euploid cells to 

establish both a functional TE and sufficient cells within the ICM to develop into a normal 
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embryo. In theory, it could also occur in a two-step process from an embryo with no normal 

cells; the first step generating euploid cells through cellular self-correction, although this is 

unlikely (as discussed above).  

The exact proportion of normal cells required for embryo viability is unknown. Several 

articles quote a figure of two-thirds (Lavon et al., 2008, Frumkin et al., 2008, Barbash-Hazan 

et al., 2009) citing Li et al. (Li et al., 2005). Indeed, in their discussion the authors state ‘if 

two-thirds of the cells of these (mosaic) embryos are normal, the embryo can continue to 

divide, overwhelming the abnormal cells, resulting in a blastocyst or even a live birth’ (Li et 

al., 2005). This study assessed the chromosome status of single blastomeres in cleavage 

stage embryos, re-evaluated at day six, and correlated the aneuploidy status at cleavage 

stage with blastocyst formation and aneuploidy status at day six. No experimental data was 

presented to support the claim and nor is there other published direct evidence in the 

literature to date. As such, the concept of a minimum proportion of cells remains 

hypothetical, supported indirectly by observational data alone.   

Currently, the non-invasive identification of aneuploid cells within an embryo is not 

possible. The current evidence offers only snap-shot approaches, and does not allow for 

follow-up of abnormal cells to determine their individual fates or their effect on the 

development of the embryo as a whole. Consequently, clonal normalisation is a plausible 

hypothesis, supported by significant weight of observational evidence, but remains 

untested. This study aims to investigate the fate of abnormal cells within the developing 

embryo in real-time, using a four-dimensional time-lapse imaging approach, in a mouse 

model of chromosome mosaicism. 

 

1.4 THE FATE OF ANEUPLOID MOUSE EMBRYOS 

Research on human embryos is challenging; in addition to the major ethical, legal and 

technical limitations, human embryos are a scarce resource, especially those of good 

quality. Pre-implantation research is also restricted to embryos derived from IVF, and in vivo 

early post-implantation study is not possible. Therefore, much of our knowledge of early 

mammalian development has arisen through the study of other mammals, most notably the 
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mouse. Mouse embryos are readily available, with the possibility to study in vivo conceived 

embryos, and the peri and post-implantation embryos are accessible. Further, the potential 

for genetic manipulation opens the scope for a wide range of different research questions. 

Although there are notable differences between mouse and human development, studies 

conducted on mouse embryos have provided key insights into early mammalian 

development, including humans.  

In contrast to humans, the prevalence of aneuploidy in mouse pre-implantation embryos is 

estimated to be low at around 1-4% (Bond and Chandley, 1983, Glenister et al., 1987, Liu et 

al., 2008). Perhaps surprisingly, there are very few studies that specifically assess the level of 

aneuploidy in mouse embryos, most likely due to technical challenges unique to the pre-

implantation mammalian embryo. Newer array-based and genome-sequencing technologies 

are able to provide efficient, accurate and comprehensive evaluation of chromosome status 

in single cells, and are now increasingly used in human blastomeres (Schoolcraft et al., 2010, 

Alfarawati et al., 2011, Treff and Scott, 2012, Capalbo et al., 2012). However, these 

techniques are still relatively expensive and need to be specifically adapted for use in non-

human species and their application in mouse studies is still limited at present (including 

non-embryonic studies).  

However, the result of several recent studies evaluating the chromosome status of mouse 

embryos using established techniques, have reported higher prevalence rates of aneuploidy 

than previous given estimates. The prevalence of mosaic aneuploidy in wild-type control 

embryos was found to be 25% in blastocysts assessed by classic cytogenetics (Lightfoot et 

al., 2006), and 17 and 31% in in vitro cultured cleavage stage embryos and blastocysts 

respectively, by two-probe FISH (Sabhnani et al., 2011). Interestingly, the latter study also 

found higher rates of aneuploidy in their in-vitro cultured embryos compared to the in-vivo 

controls; in-vivo cleavage and blastocyst stage embryos had abnormality rates of 2 and 8% 

respectively. This finding suggests that the in vitro culture environment could be a critical 

factor in the prevalence of aneuploidy.  

In view of the high prevalence of aneuploidy in human embryos, its presumed role in 

reproductive failure, together with challenging research constraints, it is perhaps surprising 

that there are very few publications that use a mouse or other animal model to investigate 
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the effect of aneuploidy on early embryo development. Insights may be gained from animal 

models that could potentially have a direct relevance to human embryo development.  

The following section summarises some key findings from relevant animal studies. The 

research questions in the majority of these studies do not directly relate to the fate of 

aneuploid or mosaic embryos; however, it is pertinent to review their findings in the context 

of this study. Collectively, the studies provide strong evidence that aneuploidy in mouse 

embryos is embryonic-lethal at around the time of early implantation, and that pre-

implantation development is relatively unimpaired. In addition, there is some evidence to 

support the hypothesis that aneuploid mosaic embryos may have the ability to develop into 

viable, stably euploid offspring. 

In their paper entitled ‘The fate of mosaic aneuploid embryos during mouse development’ 

Lightfoot et al. used Sycp3-/- null females to generate aneuploid embryos (Lightfoot et al., 

2006). Sycp3 is a protein subunit of the meiotic synaptonemal complex, and its inactivation 

results in increased rates of meiotic errors, thus  high rates of meiotic aneuploidy and hence 

aneuploid embryos (Yuan et al., 2002). Compared to wild-type controls, Sycp3 females had 

smaller litter sizes, despite producing an equal number of fertilized eggs. The majority of 

embryos developed to the blastocyst stage, at which point karyotyping was undertaken. As 

expected (Yuan et al., 2002), nearly two-thirds of blastocysts were aneuploid, however the 

majority displayed chaotic mosaic aneuploid karyotypes. The aneuploid embryos implanted 

but underwent p53-independent apoptotic death at the onset of gastrulation while the 

remaining viable embryos showed no evidence of mosaicism when assessed at embryonic 

day 12 (E12). The authors concluded that aneuploid embryos can undergo normal pre-

implantation development but are non-viable beyond early implantation. One of the 

surprising findings in this study was the high incidence of chaotic mosaic aneuploidy, leading 

the authors to propose that a primary state of aneuploidy can render the embryo 

susceptible to chromosomal instability resulting in chaotic mosaic aneuploidies (Lightfoot et 

al., 2006).  

Additional evidence of early post-implantation failure can be gained from the study of 

genetic knockout mouse models of chromosome instability (CIN). Chromosome instability is 

defined as a genetically unstable state arising from frequent chromosome segregation 



Chapter I  INTRODUCTION 

31 
 

errors occurring during mitosis, and is a highly aneuploid state (Holland and Cleveland, 

2009). CIN can be the result of a multitude of different mechanisms including defects of the 

spindle assembly checkpoint (SAC) and aberrant kinetochore-microtubule attachments 

amongst others (Thompson et al., 2010). Genetic mouse knockout models have been 

created for many mitotic checkpoint genes, and for several other mitotic regulators and 

kinetochore components (Foijer et al., 2008). Consistently, all homozygous null knockout 

embryos shared the universal phenotype of early post-implantation lethality between E6.5 

& E8.5. In contrast, heterozygotes exhibited a mild phenotype with no apparent 

developmental defects: Cenpc (Kalitsis et al., 1998), Bub3 (Kalitsis et al., 2000), Mad2 

(Dobles et al., 2000), Cenpa (Howman et al., 2000), Cenpe (Putkey et al., 2002), BubR1 

(Wang et al., 2004a), Bub1 (Jeganathan et al., 2007), Mad1 (Iwanaga et al., 2007). In those 

studies where pre-implantation embryo development was specifically assessed (assaying 

the role of the Mad2, BubR1, Bub3, Cenpc and Cenpa genes), there was evidence of 

increased chromosome segregation characterised by high rates of micronuclei and other 

chromatin abnormalities, together with reduced proliferation in culture from E3.5 onwards, 

preferentially affecting the ICM, rather than the TE. With the exception of Cenpc, no studies 

evaluated embryos prior to the early blastocyst stage, however the homozygous embryos 

were recovered at the expected Mendelian ratios, therefore earlier lethality seems unlikely. 

Cenpc null embryos were morphologically normal at the 8-cell stage, but abnormalities 

started to manifest from the morula stage onwards (Kalitsis et al., 1998). 

Collectively, these studies provide compelling evidence that embryonic aneuploidy is lethal 

at around the time of implantation or early post-implantation. Phenotypes secondary to 

gene knockouts can be attributed directly to the specific function of the gene, or may be an 

indirect result of a secondary downstream effect. In this series of genetic knockout mice, it 

is most likely that the early post-implantation lethality is a secondary effect, caused by 

aneuploidy; a direct effect would require that all genes have a critical role in embryo 

survival around the time of implantation. The effect of aneuploidy on pre-implantation 

development however is less conclusive. All genetic knockout mice underwent apparently 

normal pre-implantation development, however there were no attempts to evaluate the 

chromosome status of the blastomeres prior to the blastocyst stage. It cannot be assumed 

that chromosome segregation errors occurred in the first few cleavages as the presence of 
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maternally inherited factors may potentially have countered the knockout effects on 

chromosome segregation during the first few cleavages, with errors not arising in the earlier 

stages of pre-implantation development. Finally, although these animal studies provide 

convincing evidence that mosaic aneuploidy is likely to be lethal at or just after the time of 

implantation, they are unlikely to be representative of the majority of human pre-

implantation mosaics. In the case of human mosaicism, the embryo is likely to be error-

prone for the first few cleavages only, as the proportion of aneuploid cells within the 

embryo declines beyond the cleavage stage (Evsikov and Verlinsky, 1998, Clouston et al., 

2002, Coonen et al., 2004, Santos et al., 2010, Johnson et al., 2010, Capalbo et al., 2012).  

Thus, many mosaics contain a complement of diploid cells and as development continues, 

further errors become less likely. In the mouse models discussed above, the underlying pre-

disposition to aneuploidy is permanent affecting all cells, and consequently the phenotype is 

likely to be more severe with cumulative aneuploidy occurring as development proceeds.  

One other animal study is of particular interest (Eggan et al., 2002). In this study viable mice 

were created from karyotypically unstable mosaic mouse embryonic stem cell (mES) lines 

using a tetraploid complementation approach. ES cell-tetraploid complementation is an 

experimental technique used to generate mice exclusively derived from the ES cell line, as 

the tetraploid cells remain confined to the extra-embryonic lineages (Tam and Rossant, 

2003). ES-tetraploid embryos were constructed from a range of ES-cell lines with unstable 

mosaic karyotypes. Viable mice with stable karyotypes were generated from all ES cell lines 

tested, including those with high proportions of aneuploid cells (up to 80%) (Eggan et al., 

2002). In addition, no correlation was found between the efficiency of the cell line to 

produce mice and the proportion of abnormal cells, or type of abnormality, within the cell 

line. Although interesting from a proof-of-principle point of view that normal offspring can 

be derived from mosaic mES cells, the direct relevance to unperturbed development is 

questionable. The generation of mice from ES cell-tetraploid complementation is far 

removed from naturally developing embryos, and thus not a representative model of 

normal development. The number of ES cells available for embryogenesis is likely to be far 

greater than there would be under normal developmental conditions, and the presence of 

tetraploid cells may further increase the availability of the normal cells to the future 

embryonic lineage. This may mask the requirement for a critical number of normal cells 
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necessary for the future potential of a mosaic embryo, as it is plausible that it is the number 

of normal cells available, rather than the proportion, that has greatest impact upon future 

viability. In addition the use of tetraploid cells may bypass any potential embryonic lethality 

that may occur as a direct result of aneuploidy affecting the extra-embryonic lineage.  

 

1.5 NON-EMBRYONIC ANEUPLOIDY 

Aneuploidy is most widely studied in the context of cancer research. Indeed, it has been 

branded as the hallmark of cancer as the majority of malignant tumour cells have an 

abnormal chromosome constitution (Holland and Cleveland, 2009). Consequently, there is a 

vast resource of literature characterising the potential causes and consequences of 

aneuploidy from the perspective of cancer. As discussed in the previous section, human 

embryo studies are largely limited to descriptive studies, with mechanistic biological 

questions almost impossible to study. Therefore, in addition to reviewing animal models of 

aneuploid embryogenesis, it is worthwhile reviewing the cancer-focused literature to collate 

what is currently known in the non-developmental context, and to identify any areas that 

may be potentially relevant to human embryogenesis. This may be beneficial to assist the 

collective understanding of human embryogenesis in the context of mosaic aneuploidy, and 

consequently focus the direction of future research programmes.   

Aneuploidy in the context of cancer is a paradox; cancer is a state of uncontrolled cellular 

proliferation and tumour cells are almost always aneuploid, however the majority of 

aneuploid cells proliferate poorly. Transformation, defined as the acquisition of cancer-like 

properties, is believed to occur in only a small minority of aneuploid cells. Therefore the 

cellular consequences of the aneuploid state have been studied in great detail, in an effort 

to understand how aneuploidy-related alterations in cellular physiology may ultimately 

result in cancer. Whole-organism, uniform aneuploidy arising during gamete formation is 

frequently incompatible with life, with early developmental failure in most studied species 

ranging from the sea urchin, fruit fly, nematode, mouse, through to humans (Siegel and 

Amon, 2012). In those cases where aneuploidy is not lethal, the consequences are usually 

severe.  In humans, the only whole chromosome autosomal aneuploidies that are 

potentially compatible with life are trisomy 21, 18 & 13 (Down, Edwards and Patau 
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syndromes respectively); the majority are lethal in-utero, however those that do survive 

have profound, multi-system developmental abnormalities and significantly shortened life-

expectancies. Autosomal monosomies are never compatible with life. Thus, it is irrefutable 

that aneuploidy is significantly detrimental at the cellular and organism level; but precisely 

how aneuploidy affects individual cells is less well understood. 

A detailed evaluation of how aneuploidy impacts upon fundamental cellular physiology is 

often hampered by the poor cellular fitness of these cells. Whole animal studies are rarely 

achieved as the establishment and maintenance of viable animal lines is expensive and 

practically challenging. Therefore, many cancer research studies are undertaken on 

immortalized cell culture lines. These are not directly relevant to the more frequently 

occurring, benign aneuploidies arising during mitosis that likely constitute the vast majority 

of human pre-implantation embryos. However, several studies have been published 

recently focussing more directly on the consequences of aneuploidy per se, and shed 

interesting light on the potential behaviour and fate of aneuploid cells (Torres et al., 2007, 

Williams et al., 2008, Li et al., 2010, Sheltzer et al., 2012).  

Aneuploidies can be broadly categorised into two groups (Pfau and Amon, 2012): (a) chronic 

defined aneuploidies, where each cell contains the same, known abnormal chromosome 

constitution; or (b) acute random aneuploidies that arise secondary to frequent 

chromosome segregation errors, usually resulting in a pattern of complex and unstable, 

chaotic mosaicism. Several methods have been applied to derive aneuploid yeast strains 

and mammalian cell culture lines to study the effects of both types of aneuploidy at the 

cellular level (Torres et al., 2007, Williams et al., 2008, Li et al., 2010, Sheltzer et al., 2012). 

These studies have revealed that aneuploidy can disturb cellular physiology in a variety of 

different ways. Aneuploid cells have been shown to exhibit genetic dosage expression 

levels, transcribing and translating genes in proportion to their gene copy number (Mao et 

al., 2003, Lyle et al., 2004, Torres et al., 2007, Williams et al., 2008). By definition, aneuploid 

cells contain an abnormal proportion of genes; consequent imbalances in gene products are 

often detrimental and result in specific phenotypes directly related to the particular 

chromosome imbalance present in the cell. However, in addition to chromosome-specific 

effects, there are a number of phenotypes shared between different aneuploidies, 

indicating that there may be a common generic cellular response to aneuploidy (Torres et 
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al., 2007, Williams et al., 2008, Sheltzer et al., 2012). Further, there is also evidence that 

chromosome missegregation itself may affect cellular physiology, giving rise to a cellular 

response that may alter the fate of the cell regardless of the underlying aneuploidy (see 

below). 

A key phenotype shared by aneuploid cells is impaired proliferation relative to euploid cells. 

This has been demonstrated in several chronic, defined aneuploidies: human trisomy 21 

fibroblasts (Segal and McCoy, 1974), budding yeast disomic for different chromosomes 

(Torres et al., 2007), and aneuploid mouse embryonic fibroblasts (MEFs) trisomic for 

chromosomes 1, 13, 16 and 19 (Williams et al., 2008). Slower proliferation has also been 

characterised in cell lines with acutely arising random aneuploidies: MEFs bearing random 

aneuploidies secondary to impaired SAC function (Baker et al., 2004, Li et al., 2010) and 

human cell lines treated with different drugs to induce chromosome segregation errors  

(Thompson and Compton, 2008) also proliferate poorly relative to their wild-type or 

untreated euploid controls. Beyond proliferation rates, detailed studies of chronic defined 

aneuploidies have characterised a set of shared phenotypes that have been described as an 

‘aneuploidy stress response’ (Torres et al., 2010): defects in cell growth, altered metabolism 

and proteotoxic stress (Torres et al., 2007, Williams et al., 2008). The slow growth and high 

energy demands arise secondary to the additional gene products that result from the 

presence of the additional chromosome. Protein stoichiometry imbalances arise secondary 

to excessive protein complexes; the cell attempts to compensate for the imbalance by 

increasing protein turnover, increasing the energy burden on the cell, and impairing 

proliferation (Jallepalli and Pellman, 2007). The aneuploidy stress response has only been 

characterised in cells with additional chromosomes, not for those with chromosome losses, 

such as monosomies. However, the consequences of chromosome loss are usually more 

severe than gain, and are more likely to result from an insufficiency of gene products critical 

for cell survival. 

In contrast to chronic aneuploidies, acutely arising random aneuploidies may be associated 

with additional alterations in cellular physiology, as a direct consequence of the acute 

chromosome missegregation. Several studies have demonstrated that p53 is activated in 

response to chromosome missegregation, potentially resulting in cell-cycle arrest or 

apoptosis (Li et al., 2009, Li et al., 2010, Thompson and Compton, 2010). In two mouse 
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models of CIN, where chromosome missegregation occurs frequently, depletion of p53 has 

been shown to postpone early embryonic lethality by several days, and improve the viability 

of cultured MEF cell lines (Burds et al., 2005, Li et al., 2009).  

A number of different mechanisms have been proposed to account for p53 activation in 

response to aneuploidy, including activation of the DNA damage response pathway and 

elevated reactive oxygen species (Li et al., 2010, Janssen et al., 2011, Crasta et al., 2012). 

Several recent studies have reported an association between abnormal mitosis and the 

acquisition of DNA damage, albeit through a variety of different mechanisms (Quignon et 

al., 2007, Dalton et al., 2007, Guerrero et al., 2010, Janssen et al., 2011, Crasta et al., 2012). 

This is an attractive hypothesis as it potentially unifies the paradox of how aneuploidy and 

tumorigenesis may be linked. Acute chromosome segregation errors resulting in whole 

chromosome aneuploidy may incur further genomic instability secondary to the associated 

DNA damage. In most instances the result will be a cell with impaired fitness that may 

undergo cell-cycle arrest or apoptosis. However, in a minority of cases the DNA damage may 

result in the acquisition of tumour-promoting mutations. The potential mechanisms of how 

DNA damage may be attained during mitosis are discussed in detail in a recent 

comprehensive review (Ganem and Pellman, 2012). In brief, these include: prolonged 

mitotic arrest (Quignon et al., 2007, Dalton et al., 2007), aberrant kinetochore-microtubule 

attachments at the mitotic spindle (Guerrero et al., 2010) or physical damage during 

cytokinesis (Janssen et al., 2011). Further, DNA damage occurring at or during mitosis 

activates a more limited cellular response than if it occurs during any other stage of the cell-

cycle; although sites of DNA damage are marked by early DNA damage response (DDR) 

factors, the cell-cycle proceeds and the full DDR and repair pathway is not activated until 

completion of division, during the subsequent G1 phase (Giunta et al., 2010, Giunta and 

Jackson, 2011). This risks the propagation of unrepaired chromosome fragments to the 

resultant daughter cells. Finally, micronuclei resulting from chromosome segregation errors 

are vulnerable to further significant DNA damage that arises secondary to replication stress 

within the micronucleus (Crasta et al., 2012). The consequences of DNA damage in these 

micronuclei may be further confounded by inefficient nuclear importation of the essential 

DDR and repair agents (Terradas et al., 2010). Further, DNA replication within micronuclei 

has been demonstrated to be asynchronous and delayed when compared to its 
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corresponding primary nucleus, and as a result may enter subsequent mitosis whilst still in 

S-phase, increasing the risk of further substantial DNA damage (Crasta et al., 2012). 

The significance of DNA damage arising secondary to chromosome missegregation is still 

uncertain, with several studies finding no direct evidence of DNA damage following 

missegregation events (Burds et al., 2005, Thompson and Compton, 2010, Li et al., 2010). 

Experimentally, the degree of double stranded DNA (dsDNA) damage is frequently 

quantified by assessing the recruitment of various DDR factors to the site of the damaged 

chromatin. Using these techniques, no evidence of increased DNA damage was identified in 

a chromosomally unstable human cell line (Thompson and Compton, 2010), or in the highly 

aneuploid and unstable SAC-mutant MEFs (Burds et al., 2005, Li et al., 2010). In contrast, the 

SAC-mutant MEFs were found to activate p53 via the ataxia telangiectasia mutated (ATM) 

protein kinase pathway secondary to elevated levels of reactive oxygen species (ROS) (Li et 

al., 2010). The finding of elevated ROS levels provides further evidence that suggests that 

aneuploid cells may experience increased metabolic burdens. 

Therefore there is evidence from cancer-focused studies that the aneuploid state is 

associated with reduced cellular fitness secondary to a range of different potential 

mechanisms, both acute and chronic. These mechanisms have not been directly studied in 

human pre-implantation embryos. If the aneuploid cells in mosaic embryos are also affected 

by reduced cellular fitness relative to their diploid counterparts it is likely that aneuploid 

cells could be readily outcompeted by the surrounding diploid cells as development 

proceeds. The work presented in Chapter IV of this thesis investigates the potential role of 

these mechanisms in a mouse model of pre-implantation embryonic chromosome 

missegregation.  

 

1.6 AN OVERVIEW OF PRE-IMPLANTATION MOUSE DEVELOPMENT 

The study presented in this thesis uses the mouse as a model for mammalian development 

in the context of pre-implantation chromosome mosaicism. Therefore, the purpose of this 

section is to summarise the key features of pre-implantation mouse embryo development 

(Figure 1.5).  



Figure 1.5. An overview of pre-implantation mouse development. Following fertilization, 

major ZGA occurs at the 2-cell stage and the embryo undergoes successive cleavage divisions 

until the 8-cell stage when compaction and polarisation occur. Two waves of asymmetric 

divisions occur, during which time the inner and outer populations are established. The first fate 

decision, segregation of the TE and ICM, is complete by E3.5 at the early blastocyst stage. The 

blastocyst cavity expands during which time cell lineages segregate further and apoptosis 

occurs within the ICM. By E4.5 the blastocyst cavity is expanded and the second fate decision 

is complete – segregation of the PE and EPI. The embryo is now ready for implantation. 
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In the mouse, pre-implantation development takes place over a period of approximately 

four and a half days, during which time the uterine tissue prepares to receive the embryo. 

Mammalian development is viviparous; the embryo develops within the mother, who gives 

birth to live young at the end of gestation. A key necessity of viviparity is the development 

of a highly specialised set of extra-embryonic membranes and placenta located at the 

materno-fetal interface. These function to facilitate the effective transfer of essential 

nutrients from the mother to the developing offspring. Consequently, a major function of 

pre-implantation development is the establishment of the extra-embryonic lineages that are 

vital for successful uterine implantation and hence post-implantation development.  

Following implantation there is a dramatic increase in the growth rate of the embryo, 

particularly within the epiblast cells; the progenitors of the future fetus. Gastrulation occurs 

around two days later as the endoderm, mesoderm and ectoderm lineages emerge from the 

primitive streak. Gestation in the mouse is usually completed within 19 to 20 days. 

Pre-implantation development begins at the moment of fertilization and ends with the 

formation of the mature blastocyst, at which time the embryo is ready to implant into the 

uterine wall. Fertilization takes place within the ampulla of the oviduct, near the ovary. The 

embryo travels along the oviduct as development proceeds, and passes into the uterine 

cavity at around three days post-fertilization. As the blastocyst cavity expands, it hatches 

from the zona pellucida, the glycoprotein membrane that surrounds the earlier embryo, 

ready for implantation. Pre-implantation development is complete at the mature blastocyst 

stage at which point the first three cell lineages are segregated; the TE, PE, and EPI. The TE 

gives rise to the embryonic component of the future placenta, the PE gives rise to a set of 

extra-embryonic membranes, the visceral and parietal endoderm which later contribute to 

the yolk sac, and the EPI gives rise to the future fetus.  

1.6.1 Early cleavage divisions 

Upon fertilization, the zygote first undergoes a series of cleavage divisions, resulting in an 

increase in cell number; the resulting daughter cells become progressively smaller but 

without any accompanying growth or change to the size of the embryo (Aiken et al., 2004).  
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1.6.2 Zygotic genome activation 

The early mouse embryo initially relies on maternal factors, RNA and proteins stored in the 

oocyte, to support its development until ZGA occurs. ZGA is defined as the time point at 

which transcription of mRNA coded by the zygotic genomic DNA begins. This occurs in two 

waves in the mouse; a minor wave of zygotic transcription at the late 1-cell stage (minor 

ZGA), followed by a second major wave at the 2-cell stage (major ZGA) (Latham and Schultz, 

2001, Hamatani et al., 2006, Wang et al., 2004b). Accompanying the major wave of ZGA is 

the degradation of the majority of maternal transcripts (Schultz, 2002, Hamatani et al., 

2006) although some maternal factors may persist beyond the blastocyst stage (Bachvarova 

and De Leon, 1980).  

1.6.3 Compaction and polarization 

During first few cleavage divisions, the developing embryo consists of individually distinct, 

morphologically identical, symmetrical blastomeres. During the 8-cell stage there is 

dramatic reorganisation of the cells within the embryo as they compact, and within the cells 

themselves as they polarise along their apical-basolateral cell axis. Although polarisation 

and compaction are temporally linked and occur at the same time during normal 

unperturbed development, they are different and distinct processes. Compaction can occur 

without polarisation (O'Sullivan et al., 1993), and likewise polarisation without compaction 

(Johnson and Maro, 1984). 

 Compaction occurs when the 8-cell stage blastomeres adopt a more flattened morphology, 

secondary to an increase in intercellular adhesion. The embryo transforms into the morula; 

a tightly packed structure with the loss of distinctive cell outlines. Compaction maximises 

intercellular contacts, concomitantly minimising the amount of contact each blastomere has 

with the outside environment.  

Polarisation occurs when the 8-cell stage blastomeres lose their intracellular symmetry, 

usually at the time of compaction. At the early 8-cell stage each blastomere is symmetrically 

organised with an even distribution of microvilli over the entire cortex. Following 

compaction, when polarisation occurs, this symmetry is lost at all levels of organisation; the 

cell nuclei reposition basally, the cytoplasm and cytoskeleton reorganise, and the surface 
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microvilli become restricted to the apex of the blastomeres, polarity proteins Par3, Par6 and 

aPCK localise apically, and Par1 localises basolaterally (Johnson and McConnell, 2004).  

Polarity is organised axially with respect to the centre of the embryo; outward facing apical 

regions become distinct from the inward facing baso-lateral regions. 

 

1.6.4 Symmetric and asymmetric divisions 

Following compaction and polarisation the blastomeres in the embryo undergo a further 

two rounds of division that generate the 16- and then 32-cell stage embryo generating two 

distinct cell populations, the inner and outer cells. At the 8-cell stage, every blastomere is an 

outside cell and there is no inside cell population. However, when an 8-cell blastomere 

divides, it can give rise to outer or inner daughter cells, depending upon the orientation of 

the cleavage plane. These divisions can be classified as either symmetric or asymmetric, and 

are highly relevant in determining the future fate of their daughter cells (Johnson, 1981). 

Symmetric divisions occur when the blastomere divides along the apical-basolateral axis; 

both daughter cells will remain on the outside of the embryo. In contrast, asymmetric 

divisions occur when the blastomere divides perpendicular to the apical-basolateral axis; 

one daughter cell will remain on the outside of the embryo, while the other will be located 

on the inside. Symmetric divisions give rise to two identical, polarized daughter cells. In 

contrast, the two daughters arising from an asymmetric division are different, based on 

their differential inheritance of the apical and basal domains established during polarisation 

of their mother blastomere.  The outer cell predominantly inherits the apical polarised 

domain, while the inner cell predominantly inherits the baso-lateral domain. The two 

distinct populations of cells differ not only in their physical position within the embryo, but 

also in their polarity, and characteristics that anticipate their future fate as either TE or ICM 

cells (Johnson and McConnell, 2004). Symmetric or asymmetric divisions occur in two waves 

during the fourth and fifth cleavage divisions, or 8- to 16- and 16- to 32-cell divisions 

respectively (Pedersen et al., 1986). Both types of division will always result in the formation 

of an outer cell, however only asymmetric divisions will give rise to an inside cell. Thus, 

every outside cell in the 8 and 16-cell stage embryo will contribute to the future TE, 

however only those that undergo asymmetric divisions will contribute to the ICM, and 
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hence the future fetus. More recently a third although rarely observed wave of asymmetric 

division has been described, occurring at the sixth cleavage (Morris et al., 2010). This study 

used a time-lapse imaging approach to track the ultimate fate of the inside progeny that 

arose from these asymmetric divisions and found that these progeny invariably contributed 

to the PE population of cells. In addition, this study also found that inside cells arising during 

the 8- to 16-cell cleavage were significantly more likely to give rise to future EPI cells, while 

those arising at the 16- to 32- cell division were strongly biased towards a PE fate. These 

findings led to the authors proposing a model in which the future cell fate of the PE or EPI is 

influenced by the amount of time the ancestral parent cells reside with an outer surface; the 

earlier the cell is internalised the more likely it is to retain its pluripotent properties and thus 

contribute to the EPI lineage (Morris et al., 2010). However, in contrast to these results, 

another study also employing a time-lapse imaging approach, albeit on experimentally 

manipulated embryos, found no clear linkage between the timing of ICM progenitor cell 

internalisation and subsequent developmental fate (Yamanaka et al., 2010). A possible 

reason for the discrepancy in results between the two studies, relating to experimental 

artefacts on blastomere apical-basolateral polarisation, has been suggested (Morris, 2011). 

This study also demonstrated that modulating Fgf4 (Fibroblast growth factor 4) signalling 

during blastocyst maturation could shift the fate of ICM cells towards either EPI or PE fate, 

by inhibition of, or addition of exogenous Fgf4 respectively. These results were in accord 

with a previously reported study (Nichols et al., 2009). Accordingly, Yamanaka et al., 

proposed an alternative developmental model in which stochastic and progressive 

specification of the EPI and PE lineages occurs during maturation of the blastocyst, in an 

Fgf4 signal-dependent manner (Yamanaka et al., 2010).  

Therefore, between the 8- and 32- cell stage the embryo has transformed from a 

morphologically uniform population of cells into two distinct populations. This first fate 

decision segregates the ICM from the TE lineage. Cells on the outside of the embryo 

contribute to the TE lineage, while inside cells contribute to the ICM and will later segregate 

to form the EPI and PE blastocyst lineages.  
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1.6.5 Formation of the blastocyst, cavity expansion and apoptosis 

At the 32-cell stage, as the TE differentiates into a functional epithelium, fluid filled cavities 

begin to form within the embryo. These coalesce into a single, expanding cavity known as 

the blastocoel and its presence now defines the embryo as a blastocyst. As the blastocyst 

cavity expands the inner cell population cluster together and are displaced to one end of the 

blastocyst. The location of the cluster of ICM cells defines the embryonic-abembryonic axis 

of the blastocyst. The embryonic pole comprises the ICM and its surrounding 

trophectoderm, now known as the polar TE; the abembryonic pole is demarked by the 

blastocoel cavity and its surrounding TE, now known as the mural TE. The early blastocyst is 

usually formed by three and a half days post fertilization, and coincides with the 

establishment and segregation of the ICM and TE lineages which remain distinct from here 

onwards (Dyce et al., 1987).  

The progressive expansion of the blastocyst cavity continues for a further 24 hours as the 

embryo undergoes a further two rounds of cell division. During this time the ICM cells 

further diverge into two separate lineages with different fates, the PE and EPI.  The PE gives 

rise to a set of extra-embryonic membranes, and is a superficial epithelial layer of cells that 

lines the embryonic pole of the blastocyst cavity. In contrast, the EPI remains as a deep 

population of non-polarised cells that remains pluripotent. 

As the blastocyst cavity expands some cells within the ICM usually undergo apoptosis (Copp, 

1978, Fabian et al., 2005). Cell death is rarely observed prior to cavitation, or within the TE 

lineage. Apoptosis is observed in the majority of in vivo derived embryos, and affects up to 

10-20% of ICM cells, in contrast to just 1-3% of TE cells (Hardy, 1997). Maximal cell death 

occurs at the late-32 to early 64-cell stage, at around the same time that the ICM segregate 

into EPI and PE lineages (Copp, 1978, Pampfer and Donnay, 1999). The function of apoptosis 

within the pre-implantation embryo is not fully understood; increased levels have been 

reported on exposure to hyperglycaemia (Moley et al., 1998), however it also occurs during 

apparently normal, in vivo development (Copp, 1978, Brison and Schultz, 1997, Pampfer and 

Donnay, 1999). Apoptosis is a well-established characteristic of normal embryogenesis and 

can usually be understood in terms of its morphogenic role, for example in sculpting the 

shape of digits during limb development. However, the location and apparent randomness 
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of apoptosis within the ICM favour an alternative, non-morphogenic function. In non-

developmental settings, a major role of apoptosis is the elimination of abnormal or 

potentially deleterious cells. Therefore it has been widely hypothesized that apoptosis 

within the ICM may serve to eliminate cells with underlying abnormalities such as 

aneuploidy or DNA damage, or with inappropriate developmental potential, such as the 

presence of cells with TE identity within the ICM lineage (Hardy, 1997, Pampfer and Donnay, 

1999, Fabian et al., 2005). 

The potential role of apoptosis in the elimination of abnormal cells from the ICM is 

addressed in this study. 

During blastocyst cavity expansion, the ICM cells further segregate themselves into the 

deep, pluripotent EPI lineage, or differentiate into the PE. The PE is an epithelial layer of 

cells that line the surface of the blastocyst cavity by the late blastocyst stage. 

 

1.6.6. Developmental plasticity 

A key feature of early mammalian development is its highly regulative nature. During the 

first few cleavages the embryo is able to tolerate significant experimental perturbations 

without adverse effects on subsequent development, including the removal, addition and 

rearrangement of blastomeres (Tarkowski and Wroblewska, 1967, Hillman et al., 1972). This 

phenomenal resilience provides irrefutable evidence that early blastomeres share similar 

developmental potencies, and are able to alter their developmental pathway if necessary.  

 However the highly regulative nature of the early embryo with its remarkable ability to 

adapt to change, does not exclude the possibility of naturally occurring asymmetries that 

may bias cell fate during normal, unperturbed development.  Indeed there is plenty of 

experimental evidence to support the presence of such early developmental bias, even 

occurring as early as the first cleavage division (Gardner, 1997, Piotrowska et al., 2001, 

Piotrowska and Zernicka-Goetz, 2001, Gardner, 2001, Plusa et al., 2005, Plachta et al., 2011, 

Tabansky et al., 2013). 
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The developmental flexibility of the embryo diminishes as development proceeds. As 

lineages become established the blastomeres become progressively committed to their 

prospective developmental fate losing their developmental potency, becoming unable to 

adapt to perturbations. At which developmental time point do blastomeres restrict their 

developmental potency? The transition from the 8- to 16-cell stage marks first milestone at 

which point there are two subpopulations of cells that can be distinguished by their 

properties, position and their prospective fate. In unperturbed development outside cells 

contribute progeny to the TE, some outside cells contribute progeny to the ICM, and inside 

cells contribute progeny exclusively to the ICM. However, experimental manipulation of 

embryos at this stage has demonstrated that there is still considerable developmental 

plasticity of both cell populations. If outer cells are removed, exposing the inner cells to the 

outside environment, they undergo polarisation and develop TE-like properties (Ziomek and 

Johnson, 1982, Johnson and Ziomek, 1983). Further, when aggregation chimeras are 

constructed exclusively from the outside cells of 16-cell stage embryos (outside-only 

chimeras), or conversely exclusively from inside cells (inside-only chimeras), both are able to 

develop into blastocysts and healthy mice, although the implantation rates for inside-only 

chimeras are lower (Suwinska et al., 2008).  In contrast, if this experiment is repeated at the 

32-cell stage, neither outside-only nor inside-only chimeras develop into viable mice, 

although inside-only chimeras are able to organise into recognisable blastocysts. In contrast, 

outside-only chimeras were unable to compact. Thus, these studies demonstrate that 16-

cell stage blastomeres retain developmental plasticity and hence potency, but that this is 

lost by the 32-cell stage. What still remains unknown is whether every cell within the 16-cell 

stage embryo retains pluripotent potential, or if this is restricted to a subpopulation of cells. 

 

1.6.7 Pre-implantation development in the human embryo 

The majority of what is known about mammalian pre-implantation development has arisen 

through study of the mouse embryo. Due to limited availability of human embryos for 

research, far less is known about pre-implantation development in humans. At the 

morphological level the human embryo is similar to the mouse undergoing cleavage, 

compaction, blastocyst cavity formation and hatching prior to implantation. However, 
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where studies on human embryos have been possible it is clear that there are differences 

between human and mouse development, most notably in the timing of developmental 

events and mechanisms of lineage specification (Cockburn and Rossant, 2010, Niakan et al., 

2012, Oron and Ivanova, 2012). In addition, the high rates of developmental arrest, 

aneuploidy and abnormal morphology encountered in human pre-implantation embryos are 

rare in the mouse embryo. A more detailed discussion of the relative merits and limitations 

of using the mouse embryo as a model for the human embryo is presented in the following 

chapter. 
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1.7 AIMS OF THIS STUDY 

Aneuploidy is a major cause of human reproductive failure, and widely believed to be 

responsible for the relatively low success rates of in vitro fertilization (IVF). The majority of 

human pre-implantation embryos are mosaics, due to chromosome segregation errors 

occurring during the first few cleavages. Pre-implantation genetic screening (PGS) was 

developed with the goal of improving IVF outcomes by identifying and discarding aneuploid 

embryos, and thus transferring those embryos with the greatest developmental potential. 

Despite intense efforts, PGS failed. Until aneuploidy can be assessed non-invasively, 

mosaicism will always prove problematic for PGS. However, due to the technical and ethical 

limitations of human embryo research, the ultimate fate of mosaic embryos remains elusive. 

Therefore the first aim of this study was develop a mouse model of human embryo 

chromosome mosaicism. This model was then used to investigate the fate of abnormal cells 

within the embryo, and then the ultimate developmental potential of the embryo as a 

whole. Finally, the model was used to investigate the potential mechanisms accounting for 

the ultimate fates of the abnormal cells, drawing parallels between abnormal embryo 

development and cancer biology. 
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DEVELOPING A MOUSE MODEL OF CHROMOSOME MOSAICISM 

 

2.1 INTRODUCTION TO RESULTS I 

The major aim of this chapter was to create a mouse model for human pre-implantation 

chromosome mosaicism that could then be used to evaluate the consequences of mosaic 

aneuploidy during development.  

The majority of mosaic embryos in human development are diploid-aneuploid mosaics (van 

Echten-Arends et al., 2011). Therefore to investigate the fate of aneuploid cells within 

diploid-aneuploid mosaic embryos it was necessary to create a mouse model that contained 

a clone of cells that were likely to be normal. The mouse is usually considered a poor model 

of the human pre-implantation embryo development due to the low reported incidence of 

aneuploidy in the mouse embryo. However in this study this characteristic could be utilized 

to experimental advantage, as it would indeed be possible to ensure that the mouse model 

embryo contained a proportion of cells that were likely to be normal, and thus enable the 

fates of both normal and abnormal clones to be compared directly.  

Two potential experimental approaches for creating mosaic embryos were possible as 

illustrated in Figure 2.1. Mosaic embryos could either be true or chimeric mosaics, 

depending on the source or origin of the abnormal blastomeres. In true mosaics the 

abnormal blastomeres would originate as direct progeny arising from a clone of cells within 

a single intact embryo (Figure 2.1a). This would be the ideal model for mosaicism as the 

normal and abnormal clones would act as near-perfect controls for each other and there 

would be minimal disruption to the embryo. However some experimental approaches are 

not suitable for this model. In these cases an alternative approach would be to create 

chimeric mosaics, whereby single mosaic-type embryos are generated by aggregating 

blastomeres together that originate from two different embryos (Figure 2.1b). 

In developing a mouse model for chromosome mosaicism it was necessary to generate or 

acquire a source of aneuploid blastomeres. Two experimental approaches were considered; 

abnormal blastomeres could be obtained from embryos with chronic defined aneuploidies 

(as defined in the previous chapter), or alternatively generated experimentally by inducing 



(A) True mosaic embryo 

(B) Chimeric mosaic embryo 

Treatment of 
whole embryo 

Disaggregation and re-aggregation 
with untreated embryo 

Figure 2.1 Experimental strategies for generating mosaic embryos. (A) In a true 

mosaic embryo, treatment is restricted to a single clone of blastomeres. This technique is 

limited to treatments or manipulations that can be carried out in one blastomere, without 

altering the others (B) In chimeric mosaic embryos the final embryo is constituted of cells 

obtained from two different embryos aggregated together. The embryos have been 

subjected to different treatments or are of a different genetic background. This method is 

employed when clonal treatment options are not technically possible. 

Colour scheme: Blue denotes euploid and red denotes aneuploid blastomeres 

Clonal treatment of 
blastomeres 
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chromosome segregation errors in blastomeres during mitosis. In the first instance the 

experimental strategy focused on generating abnormal blastomeres secondary to acutely 

arising chromosome segregation errors occurring during mitosis. Of the two potential 

approaches, this was considered to be the most representative model for human pre-

implantation aneuploidy. Unlike chronic defined aneuploidies, chromosome segregation 

errors that arise during mitosis usually result in a pattern of complex, unstable chaotic 

mosaicism with a range of aneuploidies in different cells (Pfau and Amon, 2012), and 

resemble the patterns of aneuploidy that have been described in human cleavage stage 

embryos (Vanneste et al., 2009, Ledbetter, 2009).  Human embryo aneuploidies are 

frequently chaotic with a wide range of different chromosomes affected and variable 

abnormalities often identified within the same embryo, even within the same blastomere 

(Vanneste et al., 2009, Rabinowitz et al., 2012). An additional important factor to take into 

consideration was the possibility that chromosome segregation errors arising during mitosis 

may directly trigger acute cellular responses that could have a significant impact upon the 

future fate of the cell, as discussed in section 1.5 of the previous chapter. In the context of 

the pre-implantation embryo, such acute cellular responses could play a critical role in 

determining the fate of the abnormal blastomeres and the embryo. If so, such effects may 

be missed if blastomeres containing chronic defined aneuploidies were used in the model 

embryo.  

To create a mouse model of acutely arising chromosome mosaicism it was necessary to 

induce transient chromosome segregation errors in cleavage stage blastomeres. When any 

cell undergoes division it must faithfully segregate its duplicated chromosomes between 

each daughter cell and any errors occurring during this process can result in aneuploidy. 

Such errors may arise as a result of disruption of the spindle assembly checkpoint (SAC), 

defects in chromosome attachments to the mitotic spindle, abnormalities in chromosome 

cohesion, failures of error correction mechanisms or centrosome abnormalities (Holland 

and Cleveland, 2009, Fang and Zhang, 2011). The mechanism underlying the origin of 

aneuploidy in the human embryo is not known. However the relaxation or absence of cell-

cycle checkpoints, or the proteins involved, during the first few cleavage divisions of the 

human pre-implantation embryo has been speculated as a possible cause of chromosome 

mosaicism (Delhanty and Handyside, 1995, Harrison et al., 2000, Los et al., 2004, 
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Ambartsumyam and Clarke, 2008, van Echten-Arends et al., 2011, Mantikou et al., 2012). 

The experimental perturbation of any of these pathways is likely to result in aneuploidy and 

therefore this strategy was applied to cleavage stage embryos in this study. Described 

further in this chapter are a range of experimental techniques that were applied with the 

intention of either abrogating the SAC or disrupting kinetochore structure, in order to cause 

chromosome segregation errors in the clone of treated blastomeres.  

The SAC is the primary surveillance mechanism that acts to prevent a cell from entering 

mitosis in the presence of unattached chromosomes (Musacchio and Salmon, 2007). During 

pro-metaphase chromosomes align along the mitotic spindle and attach via direct 

interactions between their kinetochores and the spindle microtubules. As chromosomes 

align the SAC is active and prevents the cell from entering anaphase until every single 

kinetochore is attached to the spindle (Rieder et al., 1995). The SAC acts through a complex 

biochemical pathway involving interactions between kinetochores and multiple SAC 

proteins that concentrate at the site of unattached kinetochores, generating a signalling 

cascade that ultimately inhibits the onset of anaphase (Musacchio and Salmon, 2007). SAC 

proteins that accumulate at unattached spindles become depleted by microtubule 

attachment to kinetochores, and when all kinetochores are attached this ultimately results 

in the onset of anaphase, and mitosis proceeds (Hardwick and Shah, 2010). Core SAC 

components include Mad2, Bubr1, Bub3, Mad1, Mps1 and Aurora B, together with a 

multitude of other and additional regulatory proteins (Kops et al., 2005, Musacchio and 

Salmon, 2007). Cells without a functional SAC exhibit high rates of chromosome segregation 

errors, a shortening of the time from metaphase to anaphase (Gorbsky et al., 1998, Canman 

et al., 2002, Meraldi et al., 2004), and a failure to undergo arrest in mitosis under conditions 

that would usually prevent satisfaction of the checkpoint such as drug treatment with 

spindle poisons (Rieder and Palazzo, 1992, Rieder and Maiato, 2004).  

Central to the formation of stable attachments between the chromosomes and spindle 

microtubules is the kinetochore, a complex multi-protein structure assembled on the 

centromeric regions of the chromosomes at the time of mitosis (Cheeseman and Desai, 

2008). The outer kinetochore proteins are required for the formation of stable attachments 

to the spindle microtubules and several of the key SAC proteins bind directly to the 

kinetochores (Kline-Smith et al., 2005, Ciferri et al., 2007). Kinetochore structure is 
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intricately related to the function of the SAC (Musacchio and Salmon, 2007). Defects in key 

outer kinetochore components result in chromosome segregation errors mediated through 

unstable attachments of the chromosomes to the microtubules or through bypass of the 

SAC (Kline-Smith et al., 2005). Of the many proteins that constitute the kinetochore, the 

highly conserved Ndc80 complex is a key component of the outer kinetochore that has an 

essential role in maintaining stable kinetochore-microtubule connections (Kline-Smith et al., 

2005, Ciferri et al., 2007). 

In this chapter the development of a mouse model of pre-implantation diploid-aneuploid 

mosaicism is presented.  
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2.2 MATERIALS AND METHODS 

2.2.1 Pre-implantation embryo collection and culture 

F1 (C57B16xCBA) female mice were injected with 10IU of PMSG (Intervet) followed by 10IU 

of hCG (Intervet) 48 hours later to induce superovulation. Females were paired with stud 

males for mating. Unless specifically stated, females were paired with F1 males. In a subset 

of time-lapse imaging experiments females were mated with H2B-GFP transgenic males 

(Hadjantonakis and Papaioannou, 2004).   

Embryos were recovered into M2 medium from sacrificed females at the required 

developmental stage depending upon the experiment. All experimental manipulations were 

carried out in M2 medium, but any prolonged culture or imaging was undertaken in KSOM 

medium under mineral oil, equilibrated to 370C in atmospheric oxygen and 5% carbon 

dioxide. 

M2 and KSOM media were prepared from stocks within the laboratory according to 

standard protocols (Nagy et al., 2003). 

2.2.2 Generating metaphase spreads 

Embryos at different stages of development were treated with demecolcine or colchicine 

(Sigma) to induce metaphase arrest. They were treated with a hypotonic solution of sodium 

citrate (Sigma), followed by fixation in methanol and acetic acid solutions (Sigma). Following 

fixation the embryos were dropped onto clean glass slides, and evaluated for metaphase 

spreads on a phase microscope, or a Deltavision fluorescent widefield microscope following 

4′,6-diamidino-2-phenylindole dihydrochloride (DAPI) (Invitrogen) staining of the DNA.  As a 

protocol control, metaphase spreads were generated from MEF cells. MEF cells were 

obtained from E13.5 fetuses following natural mating, and cultured overnight in Dulbecco’s 

Modified Eagle Medium (DMEM) (Invitrogen) supplemented with 10% fetal calf serum (FCS) 

and penicillin-streptomycin (Invitrogen).  

2.2.3 Immunocytochemistry 

Embryos were treated with acid Tyrode’s (AT) solution (Sigma) to remove the zona pellucida 

and left to rest in M2 for 20 minutes. Unless otherwise stated all reagents were diluted in 
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phosphate buffer solution (PBS), incubations carried out room temperature, and washes 

were for a minimum of five minutes in PBS-T (0.1% Tween-20 (Sigma) in PBS).  

For anti-centromere antibody (ACA) staining, embryos were fixed in methanol (Sigma) at -

20oC for one hour. For haemagglutinin (HA) tag staining, embryos were fixed in 4% 

paraformaldehyde (PFA) solution (EMS) for 20 minutes in the dark. Embryos were then 

permeabilized for 20 minutes in 0.6% Triton X-100 (Sigma), washed and then incubated in 

blocking solution for a minimum of four hours at 40C. Blocking solution comprised of 3% 

bovine serum albumin (BSA) (Sigma) in PBS.  

Embryos were then incubated in the required primary antibodies diluted in blocking 

solution for a minimum of six hours at 40C. Primary ACA antibodies were supplied ready-

conjugated with fluorescein isothiocyanate (FITC). For HA-tag antibodies, embryos were 

washed and incubated in secondary antibody for one hour, washed again and then 

incubated in DAPI for five minutes. Embryos were transferred into M2 for imaging on an 

Olympus FV1000 or Leica SP5 inverted confocal microscope and captured with Olympus 

Fluoview FV10-AW or LAS AF software respectively. 

FITC-labelled ACA antibodies (human antisera, Antibodies Incorporated) were diluted at 

1:100; anti-HA antibodies at 1:250 (mouse monoclonal, Covance); and secondary Alexa-

Fluor 488-conjugated anti-mouse antibody at 1:500 (Invitrogen). 

 

2.2.4 Plasmid construction and mRNA synthesis 

A plasmid vector (pCDNA3) containing the full length DNA sequence of human CENPB 

(centromere associated protein B) tagged with GFP (CENPB-GFP) was obtained as a gift from 

Jonathan Pines (Principal Investigator, Gurdon Institute, University of Cambridge). This was 

subcloned into plasmid pBluescript RN3P (pRN3P:CENPB-GFP) ready for in vitro transcription 

(IVT) of recombinant mRNA. The pRN3P vector was used because it allowed for the inserted 

CENPB-GFP to be transcribed in vitro from the upstream T3 RNA polymerase II promoter 

whilst incorporating the 5’ and 3’ untranslated regions (UTRs) of the frog -globin gene 

locus, which provided transcript stability following microinjection into embryo blastomeres. 

The CENPB-GFP insert was isolated from pCDNA3 using EcoRI and NotI restriction enzymes 
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(New England Biolabs), alongside preparation of the pRN3P vector with the same enzymes. 

The prepared vector and inserts were then ligated using T4 DNA ligase (Roche), followed by 

chemical transformation into DH5- E. coli (Stratagene). Successful transformants were 

selected by overnight incubation on LB agar plates with ampicillin. Purified DNA plasmids 

were then digested with EcoRI and NotI and run on a 1% agarose gel to confirm the 

presence of the desired CENPB-GFP insert. Successful plasmid clones were sent for 

sequencing, yielding a sequence verified pRN3P:CENPB-GFP plasmid.     

A Mad2 dominant negative construct (Mad2_DN) containing an N-terminus HA-tag was 

obtained from Bedra Sharif (then a PhD student in David Glover’s laboratory, Department of 

Genetics, University of Cambridge). This construct was obtained already cloned into the 

pRN3P plasmid, ready for linearization and IVT. 

A mouse Bubr1_dominant negative construct (Bubr1_DN) was designed to contain an N-

terminus HA-tag.  The cDNA was amplified from a sequenced IMAGE clone obtained from 

GeneService using Phusion High-Fidelity PCR (Thermoscientific). Primers were designed to 

incorporate BamHI and XbaI restrictions sites, a Kozak sequence, HA-tag, start and stop 

codons (Table 2.1). The resulting PCR product was sub-cloned into pRN3P prepared with 

BamHI and XbaI (New England Biolabs), as described above. The purified plasmids were 

digested with BamHI and XbaI and run on a 1% agarose gel to confirm the presence of the 

Bubr1_DN insert, and sequenced to confirm successful cloning.  

All mRNAs were transcribed from pRN3P vectors linearized by the restriction enzyme SfiI 

(Roche), as pRN3P contained a unique SfiI recognition site not present in any of the inserts,   

and then purified using a standard phenol-chloroform extraction protocol. The mMessage 

mMachine T3 Kit (Ambion) was used to transcribe and cap mRNA in vitro. The mRNA was 

dissolved in nuclease-free water to the desired working concentrations and microinjected 

into blastomeres as required. Microinjections were carried out in M2 on a glass concaved 

slide using a Femtojet micro-injection system (Eppendorf).  

In this chapter the following mRNAs were microinjected at the given concentrations: CENPB-

GFP 0.04 g/l; dsRed 0.5 g/l; Histone-RFP 0.02 g/l; Mad2_DN 0.8 & 2.0 g/l; 

Bubr1_DN 0.8 & 1.75 g/l. 
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2.2.5 Preparation of short interfering RNAs (siRNA) 

Pre-designed siRNAs for Mad2, Bubr1 and Ndc80 were purchased from Invitrogen (Stealth 

RNAiTM), together with a universal negative control siRNA (medium GC content; catalogue 

number 12935-112). For each gene, three non-overlapping pre-annealed 25-nucleotide 

dsRNA oligos were supplied and mixed together in equal proportions and diluted in 

nuclease-free water at the required concentration, ready for microinjection. The sequences 

are given in Table 2.2. 

 

2.2.6 Drug treatments 

Nocodazole (NZ) (Sigma) was used at a concentration of 0.33M diluted in culture medium. 

Reversine (Cayman chemicals) was dissolved in DMSO and used at concentrations of 0.5 or 

1.0M. Where required, control embryos were incubated in the equivalent DMSO 

concentration in the absence of the active drug. The final concentration of DMSO was 

0.005%. 

2.2.7 Time-lapse imaging and analysis 

For imaging embryos were transferred into a glass bottom culture dish (MatTek) customised 

to contain a finely weaved adherent nylon mesh. Embryos were placed within individual 

interstices of the mesh that served to keep them in position throughout the duration of the 

imaging.   

Time-lapse movies were generated using a spinning disk confocal microscopy system (3i 

Intelligent Imaging Innovations, Marianas, Intelligent Imaging Innovations), consisting of an 

inverted confocal microscope (Axiovert Observer Z1, Carl Zeiss, Inc.) and camera (QuantEM 

512SC; Yokogawa), with images captured using SlideBook software (Intelligent Imaging 

Innovations 3i). The microscope set-up included a multi-position stage function which 

enabled each embryo to be imaged individually at every time point, using a 63x water 

objective. Brightfield and fluorescent images were captured in 15 z-planes at 3.5M 

intervals. Images were captured every seven to ten minutes, for 10 to 16 hours according to 

the specific experiment. Images were analysed using SlideBook software. 
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2.2.8 Real-Time Quantitative Reverse Transcriptase-Polymerase Chain Reaction 

Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was used 

to determine the degree of gene knockdown in siRNA experiments.  Total RNA was 

prepared from embryos 40 hours after injection with siRNA at the zygote stage using the 

PicoPure RNA isolation kit (Arcturus Bioscience). Between 30 and 50 embryos per 

experimental group were collected into a total of 20l of RNA extraction buffer and snap 

frozen on dry ice. Total RNA was extracted following the manufacturers protocol, and then 

DNase treated to remove any contaminating DNA using the DNA-free kit (Ambion). Next 

cDNA was synthesized using SuperScript III Reverse Transcriptase (Invitrogen) with Oligo-

dT(20) priming. The cDNA was then used as a template in real-time PCR reactions using the 

SYBR Green Master Mix (Applied Biosystems) in optical 96-well reaction plates. Reactions 

were performed in technical triplicate for each primer pair (Table 2.1) using the StepOne™ 

Real-Time PCR System (Invitrogen).   

The degree of gene knockdown was calculated in Microsoft Excel software using the Ct 

quantification method (Livak and Schmittgen, 2001), normalised against the housekeeping 

gene Actin B (ActB).  

2.2.9 FISH analysis of blastocysts 

A group of control and reversine-treated early blastocysts were analysed for their 

chromosome constitution using FISH probes for chromosomes 2, 11 and 16. The FISH 

procedure and analysis was carried out by Aisha Elaimi (then a PhD student in Joyce 

Harper’s laboratory, University College London) as previously described in her recent 

publication (Elaimi et al., 2012). 

2.2.10 Array-based karyotyping 

To collect individual blastomeres for array-based karyotyping 8-cell stage embryos (control 

and reversine-treated) were treated with AT to dissolve the zona pellucida. After 30 minutes 

they were incubated in calcium- and magnesium-free M2 media for five minutes and then 

disaggregated into single cells by gentle pipetting with a flame-polished glass pipette. 
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Individual cells were serially washed through four large drops of freshly prepared 1x PBS 

(Cell Signalling). Single blastomeres were collected into 2l of the 1x PBS solution in a 200l 

PCR tube, and immediately frozen on dry ice and kept at -80oC. Cells were shipped on dry ice 

to Dr Thierry Voet (University of Leuven) for array-based karyotyping (Konings et al., 2012).  

2.2.11 Statistical analysis 

To compare categorical data the Chi-square test was used, unless the numbers were small in 

which case Fisher’s exact test was used. The Mann-Whitney U or Kruskall-Wallis tests were 

used to compare median timings of mitosis or time to mitotic slippage. In all cases the two-

tailed version of the test was used to evaluate statistical significance. Calculations were 

carried out in Microsoft Excel or with GraphPad software. 

 

Gene Forward Sequence - (5' to 3') Reverse Sequence - (5' to 3') Application 
Bubr1 GACTATGGATCCGCCACCATGGGCTACCCATACGAT

GTTCCTGACTATGCTATTGAGCCTAGTATCAACCATG
TTCTC 

GACTATTCTAGATTAATTAGTCAGCTC
CAGCTTTTCCAG BubR1_DN 

Mad2 GGGACCGCAATTTATTACCA  TTGACAGGGGTTTTGTAGGC 

qRT-PCR 
BubR1 GAAGGAGCGTCTGAATGAGG TCTGAAGGGTGGAGCAGTTT 
Ndc80 TGTATGCACCGCTCAAAGAG GCTTTCCGTTTTCATGGTGT 
ActB GCTCTTTTCCAGCCTTCCTT CGGATGTCAACGTCACACTT 

 

 

Target gene  siRNA Sequences 

Mad2 
GAGCUGAACCAGUACAUCCAGGACA 
UCAGCCUCCCUUGCUGUCCAUCAAU 
UCCUGGCAGAUGAACAGGAUGUCCA 

Bubr1 
GGAAGACAAUCAGCCCGGAAGCUUU 
CCAGUACACGGUAAUCGCAGGAUCA 
UGGGACAUUUGUGCAAUGAACCUUU 

Ndc80 
GAGUACACACAAACCGACAUCGGAA 
GCUCUUGAAUGAAAGCGAAGAAGAA 
CAGGAAUAGUCAACUUGGUAUAUUU 

 

  

Table 2.1 Primer sequences 

Table 2.2 siRNA sequences 
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2.3 RESULTS I 

2.3.1 Evaluating the chromosome status of mouse pre-implantation embryos  

In the first instance it was necessary to develop a protocol to evaluate the chromosome 

status of cells within the pre-implantation mouse embryo.  This protocol was then used to 

establish the success of the experimental approaches aimed at generating a clone of 

aneuploid blastomeres. A range of approaches were investigated including classic 

cytogenetic techniques, evaluation of centromeres and time-lapse imaging.   

 

2.3.1.1 Classical cytogenetic approaches 

First the classical cytogenetic technique of generating chromosomes spreads for analysis 

was attempted. Although this approach in pre-implantation embryos is widely 

acknowledged to be technically challenging (Delhanty and Handyside, 1995, Macklon et al., 

2002), successes have been reported (Garside and Hillman, 1985, Roberts and O'Neill, 1988, 

Yoshizawa et al., 1990, Roberts et al., 1990, Kola and Wilton, 1991, Jamieson et al., 1994, 

Clouston et al., 1997, Clouston et al., 2002, Lightfoot et al., 2006). To begin with a detailed 

review of the practical techniques used in the above mentioned studies was undertaken. In 

particular there were noted to be a wide range of variations at every step in the procedure 

including the metaphase arrest protocol, hypotonic solution, fixation technique and 

spreading methods. The salient experimental details were summarised together and 

subsequently used as a guide in developing and optimising a protocol that could be used for 

this study.  

Despite multiple attempts and variations of the protocol it was not possible to produce a 

single good quality metaphase spread in mouse embryos ranging from the 2-cell stage 

through to the blastocyst stage. Parameters that were varied (as guided by literature 

evaluation) included: metaphase arrest protocol (drug used – demecolcine or colchicene, 

doses, length of exposure), hypotonic treatment (water or sodium citrate, incubation time 

and temperature), fixation step (composition of fixative, dropping onto slide approach) and 

spreading techniques (disaggregation, drying and further fixative).  Following several failed 

attempts further practical expertise was then sought on collaboration with Dr Willem Rens, 
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at that time a senior scientist with extensive experience in the preparation of metaphase 

spreads in cells obtained from a wide range of animals and within a variety of different 

tissues (Molecular Cytogenetics Laboratory Department of Veterinary Medicine, University 

of Cambridge). Further trouble-shooting of the protocol in great detail still did not produce 

any good quality chromosome spreads. In those cases where metaphase was achieved, 

most were not suitable for analysis due to inadequate chromosome spreading, and 

clumping of the chromosomes over each other (Figure 2.2a). In contrast obtaining suitable 

metaphase spreads was relatively easy in MEF cells, and as a result the failure was 

attributed to the cellular characteristics specific to the pre-implantation embryo rather than 

a failure to master the technique of cytogenetic preparation itself (Figure 2.2b). 

Therefore it was concluded that the cytogenetic analysis of the mouse pre-implantation 

blastomeres could not be adequately optimised and hence would not be suitable for this 

study. This technique was abandoned in pursuit of alternative potential strategies.  

 

2.3.1.2 Evaluating centromere number 

Classic cytogenetic techniques enable cells to be karyotyped. In addition to evaluating 

chromosome number, the karyotype provides a detailed visual map of every chromosome 

within the cell, with abnormalities defined by the specific chromosome involved in the 

abnormality together with the presence or absence of major structural abnormalities. 

However, for the purposes of this study it was considered sufficient to determine the 

number of chromosomes per cell and to classify the chromosome status as either normal or 

abnormal based on chromosome number. Therefore an alternative experimental approach 

was considered, based upon the evaluation of centromere number as a surrogate marker of 

chromosome number within mouse blastomeres. In the mouse, every chromosome contains 

a single centromere, and thus if the centromere number could be determined with accuracy 

this number could be extrapolated to determine the rates of aneuploidy. 

Two experimental approaches were evaluated; either the detection of centromeres using 

anti-centromere antibodies (ACA) followed by IF and image analysis, or the microinjection of 

a GFP-tagged centromere protein mRNA, CENPB-GFP which would, when translated into  



Figure 2.2 Chromosome spreads in pre-implantation embryos compared with MEF 

cells. (A) Achieving chromosome spreads suitable for analysis was not possible in pre-

implantation embryos. In the few cases where metaphases containing relatively normal 

looking chromosomes were identified, the chromosomes spread poorly, exhibiting clumping 

and were unsuitable for  accurate chromosome counting (i). The majority of nuclei were 

either not arrested in metaphase or contained very contracted chromatin (ii to iv). (B) In 

contrast chromosome spreads were easily achievable from MEF cells, with multiple well-

spread metaphases suitable for chromosome analysis and counting if required. 
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protein, localise to the site of every centromere and could be detected during time-lapse 

imaging of mitosis.  

Technically the immunostaining for ACA appeared successful. Fluorescent signal was clearly 

visible in the expected distribution although significant background staining was present 

(Figure 2.3a). However the imaging conditions required to accurately detect all centromeres 

were unachievable. Multiple small z-sections were necessary to capture all centromeres 

resulting in almost complete bleaching of the fluorochrome during image capture. The 

centromeres were also well visualised following injection of CENPB-GFP mRNA into 

blastomeres and with less background staining than the ACA images. However, this 

approach met with the same technical limitations as for the antibody associated approach; 

the imaging parameters required were unachievable even when using a spinning disk 

confocal microscope (Figure 2.3b). It also became further apparent that labelling of the 

centromeres with the same fluorescent probe would almost certainly never be suitable for 

counting chromosome number with any accuracy due to the close proximity of the 

chromosomes and overlapping centromere signals.  

Therefore this approach was also abandoned in pursuit of a more suitable alternative 

technique. 

 

2.3.1.2 Evaluating chromosome segregation errors using time-lapse imaging 

The aim of this part of the study was to induce chromosome segregation errors, and hence 

aneuploidy, through experimental perturbation of the SAC or disruption of kinetochore 

structure. In view of the technical challenges encountered in assessing for chromosome 

status described above, an alternative strategy was established to evaluate the 

effectiveness of SAC bypass or disruption of kinetochore structure, rather than specifically 

evaluating aneuploidy in individual blastomeres per se.  

As discussed in Section 2.1, bypass of the SAC results in chromosome segregation errors, a 

shortening of the time to anaphase (Gorbsky et al., 1998, Canman et al., 2002, Meraldi et 

al., 2004, Musacchio and Salmon, 2007), and a failure to undergo mitotic arrest in response 

to spindle poisons such as NZ (Rieder and Palazzo, 1992, Rieder and Maiato, 2004). These  



Figure 2.3 Evaluation of chromosome number by assessment of centromeres (A) Anti-

centromere antibody (ACA) staining of centromeres in 2-cell stage embryos, shown in z-

plane 06 and 56. Centromere staining is achieved (white arrowheads) however the relatively 

high background staining and significant bleaching during imaging render centromere 

number assessment impossible. (B) Labelling of endogenous centromeres with CENPB-

GFP minimised issues with background staining, but still did not result in images of sufficient 

resolution to accurately evaluate centromere or chromosome number. Images i) and ii) are 

cropped and magnified views of the nuclei in the 2-cell stage embryo shown in the main 

image. 

Inset images in lower right corners are close up views of single representative nuclei. 
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effects could potentially be evaluated using high resolution time-lapse imaging of chromatin 

dynamics during mitosis.  

Therefore an imaging strategy was developed and optimised to enable the chromatin 

morphology to be evaluated in blastomeres undergoing cleavage. Embryos were 

microinjected with histone-red fluorescent protein (RFP) mRNA to label the chromatin and 

thus enabled the chromosomes to be visualised during mitosis. Embryos were imaged on a 

spinning disk confocal microscope during cleavage in two channels, RFP and bright-field. 

Imaging parameters were optimised to gain maximal chromatin morphology while still 

enabling the cells to undergo the next two cleavage divisions as expected. The effects of 

imaging on subsequent development were not assessed, as the embryos were then to be 

discarded.   Embryos were imaged undergoing cleavage at different stages of development 

and evaluated for the length of metaphase and the presence of major chromosome 

segregation abnormalities during mitosis. Metaphase length was defined as the time from 

nuclear envelope breakdown (NEBD) to the onset of anaphase (Figure 2.4). Chromosome 

segregation was classified as abnormal if there were major segregation errors resulting in 

the formation of a micronucleus or nucleo-cytoplasmic bridges (Figure 2.5).  

This imaging protocol was then used to evaluate the effectiveness of the experimental 

attempts to bypass the SAC or disrupt kinetochore structure, as presented in the following 

section. 

 

2.3.2 Inducing chromosome segregation errors in cleavage stage blastomeres 

Having established a protocol that could be used to detect acutely arising chromosome 

segregation errors in the embryo, the next aim was to experimentally induce missegregation 

errors in mouse blastomeres. Several experimental strategies were attempted including 

dominant negative approaches, siRNA mediated gene knockdowns and drug treatment, 

targeting key components of the SAC or kinetochore structure.    

  



Figure 2.4 Time-lapse imaging of normal mitosis in a 2-cell stage embryo. Embryos 

were injected with histone-RFP mRNA to enable visualisation of chromosome 

morphology during spinning disk confocal imaging. Images were captured at 7-minute 

intervals in 15 z-planes, shown as a projected image in the panels above. The length of 

metaphase was defined as the time from nuclear envelope breakdown (NEBD) 

(arrowheads) to the onset of anaphase (asterisks), identified by morphological features of 

the chromatin. In this example there were no chromosome segregation errors and the 

mitosis was classified as normal. 

Timings are given in hours and minutes (hh:mm) 

 

All images at 63x magnification 
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Figure 2.5 Major chromosome missegregation occurring during the 2- to 4-cell 

stage cleavage. Time-lapse imaging sequences reveal a lagging chromosome during 

mitosis that results in the formation of a discrete micronucleus within one of the daughter 

blastomeres. This mitosis would be classified as abnormal. NEBD is shown by the 

arrowheads and the asterisks denote the presence of a lagging chromosome that 

ultimately forms a micronucleus in a daughter blastomere.  

 

Timings are given in hours and minutes (hh:mm) 

 

All images at 63x magnification 
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2.3.2.1 Dominant negative approaches 

The generation of DN constructs was carried out in close collaboration with Dr Alexander 

Bruce, a post-doctoral researcher within the laboratory.  

Two constructs were used: a DN construct for Mad2 (Mad2_DN) and Bubr1 (Bubr1_DN), 

both key proteins required for SAC function (Musacchio and Salmon, 2007). These two 

particular proteins were selected because Mad2 and Bubr1 DN constructs have previously 

been used to successfully bypass the SAC in mouse oocytes (Tsurumi et al., 2004) and thus 

considered likely to be effective in the early embryo.  

The Mad2_DN construct contained the mouse DNA sequence but lacked 10 amino acids at 

the C-terminus preventing its interaction with cell-division cycle protein 20 (Cdc20,) an 

essential regulator of cell division, and thus preventing the essential cell-cycle delay 

mediated by a functioning SAC.    

An effective human BUBR1_DN construct was first characterised in Hela cells and consisted 

of a truncated protein containing amino acid residues 351 to 700, unable to inhibit the 

anaphase promoting complex (APC) and thus also preventing the cell-cycle delay mediated 

by a functioning SAC (Tang et al., 2001). Since then, an equivalent mouse Bubr1_DN 

construct had subsequently been used to successfully bypass the SAC in mouse oocytes 

(Tsurumi et al., 2004). Therefore an equivalent Bubr1_DN construct for amino acid residues 

351 to 700 was generated. The Bubr1_DN construct was also designed to contain an N-

terminus HA-tag, to enable the protein to be identified by IF as required.  

Mad2_DN or Bubr1_DN mRNA was microinjected into 2-cell stage embryos between 42 and 

44 hours post hCG injection. Successful injection was confirmed at the late 2-cell stage by 

checking for the expression of a co-injected fluorescent marker and only those embryos 

expressing the marker strongly were used in the subsequent experiment. Control embryos 

for comparison were injected with the lineage marker alone. For time-lapse imaging 

experiments the lineage marker was histone-RFP and for all other experiment dsRed. 

In the first instance immunostaining for the HA-tag was carried out in a subset of embryos in 

order to check for successful expression of the DN protein following mRNA injection. The 

HA-tag was detected clearly in embryos injected with either Mad2_DN or Bubr1_DN mRNA 
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thus confirming successful translation of the mRNA into protein by the late 2-cell stage. 

Additionally, when checked at the 8-cell and mid-blastocyst stage the protein was still 

present in abundance (in both Mad2_DN and Bubr1_DN groups) thus demonstrating that 

the injected constructs generated recombinant proteins that remained present in the 

embryo over several cell-cycles.  

In the following experiments presented in this section two concentrations of Mad2_DN and 

Bubr1_DN mRNA were evaluated. Concentrations of 0.8 or 2.0g/l of Mad2_DN were 

injected, and for Bubr1_DN the concentrations were 0.8 or 1.75g/l. Subsequently these 

concentrations will be referred to as low or high concentrations accordingly for clarity. 

These particular concentrations were selected based upon their previous use in mouse 

oocytes (Tsurumi et al., 2004, Sharif, 2011), and also on consideration of the concentrations 

of mRNA usually used within the laboratory for microinjection of pre-implantation embryos. 

Within the laboratory the vast majority of mRNAs are effective at concentrations 

significantly lower than 1.0g/l. Further, the microinjection of mRNA becomes technically 

more challenging as the concentration of mRNA increases and thus limits the use of higher 

concentrations of mRNA.  

Following successful microinjection of either Mad2_DN or Bubr1_DN mRNA into both 

blastomeres of 2-cell stage embryos, a series of experiments were conducted to assess pre-

implantation developmental potential or to evaluate evidence of successful bypass of the 

SAC within individual blastomeres. The results for each set of experiments are presented in 

detail individually in Figures 2.6 (Mad2_DN) and 2.7 (Bubr1_DN), and also summarised 

together in Table 2.3.  

For clarity of the following text, some details of the numbers and statistics are omitted from 

the section below but can be found clearly within the given figures and tables. 

  



Figure 2.6 Effect of Mad2_DN on the SAC in the embryo (A) Blastomeres injected with 

low or high concentrations of Mad2DN mRNA had equivalent rates of chromosome 

segregation errors as controls (Fisher’s test; p=0.19 & 1.0 respectively) (B) Metaphase 

lengths measured in control and low concentration Mad2DN blastomeres were equivalent, 

but prolonged in blastomeres injected with the high concentration (Mann-Whitney U; 

***p<0.001) (C) Mad2DN injection did not bypass metaphase arrest induced by NZ, however 

injection with 2.0mg/ml of Mad2DN mRNA was associated with a significantly shorter time to 

mitotic slippage (Mann-Whitney U; ***p<0.001). (D) Representative image of a 2-cell stage 

embryo following single blastomere injection with the low concentration of Mad2DN mRNA, 

clearly demonstrating strong expression of the protein in the injected blastomere (arrowhead 

shows injected blastomere and HA-tag). (Developmental potential table) Development to 

the blastocyst stage was equivalent to controls in both low and high concentrations of 

Mad2DN (Fisher’s test; p=0.57 & 0.57 respectively). 

Diamond symbols on the box-plot charts represent the mean. 
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  Expanded BC Arrest Total embryos 

Control 24 (96%) 1 (4%) 25 

Mad2DN 0.8 18 (90%) 2 (10%) 20 

Mad2DN 2.0 18 (90%) 2(10%) 20 

 Mitosis 
Normal 
division  

Abnormal 
division 

Total blastomeres 
assessed 

Control 19 (91%) 2 (9%) 21 

Mad2DN 0.8 26 (100%) 0 (0%) 26 

Mad2DN 2.0 29 (88%) 4(12%) 33 
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Control 19 (91%) 2 (9%) 21 
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  Expanded BC Arrest Total embryos 

Control 24 (96%) 1 (4%) 25 

Bubr1DN 0.8 20 (100%) 0 (0%) 20 

Bubr1DN 1.75 19 (95%) 1 (5%) 20 

Figure 2.7 Effect of Bubr1_DN on the SAC in the embryo (A) Blastomeres injected with 

low or high concentrations of Bubr1DN mRNA had equivalent rates of chromosome 

segregation errors as controls (Fisher’s test; p=0.21 & 0.22 respectively) (B) Metaphase 

lengths were prolonged in blastomeres injected with the low and high concentrations of 

Bubr1_DN (Mann-Whitney U; ***p<0.001 low, **p<0.01) (C) Bubr1DN injection did not 

bypass metaphase arrest induced by NZ, however both concentrations were associated with 

a significantly shorter time to mitotic slippage (Mann-Whitney U; ***p<0.001 for both high & 

low). (D) Representative image of a 2-cell stage embryo following single blastomere injection 

with the low concentration of Bubr1DN mRNA, clearly demonstrating strong expression of 

the protein in the injected blastomere (arrow head shows injected blastomere and HA-tag). 

(Developmental potential table) Developmental to the blastocyst stage was equivalent to 

controls in both the low and high concentrations of Bubr1DN (Fisher’s test; p=1.0 & 1.0 

respectively). 

Diamond symbols on the box-plot charts represent the mean. 

 

Data for (A) Chromosome segregation during mitosis 
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The injection of either Mad2_DN or Bubr1_DN had no apparent effects on pre-implantation 

developmental potential assessed by morphology 

Both blastomeres of 2-cell stage embryos were injected with the DN constructs, cultured 

and then evaluated for their morphological appearance at the expanded blastocyst stage. 

When compared with control embryos, microinjection of Bubr1_DN or Mad2_DN mRNA at 

either high or low concentrations did not have any apparent adverse effects on 

morphological pre-implantation development; between 90 and 100% of DN-injected 

embryos reached the expanded blastocyst stage, compared with 96% of control embryos 

(Fisher’s tests; not significant Figures 2.6 and 2.7). In addition there were no differences in 

morphology noted between the control and DN-injected embryos such as fragmentation. 

 

Neither Bubr1_DN or Mad2_DN proteins successfully bypassed the SAC or increased the rate 

of chromosome segregation errors in cleavage stage blastomeres 

Successful bypass of the SAC was evaluated in three ways: the rate of chromosome 

segregation errors occurring during mitosis, the length of metaphase, and the response to 

incubation in the spindle poison nocodazole (NZ). 

Embryos were imaged during the 2- to 4-cell cleavage and scored for the presence of 

chromosome segregation errors during division. In control embryos major chromosome 

segregation errors were identified in 9.5% (2 of 21) of blastomeres. Embryos injected with 

Mad2_DN or Bubr1_DN mRNA revealed similar chromosome missegregation rates in 

blastomeres, ranging from 0 to 12%, at both low and high concentrations of both DN 

constructs (Fishers tests; not significant, Figures 2.6 and 2.7). 

Time-lapse images were also analysed for the length of metaphase, defined as the time 

between NEBD and the onset of anaphase. The mean length of metaphase in control 

blastomeres was 52.5 minutes (n=21). Embryos injected with the low dose of Mad2_DN 

embryos had similar timings (52.5 minutes, n=28 blastomeres, Mann-Whitney U test; 

p=0.91), however the higher dose was associated with a significant increase in the length of 

metaphase to 68.4 minutes (n=24 blastomeres, Mann-Whitney U test; p=0.0001). Findings 

in Bubr1_DN embryos were similar, however both the low and high doses were associated 
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with a significant lengthening of metaphase when compared with controls (low dose – mean 

66.0 minutes, n=23 blastomeres, Mann-Whitney U test; p=0.0002, and for high dose – mean 

63.9 minutes, n=23 blastomeres, Mann-Whitney U test; p=0.002). Although significant 

differences following DN injections were identified in a subgroup of blastomeres, these 

changes were in the opposite direction than would be expected if the SAC had been 

successfully bypassed, and were not associated with detectable chromosome segregation. 

Finally, embryos were incubated in 0.33M NZ at the 2- to 4-cell cleavage to determine if 

there was any evidence of bypass of the SAC-mediated metaphase arrest induced by spindle 

poisons. All embryos in the control and DN groups underwent arrest, and eventually 

fragmented many hours later. It was difficult to quantify any differences in the response to 

NZ by morphology alone therefore the time to mitotic slippage was evaluated using time-

lapse imaging of the chromatin. Mitotic slippage occurs when the cell exits mitosis despite 

the presence of a functioning checkpoint, although the time to mitotic slippage can be 

shortened if the SAC is compromised (Rieder and Maiato, 2004). Mitotic slippage was 

measured as the time between the formation of the mitotic plate until de-condensation and 

fragmentation of the chromatin. Control blastomeres underwent mitotic slippage at an 

average of 474 minutes post metaphase arrest (n=15 blastomeres). Embryos injected with 

the low dose of Mad2_DN had similar timings (433 minutes, n=26, Mann-Whitney U test; 

p=0.19), however the higher dose was associated with a significant shortening in the time to 

mitotic slippage (343 minutes, n=17, Mann-Whitney U test; p=0.0001). Findings in 

Bubr1_DN embryos were similar, however both the low and high doses were associated 

with a significant shortening of the time to mitotic slippage when compared with controls 

(low dose – mean 309 minutes, n=43, Mann-Whitney U test; p<<0.001, and for high dose – 

mean 353 minutes, n=31, Mann-Whitney U test; p<<0.001). 

In addition to the data presented here, several other small pilot experiments were 

performed evaluating the rates of chromosome segregation errors at different stages (4- to 

8-cell stage), and following injection of zygotes rather than 2-cell stage. The findings of 

these pilot experiments were in keeping with the experiments presented above, with no 

evidence of chromosome segregation errors. Therefore these experiments were not 

pursued further.  
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Considering all of these results together, it was concluded that there was minimal evidence 

that injection of low or high doses of either Mad2_DN or Bubr1_DN mRNA resulted in 

successful bypass of the SAC, or increases in chromosome segregation errors. Although 

incubation in NZ was associated with a shortened time to mitotic slippage, which does occur 

in the absence of a functional SAC, this isolated finding was insufficient to conclude that the 

SAC had been bypassed. Therefore an alternative strategy for inducing chromosome 

segregation errors was pursued.    

 

2.3.2.2. RNA interference (RNAi) approaches 

In view of the failure to bypass the SAC using DN approaches an RNAi strategy was adopted 

with the aim of inducing an effective silencing of gene expression, and hence silencing of the 

gene product. RNAi has previously been used effectively for this purpose in the mouse 

oocyte and pre-implantation embryos (e.g (Wianny and Zernicka-Goetz, 2000, Jedrusik et 

al., 2010, Morris et al., 2010)). Pre-designed mouse-specific Stealth RNAiTM was purchased 

from Invitrogen for the SAC genes Mad2 and Bubr1. In view of the difficulty in abrogating 

the SAC using the DN approach, siRNA specific to Ndc80, an essential kinetochore protein 

required for the faithful segregation of chromosomes during mitosis (Kline-Smith et al., 

2005, Ciferri et al., 2007) was also purchased thus providing an alternative strategic 

approach. Each gene-specific siRNA mix consisted of three different synthetic 25-nucleotide 

non-overlapping sequences. An appropriate siRNA negative control mix was also used. 

The effect of siRNA knockdown of these genes was evaluated using similar approach to that 

described in the DN experiments. In brief, zygotes were injected between 21 to 23 hours 

post hCG injection, together with the required lineage marker, and only those strongly 

expressing the marker were selected for use in the subsequent experiments. Embryos were 

evaluated for their pre-implantation developmental potential, chromosome segregation 

errors and for evidence of bypass of the SAC.  

For clarity of the following text, some details of the numbers and statistics are omitted from 

the section below but can be found clearly within the given figures and tables. Figures 2.8 
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(Mad2 siRNA), 2.9 (Bubr1 siRNA) and 2.10 (Ndc80 siRNA), and Table 2.3 summarise the 

results of these experiments. 

For all three genes a siRNA concentration of 5M was injected, however in the preliminary 

Ndc80 experiments the effects of 0.01 and 0.2M concentration were also evaluated. The 

manufacturer recommends a concentration between 0.0001 to 0.2M for use in cultured 

cell lines. At the time these experiments were conducted the experience of siRNA use within 

the laboratory was limited. In a general literature search for publications using siRNA in pre-

implantation embryos, siRNA concentrations ranging between 5 and 100M had been used 

(Cui et al., 2007, Morris et al., 2010, Jedrusik et al., 2010, Kawamura et al., 2010). Based on 

these findings a maximum concentration of 5M was used in the subsequent experiments 

in order to minimize the potential risk of cell-toxicity secondary to non-specific effects of 

siRNA.  

The degree of knockdown by siRNA was evaluated using qRT-PCR to detect the transcript 

levels of the genes of interest. The levels of each gene’s mRNA were normalised against 

beta-actin (a constitutive ‘housekeeping’ gene, expressed in all cells at relatively constant 

levels). Percentage knockdowns in target gene mRNA expression were calculated by directly 

comparing normalised transcript levels between control siRNA and target gene siRNA 

microinjected embryos.  When injected at a concentration of 5M, all siRNAs showed 

depleted expression of their specific gene with expression decreasing by 96% for Ndc80, 

42% for Mad2 and 52% for Bubr1 relative to control siRNA levels (Figures 2.8D, 2.9D and 

2.10D).  

 

The injection of Mad2, Bubr1 or Ndc80 siRNA had no apparent effects on pre-implantation 

developmental potential assessed by morphology 

In the first instance, zygotes were injected with 5M siRNA, cultured and determined if 

there were any significant effects on developmental potential to the expanded blastocyst 

stage. When compared with control embryos, all three experimental groups of embryos 

underwent equivalent pre-implantation development; between 85 and 95% of experimental 

embryos reached the expanded blastocyst stage, compared with 100% of control embryos  
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Figure 2.8 Effect of Mad2 siRNA on the SAC in the embryo (A) Blastomeres injected with 

Mad2 siRNA had equivalent rates of chromosome missegregation errors compared to 

controls (c2 test; p=0.42) (B) Injection with Mad2 siRNA did not have any effect on the length 

of metaphase compared with controls (Mann-Whitney U; p=0.5), and (C) did not result in 

bypass of metaphase arrest induced by nocodazole, or in any shortening of the time to 

mitotic slippage (Mann-Whitney U; p=0.3) (D) Injecting embryos with 5mM of Mad2 siRNA 

reduced the expression of Mad2 mRNA by 42% when compared to those injected with 

control siRNA, as assessed by qRT-PCR. (Developmental potential table) Development to 

the blastocyst stage was equivalent in control and Mad2 siRNA injected embryos (Fisher’s 

test; p=0.23). 

Diamond symbols on the box-plot charts represent the mean. 
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Figure 2.9 Effect of Bubr1 siRNA on the SAC in the embryo (A) Blastomeres injected 

with Bubr1 siRNA  had equivalent rates of chromosome missegregation errors compared to 

controls (c2 test; p=0.96) (B) Injection with Bubr1 siRNA did not have any effect on the length 

of metaphase compared with controls (Mann-Whitney U; p=0.6), and (C) did not result in 

bypass of metaphase arrest induced by nocodazole, or in any shortening of the time to 

mitotic slippage (Mann-Whitney U; p=0.5) (D) Injecting embryos with 5mM of Bubr1 siRNA 

reduced the expression of Bubr1 mRNA by 52% when compared to those injected with 

control siRNA, as assessed by qRT-PCR. (Developmental potential table) Development to 

the blastocyst stage was equivalent in control and Bubr1 siRNA injected embryos (Fisher’s 

test; p=0.46). 

Diamond symbols on the box-plot charts represent the mean. 
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Figure 2.10 Effect of Ndc80 siRNA on the SAC in the embryo (A) Blastomeres injected 

with differing concentrations of Ndc80 siRNA all had equivalent rates of chromosome 

missegregation errors compared to both concentrations of controls (Fisher’s test; p=0.95) (B) 

Injection with Ndc80 siRNA did not have any effect on the length of metaphase compared 

with controls (Kruskall-Wallis test; p=0.4), and (C) did not result in bypass of metaphase 

arrest induced by nocodazole, or in any shortening of the time to mitotic slippage (Mann-

Whitney U; p=0.4) (D) Injecting embryos with 5mM of Ndc80 siRNA reduced the expression 

of Ndc80 mRNA by 96% when compared to those injected with control siRNA, as assessed 

by qRT-PCR. (Developmental potential table) Development to the blastocyst stage was 

equivalent in control and Ndc80 siRNA injected embryos (Fisher’s test; p=0.10). 

Diamond symbols on the box-plot charts represent the mean. 
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  Expanded BC Arrest Total embryos 

Control 5.0 22 (100%) 0 (0%) 22 

Ndc80 5.0 17 (85%) 3 (15%) 20 
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assessed 

Control 0.01 24 (80%) 6 (20%) 30 

Control 5.0 32 (80%) 8 (20%)  40 
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Ndc80 0.2 22 (81%) 5 (19%) 27 

Ndc80 5.0 30 (79%) 8 (21%) 38 

Data for (A) Chromosome segregation during mitosis 
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(Fisher’s tests; Figures 2.8, 2.9 & 2.10). In addition there were no other differences in 

morphological features noted between the groups such as the presence of blastomere 

asymmetry or embryo fragmentation. 

 

Injection of Mad2, Bubr1 or Ndc80 siRNA did not result in the bypass of the SAC or increase 

the rates of chromosome segregation errors in cleavage stage blastomeres 

Bypass of the SAC and evaluation of chromosome segregation was evaluated during the 2- 

to 4-cell stage as described for the DN experiments above in Section 2.3.2.1.  

The rates of chromosome segregation errors in all experimental groups of siRNA injected 

embryos were found to be equivalent to error rates in the control siRNA blastomeres. 

Missegregation occurred in 20% of control siRNA blastomeres (n=40), and between 11 and 

21% in blastomeres injected with experimental siRNA ( & Fisher’s tests; p= not significant, 

Figures 2.8, 2.9 & 2.10).  

Next the timing of metaphase was assessed. In control siRNA blastomeres the mean length 

of metaphase was 69.7 minutes (n=40). In all groups of experimental siRNAs evaluated, the 

mean length of metaphase was not significantly different from that in the control 

blastomeres: Ndc80 71.2 minutes (n=33, Mann-Whitney U; p=0.90); Mad2 64.4 minutes 

(n=38, Mann-Whitney U; p=0.50); and Bubr1   65.7 minutes (n=43, Mann-Whitney U; 

p=0.60).  

Finally, embryos were incubated in 0.33M NZ at the 2- to 4-cell cleavage. All embryos in 

the control and injected groups underwent arrest, and eventually fragmented many hours 

later. The mean time to mitotic slippage in control siRNA blastomeres was 426 minutes 

(n=17). In all groups of experimental siRNAs, the mean time to mitotic slippage was not 

significantly different from that in the control blastomeres: Ndc80 449 minutes (n=17, 

Mann-Whitney U; p=0.36); Mad2 449 minutes (n=16, Mann-Whitney U; p=0.25); and Bubr1   

411 minutes (n=15, Mann-Whitney U; p=0.48).  

In addition to the data presented here, several small pilot experiments were performed 

evaluating the rates of chromosome segregation errors at later stages (4-to 8-cell & 8- to 16-
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cell stage) and with higher concentrations of siRNA (20M). The results of these pilot 

experiments were in keeping with the findings presented above and were therefore not 

pursued any further (data not shown).  

Considering all of these results together, it was concluded that there was minimal evidence 

that injection of Mad2, Bubr1 or Ndc80 siRNA resulted in successful bypass of the SAC, or 

increases in chromosome segregation errors compared to control siRNA.  

Therefore an alternative strategy for inducing chromosome segregation errors was 

employed.    

 

2.3.3.1 Bypassing the SAC with a small molecule inhibitor of Mps1 

During the course of the siRNA and DN experiments a series of papers were published 

characterising the effects of several small molecule inhibitors of Monopolar spindle 1-like 1  

(Mps1) (Lan and Cleveland, 2010, Santaguida et al., 2010, Hewitt et al., 2010, Kwiatkowski et 

al., 2010). Mps1 is another highly conserved key enzyme critical for the effective functioning 

of the SAC (Weiss and Winey, 1996, Abrieu et al., 2001, Stucke et al., 2002). The Mps1 

inhibitors were all shown to override the SAC block secondary to microtubule poisons and to 

increase the rates of chromosome misalignment and segregation errors in cultured cell lines 

(Lan and Cleveland, 2010, Santaguida et al., 2010, Hewitt et al., 2010, Kwiatkowski et al., 

2010). Of all the Mps1 inhibitors available, the drug reversine is the most potent, and its 

effects on Mps1 inhibition rapidly reversible following the removal of the drug from the 

culture medium (Santaguida et al., 2010).  

There is no evidence in the published literature to suggest that the effects of reversine have 

previously been described in pre-implantation mouse embryos. Therefore a series of 

experiments were conducted to characterise the effects of reversine treatment in the pre-

implantation embryo, in particular evaluating its impact on developmental potential 

together with its effect on the SAC and effects on chromosome segregation during mitosis. 

The results of these experiments are summarised in Figure 2.11 and Table 2.3. 
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Figure 2.11 Effect of reversine treatment on the SAC in the embryo (A) Blastomeres 

incubated in 0.5mM of reversine had significantly greater rates of chromosome 

missegregation during mitosis than controls (c2; ***p<0.001), however on washout of the 

drug (post-reversine), the function of the SAC was completely restored with chromosome 

missegregation rates equivalent to controls (B) Blastomeres incubated in reversine had a 

significant shortening of metaphase when compared with controls (Mann-Whitney U; 

***p<0.001). On washout of the drug (post-reversine), the length of metaphase returned to 

the same as control blastomeres  (Incubation in NZ) The majority of embryos incubated in 

1.0mM of reversine were able to overcome metaphase arrest induced by nocodazole 

treatment (Developmental potential table) Development to the blastocyst stage was 

equivalent in control and reversine treated embryos (Fisher’s test; p=1.0). 

Diamond symbols on the box-plot chart represent the mean. 

 

(B)  

Developmental potential table 
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Control 5 0 

Reversine 0.5mM 8 2 
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  Expanded BC Arrest Total embryos 

Control 33 (92%) 3 (8%) 36 

Reversine 28 (93%) 2 (7%) 30 

  Normal Abnormal Total blastomeres 

Control 65 (90%) 7 (10%) 72 

Reversine 42 (52%) 39 (48%) 81 

Post-reversine 31 (97%) 1 (3%) 32 

Data for (A) Chromosome segregation during mitosis 
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In contrast to the DN and siRNA approaches detailed above, reversine treatment required 

incubation of the embryos in culture media containing the drug. In DN and siRNA 

treatments embryos were injected hours in advance of assessing their potential effect as 

the blastomeres required time to synthesize the required protein (DNs) or for depletion of 

mRNA expression (siRNAs) and subsequent protein. In contrast, the effect of reversine on 

Mps1 inhibition was expected to be immediate upon the cells’ entry into mitosis. Therefore 

in these experiments, embryos were incubated in reversine just prior to the expected 

mitotic division in order to keep the exposure to the drug to a minimum. Mitoses were 

evaluated at either the 8- to 16 cell cleavage or 4- to 8-cell cleavage as these were the 

cleavages most likely to be targeted in subsequent experiments. As a starting point, a drug 

concentration of 0.5M was used for experiments. Previously, one study had systematically 

characterised the effects of a range of concentrations in human cell lines (HeLa and U2OS); 

and as a result a working concentration of 0.5M was recommended as the optimal 

concentration for maximal Mps1 inhibition; at doses >5M reversine has been shown to 

have an inhibitory effect on the Aurora kinases (Santaguida et al., 2010). Reversine was 

dissolved in DMSO, and all control embryos were incubated in the equivalent concentration 

of DMSO in the absence of reversine, but otherwise treated in the same manner to the 

experimental embryos. 

 

Reversine treatment of mouse embryos had no apparent adverse effects on pre-implantation 

developmental potential assessed by morphology 

In the first instance, the effects of reversine on developmental potential to the expanded 

blastocyst stage were evaluated. Of the reversine-treated embryos, 93% developed into 

expanded blastocysts (n=30), equivalent to the rate in the controls (92%, n=36) (Fisher’s 

test; p=1.0) (Figure 2.11). In addition there were no differences in morphological features 

noted between the groups such as embryo fragmentation. 

 

Reversine treatment increased the rates of chromosome segregation errors secondary to 

successful bypass of the SAC 
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Chromosome segregation rates and the length of mitosis were evaluated in embryos 

incubated in 0.5M of reversine. As microinjection of mRNA or siRNA was not required, 

these experiments were conducted on transgenic embryos expressing H2B-GFP 

(Hadjantonakis and Papaioannou, 2004) to enable the chromosomes to be visualised during 

live imaging. Major chromosome segregation errors were found to occur during mitosis in 

48% of blastomeres (n=81) within embryos incubated in reversine; significantly more 

frequent than in controls (9.7%, n= 72) ( test; p=0.0003) (Figure 2.11B). The length of 

metaphase in reversine-incubated blastomeres also differed from controls, being 

significantly shorter with a mean length of 32.2 minutes and 44.4 minutes in reversine 

(n=81) and control (n=72) blastomeres respectively (Mann-Whitney U; p<<0.001) (Figure 

2.11B). These experiments were then repeated but this time the embryos were incubated in 

reversine during the 4- to 8-division only. The drug was then washed out and the 

subsequent 8- to 16-cell division was evaluated by time-lapse imaging as above. In these 

blastomeres (n=32), both the chromosome segregation rates and lengths of metaphase 

were equivalent to those in the control blastomeres; with a missegregation rate of 3.1% and 

average metaphase length of 47.2 minutes (Fishers test; p=0.43, and Mann-Whitney U test; 

p=0.25 respectively) (Figure 2.11). Thus this experiment confirmed that reversine treatment 

only exerted an effect on the SAC during the period of drug incubation, and that the 

function of the SAC was completely restored on washout of the drug. This finding was in 

keeping with the previously described characteristics of reversine in other cell culture 

systems (Santaguida et al., 2010). 

Finally, embryos were incubated in 0.33M NZ at the late 4-cell cleavage. As observed in the 

control embryos at the 2-cell stage in the experiments detailed above, all control embryos 

underwent prolonged arrest before eventually fragmenting with no embryos at all dividing 

to the 8-cell stage. In contrast, two of eight embryos incubated in 0.5M of reversine with 

NZ were able to divide to the 8-cell stage, and this increased to eight of 10 embryos in 

1.0M of reversine (Figure 2.11). These results provided strong evidence that the SAC was 

inactivated in these embryos.  
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Taken together it was concluded that the results of these experiments demonstrate that 

reversine is an effective and reversible inhibitor of the SAC in the mouse pre-implantation 

embryo.  

 

2.3.3 Evaluating aneuploidy rates using FISH 

A collaboration was then established with Aisha Elaimi, then a PhD student at University 

College London in the Centre for PGD, who kindly agreed to evaluate levels of aneuploidy in 

these embryos using FISH, a technique that was well established in mouse embryos within 

their laboratory. A group of control and reversine-treated embryos were analysed for their 

chromosome constitution using FISH analysis for chromosomes 2, 11 & 16. In total, 38 

control and 43 reversine-incubated early blastocysts were analysed, with a total of 1376 and 

1076 blastomeres analysed in each respective group.  

Reversine-treated blastomeres had significantly higher rates of aneuploidy for 

chromosomes 2, 11 & 16 than in control blastomeres, with abnormalities detected in 35% of 

all reversine-treated blastomeres compared with 17% of controls ( test; p <<0.001) (Figure 

2.12).  

2.3.4 Evaluating aneuploidy rates using an array-based karyotyping approach 

A collaboration was also established with Dr Thierry Voet (Principal Investigator, Laboratory 

of Reproductive Genomics KU Leuven, and The Wellcome Trust Sanger Institute, University 

of Cambridge). Dr Voet specialises in the microarray analysis of copy number variation in 

single cells; a technique that is used to detect aneuploidy in single cells, as detailed in 

Konings et al. 2012. The technique has recently been established in human samples; 

however the protocol required specific adaptation and optimisation for analysis of the 

mouse genome. In brief, whole genome amplification (WGA) is performed using a multiple 

displacement amplification (MDA) approach. Amplified DNA is then hybridized to a bacterial 

artificial chromosome (BAC) array and to a SNP array. The copy number analysis, and hence 

karyotype, is based upon comparing the BAC-hybridisation probe intensities with a 

reference model for diploid chromosomes, together with the SNP-copy number results 

estimated by statistical modelling.  



Figure 2.12 FISH analysis of embryos (A) Representative images of FISH signals in 

reversine-treated blastomeres. A normal chromosome number is confirmed by the presence 

of two probe signals from each chromosome assessed; in this example two green signals for 

chromosome 2 and two red signals for chromosome 11. Chromosome loss and gain are 

scored by the loss or gain of signals. Note – the analysis of embryos in this study also 

included an additional probe for chromosome 16 evaluated during a second round of FISH. 

(B) Blastomeres were classified as normal or aneuploid based on FISH analysis for 

chromosomes 2, 11 and 16. Reversine-incubated embryos had significantly higher rates of 

aneuploidy compared with controls (c2 test, ***p<0.0001). 

 

All images at 100x magnification 

(A) 

Blastomere classification in control and reversine-treated embryos  

11 

2 2 

11 

2 

11 

Normal signal Chromosome 2 gain Chromosome 2 loss 

Images from Aisha Elaimi, who performed the procedure and analysed the images 

  Normal Aneuploid 

Control (n=1376) 83% 17% 

Reversine (n=1076) 65% 35% 

(B) 
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To date (May 2013), preliminary results from three 8-cell stage embryos are available; one 

control and two reversine-treated embryos (Figure 2.13). Of the eight cells assessed in the 

control embryo, seven were found to be euploid and one showed an unusual pattern of 

abnormality. The significance of this abnormality is yet to be determined and it may be a 

result of artefact, further analysis and conclusive results are still pending. Of the two 

reversine-treated embryos a total of 14 cells were evaluated, of which ten were aneuploid 

and four were euploid. As illustrated in Figure 2.13B, where abnormalities were detected 

there were reciprocal trisomies and monosomies present in sister blastomeres, a finding 

which was consistent with the abnormalities that would be expected through abrogation of 

the SAC. 

Analyses of further embryos are still pending however these preliminary results 

demonstrate high levels of aneuploidy following treatment with reversine.  

 

2.3.5 Summary of results and the mouse model 

Table 2.3 summarises the major findings for all siRNA, DN and reversine-treatment 

experiments. When considered together, it was clear that reversine-treatment was the only 

experimental approach that successfully bypassed the SAC resulting in an increased rate of 

chromosomal instabilities in treated mouse blastomeres. Therefore reversine-treatment 

was chosen as the experimental technique which would be used to generate a source of 

abnormal blastomeres that would then be used in the mouse model of chromosome 

mosaicism. 

Reversine is a highly soluble small molecule rendering it unsuitable for microinjection into 

single blastomeres as the drug would readily diffuse into the neighbouring blastomeres and 

surrounding culture medium. Thus the ‘true mosaic embryo’ model could not be generated 

using reversine treatment (illustrated in Figure 2.1A). However the ‘chimeric mosaic 

embryo’ is suitable and will be used to generate the mouse model for chromosome 

mosaicism in future experiments (Figure 2.1B). 

  



Figure 2.13 Circo plots summarising chromosome status of embryos evaluated by 

array-based karyotyping. Each circo plot represents an embryo, with individual 

blastomeres each presented as a single ring within the donut, annotated as cells A-H. 

Along the outer edge of the donut each whole chromosome is annotated as a barcode 

which represents chromosomal segments. Coloured bars represent chromosome copy 

number as given in the accompanying key. (A) Control embryo showing an euploid 

chromosome constitution in 7 of 8 cells. Cell G has an unusual pattern of abnormality 

and may be secondary to experimental artefact rather than aneuploidy – further analysis 

is awaited. (B) Both reversine-treated embryos (annotated as Aneuploid 1 and Aneuploid 

3) show high levels of aneuploidy. Four of eight blastomeres in ‘Aneuploid 1’ are 

aneuploid, as are six of six in ‘Aneuploid 3’. Note the reciprocal abnormalities between 

sister blastomeres – for example in ‘Aneuploid 1’ cell A is trisomic for chromosome 7 

while cell B is monosomic. There are several examples of reciprocal losses and gains in 

both reversine-treated embryos. 

 

Images and analysis courtesy of Dr Thierry Voet. 

(B) 

(A) 
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2.4 RESULTS I DISCUSSION 

The primary aim of the work described in this chapter was to develop a mouse model for 

chromosome mosaicism that could be used in future experiments to investigate the fate of 

abnormal cells within mosaic embryos and the ultimate fate of the embryo. This required a 

source of abnormal blastomeres together with the ability to evaluate the chromosome 

status of cells within the pre-implantation embryo.  

 

2.4.1 Evaluation of chromosome status in the mouse embryo 

Evaluation of the chromosome status in pre-implantation embryos was technically 

challenging. Initially attempts were made to prepare metaphase spreads that would be used 

to count the number of chromosomes present in each blastomere. A protocol for the 

cytogenetic analysis of mouse pre-implantation embryos using metaphase spreads was first 

reported in 1966 (Tarkowski, 1966). Subsequently multiple studies have been published that 

used classic cytogenetic techniques to evaluate the chromosome status of mouse or human 

pre-implantation embryos (Garside and Hillman, 1985, Roberts and O'Neill, 1988, Yoshizawa 

et al., 1990, Roberts et al., 1990, Kola and Wilton, 1991, Jamieson et al., 1994, Clouston et 

al., 1997, Clouston et al., 2002, Lightfoot et al., 2006). Many of these studies discuss the 

technical challenges specific to pre-implantation embryos that are not encountered in other 

types of cells, and it is widely acknowledged that the cytogenetic evaluation of pre-

implantation embryos is difficult (Delhanty and Handyside, 1995, Macklon et al., 2002). Yet 

in spite of these challenges successes have been reported, hence the classic cytogenetic 

analysis of mouse pre-implantation embryos is technically possible. In view of these 

published successes together with the fact that the technique requires no specialist 

equipment or reagents, it was considered worthwhile attempting to optimise a protocol 

that could then be used in this study. Despite multiple attempts and varying multiple 

parameters within the protocol it was concluded that it was not possible to consistently 

generate good quality spreads that would be suitable for the analysis of chromosome 

number during this study. Problems arose secondary to the lack of mitoses, overlapping or 

shattered chromosomes at metaphase or poor quality chromosomes. This result was not 

unexpected given the acknowledged challenges in this approach as evidenced by the 
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number of studies specifically proposing optimised protocols (Garside and Hillman, 1985, 

Roberts et al., 1990, Yoshizawa et al., 1990, Kola and Wilton, 1991, Clouston et al., 1997) 

and the fact that this technique has never been routinely introduced into IVF clinics for use 

in PGS. 

As an alternative strategy the assessment of centromere number was considered as a 

potential technique. Two experimental approaches were evaluated; either the detection of 

centromeres using IF or detection of a GFP-linked centromere protein (CENPB) expressed 

following mRNA microinjection into the embryo. Although not a classical approach to 

chromosome analysis, this strategy was deemed worthwhile of experimental investigation 

as it offered the potential advantage of being a relatively quick technique that could be used 

to evaluate large numbers of cells and required no additional expertise or equipment that 

was not readily available within the laboratory. A similar principle has been applied to FISH 

chromosome analysis; cenM-FISH is a multicolour centromere-specific technique that can 

analyse the entire set of chromosomes (Nietzel et al., 2001). This technique requires the 

arrest of the cell in metaphase but when tested in human oocytes had a low efficiency 

secondary to the failure of adequate chromosome spreading (Gutierrez-Mateo et al., 2005). 

By using antibody binding to the centromere protein in the case of IF, or by endogenous 

synthesis following mRNA microinjection, it was considered that some of the technical 

errors associated with FISH may be overcome. However, despite the successful detection of 

the centromeres with both experimental techniques it was clear that neither approach 

could be used in this study due to the limitations of the imaging technology. 

As a consequence of the failure to evaluate chromosome status in blastomeres, a time-lapse 

imaging approach was developed. This strategy was developed as a modified version of the 

micronucleus assay test; an assay frequently used as a comprehensive screening system for 

the measurement of genomic damage in dividing cells (Fenech, 2007). There are several 

potential origins of spontaneously arising micronuclei, ranging from whole chromosomes to 

chromosome breaks (Rao et al., 2008). However, in the context of this study any increase in 

the rates of micronucleus formation were assumed to be due to whole chromosome errors 

secondary to the successful abrogation of the SAC or disrupted kinetochore structure. By 

directly visualising chromatin dynamics during metaphase and beyond it was possible to 

detect chromosome segregation errors and newly arising micronuclei. Additionally the 
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movies could also be used to evaluate the length of metaphase and thus provide an 

additional and assayable parameter for successful bypass of the SAC, where the length of 

metaphase would be shortened.  

Although the time-lapse imaging assay did not directly evaluate aneuploidy per se, its 

application in this study was essential for the accurate evaluation of chromosome 

missegregation rates and for determining if bypass of the SAC was successful. When time-

lapse imaging studies did confirm the successful bypass of the SAC in the case of reversine 

treatment, these embryos were then evaluated for aneuploidy using more specific 

techniques (see section 2.4.3).  

 

2.4.2 Experimental induction of acute chromosome segregation errors 

A variety of experimental approaches were attempted with the aim of inducing 

chromosome segregation errors in blastomeres secondary to either abrogation of the SAC 

or disruption of the kinetochore structure. In the first instance DN and RNAi approaches 

were attempted, however these strategies were unsuccessful. The SAC is functional in the 

early cleavage stages of the mouse pre-implantation embryo (Wei et al., 2011) and 

incubation in NZ resulted in metaphase arrest, an effect mediated through activation of the 

SAC (Rieder and Palazzo, 1992, Rieder and Maiato, 2004). Thus the successful bypass of the 

SAC or disruption through the alteration of kinetochore structure was expected to result in 

increased levels of acutely arising aneuploidy. The failure to bypass the SAC can be 

attributed to a failure of experimental strategy or hitherto unknown properties relating to 

the SAC that are unique to pre-implantation mouse embryo development. 

The consistent failure to induce chromosome segregation errors in blastomeres through a 

DN strategy is difficult to explain.  DN mutant proteins are frequently used as tools to 

investigate protein function and act to block the function of the gene at the protein level 

(Herskowitz, 1987). The cloned gene is specifically designed to encode a mutant protein that 

acts to disrupt or inhibit the function of the wild-type protein when over-expressed, 

therefore resulting in a loss-of-function phenotype. In this study DN constructs for Mad2 

and Bubr1 were used; both constructs had been previously been reported to induce bypass 
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of the SAC in studies undertaken in mouse oocytes, including within our own laboratory in 

the case of Mad2_DN (Tsurumi et al., 2004, Sharif, 2011). It was therefore expected that 

both DNs would bypass the SAC in cleavage stage embryos and the failure to achieve this in 

spite of the high concentrations of mRNA injected was surprising. Sequencing was used to 

confirm that both constructs contained the correctly aligned DNA insert. Successful 

expression of the protein was also confirmed following microinjection using IF to detect the 

HA-tag. 

With any experimental interference of gene or protein function in early stage mouse 

embryos it is always necessary to consider the potential effect of maternally inherited 

transcripts and proteins present in the oocyte (Braude et al., 1979). By their nature the 

potential interference from the presence of maternal proteins is less likely to be 

problematic in the case of DN  experiments, as the DN protein is specifically designed to 

exert a dominant effect over any residual wild-type protein, provided sufficient DN protein 

is present.  In this study, although the presence of maternal factors could still account for 

the failure to induce the expected SAC-deficient phenotype, this explanation seems less 

likely considering the previously reported successes when used in mouse oocytes (Tsurumi 

et al., 2004, Sharif, 2011).  

The failure of DN approaches to achieve a phenotype in this study thus remains 

unexplained. As the primary aim of the experiments was to induce chromosome 

abnormalities in mouse blastomeres the strategy was re-evaluated and an RNAi approach 

was pursued. However the RNAi approach also failed to achieve the desired phenotype. In 

contrast to the DN approach, the failure of RNAi may be more easily attributed to the role of 

several possible factors including the presence of maternally inherited mRNA / proteins, an 

inadequate concentration of effective siRNA, and / or suboptimal siRNA oligo sequences. 

In the time since the RNAi experiments were carried out during 2009 and 2010 a study has 

been published that specifically characterised the role of the SAC during mouse pre-

implantation development using a similar RNAi approach (Wei et al., 2011). The effects of 

siRNA depletion of Bub3, Bubr1 or Mad2 were evaluated individually. The key findings and 

conclusions of this study were that the depletion of each of these SAC components in the 

pre-implantation embryo did result in bypass of the SAC as characterised by a shortening of 
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metaphase time, bypass of metaphase arrest in NZ, and increased levels of micronuclei and 

aneuploidy in the daughter blastomeres.  Thus in contrast to the study presented in this 

thesis, the authors were able to abrogate the SAC of pre-implantation embryos using an 

RNAi approach. It is most probable that differences in the experimental details may account 

for the different outcomes between the two studies. In this thesis in vivo conceived zygotes 

were injected with siRNA and the second cleavage division (2- to 4-cell stage) was evaluated 

approximately 26 hours later. The first cleavage (1- to 2-cell stage) was not assessed as it 

was considered that there would have been insufficient time for the siRNA to exert its effect 

on gene or protein expression by that time. In contrast, the published study did evaluate the 

first cleavage division but instead injected metaphase II (MII) stage oocytes with siRNA 

which were then fertilized in vitro, an approach which provided sufficient time for the siRNA 

to take effect prior to the first cleavage, as confirmed by Western blot (WB) depletion of the 

target proteins. For each gene targeted in this thesis a mixture of three siRNA sequences 

were injected at a concentration of 5M, in contrast to the single sequence injected at a 

given concentration of 25M in the published study. The specific oligo sequences were 

different between the two studies, which could have had differing efficacies, although the 

mixture of three used in this study would be expected to have a greater chance of efficacy 

than using a single oligo alone. Nonetheless the higher concentration of siRNA injected in 

the published study compared to this study may have been a major factor in the 

effectiveness of gene knockdown and resultant phenotype. Although both studies 

confirmed the effectiveness of the siRNA gene knockdown two different methodological 

approaches were used. Protein levels were evaluated by WB in the published study 

confirming effective down-regulation of protein levels for each gene targeted, however it is 

pertinent to note that residual protein was still clearly present. In this thesis the 

effectiveness was determined using qRT-PCR, confirming 42% & 52% knockdown of Mad2 

and Bubr1 mRNA transcripts respectively. Although the degree of knockdown was 

suboptimal, it has previously been shown that MEFs heterozygous for either Mad2 (Mad2+/-) 

or Bubr1 (Bubr1+/-) exhibit high rates of aneuploidy, affecting 55% of Mad2+/- MEFs (Michel 

et al., 2001) and 35% of Bubr1+/ - MEFS (Baker et al., 2004). This suggests that even a 50% 

reduction in gene expression could result in defective SAC function, chromosome 

segregation errors and aneuploidy.  However although a degree of transcript depletion did 

occur in this study, qRT-PCR does not evaluate the effect on protein level. Thus it was not 
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known how the protein levels were affected by the siRNA, and it was therefore considered 

likely that the protein levels were insufficiently depleted to induce a phenotype in these 

blastomeres, despite a reduction in transcript levels.  

In the case of Ndc80, injection of 5M siRNA resulted in a 96% reduction in mRNA transcript 

levels. Despite this reduction there was also no evidence of increased chromosome 

segregations errors compared to controls. This is also likely to reflect the presence of 

sufficient residual maternal Ndc80 protein, insufficient time for the transcript depletion to 

effect protein levels, or that a higher concentration of siRNA was required for even higher 

knockdown effects. 

The decision to inject a maximum concentration of 5M siRNA in zygotes was taken after 

careful consideration, based upon concentrations used in other publications and also in 

view of the experience within the laboratory. In particular, at that time there was some 

experimental evidence emerging from siRNA studies conducted in oocytes that high 

concentrations of siRNA could in itself induce experimental artefact, with major chromatin 

and spindle defects apparent on injection of concentrations at and above 60M (Sharif et 

al., 2010). Although considerably lower than 60M, it is possible that similar effects that 

could be occurring at lower concentrations albeit too subtle to detect experimentally. 

Adverse effects on the spindle or chromatin could have major implications for the results of 

this study. If siRNA were to be used as a strategy for inducing aneuploidy, it would be 

necessary to inject control blastomeres with equivalent negative control siRNAs. These 

concerns regarding potential siRNA-induced artefact in control blastomeres were difficult to 

dismiss. In addition, the injection of 20M of Mad2 siRNA or Bubr1 into a small number of 

embryos during a pilot experiment did not reveal preliminary results consistent with 

abrogation of the SAC.  

However, the major aim of this part of the study was to induce chromosome segregation 

errors in the mouse embryo model. As the siRNA experiments failed to achieve this goal this 

experimental strategy was concluded in pursuit of an alternative approach. 

In a final set of experiments, the pharmacological inhibition of the key SAC protein Mps1 

with the drug reversine successfully achieved bypass of the SAC and induced high rates of 

chromosome segregation errors in treated blastomeres. In addition, the effect of the 
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treatment was transient and the SAC function was restored on washout of reversine. An 

important point worthy of emphasis here is that once an error has occurred, reinstating the 

function of the SAC after the completion of mitosis will not result in the detection of the 

resulting aneuploidy or trigger of the checkpoint at the next cell division; the SAC functions 

to delay mitosis only in the presence of unattached kinetochores irrespective of the 

chromosome constitution within the cell (Rieder et al., 1995, Khodjakov and Rieder, 2009). 

Therefore the transient nature of reversine treatment refers to its effect on the SAC within 

the cell-cycle that it was administered in and not the abnormalities already induced by the 

drug applied in previous cell-cycles. 

Reversine treatment was the only experimental approach that was successful in inducing 

acute chromosome segregation errors and was thus selected as the method for generating 

abnormalities in blastomeres that were to be used in the mouse model of mosaicism. 

     

2.4.3 Aneuploidy evaluation using FISH, array-based karyotyping and future perspectives 

A subset of control and reversine-treated blastocysts underwent aneuploidy analysis using 

interphase FISH probes for chromosomes 2, 11 and 16. As FISH evaluation of chromosome 

status in mouse blastomeres requires specialist expertise and reagents these experiments 

were conducted by a laboratory that routinely performs this procedure. FISH evaluation did 

indeed confirm that reversine-treated blastomeres exhibited significantly higher rates of 

aneuploidy as expected, with rates of 17 and 35% for control and reversine-treated 

blastomeres respectively. Yet it was of some concern that the abnormality rates in the 

control blastomeres were so high. Although this could reflect true differences between 

control and reversine-treated blastomeres, the inaccuracies of FISH may result in errors and 

thus erroneous rates of aneuploidy. Until recently interphase FISH was widely used in the 

clinical setting for PGS (see previous chapter). However, the diagnostic accuracy of FISH for 

aneuploidy assessment in the pre-implantation embryo has always been an area of concern 

(Delhanty and Handyside, 1995, Scriven and Bossuyt, 2010, Mantikou et al., 2012) and in the 

light of recent advances in  array-based karyotyping techniques used for comprehensive 

chromosome screening the accuracy of FISH is under renewed scrutiny (Treff and Scott, 

2012). FISH was initially developed as a technique to evaluate the chromosome status of 
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large populations of cells. Therefore, when applied at the single cell level the technical 

inaccuracies of the test may be magnified and with the potential for significant inaccuracies.  

One recent study developed a theoretical model to investigate FISH errors in human 

embryos and concluded that the diagnostic accuracy rate of FISH was unacceptably high for 

the analysis of several autosomes (Scriven and Bossuyt, 2010). Further, comparisons 

between FISH and SNP-microarray based technologies demonstrated markedly higher rates 

of mosaicism diagnosed by FISH than with the SNP-microarray technology; presented as 

further evidence of the inherent inaccuracies of FISH (Treff et al., 2010, Treff and Scott, 

2012), although the diagnostic accuracy of these newer technologies still requires additional 

confirmation (Wells et al., 2008, Harper and Harton, 2010, Treff and Scott, 2012). Finally, 

very few studies have applied interphase FISH for the analysis of mouse embryos, and thus 

far less is known about the potential for inaccuracy when FISH is used in the mouse 

(Sabhnani et al., 2011, Elaimi et al., 2012). 

In view of the potential uncertainties surrounding the FISH analysis, an additional method of 

aneuploidy evaluation was desirable. For that reason the collaborative project with Dr 

Thierry Voet was established with the aim of evaluating the control and reversine-treated 

embryos using a single-cell microarray analysis of copy number variation approach (Konings 

et al., 2012). To date (May 2013) the protocol is still being established and only three 

embryos have been evaluated, however these preliminary results look promising. There is a 

high rate of aneuploidy in the reversine-treated embryos, and the finding of reciprocal 

losses and gains add credibility to the results. Additional embryos are awaiting analysis, 

together with further analysis for the identification of structural variations. 

In addition to the analysis of aneuploidy levels for the purposes of this study, a future study 

is also underway to determine the naturally occurring baseline rate of aneuploidies in the 

mouse embryo using this array-based karyotyping approach. As discussed in the previous 

chapter, the literature regarding the rates of aneuploidy in the mouse embryo is limited, 

and it is intended that this on-going study will establish these rates with greater certainty. 
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2.4.4. The mouse model for chromosome mosaicism 

As a result of the experiments presented in this chapter, the mouse model that would be 

used to investigate diploid-aneuploid mosaicism was to be a chimeric mosaic embryo 

composed of a complement of control and reversine-treated blastomeres aggregated 

together (Section 2.3.4; Figure 2.1B). This model is used throughout the rest of this thesis to 

investigate the key questions and hypotheses. In the following chapter the results of a small 

series of experiments using a diploid-tetraploid mosaic model are presented. Although this 

could be considered a second model of mosaicism, tetraploidy and aneuploidy are quite 

different and not directly comparable. Like aneuploidy, tetraploid cells also contain an 

abnormal number of chromosomes (4n) however in tetraploidy there is an extra copy of all 

chromosomes and thus the gene dosage is also balanced.  In contrast, aneuploid cells 

contain an unbalanced abnormality in chromosome number (2n +/-x) and are thus 

comprised of an unbalanced genetic constitution with potentially very different 

consequences for cellular physiology (King, 2008). Tetraploidy mosaicism has been 

identified in human pre-implantation embryos (Evsikov and Verlinsky, 1998, Sandalinas et 

al., 2001, Clouston et al., 2002, de Boer et al., 2004). However the clinical significance of 

tetraploidy is uncertain and has even been proposed to be a normal finding within the TE 

lineage (Angell et al., 1987, Krieg et al., 2009). Hence while the diploid-tetraploid mosaic 

model offers useful insights into pre-implantation development in the presence of abnormal 

chromosome constitution, a further model of diploid-aneuploid mosaicism remains highly 

desirable.  

During the course of this study alternative options for a source of aneuploid cells were 

considered in detail. Several transgenic mice lines containing Robertsonian translocations 

are commercially available (for example JaxR Mice; www.jax.org). As such it is possible to 

attain embryos with defined aneuploidies through breeding of these mice. However, this 

experimental approach was not pursued for two reasons. First, this type of abnormality 

would not resemble the complex and variable aneuploidies characteristic of the human 

embryo (Vanneste et al., 2009, Fragouli et al., 2010, Rabinowitz et al., 2012). In addition it 

was also hypothesized that the ultimate fate of abnormal cells in the pre-implantation 

embryo may be influenced directly by an acute cellular response to chromosome 

missegregation itself. Consequently any such effects would be missed in a model with 
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containing a stable aneuploid clone of cells, not arising secondary to acute chromosome 

segregation errors.  This hypothesis will be considered in greater detail in Chapter IV.  

Thus the experimental efforts were focused on inducing acute missegregation errors in 

blastomeres. When RNAi and DN strategies failed other experimental approaches were 

considered. One possible option was to use blastomeres obtained from transgenic embryos 

known to be highly susceptible to acute chromosome segregation, such as those used to 

study CIN phenotypes: for example Mad2, (Dobles et al., 2000); BubR1, (Wang et al., 2004a); 

Bub1 (Jeganathan et al., 2007); Bub3, (Kalitsis et al., 2000); Mad1, (Iwanaga et al., 2007), 

Cenpe, (Putkey et al., 2002); Cenpc, (Kalitsis et al., 1998); Cenpa, (Howman et al., 2000) or 

embryo mosaicism (Sycp3-/- (Lightfoot et al., 2006)). Although these embryos would have 

very high rates of chromosome segregation, they were deemed an unsuitable source of 

abnormal blastomeres for the model as the susceptibility to errors would be permanent and 

inherited in every single daughter cell indefinitely. In the human embryo the susceptibility to 

chromosome segregation errors is considered to be transient, with aneuploidy peaking 

during pre-implantation development (as discussed in the previous chapter). Thus a model 

containing a clone of cells with an on-going permanent susceptibility to aneuploidy was 

considered likely to be unrepresentative and therefore discounted as a first line model.  

A further experimental option reviewed was the use of drugs such as NZ or monastrol to 

induce chromosome segregation errors; a strategy that is sometimes utilized in studies 

using cell culture lines (Thompson and Compton, 2008, Crasta et al., 2012, Thompson and 

Compton, 2010). These drugs induce missegregation errors and aneuploidy through their 

ability to generate abnormal merotelic kinetochore attachments at the spindle during 

mitosis; merotelic meaning that chromosome kinetochores attach to spindle microtubules 

from opposite poles rather than just one pole, which can result in abnormal chromosome 

segregation during division (Cimini et al., 2001). There were several reasons why this 

approach was considered unsuitable for this study. In the first instance the frequency of 

reported errors in cell culture studies was relatively low, ranging between 10 to 30% 

(Thompson and Compton, 2008, Crasta et al., 2012). A significantly higher rate was desirable 

for the mouse model otherwise potential differences between control and treated 

blastomeres may have been too difficult to detect. In addition, both drugs would require an 

incubation step over a period of several hours, inducing a prolonged metaphase arrest. 
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Gene transcription is silenced during mitosis and this effect could compromise viability and 

trigger additional alterations in cellular physiology unrelated to any resulting aneuploidy 

(Gottesfeld and Forbes, 1997). Additionally, prolonged mitotic arrest in itself is associated 

with DNA damage (Dalton et al., 2007, Quignon et al., 2007, Orth et al., 2012) and the 

consequent damage to the genome together with activation of the DNA damage response 

could further alter cellular viability and fate secondary to effects independent of 

chromosome segregation or aneuploidy.  

The treatment of blastomeres with reversine was found to be effective at inducing acute 

chromosome segregation errors, and was thus chosen as the method by which abnormal 

blastomeres would be generated for the model. Until further models of mosaicism are 

developed, it will always be of concern that any phenotype revealed in the subsequent 

studies could be a consequence of other effects independent of acute chromosome 

segregation or aneuploidy per se; as it is possible that the inhibition of Mps1 or non-specific 

off-target effects of the drug itself could induce a phenotype. These potential effects are 

discussed in greater detail in the following chapter. However this fact does not invalidate 

the potential usefulness of the presented model, rather it means that all results and 

conclusions should be considered in this context and that efforts should be made to 

continue to develop additional models. In addition it was not possible to accurately 

determine which cells became aneuploid as a consequence of reversine treatment. Major 

chromosome segregation errors were visualised in nearly half of all treated blastomeres, 

resulting in micronuclei formation. However, the absence of visualised errors does not 

exclude the possibility that errors were also occurring in other apparently normal mitoses, 

as it was not possible to determine if each daughter cell inherited the correct number or 

complement of chromosomes. Both FISH analysis and the preliminary results of array-based 

karyotyping did reveal higher rates of aneuploidy in reversine-treated blastomeres 

compared to controls. However, as experimental limitations prevent the real-time 

measurement of aneuploidy within reversine-treated cells, a comparative approach to 

analysis has been adopted for the subsequent experiments presented in Chapter III.  

When compared with other potential sources of abnormal blastomeres reversine treatment 

conferred several advantages. Of paramount importance was the finding that reversine 

treatment was highly effective at abrogating the SAC and inducing chromosome segregation 
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errors in blastomeres during mitosis. Incubating embryos in reversine ensured a consistent 

and penetrant phenotype that can be difficult to achieve using a clonal approach which 

requires microinjection. Technically the microinjection of embryos is an experimental 

approach that can be associated with difficulties in achieving a perfectly consistent dose 

delivery to each injected blastomere, and thus variations in the penetrance of phenotype 

can occur, and in addition it can be complicated by the risk of RNA degradation; none of 

which would be problematic in reversine treatment. In addition, the transient nature of 

reversine treatment was a particularly beneficial characteristic as it enabled the induction of 

acute chromosome segregation to be tightly restricted and thus limited to a defined and 

desirable developmental-window, similar to that believed to occur during human pre-

implantation development.  

The primary goal of this section of the study was to generate a mouse model for diploid-

aneuploid chromosome mosaicism. This aim arose as a consequence of the limited 

knowledge of the ultimate developmental fates of human mosaic embryos. IVF is now a 

well-established and widely used treatment for infertility worldwide and thus it is of 

paramount importance that efforts are made to increase our understanding of early embryo 

development. Given this, it may be surprising that there are limited reliable animal models 

for embryo mosaicism, however non-human primates and other larger mammals are 

expensive, difficult to maintain and present additional practical challenges. Thus there is a 

need to develop more practical animal model systems that can be used to complement and 

guide future human embryo research programs. The mouse is an attractive model system as 

it overcomes many of the logistical, ethical and financial challenges of working with human 

or larger mammalian species. In addition, in contrast to other systems, the mouse offers the 

unique advantage of a wealth of knowledge of mouse genetics and the potential for genetic 

modification, not as readily possible with other model animals. The mouse genome is 

remarkably similar to the human with 99% of mouse genes having human orthologs, and 

mutations in mouse genes often have similar consequences to their human homologues 

(Waterston et al., 2002). Mouse and human embryos are morphologically alike and undergo 

a similar developmental process of cleavage, cavity formation, hatching followed by 

implantation and the establishment of the first three lineages. Despite these apparent 

similarities there are also major differences that must be taken into consideration. The 
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timing of events varies between human and mouse embryos; ZGA occurs at the 2-cell stage 

in the mouse (Latham and Schultz, 2001) compared to 4- to 8- cell in the human (Braude et 

al., 1988), cleavage divisions are slower and compaction, blastocyst formation, hatching and 

implantation occur at a later stage in humans compared to the mouse (Niakan et al., 2012). 

Much of what is known about mammalian pre-implantation development is as a result of 

studies on the mouse. However, in the case of chromosome mosaicism the mouse is usually 

viewed as a poor model due to its low level of aneuploidy together with the infrequent 

occurrence of embryo fragmentation, poor morphology and developmental arrest; common 

characteristics of human embryos. While these are notable and important differences they 

should not exclude the potential use of the mouse as a model system to explore 

developmental questions that are impossible to address in human embryos, or otherwise 

impractical in larger mammals. Provided all results are interpreted in the context of these 

known differences, the mouse model can be successfully employed to gain further insight 

into human pre-implantation embryo development.  

To date, the model presented in this chapter is the first mouse model of acutely arising 

aneuploid-diploid mosaicism in the pre-implantation embryo. Despite the potential 

limitations of this model, it offers a unique and novel opportunity to explore developmental 

questions that up until now have only been speculated upon. In the next chapter, this model 

will be used to explore the fate of abnormal cells within the developing embryo together 

with the developmental outcome of the embryo as a whole. 
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INVESTIGATING THE FATE OF EMBRYOS WITH CHROMOSOME ABNORMALITIES 

 

3.1 INTRODUCTION TO RESULTS II 

The previous chapter described the development of a mouse model for pre-implantation 

diploid-aneuploid mosaicism. The work presented in this chapter utilizes that mouse model 

to investigate the fate of abnormal cells within the developing embryo and to determine the 

developmental potential of mosaic embryos as a whole. 

The majority of human pre-implantation embryos are mosaic with the most common 

pattern being diploid-aneuploid mosaicism, where the embryo contains a complement of 

both normal and abnormal cells (van Echten-Arends et al., 2011). Aneuploidy is widely 

believed to be directly responsible for high rates of early human pregnancy failure in both 

spontaneous conceptions (Macklon et al., 2002) and following IVF treatment (Magli et al., 

2000, Sandalinas et al., 2001, Rubio et al., 2007, Mantikou et al., 2012). As a consequence 

there have been intense efforts to develop clinical tests that can identify abnormal embryos 

during IVF treatment prior to embryo transfer. By pre-selecting only those embryos 

containing a normal chromosome constitution for uterine transfer, the ultimate goal is to 

improve IVF outcomes and ultimately increase live birth rates. Embryo biopsy followed by 

PGS was widely adopted for this reason but failed to deliver the anticipated improvements 

in IVF outcome (Twisk et al., 2006, Mastenbroek et al., 2007). Although there are many 

potential reasons underlying the failure of PGS, the high prevalence of chromosome 

mosaicism is likely to be a significant factor. 

The developmental fate of mosaic embryos is not known. Mosaicism peaks at the cleavage 

stage of pre-implantation development, declining rapidly as gestation progresses (see 

section 1.3.3). Whether this shift away from mosaicism towards normality results from 

developmental failure of the whole embryo, or alternatively through elimination of 

abnormal cells from the mosaic embryo is not known. Observational findings comparing 

mosaicism levels with IVF outcomes are suggestive that some mosaic embryos have the 

potential to develop into viable, on-going pregnancies (Vanneste et al., 2009).  
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If it is the case that some mosaic embryos have full developmental potential then important 

questions remain outstanding. What confers viability to mosaic embryos? Does this depend 

upon the proportion of abnormality within the embryo? How do mosaic embryos 

normalise? Several hypotheses have been proposed and can be categorised into either 

clonal depletion or self-correction hypotheses, summarised in Figure 1.4 and discussed in 

section 1.3.4. These hypotheses are difficult to investigate directly in the human pre-

implantation embryo and thus published data is largely limited to supportive evidence from 

observational studies. Therefore the major aim of this study was to directly investigate 

developmental outcome of mosaic embryos using the mouse model. By using the mouse 

model it was possible to approach these questions using novel methodological strategies 

that would not be achievable in human embryos.  

In this chapter time-lapse imaging technology was applied to evaluate the pre-implantation 

development of mosaic embryos at single cell resolution, enabling the behaviour and fate of 

normal and abnormal blastomeres to be compared directly within the same embryo. An 

additional model of diploid-tetraploid mosaicism was developed and used to determine if 

the fates of aneuploid and tetraploid cells were equivalent. Finally the peri- and post-

implantation developmental potential of diploid-aneuploid mosaics was investigated 

through the uterine transfer of embryos into recipient mothers.   
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3.2 MATERIALS AND METHODS 

3.2.1 Pre-implantation embryo collection and culture 

As described in Section 2.2.1 of Chapter II. 

3.2.2 Treatment with reversine and equivalent controls 

Embryos were incubated in reversine (Cayman Chemicals) at a concentration of 0.5M 

diluted in KSOM during the 4- to 8-cell cleavage. To minimise the exposure of embryos to 

reversine, embryos were selected for incubation at the late 4-cell stage and removed as 

soon as all four blastomeres had divided, at the 8-cell stage. Any embryos from the batch 

that had already commenced the third cleavage in any of its blastomeres were discarded. 

Alongside, an equivalent group of control embryos were treated in an identical manner 

cultured in KSOM containing an equivalent concentration of DMSO (0.005%) (Sigma) in the 

absence of reversine. 

 

3.2.3 Immunocytochemistry 

With the exception of expanded blastocyst stage embryos, the zona pellucida was first 

removed using acid Tyrode’s solution (Sigma) 20 minutes prior to fixation. Embryos were 

fixed in 4% PFA (EMS) for 20 minutes in the dark and then washed through three drops of 

PBS where they were stored at 40C until required.  

Immunocytochemistry was then carried out as detailed in section 2.2.3 in Chapter II. 

Imaging was carried out on an Olympus FV1000 (Fluoview FV10-AW software) or Leica SP5 

(LAS AF software) inverted confocal microscope. For experiments that required cell 

counting, serial Z-planes were taken at a minimum of every 3M intervals throughout the 

depth of the embryo. Image files were viewed in ImageJ (www.rsb.info.nih.gov/ij) or FIJI 

(www.fiji.sc/wiki/index.php/Fiji) software and cells were counted manually using the ROI 

manager tool.  

In this chapter the following antibodies were used at the given concentrations: Cdx2 (1:200; 

mouse monoclonal, BioGenex), Nanog (1:200; rabbit polyclonal, Abcam), Sox17 (1:200; goat 

http://www.fiji.sc/wiki/index.php/Fiji
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polyclonal, R&D systems). All secondary antibodies were AlexaFluor Dye conjugates 

(Invitrogen) and used at a concentration of 1:500. 

 

3.2.4 Generation of chimeric mosaic embryos 

Aggregation chimeric mosaics containing reversine-treated and control blastomeres were 

created at the 8-cell stage. First the zona pellucida was removed by brief incubation in acid 

Tyrode’s solution (Sigma) at 370C under direct vision. Immediately on dissolution of the zona 

pellucida the embryos were washed through at least three drops of M2 medium, and left to 

recover in M2 for a minimum of 30 minutes before proceeding to the next step. Zona-free 8-

cell stage embryos were incubated in individual drops of Ca2+- and Mg 2+-free M2 medium 

for five minutes at 370C to aid embryo disaggregation. Embryos were then washed into 

individual drops of M2 media where they were disaggregated into single cells by gentle 

mouth pipetting through a flame-polished glass pipette.  

Chimeric mosaics were generated by aggregating blastomeres together in drops of M2 

containing phytohaemagglutinin (PHA) (Sigma) at a concentration of 0.1mg/ml to enhance 

blastomere stickiness and hence aid aggregation. Each chimera was created in an individual 

drop and after several minutes washed through M2 media, and then cultured in KSOM.  

The constitution of the chimeras varied according the experiment. In the majority of 

experiments, chimeras were constructed in a 1:1 ratio and thus constituted of four 

blastomeres from each of the reversine-treated and control groups. In a set of further 

experiments 3:1 chimeras were used, comprising six reversine-treated and two control 

blastomeres.  

In one experiment, true ‘half-mosaic’ embryos were generated from control blastomeres. 

These were created exactly as described above, except that they were comprised of four 

control blastomeres rather than eight.  

 

3.2.4.1 Blastomere labelling for time-lapse imaging 
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For time-lapse imaging experiments all embryos used were from H2B-GFP matings to enable 

nuclear visualisation and cell tracking. Because the chimeras contained two different 

populations of cell clones that needed to be distinguished at the start of the movie, it was 

necessary to mark one of the clones with an additional red label. 

For chimeras imaged from the 8-cell stage, one clone of blastomeres was labelled with the 

vital dye FM4-64 (Invitrogen). Blastomeres were labelled immediately following 

disaggregation by a ten minute incubation containing a 1:100 dilution of FM4-64 in M2 in 

the dark. Following labelling, blastomeres were washed through three drops of M2 and used 

to make aggregation chimeras as described above. 

For chimeras imaged from the mid-blastocyst stage, half of the embryos were labelled at 

the 2-cell stage by micro-injection of Tomato-fluorescent protein (TFP) mRNA for (a gift from 

Samantha Morris) into both blastomeres. Embryos were checked for expression several 

hours later, and only those expressing TFP were selected to use for one clone. Un-injected 

embryos were used for the second clone, and chimeras were generated as described above. 

 

3.2.4.1 Lineage marking for uterine transfer experiments 

For several uterine transfer experiments chimeras were constructed from clones with two 

different genetic backgrounds: H2B-GFP and F1. H2B-GFP clones could be identified by the 

presence of GFP labelled chromatin and thus the two clones could be readily distinguished. 

 

3.2.5 Time-lapse imaging of mosaic embryos 

For imaging, embryos were transferred into individual interstices of a finely weaved 

polypropylene mesh which was firmly adhered within a glass bottom dish (Matek). This 

customisation of the glass bottom dish ensured the embryos stayed in position throughout 

the duration of the imaging, an adaptation invented by Dr Bernhard Strauss (a Post-doctoral 

researcher in the laboratory). 
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Time-lapse movies were generated using a spinning disk confocal microscopy system 

(Axiovert Observer Z1, Carl Zeiss, Inc.) with images captured in SlideBook software 

(Intelligent Imaging Innovations 3i). The multi-position stage enabled each embryo to be 

imaged individually, using a 40x air objective. Labelled clones were identified at the start of 

the movie by capturing a single 3D frame in the RFP, GFP and bright-field channels. 

Subsequently bright-field and GFP-fluorescent images were captured in 25- to 30- Z-planes 

at 2.5 to 3M increments, for each embryo at 15 minute time intervals over a 48 hour 

period from the 8-cell stage through to blastocyst cavity expansion. For the subset of 

embryos that were imaged during blastocyst cavity expansion only, imaging continued over 

a period of 24 hours and did not require re-adjustment. 

 

3.2.5.4 Analysis of time-lapse movies 

Every cell in each embryo was tracked using SimiBiocell software (Bischoff et al., 2008) 

creating cell-lineage trees for each individual embryo. Cell-lineage trees included all data 

regarding the origin, history, cell behaviour and ultimate fate of each blastomere. Cell-cycle 

lengths were defined as the length between two anaphases, identified by changes in 

chromatin morphology. Major chromosome segregation errors such as lagging 

chromosomes and the formation of micronuclei were recorded. Symmetric and asymmetric 

divisions were assessed during the 8- to 16- and 16- to 32-cell stage cleavages by evaluating 

the position of the daughter cells in relationship to the embryo surface, as previously 

described (Bischoff et al., 2008, Jedrusik et al., 2008, Jedrusik et al., 2010). Apoptosis was 

recorded based on the presence of characteristic chromatin morphology and nuclear 

fragmentation (Kerr et al., 1972) as described in previous time-lapse studies (Plusa et al., 

2008, Meilhac et al., 2009), and final lineage allocation by the position of the cell at the end 

of the imaging, and on consideration of its division history as previously described (Bischoff 

et al., 2008, Jedrusik et al., 2008, Jedrusik et al., 2010). Cell tracking was carried out blind to 

the origin of the blastomere, with identification of cell origin revealed only on completion of 

tracking of the entire embryo, when the RFP-channel in the original SlideBook file was 

opened. 
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3.2.6 Generating tetraploid embryos and mosaics 

Whole tetraploid embryos were created by electrofusion at the 2-cell stage using an Electro 

Cell Manipulator 2001 (BTX) (Kubiak and Tarkowski, 1985). Electrofusion was carried out in a 

freshly prepared 0.3M solution of mannitol (Sigma) in ultrapure water containing 3% BSA 

filtered through a 0.22M filter. Embryos were placed between the chamber electrodes and 

subjected to an AC pulse of 2V for 10 seconds to align the embryos, followed by three 10ms 

pulses of DC 50V. The DC voltage was reduced to 30 or 40V for some experiments as the 

sensitivity of the embryos to electrofusion was variable. Embryos were immediately washed 

through three drops of fresh M2 media, and observed 30 to 60 minutes later. Embryos that 

had fused successfully were selected for use in the subsequent experiments. 

This technique was also used to create true diploid-tetraploid mosaic embryos. 

Electrofusion was carried out as described above but on early 4-cell stage embryos. 

Between 30 to 60 minutes later the embryos were re-assessed and those that had become 

3-cell embryos were selected for use in the subsequent experiment, and the remainder 

discarded.  

3.2.6.1 Time-lapse imaging of diploid-tetraploid mosaics 

True diploid-tetraploid mosaics were generated from H2B-GFP embryos. Imaging was 

commenced shortly after fusion, using a Zeiss widefield microscope, Hamamatasu camera 

and Kinetic Imaging software. Images were captured using a 20x air lens with GFP and DIC z-

stacks were recorded every 15 minutes, in 15 z-stacks at 3M intervals. Imaging was 

continued for 48 hours by which time the embryos had developed into early blastocysts. 

SimiBiocell software was used to analyse the images, as described above. Tetraploid 

blastomeres were identifiable by their cell size at the start of imaging so there was no 

requirement for additional cell labelling. 

 

3.2.7 Blastocyst transfer into recipients 

Uterine transfers into prepared female recipients were performed by William Mansfield or 

Charles-Etienne Dumeau from the Transgenic Facility of the University of Cambridge Stem 



Chapter III  RESULTS II 

108 
 

Cell Institute. E3.5 stage early blastocysts were transferred into the uterine horn of 2.5 days 

postcoitum (dpc) pseudo-pregnant females that had been mated with vasectomized males. 

Embryo recoveries were undertaken as required according to the specific experiment. 

3.2.8 Early post-implantation embryo recovery, imaging and TUNEL staining 

Early post-implantation embryos were recovered at E6.5 or E7.5 into PBS on ice as required. 

The number of implantation sites was recorded and then the embryos were dissected from 

the maternal decidua. Viable embryos were fixed in 4% PFA at 4oC for one hour followed by 

washes through PBS, and incubation in DAPI. Confocal images were captured on either a 

Leica SP5 or Olympus FV1000 inverted confocal microscope into LAS AF or Olympus 

Fluoview FV10-AW software respectively. 

For terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining (Roche), 

embryos were fixed, washed and then permeabilized for 30 minutes in 0.5% triton-100 on 

ice, and then washed through three drops of PBS/PVP (PBS containing 1mg/ml of 

polyvinylpyrrolidone (Sigma). Embryos were then incubated in 50l of TUNEL reaction 

mixture consisting of 5l of enzyme with 45l of the fluorescein label (supplied with the 

TUNEL kit), in the dark for one hour at 37oC. Embryos were then washed through PBS/PVP 

and incubated in DAPI for 5 minutes at room temperature prior to imaging. 

 

3.2.9 E13.5 recovery and placental and fetal biopsies 

Embryos were recovered at E13.5 individually into PBS on ice keeping the fetus together 

with its corresponding placenta and whole mount images were captured. Both placental and 

fetal biopsies were taken from several sites in all H2B-GFP-:-F1 chimeras recovered at E13.5. 

These were fixed in 4% PFA in PBS for one hour at 40C. The specimens were rinsed in PBS 

and then incubated in serial 15%, 20% and 30% sucrose (Sigma) solutions for one hour each, 

followed by a further overnight incubation in a 1:1 30% sucrose : OCT embedding solution 

mix at 40C. The samples were then embedded in OCT media (Tissue-Tek) and frozen on dry 

ice. Cryosections were cut at approximately 12M sections and slides were stained with 

NucView DAPI (Invitrogen) and mounted with VectashieldR mounting medium (Vector 
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laboratories). Images were taken using a Deltavision widefield microscope with a 20x 

objective.  

 

3.2.10 Statistical analysis 

To compare categorical data the Chi-square test was used, unless the numbers were small in 

which case the Fisher’s exact test was used. The Student’s paired or unpaired t-test was 

used to compare mean values between samples. The binomial test was used to evaluate the 

clonal distributions of chimeras at the blastocyst stage, based upon the known constitution 

of the clones at the 8-cell stage. In all cases the two-tailed version of the test was used to 

evaluate statistical significance. Calculations were carried out in Microsoft Excel or 

GraphPad software. 

  



Chapter III  RESULTS II 

110 
 

3.3 RESULTS II 

3.3.1 The pre-implantation development of reversine-treated embryos 

The developmental potential of reversine-treated embryos (treated during the 4- to 8-

cleavage) was compared with a group of equivalent control embryos. Both groups of 

embryos were cultured until E4.5 when the developmental outcome was evaluated. 

Successful morphological development was defined as a hatching or well expanded 

blastocyst with a large blastocoel cavity. In total 30 reversine-treated and 35 control 

embryos were evaluated. There were no significant differences in between the two groups; 

28 of 30 (93%) reversine-treated embryos underwent successful development, compared to 

33 of 35 (91%) of control embryos (Fishers test; p=1.0).  

To determine if reversine treatment had any adverse effects on lineage establishment or 

segregation, embryos were fixed at E4.5 and immunostaining was undertaken for three 

lineage-specific transcription factors: Cdx2 to mark the TE, Nanog to mark the EPI, and 

Sox17 to mark the PE. The number of cells in each lineage was counted and reversine-

treated embryos were compared with controls. Reversine-treated embryos comprised of 

significantly fewer cells than the control embryos, with an average of 80.5 cells per embryo, 

compared to an average 96.8 for  control embryos (n= 17 & 23 embryos respectively; 

Student’s   t-test; p=0.012) (Figure 3.1A). Immunostaining for the three lineage markers 

Cdx2, Nanog & Sox17 showed that there was a significant reduction of cells in the TE and EPI 

lineages (Cdx2 p=0.006 & Nanog p=0.019 respectively, Student’s t-test) compared to control 

embryos, with the exception of the PE lineage which was equivalent to controls (Sox17 

p=0.43, Student’s   t-test).  

However there were no significant differences in the overall relative allocation of cells to the 

ICM and TE lineages, with Cdx2-positive TE cells comprising 82.5% of control and 82.1% of 

the reversine-treated embryos respectively (2 test; p=0.49). In addition, the lineages were 

segregated normally with expression of Cdx2 restricted to the outside cells, Nanog restricted 

to within the deep layer of ICM cells, and Sox17 forming a monolayer of ICM cells, adjacent 

to the blastocyst cavity (Figure 3.1B).  

  



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Total Cdx2 Nanog Sox17

C
e

ll 
n

u
m

b
e

r 
re

la
ti

ve
 t

o
 c

o
n

tr
o

l e
m

b
ry

o
s 

Control

Reversine

C
o

n
tr

o
l 

R
ev

er
si

n
e 

DAPI Cdx2 Nanog Merge DIC Merge 

Ea
rl

y 
b

la
st

o
cy

st
 

C
o

n
tr

o
l 

R
ev

er
si

n
e 

DAPI Cdx2 Nanog Sox17 Merge DIC Merge 

Ex
p

an
d

ed
 b

la
st

o
cy

st
 

(B) 

Figure 3.1 Effect of reversine treatment on embryo development. (A) By the 

expanded blastocyst stage reversine-treated embryos contained significantly fewer 

cells than controls, with a significant depletion of Cdx2 and Nanog positive cells 

relative to control embryos (n=17 & 23 embryos respectively, Student’s t-test p=0.01). 

Error bars = SD * p<0.05, ** p<0.01 (B) Immunofluorescence staining for transcription 

factors showed no significant differences in expression patterns in reversine embryos 

at the early and expanded blastocyst stages. Note the correct sorting into three 

distinct lineages by the expanded blastocyst stage: Cdx2 marking the TE, Nanog 

marking the EPI, and Sox17 marking the PE. 

 

All images at 40x magnification 
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To determine the timing of divergence in cell number between reversine-treated embryos 

and controls the experiment was repeated but embryos were evaluated at the early 

blastocyst stage, E3.5. In contrast to the late blastocyst stage, there were no significant 

differences in cell numbers between reversine-treated and control embryos (containing a 

mean of 41 and 43 cells per embryo respectively; Student’s   t-test p = 0.64; n = 6 reversine 

and 7 control embryos). Further, there were no significant differences in the distribution of 

Cdx2 or Nanog positive cells; reversine-treated embryos showed the expected restriction of 

Cdx2 expression to the outer cells, together with increasing confinement of Nanog positive 

cells to the inside lineage (Figure 3.1B). 

Therefore it was concluded that reversine-treatment of embryos had a detrimental effect 

on total cell number that became manifest between the early to late-blastocyst stage. 

Despite this finding, embryo morphology remained unchanged and the TE cells maintained 

functional capacity and epithelial integrity manifest by the formation of the blastocyst 

cavity. Additionally the establishment and segregation of the three lineages appeared to be 

unperturbed. 

 

3.3.2 Time-lapse imaging of chimeric mosaic embryos 

The depletion in cell number occurring between the early to late blastocyst stage could arise 

secondary to differences in cell-cycle lengths, cell-cycle arrest rates, an increase in cell death 

rates by apoptosis, or a through a combination of some or all of these factors. To investigate 

this, high resolution time-lapse imaging was used to evaluate the development of chimeric 

mosaic embryos, comprising of a mixture of reversine-treated and control blastomeres.   

Figure 3.2 summarises the experimental strategy. In brief, mosaic chimeras were created at 

the 8-cell stage by aggregating four control and four reversine-treated blastomeres together 

thus creating a chimeric embryo containing a one to one ratio of control to treated 

blastomeres. These experiments were performed on H2B-EGFP transgenic embryos 

(Hadjantonakis and Papaioannou, 2004) to enable individual nuclei to be visualised 

throughout the period of imaging. The reversine-treated and control blastomeres within 

each embryo were distinguished from each other at the start of the imaging by detecting  
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those blastomeres labelled with the red fluorescent vital dye FM4-64 on a single 3D scan 

with the red laser immediately prior to commencing 4D time-lapse imaging. Time-lapse 

imaging was continued for 48 hours until the majority of embryos had developed into 

expanded blastocysts.  In a subset of experiments a group of chimeras were imaged only 

during a 24 hour period encompassing blastocyst cavity expansion. 

20 suitable embryos from several experiments were selected for cell tracking and analysis. 

Embryos were deemed suitable for analysis if their orientation during imaging was 

conducive to cell tracking throughout the period of development.  

Every single blastomere in each of these embryos was tracked manually using SIMI Biocell 

Software until its ultimate fate was known, or it was not possible to accurately track the 

blastomere any further. Most embryos contained a small minority of blastomeres that were 

lost during tracking. This mostly occurred during blastocyst cavity expansion when the 

embryos underwent rapid enlargement or when the limitations of imaging had been 

reached as the cavity expanded out of the imaging plane. For these blastomeres it was not 

possible to accurately determine the ultimate fate of that individual cell beyond a certain 

time point. In such cases these cells were tracked up until the time-point of uncertainty, and 

were recorded as lost to tracking. There were no significant differences between reversine-

treated and control blastomeres in the proportions of cells that were lost to tracking, 

occurring in 11% and 12% of reversine-treated and control blastomeres respectively 

(n=1938 blastomeres from a total of 34 embryos;  test; p=0.35). Therefore the loss of 

these cells did not invalidate or bias the findings for the rest of the embryo, nor their 

behaviour prior to their loss. Hence embryos were not discarded if they contained a few 

cells that were lost to tracking, and such cells were included in the analysis up until the 

time-point at which they could no longer be tracked further.  

The 20 embryos tracked from the 8-cell stage onwards consisted of two reciprocally labelled 

groups of ten embryos; one group in which reversine-treated blastomeres were labelled 

with FM4-64 (classified as group one) and another in which the control blastomeres were 

labelled with FM4-64 (classified as group two). This was to ensure that any differences in 

behaviour of the blastomeres could be attributed solely to their origin (control or reversine-

treated) and to rule out the possibility of any differences being masked or detected being a 
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direct and unexpected consequence of the labelling procedure itself. To be certain that both 

groups of embryos were comparable, a systematic comparison of the two groups was 

undertaken to compare all potential variables of interest. This included patterns of lineage 

allocation, patterns of cell division (symmetric or asymmetric), cell-cycle timings and 

behaviour, and the frequency of cell death. The results are summarised in detail in Tables 

3.1 to 3.4. This analysis confirmed that there were no significant differences detected in the 

variables between the two groups of embryos secondary to the labelling procedures, but 

with just one exception. The cell-cycle lengths of the 5th cleavage (16- to 32-cell stage) were 

found to be significantly longer in control-FM4-64-labelled embryos than reversine-labelled 

(by 210 and 222 minutes, inside and outside cells respectively, Student’s t-test; p=0.015). 

This difference was unexpected but could be explained by the variation in the exact timing 

of constructing of the chimeras. Although pre-implantation embryos are relatively robust 

and readily survive disaggregation, chimera construction and subsequent imaging, it is 

plausible that the process of disaggregation itself might result in a temporary delay or 

slowing of cell-cycle length. The two labelled groups were created during completely 

different experiments and it may be that control-labelled chimeras were created at a slightly 

later developmental time-point that the reversine-labelled embryos. There were no 

significant differences between the two groups in the subsequent cell-cycle (32- to 64-cell 

stage).  Overall these comparisons were reassuring, and therefore for all subsequent 

analyses the data obtained from both groups of embryos was amalgamated and considered 

together as a single group. 

In total 1079 blastomeres were tracked from 20 embryos, comprising 348 ICM cells and 731 

outer TE cells. In addition to the 20 chimeras imaged from the 8-cell stage, a further 14 

embryos were imaged and tracked from the early blastocyst stage onwards for analysis of 

ICM apoptosis rates (see section 3.3.2.4). These embryos also comprised of two reciprocal 

groups, labelled with the fluorescent lineage marker TFP, injected at the 2-cell stage. A 

comparison between the two groups also revealed no effects attributable to the labelling 

procedure (Table 3.4).  

Limitations of experimental procedure meant that it was not possible to accurately 

determine the chromosome status of each individual blastomere, as discussed in section 

2.4.4 of the previous chapter. Reversine treatment had previously been shown to induce  



Tables 3.1 to 3.4. Investigating the potential effect of cell labelling on lineage distribution, pattern of 

division, cell cycle parameters and cell death. In the time-lapse imaging experiments presented in Section 

3.3.1 a lineage marker was used to distinguish between the control and reversine-treated blastomeres within 

each embryo. When embryos were imaged from the 8-cell stage onwards, the lineage marker was Fm4-64. In a 

subset of experiments the embryos were imaged only during blastocyst cavity expansion, and in these movies 

the lineage marker was TFP. Although unlikely, it was possible that the lineage marker itself could have an effect 

on cell behaviour that could then be incorrectly attributed to differences between the control and reversine-

treated blastomeres. To minimise the influence of any such effect, in some embryos the control blastomeres 

were labelled with the lineage marker, and in others the reversine-treated embryos were labelled. This also 

enabled direct comparisons to be made between the behaviour of labelled and unlabelled blastomeres, and 

hence detect any unexpected effects due the lineage marker itself. These comparisons are presented above. 

 

% of Symmetric divisions % of Asymmetric divisions 

Fm4-64 labels reversine blastomeres 36% 64% 

Fm4-64 labels control blastomeres  43% 57% 

Early BC % of Control cells inside % of Control cells outside 

Fm4-64 labels reversine blastomeres 38 63 

Fm4-64 labels control blastomeres  30 70 

Late BC % of Normal clone inside % of Normal clone outside 

Fm4-64 labels reversine blastomeres 28 72 

Fm4-64 labels control blastomeres  29 71 

Cleavage (minutes) 5 outside ** 5 inside ** 6 outside 6 inside 

Fm4-64 labels reversine blastomeres 750 853 707 778 

Fm4-64 labels control blastomeres  960 1075 721 808 

Cell cycle category Slow outliers Normal 

Fm4-64 labels reversine blastomeres 10% 90% 

Fm4-64 labels control blastomeres  8% 92% 

Inner cell mass (ICM) Abnormal cells die Abnormal cells survive 

Fm4-64 labels reversine blastomeres 41% 59% 

Fm4-64 labels control blastomeres  34% 66% 

TFP labels control blastomeres 31% 69% 

TFP labels reversine blastomeres 35% 65% 

Trophectoderm (TE) Abnormal cells die Abnormal cells survive 

Fm4-64 labels reversine blastomeres 4% 96% 

Fm4-64 labels control blastomeres  1% 99% 

TFP labels control blastomeres 3% 97% 

TFP labels reversine blastomeres 6% 94% 

Table 3.1 Lineage distribution 

Table 3.2 Division pattern 

Table 3.3 Cell cycle timings & behaviour 

Table 3.4 Apoptosis 

Table 3.1 shows the lineage 
distribution of all control blastomeres 
at the early and expanded blastocyst 
stage (inside position or outside 
position), and demonstrated no 
differences between the labelled and 
unlabelled cells (c2 test p=0.2 & p=0.9).  

Table 3.2 shows the proportion of 
blastomeres that underwent 
symmetric or asymmetric divisions 
during the 8- to 32-cell stage. There 
were no significant differences 
between the labelled and unlabelled 
blastomeres  (c2 test p=0.2).  

Table 3.3 summarises the mean cell-
cycle length, and cells classified as 
‘slow outliers’. 5th cleavage cell-cycle 
length was significantly longer in FM4-
64 blastomeres than labelled 
unlabelled (t-test **p<0.01), but no 
differences were observed during the 
6th cleavage (t-test, p=0.3). There were 
differences in the proportions of slow 
outliers between the labelled and 
unlabelled blastomeres (c2 test p=0.2).  

Table 3.4 shows the proportion of 
abnormal cells in each embryo that 
died or survived according to their 
position in either the TE or ICM. There 
were no differences between cells with 
different labels (c2 test; ICM p=0.5, TE 
p=0.04). A higher level of significance 
was applied to the TE cells due to the 
overall low proportion of TE cell death 
and the effect that clustering of sister 
blastomeres could have on the overall 
rate of cell death in each group. 
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major chromosome segregation errors in approximately half of all cells as assessed by high 

resolution time-lapse imaging (section 2.3.2.3). On that basis it was presumed that when 

compared to the control clone of blastomeres, reversine treatment had a high probability of 

inducing chromosome abnormalities in treated blastomeres that would consequently also 

be inherited by their future progeny. Therefore a comparative approach to analysis was 

adopted; the reversine-incubated clone would be compared directly with the control clone. 

However, major chromosome segregation errors were also noted to arise during the time-

lapse imaging of the chimeric mosaic embryos, being observed in 4.6 % of all divisions. This 

finding was in keeping with the previous chapter, where control blastomeres were also 

observed to have a basal missegregation rate. A comparison of missegregation rates 

between the control and reversine-treated clones arising during the development of the 

chimeras revealed that missegregation occurred with similar frequency in both the 

reversine-treated and control clones (4.0% & 5.0% respectively,  test; p=0.927, n=921 

divisions from 20 embryos). To take account of the major chromosome segregation errors 

that were observed within the control clone, these blastomeres and their progeny were 

considered in the same group as the reversine-incubated clone, on the basis that major 

chromosome missegregation was presumed to be associated with higher rates of 

aneuploidy than cells undergoing apparently normal mitoses. 

Thus for the purposes of terminology control blastomeres with no history of identifiable 

chromosome segregation errors were classified as the ‘control clone’; and the ‘abnormal 

clone’ referred to the reversine-treated clone amalgamated with control blastomeres 

derived directly from an ancestor with a history of major chromosome segregation error 

that had been noted to occur during the course of time-lapse imaging.  

 

3.3.3 The proportion of reversine-treated blastomeres progressively decreases as blastocyst 

development proceeds  

Lineage trees were assessed for the proportion of reversine-treated blastomeres at the 

early and expanded blastocyst stages. Chimeras were constructed at the 8-cell stage in a 

one to one ratio of control to reversine-treated blastomeres, thus at the start the reversine 

clone constituted 50% of the embryo. The average proportion of the reversine-treated clone 
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within each embryo was found to be 48.1% at the early blastocyst stage, but decreased to 

43.9% by the expanded blastocyst stage (Figure 3.3A). This represented an overall reduction 

in the reversine-treated clone within the embryo by 12.2%. The depletion was not 

statistically significant at the early blastocyst stage (binomial test; p=0.37), but became so by 

the expanded blastocyst stage (binomial test; p=0.002). The depletion was most marked 

within the ICM cell lineage, with the proportion of reversine-treated blastomeres decreasing 

to 47.6% at the early blastocyst stage (not significant, binomial test; p=0.36), and then to 

39.6% by the expanded blastocyst stage, reaching statistical significance (binomial test; 

p=0.0009). A smaller but parallel trend occurred within the TE lineage decreasing to 48.7% 

in early blastocysts (not significant, binomial test; p=0.46) and finally to 45.8% in expanded 

blastocysts, also reaching statistical significance (binomial test; p=0.02). The overall trend 

for depletion was in agreement with the findings for whole reversine-treated embryos, 

presented in section 3.3.1, with the significant depletion occurring during blastocyst cavity 

expansion, relative to control embryos.  

Likewise, evaluating the lineage distribution using the control and abnormal clone 

classification, the proportion of abnormal clone blastomeres in the embryos decreased 

significantly between the early and expanded blastocyst stages; decreasing from 53% to 

47% respectively (Student’s paired t-test; p=0.002, n=20 embryos) (Figure 3.3B). In the TE 

lineage the proportion of the abnormal clone blastomeres remained stable between the 

early and expanded blastocyst stages, at 51.3% and 50.3% respectively (Student’s paired t-

test; p=0.17). Within the ICM lineage the depletion was greater, with the abnormal clone 

blastomeres decreasing from 55.8% to 44.2%, (Student’s paired t-test; p=0.018.).  

 

3.3.2.3 Symmetric and asymmetric divisions 

It has been hypothesized that abnormal cells could become eliminated from the future fetal 

lineage by their preferential allocation to the TE lineage during pre-implantation 

development (as discussed in the Introduction). Therefore the patterns of cell division were 

characterised during the fourth (8- to 16-cell) and fifth (16- to 32-cell) rounds of cell 

cleavage; the fate determining first and second waves of asymmetric divisions respectively 

(section 1.6.4). During these two cleavages cells can either divide symmetrically giving rise  



Figure 3.3 Depletion of abnormal blastomeres from chimeric embryos during pre-

implantation development. (A) The proportion of reversine-treated blastomeres in the 

chimeras progressively fell from the 8-cell stage onwards, with a significant reduction by the 

expanded blastocyst stage, representing an overall reduction in reversine blastomeres by 

12.2%. This depletion was statistically significant by the expanded blastocyst stage, and 

was most marked within the ICM lineage (binomial test).  (B) Although abnormal divisions 

arising during development initially increased the proportion of the abnormal clone within the 

embryo (as expected), there was an overall reduction between the early and expanded 

blastocyst stage within both the TE and ICM lineages (Student’s paired t-test). Error bars = 

SD, n=20 embryos. 
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to two outside daughter cells, or asymmetrically giving rise to one outside and one inside 

daughter cell. The inside cells form the future ICM, while cells that remain on the outside 

form the future TE, hence any significant differences in pattern of cell division orientation 

during the fourth and fifth cleavage would result in the differential allocation of the 

abnormal cells to the one lineage over another. 

 A total of 361 divisions were assessed from the 20 chimeras. Inside cell divisions during the 

16- to 32-cell cleavage were not included in the analysis as these cells were already 

excluded from a future TE fate. There were no significant differences in the patterns of cell 

division between the different blastomeres, with symmetric divisions occurring in 60% and 

61%  of reversine-treated and control blastomeres respectively ( test; p=0.82). Nor were 

there any differences when the first wave and second wave divisions were evaluated 

individually. 

Therefore it was concluded that there was no evidence of preferential allocation of 

aneuploid cells to the TE lineage during the first cell-fate decision. This finding provides 

evidence against the frequently proposed hypothesis that aneuploid cells are preferentially 

allocated to the TE lineage during the first fate decision. 

 

3.3.2.3 Evaluation of cell-cycle lengths 

The results presented in sections 3.3.1 and 3.3.2.1 demonstrated that the abnormal clones 

became relatively depleted from the embryo as development progressed to the expanded 

blastocyst stage. One potential mechanism that could underlie such a finding would be 

differences in cell-cycle lengths or cell-cycle arrest.  

Cell-cycle lengths were measured for all fifth and sixth cleavages at the 16- to 32-cell and 

32- to 64-cell stages respectively. From the 20 embryos a total of 280 cell-cycle lengths were 

measured during the fifth cleavage (151 and 129 in the control and abnormal clones 

respectively), and 363 during the sixth cleavage (190 and 173 in the control and abnormal 

clones respectively). The mean cell-cycle lengths were compared between control and 

abnormal clone blastomeres, matching to cleavage cycle (fifth or sixth) and according to 

position within the embryo (inside or outside). Overall there were no significant differences 
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between the control and abnormal clone but with one exception; outside cells undergoing 

the sixth cleavage (Figure 3.4A). In this case there was a small but highly statistically 

significant increase in the mean cell-cycle length measured in the abnormal clone of 

blastomeres, where the cell-cycle lengths was approximately 10% longer than that of the 

control clone, measuring at 751 and 681 minutes respectively (Student’s   t-test; p<<0.001). 

Although the differences in other groups did not reach statistical significance it was noted 

that in all groups the abnormal clone had a longer mean cell-cycle length than their 

corresponding control clone.  

However, the assessment of cell-cycle lengths required the blastomeres to have completed 

a minimum of two divisions during imaging. By definition, blastomeres that failed to 

undergo a minimum of two divisions, or whose cell-cycle lengths could not be fully assessed 

due to completion of the movie before subsequent division (or not) would be excluded from 

the analysis. Therefore, assessment of the cell-cycle lengths alone would not be sensitive 

enough to detect differences in more extreme slow cell-cycle lengths or senescent cells. 

Indeed, reviewing the lineage trees identified examples of blastomeres that had failed to 

undergo division within the likely expected time frame (Fig. 3.4B). Therefore a system was 

devised to detect and categorise these cells that would otherwise be excluded from the 

analysis that was based upon cell-cycle length alone.  For each cleavage and lineage, the 

mean cell-cycle length and standard deviation (SD) was calculated (for example, all 

blastomeres in the outside lineage during the sixth cleavage / inside fifth cleavage etc). 

Blastomere cell-cycle lengths were then categorised into one of two groups; either 

‘standard’ or ‘slow outliers’, based upon a cut-off limit which was set as the sample mean 

cell-cycle length plus two SDs. Blastomeres were categorised as ‘standard’ if their cell-cycle 

length was less than the cut-off limit. In contrast, cells were categorised as ‘slow-outliers’ if 

their cell-cycle lengths were greater than the cut-off. In those blastomeres with an un-

measurable cell-cycle length (due to completion of the movie, or loss to tracking - see Figure 

3.4B), the cell-cycle timing was assessed up until the point at which the movie ended or the 

cell was lost. Although this was not a measure the cell-cycle length per se, with this 

approach it was still possible to detect some blastomeres which would fit into the ‘slow 

outlier’ category. Blastomeres were excluded from categorisation if their cell-cycle length 

was not measurable but did not exceed the cut-off limit for categorisation as slow outlier, as  



Lineage tree key 
 

Red = Reversine, outside cell 

Purple = Reversine, inside cell 

Black = Control, outside cell 

Blue = Control, inside cell 

* = Cell death 

X = Abnormal division 

Figure 3.4 Cell-cycle lengths and arrest in chimeric embryos (A) The mean cell-cycle 

lengths did not differ between control and abnormal clones, with the exception of outside cell 

lineage  where the abnormal clone had significantly longer cell-cycle lengths (Student’s t-test; 

p<0.0001) Error bars = SD (B) Lineage tree showing an example of two blastomeres classified 

as ‘slow outliers’ (grey arrows) due to the very prolonged, but immeasurable cell-cycle length. 

This finding may represent blastomeres that have undergone transient cell-cycle arrest or 

senescence; their fate is unknown (C)  Overall, a greater proportion of abnormal clone 

blastomeres were slow outliers than controls (c2 test; p=0.0009), however this effect was only 

statistically significant in blastomeres of the outer TE lineage (c2 test; p<0.0001), but not the 

ICM (c2 test; p=0.21) (D) Cumulative percentage chart showing a graphical representation of 

the data collated from the mean cell-cycle lengths and slow-outlier classifications. Combining 

the data together illustrates how the effect of cell-cycle length and / or arrest contributes to 

progressive depletion of the abnormal clone from the mosaic chimeras; as a group control 

blastomeres complete their cleavage divisions earlier than abnormal clones. 
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it was not possible to determine which category they would belong to. The adoption of a 

cell-cycle length greater than two SDs above the mean as a cut-off for classification was 

based upon the assumption that the cell-cycle lengths of normal blastomeres were likely to 

follow a parametric distribution, and thus 2.5% of normal observations would be expected 

to be 2SDs above the mean. For the purposes of this analysis the absolute cut-off limit and 

its exact relationship to the data was less important, however this approach enabled 

differences between clones to be evaluated that would otherwise have been missed. 

Using this classification system it was found that a significantly higher proportion 

blastomeres in the abnormal clone were slow outliers than in the control clone; affecting 

13.5% and 5.0% of blastomeres respectively ( test; p <0.0001) (Figure 3.4C). However, 

when the inside and outside cell lineages were analysed individually, it was found that this 

significant effect was confined to the outside cell lineages, affecting 9.2% of the abnormal 

clone blastomeres, in contrast to just 1.4% of the control clone ( test, p<0.0001). Although 

the trend was in the same direction within the inside cell lineages, the difference in 

proportion was small, and not statistically significant; 5.2% and 3.6% in abnormal and 

control clones respectively ( test; p =0.208). 

When considered together, the trend towards slower cell-cycle lengths combined with the 

higher proportions of slow outlier cells in the abnormal clone, could potentially account for 

some of the clonal depletion of abnormal cells from the chimeric embryos. This is 

represented visually on the cumulative-percentage chart shown in Figure 3.4D. 

 

3.3.2.4 Increased apoptosis occurs in the abnormal clone of blastomeres 

In addition to differences in cell-cycle lengths, a further mechanism that may be responsible 

for the gradual depletion of abnormal blastomeres observed during pre-implantation 

development could be an increased frequency of cell death. As discussed in the 

Introduction, apoptosis is frequently observed within the ICM lineage during blastocyst 

cavity expansion. 

In addition to the 20 chimeras that were analysed from the 8-cell stage onwards, a further 

14 were included in the analysis of apoptosis to increase the number of ICM cells that could 
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be included in this analysis. These embryos were labelled with TFP-lineage marker, injected 

into both blastomeres at the 2-cell stage, and were then used to construct 1:1 reversine – 

control chimeric embryos (with omission of the FM4-64 labelling procedure).  

Time-lapse imaging enabled the recognition of apoptosis by the characteristic morphological 

features associated with apoptosis; highly condensed chromatin, followed by fragmentation 

and the formation of apoptotic bodies (Kerr et al., 1972). In some cases the images clearly 

showed the resulting cellular debris from these apoptotic cells being cleared by the process 

of efferocytosis; engulfment and ingestion of the cell debris by a neighbouring cell (Figure 

3.5A).   Apoptosis was observed to occur during blastocyst cavity expansion and usually 

within the ICM, consistent with the characteristic developmental timing and lineage 

restriction described during normal development (as described in Chapter I).   

From 34 embryos, a total of 634 ICM cells and 1346 TE cells were included in the apoptosis 

analysis. Apoptosis was frequent within the ICM lineage, occurring in 30.9% of ICM cells 

overall. However, apoptosis was significantly more frequent in abnormal clone blastomeres, 

when compared with the control clone; the mean apoptosis rate per embryo was 42% and 

20% within the abnormal and control clone blastomeres respectively (Student’s paired t-

test; p=0.0004). In contrast, apoptosis was rare within the TE lineage, occurring in just 2.0% 

of TE cells overall. Where apoptosis did occur in TE cells it was significantly more frequent in 

the abnormal clone; the mean apoptosis rate per embryo was 3.9% and 0.6% in the 

abnormal and control clone TE blastomeres respectively (Student’s   paired t-test; p=0.008) 

(Figure 3.6A). 

The higher rate of apoptosis observed within the abnormal clone of blastomeres provided 

evidence in support of the hypothesis that genetically abnormal cells are eliminated from 

the future fetal lineage by apoptosis. If this is the case, it would follow that cells with the 

closest common ancestry would be more likely to die or to survive concomitantly than 

would be predicted if apoptosis occurred at random or secondary to a non-genetic cause. 

Indeed, during cell tracking it was noted that sister blastomeres frequently underwent 

apoptosis (Figure 3.5B). This hypothesis was tested by evaluating the patterns of cell death 

or survival in blastomere sister pairs; both sister blastomeres both being the direct progeny 

of one parent blastomere, and thus more likely to share identical genetic constitutions (with 



Figure 3.5 Morphology of apoptosis captured during time-lapse imaging. Sequential images 

from a time-lapse series showing apoptosis in developing blastocysts. The images are 3D 

projections created from all z-planes. The top panel is a merged image of both channels; in these 

examples the control clone of blastomeres were labelled with the red lineage marker TFP, and the 

reversine-treated blastomeres were unlabelled. The lower panel shows only the H2B-GFP 

(nuclear) images for greater clarity of nuclear morphology. (A) Apoptosis followed by immediate 

efferocytosis; the apoptotic debris is engulfed by a neighbouring blastomere into a cytoplasmic 

vacuole, the efferosome, where is it gradually cleared. Arrow heads point to cell undergoing 

apoptosis & stars highlight the efferosome (a cytoplasmic vesicle in an  adjacent cell within the 

apoptotic debris becomes enclosed). (B) Still images from a time-lapse sequence to illustrate the 

characteristic pattern of apoptosis occurring in sister blastomeres immediately after mitosis (arrow 

heads point to blastomeres about to undergo apoptosis, asterisks to apoptotic bodies). 
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Figure 3.6 Apoptosis rates evaluated by lineage and between sister blastomeres 

(A) Apoptosis occurred more frequently in the abnormal clone and predominated 

within the ICM lineage. Graph showing the percentage of blastomeres undergoing 

apoptosis within each lineage (Student’s paired t-test; ICM ***p<0.001, TE **p<0.001 & 

TE). Error bars = SD. (B) Sister blastomeres were significantly more likely to undergo 

apoptosis supporting the hypothesis of an underlying common genetic ancestry 

between cells that ultimately die (binomial test; * p<0.05, **p<0.01, ***p<0.001). N= 34 
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 the exception of those few sister pairs where a chromosome segregation error occurred as 

their common parent cell was dividing). From the 34 embryos there were 321 pairs of sister 

ICM cells suitable for analysis. Of these, in 13.3% of pairs both sister blastomeres underwent 

apoptosis. If apoptosis occurred randomly within cells, this would be expected to occur in 

5.6% of sister pairs by chance; significantly lower than the rate observed in this study 

(binomial test; p=0.0014). Conversely, there were more survivors of both sisters in a pair, 

observed in 66.0% of pairs; significantly more frequent than the 58.2% that would be 

expected to occur chance alone (binomial test; p=0.045) (Fig 3.6B). 

 

3.3.3 Investigating the fate of tetraploid cells in pre-implantation development 

One major hypothesis for elimination of abnormal cells from the future fetus is the 

preferential allocation to TE lineage proposal, as discussed in the Introduction. This 

hypothesis has also been used as a potential explanation for how confined placental 

mosaicism arises (CPM) (Wolstenholme, 1996). The fate of tetraploid cells in diploid–

tetraploid chimeric embryos has been cited in support of this hypothesis (Wolstenholme, 

1996, Mackay and West, 2005); tetraploid cells remain confined to the placenta with 

minimal cells present within the fetal tissues (Eakin and Behringer, 2003).  The time-lapse 

imaging studies of reversine-control chimeric mosaics did not find any direct evidence to 

support this hypothesis, as the patterns of symmetric and asymmetric divisions were 

identical within both the control and reversine-treated clones (section 3.3.2.2).  This led to 

question of whether the fate of tetraploid cells is unique to tetraploid blastomeres, or were 

there any shared characteristics with cells containing other chromosomal abnormalities? 

Previous studies have provided only a snap-shot image of tetraploid-diploid embryo 

development; thus although it has been shown that lineage biases occur as early as the pre-

implantation stage, there is no published data investigating how this happens (Everett and 

West, 1998, Mackay and West, 2005). Therefore time-lapse imaging was utilized to 

investigate the development of diploid-tetraploid embryos in greater detail.  

 

3.3.3.1 The pre-implantation development of tetraploid embryos 



Chapter III  RESULTS II 

128 
 

Initially the pre-implantation development of uniformly tetraploid embryos was assessed. 

Tetraploid embryos were created by electrofusion at the 2-cell stage and then cultured 

along with an equivalent group of control embryos until E4.5. In total 30 tetraploid and 32 

control embryos were evaluated. There were no significant differences in pre-implantation 

development rates between the two groups; 30 of 30 (100%) tetraploids underwent 

successful development (as defined in section 3.3.1), compared to 31 of 32 (96%) control 

embryos (2 test; p = 0.32). No morphological abnormalities such as fragmentation were 

detected in the tetraploid embryos. 

Tetraploid embryos were then fixed at the expanded blastocyst stage with equivalent 

control embryos, and immunostaining undertaken for three lineage specific transcription 

factors: Cdx2 to mark the TE, Nanog to mark the EPI, and Sox17 to mark the PE. In order to 

directly compare cell numbers between tetraploid and control embryos, the cell counts 

from analysis of the tetraploid embryos were multiplied by a factor of two. This was 

necessary to account for the procedure of producing tetraploidy; cell fusion at the 2-cell 

stage effectively halves the number of cells in the embryo. After correction, tetraploid cells 

were found to contain an equivalent number of cells as control embryos; tetraploids had an 

average of 48.9 cells per embryo, compared to 96.7 for controls (n=12 and 23 embryos 

respectively; Student’s   t-test; p=0.89) (Figure 3.7A). Further, there were no significant 

differences in the numbers of cells constituting the TE, EPI and PE lineages, as determined 

by presence of the lineage specific transcription factors (Student’s   t-test; Cdx2 p=0.86; 

Nanog p=0.61, Sox17 p=0.61). In addition, the three lineages were fully segregated into their 

appropriate positions within the expanded blastocyst (Figure 3.7B). Taken together, these 

findings suggest that whole tetraploid embryos undergo normal pre-implantation 

development with respect to the cell number and the establishment and segregation of the 

first three lineages. These findings were in contrast to the reversine-treated embryos 

(section 3.3.1), which showed depletion of cells becoming apparent beyond the early 

blastocyst stage. 

  



Figure 3.7 Pre-implantation development of tetraploid embryos (A) There were no 

significant differences in equivalent cell number or transcription factor expression 

between tetraploid and control embryos at the expanded blastocyst stage (n=12 and 23 

embryos respectively, Student’s t-test). Error bars = SD (B) Immunofluorescence 

staining for transcription factors showed correct sorting into three distinct lineages in both 

control and tetraploid embryos: Cdx2 marking the TE, Nanog marking the EPI, and 

Sox17 marking the PE. 
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3.3.3.2 Differential lineage distribution of tetraploid cells in diploid-tetraploid mosaic 

embryos 

In the absence of any identifiable differences between the tetraploid and control embryos, 

the next step was to evaluate the fate of tetraploid cells within the context of mosaic 

development; would tetraploid cells behave differently if diploid cells were present within 

the same embryo? This question was addressed experimentally using time-lapse imaging, 

and experiments were therefore carried out using H2B-EGFP transgenic embryos to enable 

nuclear tracking.  

The electrofusion protocol was modified in order to generate diploid-tetraploid mosaic 

embryos; by applying the protocol to 4-cell stage embryos it was possible to generate an 

intact embryo containing one tetraploid and two diploid cells (Figure 3.8A). Time-lapse 

imaging was conducted from the late ‘4’-cell stage (now 3-cell following fusion of the 4-cell 

embryo) and continued until the mid-blastocyst stage. Cell labelling was not required as the 

tetraploid blastomere was clearly identifiable by its increased size.  

Overall 15 diploid-tetraploid embryos were suitable for analysis. Lineage trees were 

analysed for the proportion of tetraploid cells contributing to the embryo as a whole, and 

then to the ICM and TE lineages. At the early blastocyst stage, tetraploid cells were present 

within the embryo at the expected ratio, comprising 32.8% of the entire embryo (binomial 

test; p=0.52), thus there was no overall depletion of tetraploid cells from the mosaic 

embryo. However, analysis of the distribution of tetraploid cells within the embryo revealed 

that they were differentially distributed between the ICM and TE lineages; comprising 16.1% 

of the ICM and 39.6% of the TE lineages (Student’s   t-tests; ICM p=0.0001; TE p=0.0014) 

(Figure 3.8B). Thus tetraploid cells were enriched within the TE lineage relative to the ICM. A 

comparison of cell-cycle lengths revealed no significant differences between the tetraploid 

and diploid cells at either the fourth or fifth cleavage cycles, in keeping with the finding that 

there was no overall depletion of tetraploid cells from the embryo as a whole (Figure 3.9A). 

  



Figure 3.8 Time-lapse imaging of diploid-tetraploid mosaic embryos (A) Experimental 

overview: diploid-tetraploid mosaics were selected for time-lapse imaging and lineage tree 

analysis following electrofusion of 4-cell stage embryos. Other embryos that had over-

fused or not fused were discarded (B) Proportion of tetraploid cells within the embryo at 

the given developmental stage. Tetraploids were generated at the 4-cell stage (thus 

becoming 3 cells). By the early blastocyst stage tetraploid cells were significantly enriched 

within the TE lineage, and conversely depleted from the ICM lineage (Student’s t-test; 

**p<0.001, ***p<0.0001), but with no overall  depletion from the embryo as a whole 

(binomial test, p=0.5) n=15 embryos. 
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Figure 3.9 Cell-cycle length and patterns of division in diploid-tetraploid mosaic 

embryos (A) The mean cell-cycle lengths of the tetraploid and diploid clones within the 

mosaic embryos were identical during both the fourth and fifth cleavage cycles (Student’s 

t-test; p=0.8 and p=0.7 respectively) Error bars = SD (B) Overall, a significantly greater 

proportion of tetraploid cells underwent symmetric divisions when compared to diploid 

cells., but this effect was predominant during the first wave of symmetric divisions (c2 test; 

***p<0.0001). 
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3.3.3.3 Tetraploidy is associated with an increased frequency of symmetric divisions during 

the first cell-fate decision in diploid-tetraploid mosaics 

Next the patterns of symmetric and asymmetric divisions were assessed to determine if the 

differences in lineage distribution were a result of differences in cell division orientation 

patterns between diploid and tetraploid blastomeres. In total, 237 outside cell divisions 

were scored from 15 embryos; of these 152 were in diploid cells and 85 in tetraploid cells. 

The rate of symmetric divisions was significantly higher in tetraploid cells compared with 

diploid cells, accounting for 80.0% and 57.2% of tetraploid and diploid divisions respectively 

(2 test; p=0.0004) (Figure 3.9B). Therefore, it was concluded that the different patterns of 

cell division occurring during the first cell-fate decision are the major underlying cause for 

the differential distribution of tetraploid cells between the trophectoderm and ICM 

lineages. 

Interestingly, the differences in patterns of division predominated during the first wave of 

asymmetric divisions (the fourth cleavage), where 84.3% of tetraploid divisions were 

symmetric, in contrast to 46.8% of divisions in diploid cells (2 test; p=0.0004). The trend 

was similar for the second wave of asymmetric divisions (the fifth cleavage) however this 

difference did not reach statistical significance, with symmetric divisions accounting for 

77.3% of tetraploid, and 64.8% of diploid divisions respectively (2 test; p=0.11).  

When considered together, these results provide strong support for the hypothesis that 

tetraploid cells are preferentially allocated to the extra-embryonic lineages during the first 

cell-fate decision. This would ultimately result in a relative enrichment of the tetraploid 

clone to the future placenta, together with depletion from the future fetal lineages. The 

assessment carried out on purely tetraploid embryos showed no differences in proportions 

of tetraploid cells within and between any of the three blastocyst lineages as compared to 

control embryos. In addition, there was no evidence of depletion either. Therefore the 

results obtained from the mosaics suggest that the tetraploid cells behave differently in the 

presence of diploid cells; but that this difference is confined to lineage segregation 

differences (manifest through the patterns of cell division), rather than through clonal 

depletion through cell-cycle effects or apoptosis. Thus it can be concluded that the 

elimination of tetraploid cells from the future fetal lineage begins through mechanistic 
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differences during the first cell-fate decision related to orientation of cell-division, and that 

this mechanism is distinct from the mechanisms occurring in the reversine-treated and 

chimeric mosaic embryos.  

The majority of chromosome abnormalities occurring in human pre-implantation embryos 

are aneuploid, rather than tetraploid, and are believed to arise as a direct result of 

chromosome segregation errors that occur during the first few cleavage divisions. 

Therefore, the reversine-treated embryos and chimeric mosaics are likely to be a better 

model of human embryo development than the tetraploids. As such, the remainder of this 

study focussed on the abnormal chromosome segregation model, rather than further 

characterisation of the effects of tetraploidy. 

 

3.3.4 The post-implantation development of reversine-treated embryos 

In section 3.3.1 it was shown that intact reversine-treated embryos can develop into 

expanded blastocysts and establish the first three lineages; albeit with reduced cell numbers 

when compared to control embryos. Next the post-implantation development was 

evaluated. Could these embryos implant successfully and go on to develop into live pups? 

To address this question early blastocysts were transferred into recipient foster mothers in 

two groups; reversine-treated embryos and controls. Embryos were then recovered at E6.5 

and E7.5 and assessed for evidence of implantation, embryo viability or resorption sites. A 

total of 40 reversine-treated and 45 control embryos were transferred, and recovered at the 

early post-implantation stages, between E6.5 and E7.5 (Table 3.5). Implantation rates were 

increased in control embryos compared with those incubated in reversine, at 71% and 50% 

in control and reversine-treated embryos respectively (2 test; p=0.046). Moreover, the 

reversine-treated embryos failed to produce any viable embryos and all implantation sites 

were resorbing. In striking contrast, every implantation site in the control embryos 

contained a viable embryo (Fisher’s test; p<0.0001). 

Therefore despite morphologically normal pre-implantation development, reversine-

treatment ultimately resulted in complete early post-implantation lethality. These findings 

are consistent with the mosaic and CIN mouse models discussed in the Introduction.  
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3.3.5. The post-implantation development of chimeric mosaic embryos 

Having established that reversine-treatment was lethal by the early post-implantation stage, 

the developmental outcome of chimeric mosaic embryos was investigated. Could the 

presence of normal blastomeres within the embryo rescue the lethal phenotype? 

3.3.5.1 Early post-implantation lethality can be rescued by the presence of normal 

blastomeres 

To address this question the transfer experiments were repeated, but this time with 

chimeric mosaic embryos that contained control blastomeres. Chimeric mosaics containing 

four reversine-treated and four control blastomeres were constructed at the 8-cell stage, 

together with controls which consisted of eight control blastomeres, subjected to identical 

experimental procedures (except that all blastomeres were incubated in DMSO rather than 

reversine). The experimental embryos were termed ‘1:1 Rv-C chimeras’, and control 

embryos ‘1:1 C-C chimeras’ to reflect their constitution. These embryos were not subjected 

to time-lapse imaging during cleavage and therefore it was not possible to identify control 

cells that had exhibited chromosome segregation errors. Thus for the post-implantation 

experiments the reversine-treated clones were compared directly with the matched control 

clones. 

Over a series of several experiments a total of 115 1:1 Rv-C chimeras, and 107 1:1 C-C 

chimeras were transferred into recipients and then recovered at E6.5 or E7.5 (Table 3.6).  

Implantation rates were equivalent between the two groups, at 64.3% and 53.3% in Rv-C 

and C-C chimeras respectively (2 test; p=0.094). Every implantation site in 1:1 Rv-C 

chimeras contained a viable embryo all of which appeared morphologically normal for their 

developmental stage. Thus the early post-implantation viability of the 1:1 Rv-C chimeras was 

equivalent to that of the 1:1 C-C controls (Fishers exact test; p=1.0). Therefore the presence 

of at least 50% of control blastomeres within the embryo was sufficient to completely 

rescue the early post-implantation lethality that occurred in whole reversine-treated 

embryos (section 3.3.4). 
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These chimera transfer experiments were then repeated but this time chimeras were 

constructed with a lower proportion of control blastomeres: 8-cell stage chimeras were 

constructed from six reversine-treated and two control blastomeres (3:1 Rv-C chimeras). A 

total of 53 3:1 Rv-C chimeras were transferred and recovered at E7.5 (Table 3.7). As for the 

previous sets of transfers, the implantation rates were equivalent, at 47.2% and 53.3% in Rv-

C and C-C chimeras respectively (2 test; p=0.47). Viable embryos were recovered within 

only 44.0% of implantation sites, which was significantly lower than that of controls and 1:1 

Rv-C chimeras in which all implantation sites contained viable embryos (Fisher’s test; 

p<0.0001); but significantly greater than in whole reversine-treated embryos in which no 

viable embryos were recovered (Fisher’s test; p<0.0001). Thus, there was partial rescue of 

early post-implantation embryonic lethality where the chimera comprised of one quarter 

control blastomeres. 

A group of early post-implantation 1:1 Rv-C and 1:1 C-C embryos were evaluated for 

apoptosis by TUNEL staining. In keeping with the predominantly normal nuclear morphology 

findings presented in above, there was minimal evidence of apoptosis in either the Rv-C or 

C-C chimeras (Figure 3.10 inset images). Thus it was concluded that apoptosis is unlikely to 

play a major role in eliminating abnormal cells at the early post-implantation stage of 

development. 

In a subset of experiments chimeras were constructed using embryos from two different 

genetic backgrounds; wild-type F1 and H2B-GFP embryos. The purpose of these two 

different backgrounds was to enable clones to be identified in the post-implantation 

embryos; cells derived from H2B-GFP blastomeres would be distinguished by the presence 

of nuclear GFP. 1:1 Rv-C and 1:1 C-C chimeras were transferred to recipients and recovered 

at E6.5 and E7.5, fixed and then imaged (Figure 3.10). In these experiments, a dominance of 

the H2B-GFP clone was noted, even in the control embryos which would be expected to 

contain approximately half H2B-GFP and half F1 cells. This finding was surprising, but may 

be a reflection of subtle differences between the genetically different backgrounds between 

the F1 and H2BGFP mice. It is conceivable that H2B-GFP embryos may develop at as slighter 

quicker rate than F1 embryos, which could account for this predominance. However, in the 

majority of embryos recovered there was a significant depletion of the reversine-treated 

clone compared to the controls, although most embryos did retain some clones from the  
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Figure 3.10 Early post-implantation1:1 Rv-C and 1:1 C-C chimeras at E6.5 & E7.5 There were 

no apparent differences in morphology or developmental stage between control and half mosaic 

chimeras. (A) The majority of control mosaic chimeras comprised of an approximately equal 

distribution of both F1 and H2B-GFP derived clones, which were well mixed throughout the 

embryo (B) 1:1 Rv-C chimeras were comprised predominantly from the control clone of cells 

(H2B-GFP) with significant depletion of the reversine treated clone (F1) from the conceptus in the 

majority of embryos recovered. Inset images: representative images of E6.5 chimeras following 

TUNEL staining. In these embryos both the normal and reversine-treated clone were on an F1 

background and so it was not possible to determine the clone of each cell. However, there were no 

differences in the patterns of TUNEL staining between Rv-C and C-C chimeras with all embryos 

showing minimal evidence of apoptosis. Projected images are shown with DAPI & TUNEL staining 

(white arrow heads - FITC). 
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treated blastomeres.  Although depleted, reversine-treated clones were present throughout 

the entire conceptus with no evidence of preferential depletion in the embryonic or extra-

embryonic lineage, and were well mixed together with the normal clones. There was no 

evidence of increased apoptosis or necrosis occurring in the treated clones as nuclear 

morphology appeared equivalent between the reversine-treated and control clones, with no 

evidence of nuclear debris or cellular remnants. Representative images are shown in Figure 

3.10. 

Taken together these results demonstrate a critical requirement for a minimum number of 

control blastomeres for the rescue of the complete embryonic lethality associated with 

reversine-treatment of pre-implantation stage embryos / blastomeres.  

 

3.3.5.2 Mosaic chimeras have equivalent fetal and post-natal developmental potentials, 

despite clonal depletion of reversine-treated progeny 

The transfer experiments presented above demonstrated that the early post-implantation 

lethality could be completely rescued provided there were a sufficient number of normal 

cells present within the embryo. The next step was to determine if this early post-

implantation rescue phenotype was also associated with successful on-going development 

beyond the early post-implantation stage. Would 1:1 Rv-C chimeras be capable of producing 

viable fetuses and live pups, or did the early post-implantation rescue delay an inevitable 

lethal phenotype? 

To investigate this hypothesis, 1:1 Rv-C chimeras and equivalent controls were transferred 

into recipient mothers and recovered at E13.5 or allowed to develop to term.  

 In total 84 1:1 Rv-C and 34 1:1 C-C chimeras were transferred (Table 3.8). Both the control 

and Rv-C embryos developed to E13.5 or term with equivalent rates; 52.3% and 58.8% of 

Rv-C and C-C chimeras respectively (2 test; p=0.53). Further, the combined E13.5 recovery 

and live birth rates were equivalent to early post-implantation viability rates suggesting that 

successful implantation equated to the complete restoration of developmental potential (2 

test; p=0.09) (Table 3.9). 



Chapter III  RESULTS II 

139 
 

No cases of embryo resorption were identified however in one case a single Rv-C chimera 

was recovered at E13.5 that looked abnormal, appearing to have arrested at approximately 

day E9.5. Unfortunately, due to technical problems on the day, a photograph was not taken 

of this embryo. Due to the small numbers involved, it is not possible to ascertain the 

significance of this finding. However, it is worth noting that there was also an abnormality 

detected in the control group; one E13.5 fetus had an unusual morphological appearance 

with atypical features and an oedematous appearance, although it did appear to be 

normally grown and was viable at the time of recovery (confirmed by the presence of a 

beating heart) (Figure 3.11). In all other cases, the Rv-C and C-C chimeras appeared to be 

normal and of the appropriate size and morphology expected for their gestational stage.  

As for the early post-implantation transfers, in some experiments the chimeras were 

constructed from a mix of wild-type F1 and H2B-GFP embryos in order to evaluate if there 

was any significant depletion of the reversine-treated clone within the embryo and 

placenta. In these experiments the reversine-treated clone was on the H2B-GFP 

background. On recovery of the conceptus at E13.5, whole mount GFP images were taken 

along with several fetal and placental biopsies (Figures 3.11 & 3.12). In the vast majority of 

control chimeras both clones were present in both the fetus and placenta; constituting 

equivalent proportions in both the placenta and fetus as assessed by evaluation of the 

biopsy results. In contrast, in the 1:1 Rv-C chimeras the reversine-treated H2B-GFP clone 

was depleted or absent from the majority of conceptuses (only 3 of 9 E13.5 fetuses 

contained cells derived from the reversine-treated blastomeres). The differences between 

the control and Rv-C chimeras were statistically significant (Fisher’s test; placenta p=0.0019, 

fetus p=0.0077) (Table 3.10). In those cases where both clones were present within the 

conceptus, evaluation of the biopsies revealed that both clones were distributed evenly and 

well mixed with no evidence of clonal pooling or restrictions. There was also no evidence of 

sequestration or enrichment of the abnormal clone within the placental tissues. In addition, 

the biopsy results correlated well with the whole mount images.  

In the case of Rv-C chimeras, instead of recovery at E13.5 some were allowed to develop to 

term, in order to determine if viability rates at E13.5 would be consistent with live birth 

rates. A total of 13 live pups were born confirming that viability at E13.5 was indeed 

equivalent to viability at term (2 test; p=0.77) (Figure 3.11 & Table 3.9). All pups appeared 



Figure 3.11 Post-implantation development of mosaic chimeras. Post-implantation 

development was equivalent in 1:1 Rv-C and 1:1 C-C control chimeras. Whole mount images 

are shown adjacent to fluorescent images taken simultaneously. (A) The majority of E13.5 

control chimeras contained a significant proportion of both clones (F1 and H2B-GFP) of cells (B) 

In contrast, only a minority of E13.5 1:1 Rv-C chimeras contained any appreciable Rv-treated 

clones (in this case H2B-GFP), with most containing none or minimal.  In the case of Rv-C 

chimeras, some pregnancies were allowed to continue to term, to determine if the rates of viable 

of E13.5 pregnancies were equivalent to the rates of live births. 

Note – the E13.5 fetuses were imaged using different microscopes, and hence the difference in 

the image colours are reflective of the microscope, not differences between the two groups 

 

 

In the Rv-C chimeras the normal clone was derived from F1 blastomeres, and reversine-treated 

clone from H2B-GFP blastomeres.  

 

E13.5 

Fetus with abnormal 
morphology 

(A) 1:1 C-C chimeras 

E13.5  

Neonates 

(B) 1:1 Rv-C chimeras 
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Figure 3.12 Whole mount GFP images with corresponding placental and fetal biopsies of 

E13.5 chimeras. Several placental and fetal biopsies were taken from each of the E13.5 

conceptuses shown in Figure 3.11. Three representative images are shown  for both control C-C 

(top panel) and Rv-C (bottom panel) chimeras. DAPI stained all nuclei from both clones, while 

H2B-GFP was restricted to the progeny of the four H2B-GFP blastomeres that constituted half of 

the chimera when constructed at the 8-cell stage (one half of the control blastomeres in C-C 

chimeras, and Rv-treated blastomeres in Rv-C chimeras). In all cases, where a histone-GFP 

clone was present, the cells were evenly distributed throughout the tissues. Both placental and 

fetal biopsy findings were consistent with the whole mount GFP images. These images illustrate 

that the biopsy results are reflective of the subjective assessment gained from the whole mount 

images.  

 

In the Rv-C chimeras the control clone was derived from F1 blastomeres. 

 

All images at 10x magnification  
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Whole embryos Transferred Viable  Non-viable 

Reversine 40 0 20 

Control 45 32 0 

1:1 Chimeras Transferred Viable  Non-viable 

1:1 Rv-C chimeras 115 74 0 

1:1 C-C chimeras 107 57 0 

3:1 Chimeras Transferred Viable  Non-viable 

3:1 Rv-C chimeras 53 11 14 

1:1 C-C chimeras 107 57 0 

1:1 Chimeras Transferred Viable  

1:1 Rv-C chimeras 84 44 

1:1 C-C chimeras 34 20 

Early post-implantation recovery 

Table 3.5 

Table 3.6 

Table 3.7 

Table 3.8 
E13.5 recovery & live pups 

Tables 3.5 to 3.10. Tables summarising results of transfer experiments. Table 3.5. Peri-

implantation recovery of whole reversine-treated embryos and controls (Fishers exact test; 

p<0.0001) Table 3.6. Early post-implantation recovery of 1:1 Rv-C chimeras compared with 

control chimeras (Fisher’s exact test; p=1.0). Table 3.7. Early post-implantation recovery of 3:1 

Rv-C chimeras compared with control chimeras (Fishers exact test; p<0.0001). Table 3.8. 

Combined E13.5 and live pups born with 1:1 Rv-C chimeras (c2 test; p=0.73). Table 3.9. The 

proportion of viable early post-implantation embryos recovered  was equivalent to E13.5 and live 

birth rates (c2 test; p=0.68). Table 3.10. Presence of H2B-GFP clone within recovered E13.5 

conceptuses. 

Table 3.9 

    H2B-GFP status:   Present Absent 

Fetus 1:1 Rv-C chimeras 3 6 

  1:1 C-C chimeras 15 2 

Placenta 1:1 Rv-C chimeras 4 5 

  1:1 C-C chimeras 17 0 

Table 3.10 

1:1 Rv-C Chimeras Transferred Recovered 

Early post-implantation 115 74 

E13.5 58 31 

Live birth 26 13 
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healthy and well grown (day three mean weight=3.31g, SD=0.26g), and survived with no 

signs of ill health beyond four months of age. Subjective evaluation of coat fur was 

undertaken by an independent researcher (Charles-Etienne Dumeau), which also revealed 

significant depletion of the reversine-treated clone: 7 of 13 mice showed no evidence of the 

abnormal clone, and only 3 had a major contribution from both clones.  Thus in the minority 

of embryos which contained progeny from reversine-treated clone, there was no evidence 

of adverse outcome.  

Residual clones may represent reversine-treated progeny that did not acquire chromosome 

abnormalities as a result of reversine-treatment, progeny that self-corrected the error at the 

cellular level, or cells with abnormal chromosome constitution that remain viable. Indeed, in 

the previous chapter where the reversine-treated blastomeres were evaluated for 

aneuploidy either by using FISH or array-based molecular karyotyping, some blastomeres 

were identified to be euploid. Thus the presence of residual clones within some embryos 

was not unexpected. 

3.3.5.3 1:1 Rv-C chimeras have significantly greater developmental potential than true ‘half 

embryos’ 

Next an experiment was conducted to compare the developmental potential of 1:1 Rv-C 

chimeras to that of true ‘half embryos’, defined as embryos comprised of half the number of 

control blastomeres with no other cells. Half embryos were generated exactly as for 1:1 C-C 

chimeras at the 8-cell stage, except that they were only constructed from four rather than 

eight blastomeres. A total of 122 true half-embryos were transferred into recipient mothers 

and recovered at E13.5. Recovery yielded 14 embryos (11.5% of those transferred), which 

was significantly lower than the rate of 53.6% attained from the 1:1 Rv-C chimeras detailed 

above (2 test, p<<0.0001). 

 

Considering all post-implantation results together, it can be concluded that the embryonic 

lethality of reversine-treated embryos can be completely rescued provided there is a 

minimum number of control cells present in the embryo, and that development can proceed  
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even with a significant depletion or complete absence of the reversine-treated clone from 

the conceptus (Figure 3.13).  

 

3.3.6 Summary of main results 

In summary, the results described in this chapter have shown that blastomeres with a 

history of chromosome abnormalities become progressively depleted from the embryo 

during development. Depletion became apparent during the expansion of the blastocyst, as 

abnormal ICM cells underwent apoptosis more frequently, and outer TE cells exhibited more 

limited proliferation than normal cells. Abnormal embryos (reversine-treated) were able to 

implant and elicit a maternal decidual reaction, but underwent early post-implantation 

resorption. In contrast, mosaic embryos that contained a critical number of control 

blastomeres rescued the early post-implantation lethality. When early post-implantation 

rescue occurred, it was associated with restoration of full developmental potential.  

The time-lapse imaging evaluation of the pre-implantation chimeras revealed that depletion 

of the abnormal clone begins during pre-implantation development, consequently resulting 

in fewer progenitors derived from the abnormal clone available to populate the post-

implantation tissues. It follows that as development proceeds there will be an on-going 

reduction in the abnormal clone relative to the control clone as cells proliferate and embryo 

growth occurs. Additionally it is also possible that cells with residual abnormalities may 

become depleted further due to poorer proliferation of the abnormal clone or cell-cycle 

arrest. These findings are consistent with the clonal depletion hypothesis presented in the 

Introduction. There was no evidence of active segregation of the abnormal clone to the 

extra-embryonic lineages during pre-implantation development thus providing evidence 

against this hypothesis.  
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Figure 3.13 Summary of transfer experiments. Reversine-treated embryos were able to 

form blastocysts at an equivalent rate to controls but all failed to develop further at the 

early post-implantation stage. Increasing the proportion of control blastomeres partially 

rescued the lethal phenotype, with complete rescue when 50% was reached. Numbers 

shown in the figure represent the viability of early post-implantation embryos that had 

successfully implanted. Early post-implantation rescue resulted in complete rescue of  

developmental potential, with E13.5 and live birth rates equivalent to viability at the peri-

implantation stage (c2 test; p=0.68). See Tables 3.5 to 3.10 for detailed summaries of 

numbers. 

 

In this Figure red represents abnormal clones and blue represents control clones 
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3.4 RESULTS II DISCUSSION 

The aim of the work presented in this chapter was to investigate the fate of abnormal cells 

within mosaic embryos and to investigate the ultimate fate of the embryo, using the mouse 

model of chromosome mosaicism developed in the previous chapter.  

Abnormal embryos underwent morphologically normal pre-implantation development 

without evidence of blastomere fragmentation, increased rates of delay or abnormal 

cavitation. However, within the mosaic embryos abnormal cells were progressively 

depleted, mediated predominantly through effects on cell-cycle in the TE and increased 

rates of apoptosis within the ICM. There was no evidence of preferential allocation of 

abnormal cells to the TE lineage at the first fate decision. Abnormal embryos were unable to 

develop beyond implantation; however early post-implantation lethality could be 

completely rescued by increasing the proportion of control cells within the embryo. Viability 

rates at the early post-implantation stage were equivalent to later fetal and live-birth rates, 

with no apparent adverse effects on outcome. 

 

3.4.1 The pre-implantation development of mosaic embryos 

The first major aim of the experiments presented in this chapter was to investigate the fate 

of abnormal cells within the developing mosaic embryo. To achieve this goal this study 

utilized high resolution time-lapse imaging during pre-implantation development, enabling 

the behaviour and fate of every single cell within each embryo to be evaluated. 

Although the experimental procedure did not enable the direct evaluation of the 

chromosome status in each blastomere, a comparative approach to analysis was adopted, 

on the basis that blastomeres with high rates of chromosome segregation errors would be 

expected to exhibit greater rates of chromosome abnormalities than their control 

counterparts. For this reason, in the few instances in which errors were identified in the 

control blastomeres, these were included in the same group as reversine-treated clone for 

the analysis. By using the comparative approach to analysis, it was likely that any small 

differences in characteristics between normal and abnormal blastomeres would not be 

detected, unless very large numbers of embryos were subject to analysis. However, 
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conversely any differences that were detected were more likely to be true differences 

between the groups.  

Despite these limitations, this is the first study of its kind to adopt a live-imaging approach 

with the aim of determining the fate of abnormal blastomeres in real-time during pre-

implantation development. This experimental approach would be difficult to achieve in 

human embryos as abnormal blastomeres would only be identifiable retrospectively and 

require a complex and technically challenging labelling regime. Further, a stable, non-toxic 

nuclear label would be required to enable cell tracking at the single cell level beyond 

embryo compaction. Here, the use of the transgenic H2B-GFP mouse line provided a bright, 

and stable nuclear reporter that enabled single cell tracking throughout a prolonged period 

of imaging; an embryological experimental technique currently exclusive to the mouse. 

Thus, this is the first study to directly demonstrate the progressive depletion of abnormal 

cells from the pre-implantation embryo, and to establish that this occurs through 

differential mechanisms according to the cell lineage. ICM cells undergo apoptosis more 

frequently, while TE cells are more likely to exhibit effects on their cell-cycle length. This is 

also the first study to provide direct evidence that apoptosis within the ICM can occur as a 

mechanism to eliminate cells with chromosomal abnormalities; a hypothesis frequently 

proposed that until now has never been tested directly (Hardy, 1997, Pampfer and Donnay, 

1999, Fabian et al., 2005). Finally, the novel application of time-lapse imaging enabled the 

first fate decision to be evaluated directly and found no evidence of preferential allocation 

of the abnormal cells to the TE lineage. Additional evidence against the preferential 

allocation hypothesis was gained later when viable conceptions were recovered at E13.5; in 

the minority of conceptions that contained cells arising from the abnormal clone, there was 

no evidence of enrichment within the placenta relative to the fetal tissues. 

 

How do these findings fit with other studies and current hypotheses?  

Observational studies on human pre-implantation embryos have shown that mosaicism 

peaks at the cleavage stage and although aneuploid cells are still present in the majority of 

blastocysts, the proportion of aneuploid cells is lower than at earlier stages of development 
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(Evsikov and Verlinsky, 1998, Clouston et al., 2002, Coonen et al., 2004, Santos et al., 2010, 

Johnson et al., 2010, Capalbo et al., 2012). The findings of progressive depletion of 

abnormal cells during blastocyst expansion observed in this study are therefore in 

agreement with these observational studies in human embryos.  

This study found no direct evidence to support the hypothesis that abnormal cells are 

preferentially allocated to the TE lineage at the first fate decision. The time-lapse imaging 

approach offered the unique opportunity to evaluate this hypothesis directly by assessing 

the patterns of the cell-fate determining symmetric and asymmetric divisions, with no 

differences identified between the normal and abnormal clones. In addition, there was no 

significant depletion of the abnormal clone from the ICM lineage when evaluated at the 

early blastocyst stage, immediately following completion of the first cell-fate decision. These 

findings were in concordance with the published human studies that have investigated this 

hypothesis indirectly. Through the comparison of aneuploidy status and rates between the 

ICM and TE lineages within individual embryos, each of these observational studies found 

no evidence to support the preferential allocation to the TE lineage hypothesis (Evsikov and 

Verlinsky, 1998, Magli et al., 2000, Derhaag et al., 2003, Johnson et al., 2010, Northrop et 

al., 2010).  

The preferential allocation of aneuploid cells to the TE lineage has been proposed as an 

underlying mechanism to explain the occurrence of confined placental mosaicism (see 

Introduction). However, it is worthwhile considering that rejection of the preferential 

allocation to the TE hypothesis does not exclude the possibility that CPM may arise as a 

consequence of events that occur during pre-implantation development. An alternative 

explanation could arise from the differential fates of aneuploid cells according to their 

lineage. In this study abnormal cells within the ICM were significantly more likely to undergo 

apoptosis than those within the TE. Apoptosis results in the complete elimination of that 

cell, and thus also any future progeny from the embryo. In contrast, abnormal TE cells rarely 

underwent apoptosis, but instead were more likely to arrest or have prolonged cell cycle 

lengths. Hence, abnormal TE cells often remained viable, albeit depleted relative to their 

normal counterparts. If some of these cells continue to proliferate, contributing progeny to 

the future placenta, it is reasonable to speculate that this could result in CPM in some cases.   
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As studies in human pre-implantation embryos are limited it is worthwhile reviewing these 

results in the context of other indirect model systems usually applied for the study of 

cancer, as discussed in sections 1.4 & 1.5 of the Introduction.  Several mouse models of 

chromosomal instability (CIN) have been developed, either through the knockout of SAC 

components or key kinetochore proteins, and some have been evaluated at the pre-

implantation stage of development (Kalitsis et al., 1998, Kalitsis et al., 2000, Howman et al., 

2000, Dobles et al., 2000, Putkey et al., 2002, Wang et al., 2004a, Lightfoot et al., 2006, 

Iwanaga et al., 2007, Jeganathan et al., 2007). In these embryos the phenotype is most likely 

to arise as a direct consequence of chromosome abnormalities rather the direct effect of 

the gene knockdown, as discussed in the Introduction. Evaluation of the pre-implantation 

embryos found differences between the fates of TE and ICM lineages; blastocysts grown in 

extended culture in vitro showed cell death by apoptosis within the ICM lineage, in contrast 

to reduced but on-going viability  within the TE cells (Mad2 (Dobles et al., 2000), Bub3 

(Kalitsis et al., 2000), CenpA (Howman et al., 2000)). These features are strikingly 

complementary to the findings of this study, and suggest that chromosome abnormalities in 

ICM cells frequently result in apoptosis and that TE cells may be more tolerant of 

chromosome abnormalities, or respond by cell-cycle arrest and senescence rather than 

apoptosis. In addition to knockout mouse models of CIN, studies on cultured cell lines and 

MEFs also show that chromosome segregation errors and aneuploidies are strongly 

associated with poor proliferation and in some cases increase rates of apoptosis (Segal and 

McCoy, 1974, Baker et al., 2004, Burds et al., 2005, Thompson and Compton, 2008, Li et al., 

2009).  Therefore, the findings presented in this study are entirely consistent with the 

existing and relevant literature, as both apoptosis and poor proliferation are classic 

characteristics of chromosome abnormalities in a range of different model systems 

including mouse embryos and different cell culture lines. 

A major finding of potential significance in this study was that whole embryos treated with 

reversine were able to undergo morphologically normal pre-implantation development to 

the blastocyst stage, without increased rates of arrest or abnormal morphology such as 

blastomere fragmentation or failure to cavitate. This result was not unexpected given that 

the appearance of the CIN mouse model embryos were also found to look normal prior to 

extended in vitro culture after hatching and attachment (Dobles et al., 2000, Kalitsis et al., 
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2000, Howman et al., 2000), as were the vast majority of embryos in Sycp3-/- mosaic 

aneuploid blastocysts (Lightfoot et al., 2006). However, the potential significance of this 

morphologically normal phenotype is worthy of consideration in relation to the human pre-

implantation embryo. Human pre-implantation embryos frequently arrest prior to the 

blastocyst stage, and often exhibit abnormal morphology including blastomere asymmetry 

and fragmentation. In striking contrast, these characteristics are rare in the mouse embryo, 

and nor did they occur on induction of chromosome abnormalities in this study or the 

others previously discussed. The relationship between human embryo morphology and 

chromosome status has been studied in some detail, and although a relationship does exist 

it appears to be weak (Wells, 2010). A normal chromosome complement does not always 

result in normal morphology or developmental potential, and likewise aneuploid embryos 

frequently undergo apparently normal development (Rubio et al., 2007, Magli et al., 2007, 

Munne et al., 2007, Eaton et al., 2009, Alfarawati et al., 2011). The finding that the mouse 

embryo is still able to undergo morphologically normal, unperturbed development, even in 

the presence of major chromosome abnormalities is thus worthy of consideration, and is 

suggestive that the high rates of arrest and fragmentation that are common in human 

embryos may possibly be a result of an additional underlying abnormality in the human 

embryo, rather than aneuploidy per se. Taking this one step further, it is interesting to 

speculate that although aneuploidy and chromosome abnormalities are detrimental to 

developmental potential in their own right, the occurrence of aneuploidy could in fact be 

secondary to an original underlying abnormality, as yet uncharacterised, that in itself is 

detrimental to future developmental potential, unrelated to aneuploidy.  

 

3.4.2 The fate of tetraploid cells in pre-implantation development 

A short series of experiments were conducted on tetraploid and diploid-tetraploid mosaic 

embryos. The experiments were carried out to determine if the characteristics of aneuploid-

diploid and tetraploid- diploid mosaic embryos were comparable.  

The results of these experiments showed that tetraploidy had no detrimental effect on pre-

implantation development as assessed by morphology, relative cell number, and on the 

establishment and segregation of the first three lineages. Time-lapse imaging of the diploid-
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tetraploid mosaic embryos revealed that in the presence of diploid cells, tetraploid 

blastomeres undergo more frequent symmetric divisions and are thus preferentially 

segregated to the TE lineage during the first fate decision. This finding is entirely in keeping 

with previous studies on fixed diploid-tetraploid chimeras which also showed that by the 

blastocyst stage tetraploid cells became relatively enriched within the TE lineage and 

depleted from the ICM lineage (Everett and West, 1996, Everett and West, 1998, Mackay 

and West, 2005). However, the utilization of time-lapse imaging and cell tracking in this 

study added to these findings by showing that the underlying mechanism was through the 

process of increased rates of symmetric divisions. In addition, this was the first study of its 

kind to assess the development of diploid-tetraploid mosaic embryos, rather than 

aggregation chimeras, and thus demonstrated that the phenotypes previously described 

were attributable to tetraploidy and not artefact caused by the generation of aggregation 

chimeras. It is acknowledged that tetraploid blastomeres are larger than their equivalent 

diploid counterparts as they are generated through the fusion of two blastomeres together; 

a difference which could potentially influence the pattern of cell division and thus the 

phenotype. However this hypothesis has previously been investigated directly in a study 

that generated large diploid blastomeres through the enucleation of single blastomere in a 

2-cell stage embryo followed by electrofusion to create a single large blastomere (Tang et 

al., 2000). This technique enabled the influence of both ploidy and cell size to be 

investigated independently in a series of experiments, and it was shown that both increased 

cell size and tetraploidy are associated with a predominant allocation to the TE lineage 

independent of each other. 

Analysis of whole tetraploid embryos at the blastocyst stage revealed no relative reduction 

in ICM number compared to control embryos, in contrast to the findings for the reversine-

treated embryos. Thus it was considered unlikely that tetraploid cells undergo increased 

levels of apoptosis within the ICM compared to diploid cells. 

The fact that tetraploid cells become restricted to the TE lineage by mid-gestation is already 

well established (Tarkowski et al., 1977, James et al., 1995, Goto et al., 2002, Viuff et al., 

2002), and is widely exploited experimentally in tetraploid complementation experiments 

(Tam and Rossant, 2003). This characteristic has previously led to proposals that diploid-

tetraploid embryos may serve as a representative mouse model for CPM (Wolstenholme, 
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1996, Mackay and West, 2005) a condition that affects 1-2% of pregnancies undergoing 

prenatal diagnostic tests for aneuploidy at the end of the first trimester (Ledbetter et al., 

1992, Teshima et al., 1992, Hahnemann and Vejerslev, 1997, Stetten et al., 2004).  Similarly, 

it has also been hypothesized that diploid-aneuploid mosaics embryos could be responsible 

for the development of CPM through the preferential allocation of aneuploid cells to the TE 

lineage at the first fate decision (Wolstenholme, 1996, Mackay and West, 2005, Robberecht 

et al., 2009, Mantikou et al., 2012). Comparing the results of diploid-tetraploid with diploid-

aneuploid mosaics in this study revealed very different characteristics and fates for the 

abnormal cells; there was clear experimental evidence of preferential allocation of 

abnormal cells to the TE in the case of tetraploidy through the increased tendency to 

undergo symmetric divisions during the first cell-fate decision of pre-implantation 

development, with no such finding in the diploid-aneuploid model. In addition, given that 

the most frequent chromosome abnormalities observed in CPM are usually trisomies, and 

not tetraploidy (Ledbetter et al., 1992, Wolstenholme, 1996) it can be concluded that 

diploid-tetraploid mosaics are not a good model for CPM. Previous attempts at developing 

alternative trisomic models for CPM have been hampered by technical challenges, although 

a few chimeras containing trisomy 3 have been generated that when examined did not 

show any preferential confinement to the TE, providing further experimental evidence that 

the classic confined TE fate may be a phenomenon unique to tetraploid cells (Everett et al., 

2007).  

 

3.4.3 The peri- and post-implantation fate of diploid-aneuploid mosaic embryos 

A major aim of the experiments presented in this study was to investigate the ultimate fate 

of diploid-aneuploid mosaic embryos. Therefore the post-implantation fates of these 

embryos were addressed by transferring experimental blastocysts into recipient female 

mice.  

The transfer of whole reversine-treated embryos was universally embryonic lethal at the 

early post-implantation stage. Embryos underwent implantation at a slightly lower rate than 

control embryos, as assessed by the frequency of resorption sites identified following 

transfer. This finding was in line with most other models of pre-implantation mosaicism 
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secondary to knockout of essential SAC genes, key kinetochore proteins, or Sycp3-/- 

knockout (Mad2, (Dobles et al., 2000): BubR1, (Wang et al., 2004a); Bub1 (Jeganathan et al., 

2007); Bub3,(Kalitsis et al., 2000); Mad1, (Iwanaga et al., 2007), Cenpe, (Putkey et al., 2002); 

Cenpc, (Kalitsis et al., 1998); Cenpa, (Howman et al., 2000), Sycp3-/-(Lightfoot et al., 2006). 

These homozygous null knockout mice all shared a universal phenotype of early post-

implantation lethality, most likely a direct effect of chromosome missegregations arising 

secondary to the loss of gene function. The finding that reversine-treated embryos 

underwent the same fate was particularly interesting in light of the fact that reversine 

treatment induced a transient inhibition of the SAC during a single cleavage only, and that a 

functioning SAC was restored on wash-out of the drug. This result therefore offered further 

support for the hypothesis that the early post-implantation lethal phenotypes observed in 

the knockout mouse models were a direct result of chromosome segregation errors, and 

thus only an indirect consequence of the specific gene knockout itself.  

In contrast, when the 1:1 Rv-C chimeras were transferred there was complete rescue of the 

early post-implantation lethality that occurred in the case of reversine-treated embryos 

alone. Implantation rates and viability were comparable to those in equivalent controls, 

with no evidence of increased resorption sites following transfer of the Rv-C embryos. At the 

early post-implantation stages of development, many embryos still contained a small 

proportion of reversine-treated progeny, but by E13.5 this was not the case in the majority 

of fetuses and their placenta. There was no evidence of increased apoptosis levels in the 

early post-implantation embryos, and thus the on-going depletion of the abnormal clone 

from the embryo may be more likely to be due to a dilutional effect arising as a result of 

fewer clonal progenitors, with the added possibility of poor proliferation within the 

abnormal clone. 

When the proportion of control blastomeres was decreased and 3:1 Rv-C embryos were 

transferred, there was partial rescue of embryonic lethality with some embryos surviving 

and others undergoing resorption. In the case of the 1:1 Rv-C chimeras, a series of 

experiments were conducted to determine if viability at the early post-implantation stages 

translated into equivalent viability rates at the late fetal stage and birth, and indeed it was. 

From these experiments it was concluded that diploid-aneuploid mosaic embryos are likely 

to be viable provided there are a sufficient number or proportion of normal blastomeres 
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within the embryo, and that viability at the early post-implantation stage of development 

was predictive of survival to the fetal stages and live birth.  

The finding that mosaic embryos can retain their developmental potential in the presence of 

a minimum number of normal blastomeres was not unexpected given the highly regulative 

nature of the mammalian embryo. It is well established in the mouse that in some cases half 

embryos (embryos containing half the normal number of cells) have the ability to develop 

into blastocysts and in some cases develop to term to produce apparently healthy offspring, 

albeit at a significantly lower rate than whole embryos (Tarkowski, 1959, Tsunoda and 

McLaren, 1983, Morris et al., 2012b). This finding was confirmed in the transfer experiments 

described above, where 11.5% of true half-embryos were found to be viable at E13.5. In 

contrast, it has not been possible to generate normal mice from one quarter or one eighth 

embryos (Tarkowski and Wroblewska, 1967, Rossant, 1976). The limited potential of some 

half embryos, and inability of quarter and eighth embryos to develop into viable offspring is 

most likely to be due to the low number of cells present within the embryo. Indeed, at the 

blastocyst stage half embryos contain fewer cells (as would be expected), but additionally 

there is a disproportionate decrease in cell number within the ICM lineage when compared 

to the TE (Papaioannou and Ebert, 1995, Morris et al., 2012b). Likewise, quarter and eighth 

embryos have been shown to develop into blastocysts with either very small or no ICM at all 

(trophoblastic vesicles) (Tarkowski and Wroblewska, 1967, Rossant, 1976). One recent study 

investigated the relationship between cell number and developmental potential of half 

embryos in greater detail (Morris et al., 2012b). More specifically, the number of EPI cells 

within the blastocyst (the progenitors of the future fetus) was correlated with the 

developmental potential and viability of the half embryo. This study found that a minimum 

of four EPI cells were required for the successful early post-implantation development and 

beyond. Boosting the number of EPI cells by treating the half embryos with 2i (a 

combination of two small molecule inhibitors that modulate the Fgf and Wnt signalling 

pathway) significantly improved the developmental potential of half embryos. In addition, 

other studies have successfully generated mice from individual blastomeres of 8-, 16- and 

even 32-cell stage blastomeres by aggregating them with carrier tetraploid cells (Tarkowski 

et al., 2005, Tarkowski et al., 2010), and although not tested directly it is probable that the 
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presence of the carrier tetraploid cells did increase the number of EPI cells derived from the 

single blastomeres, and thus conferring viability to the embryos. 

The developmental potential of the 1:1 Rv:C embryos was equivalent to the 1:1 C:C controls, 

and thus significantly greater than half embryos comprising of a reduced number of cells, 

confirmed both in the experiments described above and in keeping with the literature 

(Tarkowski, 1959, Tsunoda and McLaren, 1983, Morris et al., 2012b). These results suggest 

that the presence of abnormal cells within the embryo may serve to improve embryo 

viability (compared to normal embryos with a reduced cell number) potentially by boosting 

the number of normal EPI cells within the ICM to the critical number required for on-going 

successful development. Thus abnormal cells could be considered as carrier cells whose 

presence increase the developmental potential of the normal cells within the embryo. 

Ultimately however, the developmental potential of each individual embryo is likely to rely 

upon the generation of inside cells through asymmetric divisions during the first cell-fate 

decision, followed by the allocation to the EPI lineage. Time-lapse imaging analysis of the 

mosaic model showed that there was no bias towards asymmetric divisions according to 

chromosome status. Thus the partial rescue of peri-embryonic lethality phenotype in 3:1 

Rv:C chimeras, where some but not of all the embryos were viable is likely to be related to 

the specific developmental history of that embryo. For example, if the normal blastomere 

clone only underwent symmetric divisions then there would an insufficient number of 

normal EPI cells within the embryo for on-going development; likewise if normal 

blastomeres underwent asymmetric divisions and did not undergo apoptosis, the critical 

number of normal EPI cells would be reached resulting in a viable embryo with on-going 

developmental potential.   

The hypothesis for a threshold proportion or number of normal blastomeres required for 

viability has been considered in the context of human pre-implantation development on 

many occasions (Evsikov and Verlinsky, 1998, Frumkin et al., 2008, Lavon et al., 2008, 

Barbash-Hazan et al., 2009, Mantikou et al., 2012). Although no such study to directly 

investigate this hypothesis has ever been, or is likely to be conducted on human embryos 

due to practical and ethical limitations, there is some indirect evidence that this may be the 

case; live births have been reported from human embryos that have lost up to half of their 

blastomeres following cryopreservation, albeit infrequently (Guerif et al., 2002). Further, 
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although there is no evidence to support this hypothesis, it is interesting to speculate if the 

role of carrier cells in maximising embryo viability may be an underlying reason why 

apoptosis rarely occurs before the blastocyst stage during pre-implantation development. 

 

3.4.4 Limitations of the mouse model 

The general suitability of the mouse model for this study was discussed in detail in section 

2.4.4 of the previous chapter. However this topic warrants a brief further discussion in 

context of the results presented in this chapter. 

Until an additional model of mosaicism is developed the findings of this study should be 

viewed with the caveat that the phenotype may be secondary to the treatment with 

reversine, rather due to chromosome errors per se. Reversine is a 2,6-disubstituted purine, 

and a small molecule inhibitor of the key SAC protein Mps1, an effect that was utilized in 

this study to induce chromosome segregation errors (Santaguida et al., 2010). However, 

additional effects of reversine, unrelated to Mps1 inhibition have been characterised. 

Reversine was originally described in the context of myoblasts, where prolonged incubation 

in 5M of reversine induced dedifferentiation of C2C12 myoblasts into multipotent 

progenitor cells (Chen et al., 2004). Subsequently, the same group published a similar study 

showing the effects of reversine on myoblasts at a concentration as low as 0.02M, 

potentially mediated through its effects on non-muscle Myosin II (NMMII), MEK1 and 

phosphatidyl-inositol 3-kinase (PI3K) (Chen et al., 2007). Reversine has also been shown to 

inhibit Aurora B, however only at much higher concentrations than required for Mps1 

inhibition (5M, ten times the concentration used in this study) (Santaguida et al., 2010). 

This same study also demonstrated that reversine did not inhibit MEK1, NMMII or PIK3 

during mitosis and concluded that chromosome segregation errors were secondary to Mps1 

inhibition at low concentrations of the drug. Although it is clear that treatment with 

reversine has the potential to exert additional indirect effects, steps were taken in this study 

to minimise this possibility by using the lowest effective concentration required for Mps1 

inhibition (0.5M) and for the shortest possible duration to cover the period of mitosis. The 

immediate reversibility of the drug on washout from the culture media was advantageous in 

minimising the potential for unwanted effects. 
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In context of the critical cell number threshold hypothesis it is of worth noting that the 

mouse embryo is somewhat different than other mammalian embryos. In the rabbit, cow 

and sheep it is possible to generate live animals from single blastomeres at the 4- and 8- cell 

stage (Moore et al., 1968, Willadsen, 1981, Willadsen and Polge, 1981). In contrast, in the 

mouse only single blastomeres from the 2-cell stage have the potential to develop into a 

normal animal, and not 4- or 8- cell stage onwards in the absence of carrier cells (Tarkowski, 

1959, Tarkowski and Wroblewska, 1967, Rossant, 1976, Tsunoda and McLaren, 1983). A key 

difference between the mouse and these other mammalian embryos is the timing of 

implantation; mice embryos attach and implant approximately 24 hours following blastocyst 

formation, in contrast to rabbits which implant at day six (Fischer et al., 2012), and cattle 

(including sheep and cow) which attach two to three weeks following blastocyst formation 

(Spencer et al., 2004, Oron and Ivanova, 2012). Although differences between each 

mammalian species are complex, it is worthwhile noting that a major difference between 

the mouse and these other species is that the number of cells within the blastocyst at the 

time of normal implantation is considerably lower. It is interesting to speculate whether 

human embryos might share more similarities with the non-murine embryo given that the 

human embryo implants at around day seven onwards. If so, it may be that the threshold 

number of cells required for viability in human embryos could be even lower than that in 

the mouse. 

Although the limitations of this model are acknowledged, the results of the experiments 

presented in this chapter are nonetheless important, as this is the first study of its kind to 

attempt to directly address the developmental fate of mosaic embryos in mammalian 

development. The results were in keeping with both observational studies in human 

embryos, and also with fate of aneuploid cells in other systems.  

If the results of these experiments are directly relevant to the human IVF embryo, several 

points merit discussion. The finding that embryos maintained normal morphology and were 

able to develop into blastocysts despite undergoing chromosome segregation errors raises 

the question of whether aneuploidy in human embryos is a secondary effect of a different 

underlying abnormality, rather than the primary cause of a poor developmental outcome. If 

this is indeed the case, this may require a re-evaluation of the significance of aneuploidy in 

the context of human IVF embryos; although it is likely that high levels of aneuploidy will be 
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associated with poor clinical outcome. This hypothesis merits further research, and most 

likely in the human embryo in the first instance. In addition, the rescue of early post-

implantation lethality by the presence of normal blastomeres within the embryo 

demonstrates that some mosaic embryos do have the potential to develop into on-going 

viable pregnancies. Further, if it is so that the presence of abnormal cells may maximise the 

developmental potential of mosaic embryos by acting as carrier cells, this finding could 

provide an additional explanation as to why cleavage stage embryo biopsy for PGS can in 

some cases have a detrimental impact upon IVF outcomes. When considered together with 

the finding that abnormal cells become depleted during blastocyst cavity expansion, and not 

earlier, the results of this study provide further support for the more recent approaches to 

PGS; that is a shift away from cleavage stage biopsy to TE blastocyst biopsy. Theoretically 

this approach offers several advantages over cleavage stage biopsy. By definition, TE biopsy 

pre-selects embryos that have successfully developed to the blastocyst stage. Additionally it 

allows for several cells to be removed without significantly altering the constitution of the 

underlying embryo. In addition, the depletion of the abnormal cells by the blastocyst stage 

relative to cleavage stage biopsy minimises the potential influence of mosaicism. Although 

TE biopsy does not evaluate progenitors of the future fetal lineage, the results of this study 

together with observational data in human embryos, have not demonstrated any evidence 

that abnormal cells are preferentially allocated to the TE lineage. However until large, well-

conducted clinical trials are undertaken whether these theoretical advantages are borne out 

in clinical practice, or will improve IVF outcomes is not known.  

The results presented in this chapter have provided the first direct evidence that 

blastomeres with chromosome abnormalities can be eliminated or depleted from a mosaic 

embryo as development proceeds, thus supporting the clonal normalisation hypothesis 

presented in the Introduction.  The underlying mechanisms responsible for the elimination 

or depletion of these abnormal cells are the subject of investigation in the following 

chapter.
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INVESTIGATING THE MECHANISMS UNDERLYING THE ELIMINATION OF BLASTOMERES 

WITH CHROMOSOMAL ABNORMALITIES 

 

4.1 INTRODUCTION TO RESULTS III 

The results in the previous chapter established that the acquisition of acute chromosome 

segregation errors during early pre-implantation development was associated with the 

depletion or elimination of the abnormal clone of cells from the embryo in the majority of 

cases. The primary aim of this chapter was to investigate the underlying mechanisms 

potentially responsible for the elimination or depletion of these cells. The experiments were 

conducted in pre-implantation embryos, because although the majority of depletion 

occurred at the peri- and early post-implantation stages of development, these embryos are 

not readily accessible for study. 

As discussed in the Introduction, aneuploidy and the consequences of chromosome 

segregation errors are most widely studied in the context of cancer research. Recent work 

has shown that both acutely arising and chronic aneuploidies can adversely affect cellular 

physiology and result in poor proliferation, cell cycle arrest, senescence and apoptosis 

(Torres et al., 2007, Williams et al., 2008, Thompson and Compton, 2008, Li et al., 2009, Li et 

al., 2010, Thompson and Compton, 2010, Pfau and Amon, 2012). 

Although these studies were not conducted in pre-implantation embryos, it is reasonable to 

speculate that the adverse effects on cellular physiology might also occur in embryos 

affected by chromosome missegregation and aneuploidy. Indeed, the results presented in 

the previous chapter demonstrated similar outcomes of increased levels of apoptosis and 

poor proliferation in cells following acute chromosome missegregation. 

A recent body of work undertaken on yeast cells and MEFs harbouring chronic aneuploidies 

described of a set of shared phenotypes described as the ‘aneuploidy stress response’, 

characterised by defects in cell growth and altered metabolism (Torres et al., 2007, Williams 

et al., 2008, Torres et al., 2010). The increased energy and metabolic demands characteristic 

of the aneuploidy stress response may result in the production of elevated levels of reactive 



Chapter IV  RESULTS III 

160 
 

oxygen species (ROS) which may activate the p53 pathway resulting in poor proliferation, 

cell-cycle arrest and apoptosis (Li et al., 2010).  

In the pre-implantation embryo the ‘quiet embryo hypothesis’ proposes that viable embryos 

have a lower metabolism than those which arrest (and therefore more likely to be 

abnormal) based on data from metabolic experiments undertaken in human and mouse 

embryos (Leese, 2002). This hypothesis speculates that less viable embryos consume greater 

quantities of nutrients resulting from molecular or cellular damage, and have higher energy 

requirements due to additional cellular processes required for repair, compensation or 

apoptosis (Leese et al., 2008). It is possible that this may be applicable to embryos with high 

rates of aneuploidy, similar to the ‘aneuploidy stress response’ described above. 

In addition to potential metabolic consequences of aneuploidy, it is also possible that the 

reduced viability of acutely arising aneuploid clones may be a direct result of the effects of 

acute chromosome missegregation itself; an effect mediated through double-stranded DNA 

(dsDNA) damage. Several recent publications have shown a link between whole 

chromosome missegregation and dsDNA breaks, although the proposed mechanisms 

underlying the DNA damage differ between studies (Quignon et al., 2007, Dalton et al., 

2007, Guerrero et al., 2010, Janssen et al., 2011, Crasta et al., 2012). Both prolonged 

mitoses and abnormal kinetochore-microtubule attachments at the mitotic spindle (so-

called merotelic chromosome attachments) have been associated with the acquisition of 

dsDNA breaks during cell division (Quignon et al., 2007, Dalton et al., 2007, Guerrero et al., 

2010), although neither mechanism is likely to occur as a consequence of bypass of the SAC.   

However, two recent studies have identified additional mechanisms underlying the 

acquisition of dsDNA damage which may be of direct relevance to acutely arising 

segregation errors secondary to abrogation of the SAC (Janssen et al., 2011, Crasta et al., 

2012). Jannsen et al. induced chromosome segregation errors in several mammalian cell 

culture lines and found that daughter cells exhibited increased levels of dsDNA damage, 

acquired during cytokinesis as a consequence of cleavage furrow-generated forces. In a 

similar study Crasta et al. showed that whole chromosome segregation errors were also 

associated with dsDNA damage (Crasta et al., 2012). However in this study the damage was 

confined to the resulting micronuclei and not the primary nucleus of the cell, arising as a 

consequence of defective and asynchronous replication of the chromatin trapped within the 
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micronucleus.  Despite their differences, both studies also identified an increased rate of 

structural chromosome aberrations in addition to the experimentally-induced whole 

chromosome aneuploidy. These structural aberrations were speculated to arise secondary 

to repair of the dsDNA breaks that occurred during chromosome missegregation through 

incorrect re-ligation of broken chromosomes (Janssen et al., 2011, Crasta et al., 2012). 

Crasta et al. proposed that their findings may account for the recently described 

phenomenon of chromothripsis, whereby a cellular event results in the fragmentation of a 

single chromosome that is then reassembled, resulting in extensive intra-chromosomal 

rearrangements (Stephens et al., 2011). 

This recent link between acutely arising whole chromosome aneuploidy and the acquisition 

of structural chromosomal rearrangements is remarkable. By acquiring DNA breaks as a 

consequence of missegregation the damaged chromosomes may become reincorporated 

together, in some cases resulting in extensive chromosome rearrangements. These finding 

are of particular significance in the context of cancer biology, as this may be a mechanism by 

which tumorigenic genetic mutations are acquired. Could this phenomenon also be relevant 

if viewed in context of the human pre-implantation embryo? The recent application of high 

resolution single-cell array-based karyotyping  techniques in blastomeres suggests that it 

might; in addition to whole chromosome aneuploidy, structural chromosome aberrations 

are now being reported - abnormalities that may previously have gone undetected due to 

the technical limitations of FISH (Vanneste et al., 2009, Johnson et al., 2010, Rabinowitz et 

al., 2012). Therefore a major aim of this chapter was to investigate whether chromosome 

segregation errors arising during pre-implantation development were associated with 

significant DNA damage. 

DNA damage results in the activation of the DNA damage response (DDR), an intricate 

network of pathways that orchestrate the cellular response in order to protect genomic 

integrity. Owing to its complexity, a detailed overview of the DDR pathway and its 

components is not within the remit of this study, and it has been the subject of a number of 

recent reviews (Bartek and Lukas, 2007, Jackson and Bartek, 2009, Bekker-Jensen and 

Mailand, 2010, Ciccia and Elledge, 2010, Thompson, 2012). In brief, dsDNA breaks elicit the 

localisation of DDR factors to the site of damage and trigger a signalling cascade to activate 

checkpoints to arrest the cell-cycle while the DNA is repaired. The degree of damage 
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determines the ultimate outcome; if the DNA can be repaired successfully the cell can 

progress to the next cell-cycle following transient cell-cycle arrest, however if the damage is 

severe and cannot be repaired, chronic DDR signalling triggers either cell death by apoptosis 

or cellular senescence (a state of permanent cell-cycle arrest). Indeed, the results in the 

previous chapter found that both apoptosis and prolonged cell-cycle lengths occurred more 

frequently in blastomeres with a history of chromosome missegregation during pre-

implantation development. Thus it is plausible that underlying DNA damage could be 

responsible for the phenotype; a hypothesis that was tested and is reported in this thesis 

chapter.  

For this study it was necessary to detect the presence of dsDNA breaks in blastomeres and 

confirm activation of the DDR pathway. The presence of a single dsDNA break results in the 

instantaneous activation of the DDR pathway resulting in immediate chromatin 

modifications flanking the site of damage, together with rapid accumulation of DDR proteins 

resulting in the formation of so-called ionizing radiation-induced foci (IRIF). Such foci can be 

detected by immunofluorescence (IF) enabling the presence of dsDNA damage to be readily 

identified and quantified. The phosphorylation of the histone H2A variant X at serine residue 

139 (known as H2AX) is the first event in the DDR pathway hierarchy (Bartek and Lukas, 

2007). The H2AX foci provide a high-affinity platform for the mediator of DNA damage-

checkpoint protein 1 (MDC1), forming MDC1 foci. MDC1 foci orchestrate the recruitment of 

all other downstream IRIF-associated factors to the site of damaged chromatin. Other 

recruited factors that form localised foci include the MRN complex (Mre-11-Rad50-Nbs1), 

53BP1 (tumour protein p53 binding protein 1), RNF8 (ring finger protein 8) and BRCA1 

(breast cancer 1) amongst others (Bartek and Lukas, 2007). Therefore multiple IRIF-forming 

proteins are potential candidates suitable for the detection of dsDNA damage. Further 

evidence for activation of the DDR pathway can be acquired by confirming the activation of 

cell-cycle arrest; a main purpose of the DDR is the activation of cell-cycle arrest via the 

activation of checkpoint kinases (Jackson and Bartek, 2009). 

Overall, it is likely that a variety of different mechanisms collectively contribute to the 

depletion of the abnormal clone of cells from the developing embryo. The various 

mechanisms proposed are summarised in Figure 4.1. The major aim of this chapter was to 

investigate the potential role of these mechanisms in the fate of the aneuploid cell in the  
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pre-implantation embryo. Additionally, a series of experiments investigating other potential 

causes of apoptosis within the ICM is presented, given that apoptosis was found to occur in 

20% of control ICM blastomeres in the previous chapter. 
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4.2 MATERIALS AND METHODS 

4.2.1 Pre-implantation embryo collection, culture & treatment with reversine 

As described in the previous chapter. 

4.2.2 Evaluation of oxidative stress using CellROX ® Deep Red reagent 

CellROX® Deep Red (Invitrogen) reagent was used to compare levels of ROS between 

different groups of embryos. For each experiment CellROX was used from a fresh unopened 

vial and care taken to minimise its exposure to light or air to prevent any potential oxidation 

prior to the experiment. When comparing groups of embryos, each group was processed 

simultaneously and expediently to minimise the influence of any potential environmental 

factors. CellROX was used at a working concentration of 5M diluted in M2 medium. 

Embryos were washed through three drops of CellROX and incubated in a final drop for 30 

minutes at 37oC for 30 minutes, in the dark. Embryos were then washed through fresh drops 

of M2 media and placed into a glass-bottomed dish (Matek) and imaged immediately using 

an Olympus FV1000 inverted confocal microscope. Embryos were imaged for Deep Red 

fluorescence (peak emission/excitation wavelengths 640/655 nm respectively) in groups in a 

single plane with a 20x air objective. Fluorescent intensity measurements for each embryo 

were evaluated using FIJI software. 

Positive control embryos were incubated in 100M hydrogen peroxide (H2O2) (Sigma) 

diluted in M2 for one hour and then washed through M2 drops immediately prior to 

incubation in CellROX.  

4.2.3 Culture in low-energy KSOM  

For the low-energy KSOM experiments a modified KSOM media was prepared. The 

constituents are presented in Table 4.1, alongside the standard control KSOM recipe. For 

cell counting, embryos were fixed in 4% PFA, stained with DAPI and imaged on a Leica SP5 

inverted confocal microscope. Images were analysed for cell numbers using FIJI software. 
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4.2.4 Immunocytochemistry, TUNEL staining & confocal imaging 

Immunocytochemistry and TUNEL staining was carried out as described in section 3.2 of the 

previous chapter. Mouse embryonic fibroblasts (MEFs) for antibody testing were obtained 

ready in culture from Dr Krzysztof Wicher. 

In this chapter the primary antibodies used together with their dilutions were as follows: 

H2AX mouse monoclonal 1:250 (Millipore), 53Bp1 rabbit polyclonal 1:500 (Novus 

Biologicals), Mdc1 rabbit polyclonal 1:1000 (custom antibody, a gift from Steve Jackson’s 

laboratory, Gurdon Institute), H4K20me2 rabbit polyclonal 1:250 (gift from Steve Jackson’s 

lab), -tubulin 1:250 (a gift from Krzysztof Wicher), mouse monoclonal Cdx2 1:200 

(BioGenex), rabbit polyclonal activated caspase-3 1:200 (Millipore). All secondary antibodies 

were AlexaFluor Dye conjugates (Invitrogen) and used at a concentration of 1:500. 

Confocal images were captured using a Leica SP5 confocal microscope through a 40x oil 

objective into LAS AF software. Where DDR foci were to be quantified all imaging was 

undertaken during the same confocal session using identical imaging parameters in the 

same z-plane. Foci analysis was undertaken using a custom-designed plugin in FIJI.  

 

4.2.5 Induction of DNA damage with ionizing radiation (IR) 

Irradiation induced DNA damage was performed with a Faxitron X-ray machine (Faxitron X-

ray Corporation) as per the manufacturer’s instruction. Embryos or cells were fixed in 4% 

PFA two hours following ionizing radiation (IR) unless otherwise stated.  

 

4.2.6 Time-lapse imaging and analysis 

Time-lapse movies were generated using a spinning disk confocal microscopy system 

(Axiovert Observer Z1, Carl Zeiss, Inc.) as described in the previous chapter. For these 

movies embryos were imaged using a 20x air objective, in 20 Z-planes at 3M increments, in 

GFP and brightfield channels every 15 minutes for 24 hours. Movies were analysed using 

SimiBiocell software.  
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4.2.7 Drug treatment to inhibit apoptosis 

To inhibit apoptosis embryos were incubated in 200M of the pan-caspase inhibitor ZVAD 

(R&D systems) dissolved in KSOM. Once ZVAD treatment was initiated, every subsequent 

step of the experiments were conducted in the presence of ZVAD until the point at which 

the embryos were fixed in PFA. ZVAD was reconstituted in DMSO, and all control embryos 

were incubated in an equivalent concentration of DMSO (0.01%). 

 

4.2.8 Statistical analysis 

Statistical analysis was carried out as described in the Results I and Results II as appropriate. 

Calculations were carried out in GraphPad or Microsoft Excel software. 

  



  
Standard KSOM 

 
Low-energy KSOM 

 

 NaCl 95 95 

 KCl 2.5 2.5 

 KH2PO4 0.35 0.35 

 MgSO4-7H2O 0.2 0.2 

 Na lactate 10 10 

 NaHCO3 25 25 

 CaCl2-2H2O 1.71 1.71 

 D-Glucose 55 20 

 Na pyruvate 0.2 0.2 

 EDTA 0.01 0.01 

 L-Glutamine 1 - 

 BSA 1.0g/L 1.0g/L 

 EAA at 1x conc.  - 

 NEAA at 1x conc. - 

Table 4.1 The chemical composition of standard (control) and low-energy 

KSOM media. Concentrations are given in mM unless otherwise stated. All 

components were acquired from Sigma, with the exception of EAA and NEAA 

which were acquired from Invitrogen.  
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4.3 RESULTS III 

The main aim of the work presented in this chapter was to investigate the potential 

mechanisms underlying the depletion or elimination of chromosomally abnormal cells 

during embryo development. Unless otherwise stated, whole embryos treated with 

reversine during the 4- to 8- cell stage were used as a model for chromosome 

missegregation and were compared directly to equivalent whole control embryos. 

 

4.3.1 Oxidative stress levels are equivalent between control and reversine-treated 

embryos during pre-implantation development 

Cells with both chronic and acutely arising aneuploidies have been shown to exhibit 

elevated levels of oxidative stress in comparison to euploid cells, and this has been 

proposed as a mechanism underlying the reduced cellular fitness of aneuploid cells (Li et al. 

2010). To investigate if this could also be the case in pre-implantation oxidative stress levels 

were evaluated in blastocysts by using CellROX® Deep Red reagent (Invitrogen) to evaluate 

ROS levels. CellROX is a cell-permeable fluorogenic probe designed to assay ROS in live cells. 

It is non-fluorescent while in the reduced state and becomes brightly fluorescent upon 

oxidation. The resulting fluorescence can be detected using microscopy, quantified, and 

used to compare the relative levels of ROS between different cells or embryos. The reagent 

and protocol were first tested in two groups of early blastocysts; controls and embryos 

treated with H2O2. Embryos were cultured in CellROX or DMSO (vehicle) followed by 

immediate imaging. Deep Red signal was clearly detectable in all CellROX-treated embryos 

with stronger signal intensity in embryos incubated in H2O2, with no discernible signal 

detected in any embryos incubated in DMSO rather than CellROX, even after adjustment of 

imaging parameters to maximise signal detection (Figure 4.2A).   With the protocol 

optimised, ROS levels were then compared between control and reversine-treated embryos. 

First embryos were assessed at the early blastocyst stage. ROS levels were assayed by 

evaluating fluorescent-signal intensity in three groups of embryos all treated 

simultaneously: controls, reversine-treated embryos, and embryos treated with H2O2 as a 

positive control. There were no significant differences in signal intensity, and thus  



CellROX 

Control 

H2O2 

DMSO 

(A)  

(B)  

Figure 4.2 Evaluating reactive oxygen species (ROS) levels using CellROX dye in 

embryos (A) Testing CellROX® Deep Red in early blastocysts. Control and H2O2-treated 

embryos were incubated in CellROX or DMSO and imaged using identical parameters. 

Minimal signal was detected in DMSO controls. In contrast, signal was detectable in control 

embryos and bright in H2O2 positive controls (B) Evaluation of ROS levels in early and late 

blastocysts using CellROX. Representative images of example embryos in each group are 

shown in the panels, alongside the graphical representation of  combined mean intensity 

levels for all embryos in each group. Error bars = SD. At both developmental stages there 

were no significant differences ROS levels between control and reversine-treated embryos 

(Student’s t-test *p<0.05 for early and late blastocysts respectively; positive H2O2 controls 

were compared directly to control embryos). 

 

All images at 20x magnification 
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measurable ROS levels, between control and reversine-treated embryos (Student’s t-test, 

p=0.41, n= 14 control and 10 reversine-treated embryos respectively) (Figure 4.2B). As 

expected ROS levels were significantly higher in embryos treated with H2O2 compared to 

control embryos (Student’s t-test; p=0.02, n=9 embryos). Thus there was no evidence of 

increased oxidative stress in reversine-treated embryos at the early blastocyst stage. 

These experiments were then repeated at the expanded blastocyst stage (E4.5), by which 

time differences in cell numbers between reversine-treated and control embryos were 

already apparent (Results II). Similarly to the early blastocyst stage there were no significant 

differences in signal intensity, and thus measurable ROS levels, between control and 

reversine-treated embryos (Student’s t-test; p=0.18, n= 12 control and 13 reversine-treated 

embryos respectively). The H2O2 positive control embryos showed significantly higher signal 

intensity than control embryos, as expected (Student’s t-test; p=0.04 n=15) (Figure 4.2B). 

Thus, using CellROX as an assay, there were no detectable differences in oxidative stress 

levels between control and reversine-treated embryos at the early and late blastocyst stages 

of development. 

 

4.3.2 Pre-implantation development of reversine-treated embryos is more sensitive to 

adverse culture conditions 

Studies in aneuploid MEFs and budding yeast cells have demonstrated altered metabolic 

properties relative to euploid controls such as increased energy consumption and 

perturbations in amino acid metabolism (Torres et al., 2007, Williams et al., 2008).  

Detailed functional study of metabolism in pre-implantation embryos is technically 

challenging without specialist equipment. Experimental techniques used in cultured cell 

lines may not be suitable or require specialist adaptation due to the small number of cells 

within the embryo. Therefore, the potential differences in energy metabolism between 

embryos were investigated indirectly by comparing the development of embryos cultured in 

different culture media. The optimal culture media composition for mouse pre-implantation 

development has evolved over many years since the first embryos were cultured by Whitten 

in the mid-1950s (Whitten, 1956). Currently KSOM media supplemented with amino acids 
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(AA) is considered to be suitable for the culture of most, if not all mouse pre-implantation 

embryos (Nagy et al., 2003). Accordingly, all embryos in this thesis were cultured in this 

standard KSOM medium (see Table 4.1), and for the purposes of this experiment will be 

referred to as standard KSOM. 

To determine if reversine-treated embryos had greater energy demands than controls, a 

modified low-energy KSOM was devised. The constituents of the low-energy KSOM were 

identical to standard KSOM with the following exceptions: the glucose concentration was 

lower at 20mM compared to 55mM in control KSOM, and there was also no 

supplementation with L-glutamine, essential or non-essential amino acids (EAA or NEAA). 

The composition of both KSOM formulations is summarised in Table 4.1. Groups of control 

and reversine-treated embryos were cultured in either standard or low energy KSOM from 

the early 8-cell stage onwards. Embryos were then fixed at the early and expanded 

blastocyst stage and cell number evaluated following confocal imaging. The potential effect 

of the low-energy KSOM on embryo development was evaluated by comparing the mean 

cell number in embryos cultured in low energy KSOM, given as a relative proportion to the 

cell number in their matched controls that had been cultured in standard KSOM (cell number in 

low-energy KSOM/cell number in standard KSOM).  

When assessed at the early blastocyst stage there were no significant differences in cell 

number between standard KSOM and low-energy KSOM-cultured embryos in either DMSO-

treated control or reversine-treated embryo groups (Student’s t-tests: Control embryos low 

energy/standard KSOM =1.03, p=0.11, n= 12 embryos in each group; reversine-incubated embryos 

low energy/standard KSOM =0.95, p=0.46, n=13 and 14 embryos respectively) (Figure 4.3A).  

However, when evaluated at the expanded blastocyst stage, there was a significant 

decrease by 14% in total cell number in reversine-treated embryos incubated in low-energy 

KSOM, relative to standard KSOM (Student’s t-test; p=0.0097, n=19 and 20 embryos in 

standard KSOM and low-energy KSOM groups respectively) (Figure 4.3B). Within the TE 

lineage the relative depletion was 8% and not statistically significant (p=0.21). However 

within the ICM the depletion was greater with 27% depletion, which was highly significant 

(p=0.002). In contrast, this effect did not occur in the DMSO-treated control embryos. 

Control embryos incubated in low-energy KSOM did not show any significant depletion in  



Figure 4.3 Effect of composition of culture media on cell number in developing embryos. 

Embryos were cultured in standard KSOM media, or modified low energy KSOM (see main text 

for further details). DMSO-treated control and reversine-treated embryos were assessed for cell 

number at early and late blastocyst stage. Error bars=SD (A) At the early blastocyst stage there 

were no significant differences in cell numbers between control and low energy KSOM cultured 

embryos in both control and reversine-treated embryos (Student’s t-test; p=n/s). (B) At the late 

blastocyst stage, DMSO-treated control embryos had equivalent cell numbers in both culture 

media (Student’s t-test; p=n/s), however in the reversine-treated embryos the total number of 

cells in embryos cultured in low energy KSOM relative to control KSOM dropped significantly by 

14%. Cell numbers were depleted in both the TE and ICM lineages, but the depletion was only 

significant in the ICM with a 28% depletion relative to control KSOM (**p<0.01).  
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total cell number, or individual lineages when compared to embryos cultured in standard 

KSOM (Student’s t-test; relative cell numbers 1.03 (p=0.44), 1.06 (p=0.30) and 0.93 (p=0.20) 

in combined, TE and ICM lineages respectively, n = 20 embryos in each group) (Figure 4.3B). 

Therefore, the pre-implantation development of reversine-treated embryos beyond the 

early blastocyst stage was compromised in culture media containing fewer energy 

resources. These results suggest that the metabolic requirements of these embryos may 

differ from controls, and that they may have increased energy consumption secondary to 

the effects of chromosome missegregation. 

 

4.3.3 Evaluating the DNA damage hypothesis 

As discussed in section 4.1 several recent studies have demonstrated that acute 

chromosome missegregation can result in double-stranded DNA (dsDNA) breaks which may 

affect the ultimate fate of the cell. Therefore the next experimental aim was to investigate 

this hypothesis in the context of pre-implantation development - does acute chromosome 

missegregation in blastomeres result in dsDNA damage? 

To investigate this hypothesis the first experimental strategy was to detect and quantify 

dsDNA damage in blastomeres, and compare levels between control and reversine-treated 

embryos. A well-established technique for identifying DNA damage in individual cells is the 

detection by IF of DDR markers that form localised foci (IRIF) at the site of damage (section 

4.1). 

The DDR markers H2AX and 53Bp1 were selected for the evaluation and quantification of 

dsDNA damage in the embryos. Numerous DDR factors form localized foci and were 

therefore potentially suitable, however H2AX and 53Bp1 were selected due to the 

effectiveness and availability of antibodies required for IF studies, and are widely used in 

DDR studies. Initially pilot experiments were conducted to check the antibodies in the 

mouse pre-implantation embryo. 

 

4.3.3.1 The atypical distribution of DDR foci throughout pre-implantation development 
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The pilot studies revealed unexpected results with both H2AX and 53Bp1 exhibiting 

surprisingly high basal levels in control embryos (pilot images not shown - see following 

section). Before further experiments were conducted the IF protocol was repeated in MEF 

cells to determine if these unexpected findings were arising secondary to antibody or IF-

induced artefact. Both control and ionizing radiation-treated (to induce DNA damage) MEF 

cells were stained for H2AX, 53Bp1 or Mdc1 (an additional DDR factor used in later 

experiments). All three factors exhibited their characteristic staining patterns in both control 

and IR-treated MEF cells; minimal H2AX in control MEF cells with multiple IRIF following IR 

treatment (Figure 4.4A), and both 53Bp1 and Mdc1 demonstrating diffuse nuclear staining 

in control MEFs followed by the formation of multiple IRIF following IR-induced DNA 

damage (Figure 4.4B & 4.4C respectively). Accordingly it was concluded that the antibodies 

were effective and that a systematic study of the distribution of these factors in the pre-

implantation embryo was necessary prior to further investigation of the DNA damage 

hypothesis. 

Therefore a systematic characterisation of H2AX and 53Bp1 was undertaken throughout 

pre-implantation development to establish the baseline IF staining patterns in control 

untreated embryos in the absence of induced DNA damage. At least five embryos were 

evaluated for each factor at the different stages of development. There was minimal 

variation in IF staining patterns between different embryos and representative images are 

shown in Figures 4.5 and 4.6. 

H2AX was detected at high levels throughout pre-implantation development, with the 

exception of the 2-cell stage where minimal levels were detected. Further, where H2AX 

was present the pattern had the classic appearance of bright foci characteristic of DNA 

damage, in addition to smaller clusters of background foci (Figure 4.5). The staining pattern 

of 53Bp1 was also unexpected. 53Bp1 characteristically displays a predominantly nuclear 

location (although it can also be cytoplasmic in some cells) and is recruited to the sites of 

dsDNA damage forming foci co-localising directly or in close proximity to the H2AX foci 

(UniProtKB Database). However, in control embryos the expression of nuclear 53Bp1 was 

minimal until the 8-cell stage when the nuclear expression became more enriched relative 

to the cytoplasm and from then onwards remained predominantly nuclear in all cells of the  
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Figure 4.4 IF staining for the DNA damage response (DDR) factors gH2AX, 

53Bp1 and Mdc1 in MEF cells Both control and MEF cells treated with 5 Gray 

irradiation (5Gy IR) are shown, demonstrating the classic distribution and response 

following IR-induced DNA damage (A) gH2AX IF with minimal signal in control MEF 

cells and multiple nuclear foci following IR (B) 53Bp1 showing diffuse nuclear 

staining with minimal nuclear foci in controls, and multiple nuclear foci following IR 

(C) Mdc1 with diffuse nuclear staining and minimal nuclear foci in controls and 

multiple nuclear foci following IR. 

Inset images at the lower right corner show single representative nuclei close-up 

All images at 20x magnification 
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Figure 4.5 gH2AX and 53Bp1 in control embryos during pre-implantation 

development. Representative images taken in a single plane are shown. Basal levels of 

gH2AX were high throughout pre-implantation development with the exception of the 2-cell 

stage. 53Bp1 became enriched within the nucleus from the 8-cell stage and from then 

onwards was co-localised with or in close proximity to foci of gH2AX.  

Inset images at the lower right corner  show single representative nuclei close-up 

 

All images at 40x magnification 
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Figure 4.6 gH2AX and Mdc1 in control embryos during pre-implantation 

development. Representative images taken in a single plane are shown. Basal levels of 

gH2AX were high throughout pre-implantation development with the exception of the 2-cell 

stage. Mdc1 was enriched within the nucleus throughout pre-implantation development  

and foci co-localised with the foci of gH2AX.  

Inset images at the lower right corner  show single representative nuclei close-up 

 

All images at 40x magnification 
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embryo (Figure 4.5). 53Bp1 foci were not identified prior to the 8-cell stage; this was 

unexpected given the presence of H2AX foci with which 53Bp1 usually localises. By the 

blastocyst stage, 53Bp1 foci were more widespread and co-localising with or in close 

proximity to the H2AX foci, as would be expected, in the majority of cells within the 

embryos (Figure 4.5). 

In view of the unexpected distribution patterns of H2AX and 53Bp1 the distribution of a 

third key DDR protein was characterised; mediator of DNA-damage checkpoint protein 1 

(Mdc1). Mdc1 is a nuclear protein that re-localizes to bind to H2AX in response to dsDNA 

damage and thus forms discrete nuclear foci with complete co-localisation to H2AX foci 

(UniProtKB Database). A minimum of five embryos were evaluated at each stage, and there 

was minimal variation in the IF staining between different embryos. Representative images 

are shown in Figure 4.6. In contrast to 53Bp1, the distribution of Mdc1 was complementary 

to the patterns of H2AX staining throughout all stages of pre-implantation development 

examined, and displayed the expected pattern of co-localisation with H2AX. 

Therefore these experiments revealed an unexpected, atypical distribution pattern for 

H2AX, 53Bp1 and Mdc1 and consequently raised further questions. Did the presence of 

DDR foci reflect de novo intrinsic DNA breaks, or were they secondary to an alternative, 

non-damage related biological process unique to pre-implantation development? By the 

blastocyst stage, 53Bp1 foci co-localized at or near H2AX foci, as would occur secondary to 

activation of the DDR, however this did not occur prior to the 8-cell stage. What could 

account for the absence of 53Bp1 and the uncoupling from H2AX at earlier stages of 

development?  

The absence of detectable nuclear positive 53Bp1 foci at early stages of embryo 

development could be due to the absence of activation of the DDR pathway, with H2AX 

and Mdc1 foci a consequence of a non-DDR pathway related process. Alternatively, it was 

hypothesized that the absence could be secondary to developmental stage-specific 

epigenetic modifications. The nuclear localisation and recruitment of 53Bp1 to sites of DNA 

damage requires the dimethylation (me2) of Histone 4 (H4) at lysine (K) residue 20 (H4K20) 

(Botuyan et al., 2006). Therefore, the H4K20me2 status was characterised in the pre-

implantation embryo using IF. Both H4K20me2 and 53Bp1 antibodies were raised in the 
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same host animal (rabbit) and consequently it was not possible to undertake simultaneous 

IF studies for both proteins within the same embryo. However, when H4K20me2 status was 

evaluated in isolation it was found to correlate exactly with 53Bp1 distribution characterised 

above; significant dimethylation of H4K20 only occurred from the 8-cell stage onwards 

(Figure 4.7). Thus the initial absence of 53Bp1 co-localisation at or near H2AX foci is most 

likely due to the developmental absence of dimethylation at H4K20, rather than a stage-

specific uncoupling from the DDR pathway. 

Determining the underlying causes of the high basal levels of H2AX, Mdc1 and (from the 8-

cell stage) 53Bp1 foci in the embryo was more challenging. In the first instance a further 

review of the literature was undertaken to determine if any other studies had characterised 

or investigated the distribution of these DDR factors, or the DNA damage response itself in 

the pre-implantation mouse embryo either directly, or indirectly. The literature search 

identified very few directly relevant studies, and overall the findings were highly variable 

with a range of different H2AX staining patterns described, with minimal or no 

characterisation of 53Bp1 or Mdc1 (Yukawa et al., 2007, Adiga et al., 2007, Ziegler-Birling et 

al., 2009, Mu et al., 2011, Marangos and Carroll, 2012). In addition, several of these studies 

proposed that the DNA damage response may be limited or atypical in the mouse oocyte 

and early pre-implantation embryo however comprehensive, systematic evaluations of the 

DDR in the pre-implantation embryo were lacking.  

The cellular response to DNA damage is a highly complex process involving a myriad of 

proteins and processes with multiple protein interactions, different pathways, and 

functional redundancy, ultimately ensuring the efficient and faithful repair of the damaged 

genome (Thompson, 2012). Thus investigating the potential cause of the high basal levels of 

DDR foci would be complex and was considered out of the scope of this study. However, to 

exclude the possibility that activation of the DDR pathway was induced by adverse culture 

conditions or superovulation E3.5 blastocysts were recovered following natural mating and 

were immediately fixed and evaluated by IF for H2AX and Mdc1;  subjective evaluation 

revealed equivalent findings to embryos attained following superovulation and in vitro 

culture.  
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Figure 4.7 H4K20me2 profile in pre-implantation embryos. Representative IF images 

of embryos stained with antibodies against H4K20me2 throughout different stages of pre-

implantation development. Minimal nuclear H4K20me2 was detected in the embryos 

prior to the 8-cell stage. From the 8-cell stage onwards H4K20me2 was clearly present in 

all nuclei of all embryos. This developmental profile correlated with the nuclear 

localisation of 53BP1 (see figure 4.5). 

 

All images at 40x magnification 181 
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The primary goal of this study was to investigate the hypothesis that acutely arising 

chromosome missegregation errors may cause DNA damage that may determine the 

ultimate fate of the abnormal cells. In light of the unexpected findings presented above, the 

direct comparison of foci levels between the two groups may not be a reliable measure of 

DNA damage in the pre-implantation embryo. On that account before investigating this 

hypothesis further, a series of experiments were conducted to determine the response of 

the embryo to externally induced DNA damage.  

 

4.3.3.2 Externally induced DNA damage elicits a dose-dependent increase in DDR foci 

throughout pre-implantation development 

Pre-implantation embryos at different developmental stages were treated with 5 or 10 Gray 

(Gy) of IR to induce DNA damage. Two hours later they were fixed together with an 

equivalent control group, and were used for IF evaluation of H2AX with Mdc1 or 53Bp1. 

Confocal images were captured and evaluated for evidence of an increase in DDR foci in 

response to IR-induced DNA damage. At least five embryos were included in each 

experimental and control group.  

Assessment of DDR foci images confirmed an increase in H2AX and Mdc1 foci in response 

to IR at all stages of pre-implantation embryo development (Figure 4.8).  The density of foci 

increased as IR exposure increased from 0 to 5 and 10Gy. An identical pattern was also 

found for the embryos assessed for H2AX and 53Bp1, with the exception of the embryos 

prior to the 8-cell stage, where no 53Bp1 foci were identified, and minimal in the 8-cell 

stage itself (Figure 4.8). As discussed previously, this is likely to be due to the stage-specific 

variation in the methylation status of H4K20. 

 Therefore, despite the high basal levels of foci in control embryos an increase in response 

to DNA damage did occur, and it was concluded that the evaluation of foci levels could be 

used to compare levels of DNA damage in the subsequent experiments after the induction 

of chromosome missegregation using reversine treatment. 

  



Figure 4.8 Ionising radiation (IR)-induced DNA damage elicits an increase in IRIF in 

the pre-implantation embryo. Embryos were subjected to 5 or 10Gy of IR to induce 

DNA damage and IRIF (DDR factor recruitment) were evaluated. Representative images 

for the 8-cell stage and mid-blastocyst stage are shown although all stages were 

evaluated. gH2AX and Mdc1 foci levels increased with greater exposure to IR throughout 

all stages of development. The effect for 53Bp1 was less striking prior to the blastocyst 

stage and no 53Bp1 foci were induced prior to the 8-cell stage.  
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4.3.3.3 Optimisation of DDR foci analysis in the pre-implantation embryo 

The image capture and quantification of DDR foci in mouse pre-implantation embryos posed 

challenges not usually encountered when evaluating cells in culture necessitating 

optimisation of imaging conditions and data analysis approaches.  

The mouse embryo is a three-dimensional structure that requires imaging in multiple z-

planes in order to capture every nucleus and cell. When imaging parameters are kept 

constant the intensity and quality of the captured signal can vary enormously between the 

top and bottom z-position secondary to the 3D structure and in some cases photobleaching; 

an effect especially pronounced from the blastocyst stage onwards. Imaging of DDR foci in 

the pre-implantation embryo was found to be exquisitely sensitive to variations in signal 

detection acquired from different z-planes and even different positions within the imaging 

dish. In addition, multiple averaging images were necessary to reduce the signal noise to a 

threshold acceptable for foci analysis, thus increasing the potential problem of 

photobleaching.   

To ensure that the quantification of foci between different groups of embryos was directly 

comparable a stringent imaging protocol was developed. Embryo groups that were to be 

compared directly were imaged on the same day during the same session with identical 

imaging parameters. Images were captured along the same z-plane in a maximum of two 

different planes, rather than capturing all cells within the embryo, thus minimising the 

effects of photobleaching and the 3D structure. Even with this stringent imaging protocol 

the subjective quantification of foci was not possible. Therefore a software plugin for FIJI 

was developed to enable the objective and reproducible quantification of foci to be 

undertaken (Figure 4.9). The plugin was designed in collaboration with Dr Richard Butler 

(Gurdon Institute Imaging Facility). Mdc1 foci were evaluated as these IF images contained 

the least background noise, and the foci directly co-localized with those of H2AX. 

 

4.3.3.4 Comparing DDR foci between control and reversine-treated blastomeres 

The DNA damage hypothesis could now be investigated by comparing foci levels between 

control and reversine-treated blastomeres/embryos. Nuclear Mdc1 foci were evaluated at  



(1). Select nucleus in  
desired channel 
(MDC1)  as ROI 

(2). Standardised 
image processing 
algorithm 

(3). Standardised 
object analysis  & foci 
count read-out 

Image processing & analysis in FIJI 

Original images 

DAPI gH2AX Mdc1 Merge 

Figure 4.9 Objective standardised quantification of DNA damage foci using 

FIJI software. Original image files were opened in FIJI in separate channels. The 

figure shows a representative image of an embryo containing two nuclei within a 

single plane, together with a single micronucleus (shown by an asterisk).To 

evaluate the foci within a nucleus, the nucleus was first selected as a region of 

interest (ROI) within the desired channel (1). Mdc1 images had the least 

background fluorescence and were therefore selected for foci analysis. A plugin 

was run which executed a standardised image processing algorithm (2) followed by 

a standardised object analysis with a foci count read out (3). Although the algorithm 

did on occasions merge foci that were considered separate on subjective 

evaluation, as every nucleus was subjected to identical image processing and 

analysis the results were thus comparable between different groups of embryos. 

 

All images at 40x magnification 
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the 8-cell stage; this was to detect newly arising DNA damage occurring as a consequence of 

acute chromosome missegregation secondary to reversine treatment during the preceding 

cleavage. There were no significant differences in nuclear Mdc1 foci between control and 

reversine-treated embryos, with control embryos containing a mean of 10.2 foci per nucleus 

in each embryo, compared to 9.6 in reversine-treated embryos (Student’s t-test; p=0.21, n= 

84 and 55 control and reversine-treated blastomeres respectively) (Figure 4.10A). Therefore, 

there was no evidence of increased nuclear DNA damage arising secondary to acute 

chromosome missegregation. A group of embryos were also evaluated at the mid-blastocyst 

stage to determine if DNA damage accumulated as the embryo developed. Elevated levels 

of ROS species can cause DNA damage, usually single stranded (which would not be 

detectable as foci), however if breaks occur in close proximity then dsDNA damage can also 

arise. However, there were also no significant differences in foci levels between control and 

reversine-treated blastocysts with a mean of 6.6 and 5.9 foci per nucleus respectively 

(Student’s t test; p=0.43, n=119 control and 83 reversine blastomeres)(Figure 4.10A.).  

Next micronuclei were evaluated as previous studies have demonstrated DNA damage 

within the resulting micronuclei (Crasta et al., 2012). Micronuclei were found to exhibit a 

strikingly different pattern of expression of DDR factors when compared to the main 

nucleus. Within the main nuclei H2AX and Mdc1 were consistently co-localised. In contrast, 

Mdc1 was present in only 2 of 22 micronuclei assessed (9%) with the majority consisting of 

H2AX alone (15 of 22; 68%). There were no cases of Mdc1 alone in the absence of H2AX. 

Finally some micronuclei did not stain for either H2AX or Mdc1 (5 of 22; 23%) (Figure 

4.10B). However, the absence of Mdc1 in micronuclei did not exclude the possibility of 

underlying DNA damage; it has previously been shown that DDR factors are not consistently 

recruited to micronuclei (Terradas et al., 2010). Therefore, for micronuclei H2AX was 

evaluated to compare levels of DNA damage between the main and micronucleus within the 

same cell. However, due to the small size and compacted nature of the chromatin within the 

micronucleus it was not possible to compare number of foci per se; therefore an alternative 

strategy was applied, comparing the overall intensity of H2AX within the main or 

micronucleus, normalised against the respective DAPI signal intensities. Using this approach 

the mean H2AX levels in the main nuclei were found to be identical to those within the  

  



Figure 4.10 Evaluation of reversine-treated embryos for evidence of DNA damage arising 

secondary to chromosome missegregation (A)  Blastomeres were evaluated for levels of 

dsDNA damage in their nuclei by quantification of the Mdc1 foci. There were no differences 

between control and reversine-treated embryos at the 8-cell or blastocyst stage (Student’s t-test; 

p = n/s). Error bars=SD. (B) Localisation of DDR factors within micronuclei showed a variable 

pattern. In 68% of micronuclei there was no detectable Mdc1. 23% of micronuclei did not stain 

for either gH2AX or Mdc1 and only 9% showed co-localisation of both gH2AX and Mdc1. In 

contrast, in the main nuclei there were relatively high basal levels of gH2AX, and Mdc1always 

co-localised with gH2AX foci. (C) Micronuclei resulting from reversine-treatment were evaluated 

for evidence of dsDNA damage by comparing gH2AX staining intensity between the main and 

micronucleus, normalised against the DAPI signal. Levels between paired principle and 

micronuclei (denoted by asterisks) were equivalent and thus there was no evidence of increased 

DNA damage within micronuclei (Student’s paired t-test; p=n/s). Error bars = SD. 

 

All images at 40x magnification 
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micronuclei (Student’s paired t-test; intensity ratio 0.50 and 0.54 in main and micronuclei 

respectively, n=22, p=0.66 – Figure 4.10C).  

Thus it was concluded that there was no evidence of DNA damage in the micronuclei of pre-

implantation mouse embryos. 

4.3.3.5 Evaluating for checkpoint activation in reversine-treated blastomeres 

Evaluation of DDR foci did not reveal any direct evidence to support the DNA damage 

hypothesis. However, due to the high basal levels of DDR foci in the embryo it is possible 

that small increases in DNA damage may be missed. A major function of the DNA damage 

response is to arrest the cell-cycle, preventing cell division in the presence of a damaged 

genome (Jackson and Bartek, 2009). Therefore, time-lapse imaging parameters of cell-cycle 

lengths could be used as an indirect marker for activation of the cell-cycle checkpoints, and 

is a technique readily applicable to the pre-implantation embryo. 

It was first necessary to confirm that DNA damage occurring at the 8-cell stage would result 

in cell-cycle arrest. Therefore 8-cell stage embryos were treated with 2Gy or 5Gy IR to 

induce DNA damage and underwent time-lapse imaging with control embryos to determine 

the length of time to the next division. Blastomeres treated with 2 or 5Gy of IR had a 

significant delay in the onset of their next division, occurring an average of 392 and 383 

minutes later than controls respectively (Student’s t-test; p<0.0001, n=10 embryos in each 

group) (Figure 4.11A). Thus it was concluded that acutely arising DNA damage at the 8-cell 

stage results in significant cell-cycle arrest that is detectable by time-lapse imaging. 

Therefore the data generated from the time-lapse imaging undertaken on the reversine-

control chimeric embryos presented in the previous chapter was re-evaluated to assess for 

any differences in cell-cycle timing occurring immediately after chromosome missegregation 

was induced. If significant DNA damage had occurred then an increase in the 8- to 16-cell 

cell-cycle length would be expected in the clone of blastomeres that had been treated by 

reversine. However, a direct measure of the 8- to 16- cell-cycle length was not possible as 

time-lapse imaging could only be commenced after the reversine-treatment had been 

completed. An alternative strategy was therefore required. Each chimeric mosaic embryo 

was comprised of four control and four reversine-treated blastomeres. The order of cell  
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(B) 

Figure 4.11 Evaluation of cell-cycle response to DNA damage at the 8-cell stage. 

(A) Cell-cycle lengths were significantly prolonged in response to 2 or 5 Gy IR at the 8-

cell stage, thus confirming that DNA damage at the 8-cell stage results in activation of 

cell-cycle checkpoints (Student’s t-test, ***p<0.0001 compared to controls). Error 

bars=SD. (B) Representative lineage tree of a chimeric embryo comprising of four 

control (black branches) and four reversine-treated (red branches) blastomeres at the 8-

cell stage. To determine if reversine-treated blastomeres exhibited signs of cell-cycle 

delay at the 8-cell stage, the sequence of division from the 8- to 16-cell stage was ranked 

in order and related to cell origin (reversine or control blastomere). In total, 20 chimeric 

embryos were evaluated and there were no significant differences in order of division 

between control and reversine-treated blastomeres. Thus there was no evidence of delay 

to the 8- to 16- cell cleavage in the reversine-treated blastomeres compared to controls. 
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division was ranked from first through to last for each embryo, and related to cell history 

(control or reversine). If there were no differences in the cell-cycle lengths between the 

groups, then the ranking order between the two groups would also be equivalent. 

Conversely, if reversine-treated blastomeres underwent a significant cell-cycle arrest 

secondary to DNA damage, then their distribution would be skewed towards the lower 

ranks. All 20 chimeric embryos were evaluated and there were no significant differences in 

order of cell division between reversine or control blastomeres (2 test; p=0.38). Therefore 

it was concluded that there was no evidence of cell-cycle delay or checkpoint activation 

occurring at the 8- to 16-cell cleavage (Figure 4.11B). 

Considering all experiments together it was therefore concluded that there was no evidence 

to support the hypothesis that acutely arising chromosome missegregations resulted in DNA 

damage in the pre-implantation embryo. 

 

4.3.4 Investigating additional potential causes for apoptosis within the ICM 

The results presented in the previous chapter demonstrated that ICM clones with a history 

of chromosome missegregation were significantly more likely to undergo apoptosis 

compared to control blastomeres. However, apoptosis was not exclusively limited to the 

abnormal clone of cells as 20% of the control clone was also eliminated by apoptosis in the 

ICM. It is not known if these control cells were also abnormal and thus reflective of the basal 

level of aneuploidy within the mouse embryo. Indeed, when control embryos were 

evaluated by FISH in Chapter II, 17% of blastomeres were classified as aneuploid, and thus 

this hypothesis is plausible. However, other hypotheses have been proposed to account for 

apoptosis within ICM lineage and it is possible that more than one mechanism may underlie 

this phenomenon (Hardy, 1997, Pampfer and Donnay, 1999, Fabian et al., 2005). One 

hypothesis is that apoptosis within the ICM is a mechanism through which misplaced cells 

with TE potential are eliminated. It has also been speculated that abnormal cells are 

eliminated by apoptosis; in non-developmental settings a major cause of apoptosis is the 

elimination of cells containing significant DNA damage that is too severe to be repaired by 

the cell (Jackson and Bartek, 2009). Thus it is possible that ICM apoptosis may be arising 

secondary to DNA damage, to eliminate genetically abnormal cells from the future fetal 
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lineage. A series of experiments were designed to investigate these hypotheses in greater 

detail.  

These experiments necessitated the ability to inhibit apoptosis. First it was confirmed that 

the pan-caspase inhibitor ZVAD was effective at inhibiting apoptosis in the mouse 

blastocyst. Embryos were cultured in KSOM containing 200M ZVAD during blastocyst 

cavity expansion. Equivalent controls were incubated in DMSO (vehicle) alone. Blastocysts 

were then exposed to 10Gy of IR to induce widespread apoptosis. 28 hours later embryos 

were fixed and IF was undertaken to detect activated caspase-3, a key enzyme central for 

the execution of apoptosis. Control embryos showed extensive staining for activated 

caspase-3 following IR treatment, thus confirming initiation of the apoptosis pathway. In 

contrast, in embryos incubated in ZVAD minimal or no activated caspase-3 was detected 

following IR treatment (Figure 4.12A). Finally, a group of untreated control embryos 

incubated in ZVAD also showed minimal caspase-3 activation, with otherwise normal 

morphology confirming that incubation in ZVAD did not inhibit normal blastocyst 

maturation.  

To exclude the possibility of caspase-independent cell death in normally cultured 

blastocysts, the morphology of the ICM population was evaluated in a group of control and 

ZVAD-incubated blastocysts. In a subset of embryos TUNEL staining was undertaken to 

evaluate for the presence of programmed cell death. Apoptosis was identified by the 

presence of apoptotic bodies in 90% of control blastocysts (27 of 30), significantly more than 

the 3% identified in ZVAD-incubated blastocysts (1 of 31) (Fisher’s test; p<0.001) (Figure 

4.12B). Likewise, the majority of control embryos were positive for TUNEL staining which did 

not occur in the ZVAD-incubated embryos (Figure 4.12C). Thus it was concluded that ZVAD is 

a potent inhibitor of cell death within the blastocyst and could be used as an effective 

inhibitor of apoptosis in the subsequent experiments. 

In the first instance, an experiment designed to test the hypothesis that ICM apoptosis 

eliminates aneuploid cells in wild-type untreated embryos (i.e. in the absence of induced 

chromosome missegregation) is currently underway in collaboration with Dr Thierry Voet. 

Individual ICM cells from E4.5 blastocysts have been collected for single cell array-based 

molecular karyotyping (as described in Chapter II) in two groups; control embryos and  
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Figure 4.12 Incubating blastocysts in 200mM ZVAD inhibits apoptosis (A) Incubation in 

ZVAD during blastocyst cavity expansion did not have any apparent adverse effects on control 

embryos as assessed by morphology. Exposing blastocysts to 10Gy IR induced extensive 

activation of caspase-3 (white arrow heads); an effect which was significantly inhibited by the 

presence of ZVAD. (B & C) Most control untreated blastocysts showed evidence of apoptosis 

occurring within the ICM as assessed by morphology (white arrow heads in B) and TUNEL 

staining (asterisks in C). In contrast embryos incubated in ZVAD rarely exhibited any signs of 

apoptosis or cell death within the ICM ***p<0.001 Fisher’s test). Representative images of 

control and ZVAD-incubated embryos are shown.  
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embryos that have been incubated in ZVAD to inhibit apoptosis. The rates of aneuploidy 

between the two groups will be compared to determine if there are higher rates of 

aneuploidy in embryos that cannot undergo apoptosis. At the time of writing (May 2013), 

the results are still pending.  

Next the hypothesis that apoptosis eliminates ICM cells with increased levels of DNA 

damage was investigated. Both control and apoptosis-inhibited blastocysts were cultured to 

E4.5 and then fixed. Simultaneous IF for Mdc1 and Cdx2 was undertaken; Mdc1 for 

quantification of DDR foci and Cdx2 to distinguish between the TE and ICM. In total 184 

control and 237 apoptosis-inhibited ICM cells were evaluated. The mean number of Mdc1 

foci per cell in control ICM cells was 2.25 compared to 3.14 in apoptosis-inhibited ICM cells, 

a small but highly significant difference (Student’s t-test; p=0.006). When TE cells were 

evaluated within the same group of embryos there were no differences between the control 

and apoptosis-inhibited group; control TE cells contained a mean of 11.1 foci per cell, 

compared with 10.9 in the apoptosis-inhibited blastocysts (Student’s t-test; p=0.80, n=181 

control and 161 apoptosis-inhibited cells respectively) (Figure 4.13A). Therefore it was 

considered unlikely that the increase in Mdc1 foci were an artefact secondary to ZVAD. 

However, although there was a highly significant difference in the foci number between the 

control and apoptosis-inhibited ICM cells, the biological significance of a difference of less 

than one (0.89) was questionable. Therefore the distribution of the ICM foci for each group 

of embryos was plotted on a frequency (percentage) distribution graph, and the two 

distributions compared (Figure 4.13B). This was to determine if the distribution of the 

apoptosis-inhibited foci was bimodal, comprising of a second small sub-population of cells 

with very high levels of foci, which could represent a subset of cells that would have been 

otherwise eliminated through apoptosis due to high levels of DNA damage. Such a 

distribution could reconcile the finding of the small but highly significant statistical 

differences between the mean numbers of foci in each group.  Both groups were found to 

have similarly-shaped positively skewed distribution, with no evidence of a bimodal pattern 

in the apoptosis-inhibited group or threshold level above which point apoptosis occurred 

(Figure 4.13B). Therefore it was concluded that there was minimal evidence to suggest that 

DNA damage is a major cause of apoptosis within the ICM lineage during the development 

of apparently normal embryos.  
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Figure 4.13 Comparison of MDC1 foci between control blastomeres and blastomeres 

incubated in ZVAD apoptosis inhibitor. Evaluation of MDC1 foci was undertaken as a 

comparative marker of DNA damage between the control and apoptosis-inhibited blastocysts 

(A) Mdc1 foci levels were identical between the two groups within the TE lineage. In contrast 

within the ICM there was a small but highly significant increase in mean number of foci within 

the cells from the apoptosis-inhibited blastocysts compared to controls (Student’s t-test;** 

p<0.01) (Error bars =SD)(B) Percentage distribution graphs comparing Mdc1 foci within the ICM 

lineage of control and apoptosis-inhibited blastocysts. Both distributions were similar in shape, 

with no evidence of a bimodal distribution for the apoptosis-inhibited population. Thus there was 

no evidence of a threshold level of DNA damage triggering apoptosis within ICM blastomeres.  
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While embryos were evaluated for evidence of DNA damage in the previous set of 

experiments, it was observed that cells expressing the TE-specific transcription factor Cdx2 

were occasionally present within the ICM population. It has previously been hypothesized 

that apoptosis within the ICM is a mechanism through which misplaced cells with TE 

potential are eliminated (Hardy, 1997, Pampfer and Donnay, 1999, Fabian et al., 2005). 

Therefore these images were re-evaluated for evidence Cdx2-positive cells malpositioned 

within the ICM population. Cells were classified as malpositioned only if they were clearly 

present within the ICM population and completely surrounded by other ICM cells. Of a total 

of 62 embryos assessed two contained malpositioned Cdx2-positive cells within their ICM, 

one of which was in the control group and the other within the apoptosis group (Fisher’s 

test; p=1.0) (Figure 4.14). Thus although the occurrence of Cdx2-expressing cells within the 

ICM was infrequent, there was no evidence to support the hypothesis that apoptosis 

eliminates cells with TE-potential (as defined by expression of Cdx2) from the ICM.  

 

4.3.5 Summary of main results 

In summary, the results presented in this chapter demonstrated that pre-implantation 

embryos treated with reversine to induce chromosome missegregation exhibit 

compromised pre-implantation development when cultured in conditions with limited 

energy resources, suggesting that these embryos may have higher metabolic demands 

compared to controls, in keeping with studies undertaken on aneuploid MEFs (Williams et 

al., 2008, Li et al., 2010). No evidence of DNA breaks was detected following acute 

chromosome missegregation in blastomeres following reversine treatment. Consequently 

the DNA damage hypothesis proposed in section 4.1 was considered unlikely to contribute 

the elimination of chromosomally abnormal cells from the embryo. However, investigation 

of this hypothesis revealed high basal levels of nuclear DDR foci in the pre-implantation 

embryo. Micronuclei that arose as a result of chromosome missegregation (induced by 

reversine) were found to be deficient in the recruitment of the DDR factor Mdc1 to sites of 

H2AX. Although the role of the high basal levels of nuclear DDR factors was not established, 

it is speculated that the deficiency within the micronuclei could potentially be detrimental 

to the cell and thus contribution to its removal.  
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Figure 4.14 Cdx2-positive cells within the ICM are infrequent and not a significant cause 

of apoptosis. Embryos were evaluated for the presence of malpositioned cells with TE-potential 

within the ICM, as defined by the presence Cdx2-positive cells surrounded by ICM. The majority 

of Cdx2-positive cells were correctly positioned within the TE lineage in both the control and 

apoptosis-inhibited (ZVAD) blastocysts, and there were no significant differences between the 

two groups.  

 

All images at 40x magnification 
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4.4 RESULTS III DISCUSSION 

 

The major aim of the work described in this chapter was to explore potential mechanisms 

that may account for how clones derived from blastomeres with a history of chromosome 

segregation errors become depleted from the developing embryo.  

 

4.4.1 Investigating ROS levels and the effect of adverse culture conditions 

ROS levels were evaluated at early and late blastocyst stages using the CellROX assay.  There 

was no evidence of elevated ROS levels in reversine-treated embryos compared to their 

equivalent controls at either stage of development. There are two possibilities to account 

for this finding; either that ROS levels were indeed unchanged in reversine-treated embryos 

at the time of evaluation, or because the assay was insufficiently sensitive to detect small, 

yet potentially significant, differences between the two groups. Positive control embryos 

incubated in H2O2 did show elevated levels of ROS, confirming that the assay could detect 

differences in oxidation status. However, while the results of this study showed no 

detectable elevation in ROS levels in reversine-treated embryos, the hypothesis was not 

ruled out due to the possibility of small but undetectable differences in ROS levels, or that 

ROS levels become significantly elevated at later developmental stages. 

It was also hypothesized that embryos harbouring aneuploidies secondary to acute 

chromosome segregation errors may share features of the ‘aneuploidy stress response’ and 

altered metabolic properties previously characterised in aneuploid yeast and MEF cells 

(Torres et al., 2007, Williams et al., 2008). An indirect approach was adopted to investigate 

this hypothesis. Would adverse culture conditions (with depleted energy resources) affect 

aneuploid embryos to a greater extent than control embryos? Between the mid and 

expanded blastocyst stage, the development of reversine-treated embryos cultured in low-

energy KSOM was found to be compromised relative (as determined by total cell number) to 

those cultured in standard KSOM; an effect that did not occur in the control embryos. This 

suggests that there may be increased metabolic demands in embryos with aneuploidy, 

which could contribute to the depletion of the abnormal clone from the developing embryo. 
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This effect became apparent at the expanded blastocyst stage, with no differences detected 

earlier. It was not known if this timing was reflective of the increased energy demands 

associated with blastocyst formation, or a cumulative detrimental effect that became 

apparent only after several cell cycles. In the study evaluating aneuploid MEF cell lines, 

proliferation defects were only detectable after two days in culture and overall glucose 

consumption was measured after nine days (Williams et al., 2008). The developmental time-

frame in these experiments necessitated mid-blastocyst stage embryos to be evaluated just 

one day after the induction of chromosome segregation errors, and at a maximum of two 

and a half days in the case of late-blastocysts. Thus it is possible that the impact of the 

adverse culture conditions was only just becoming apparent at the late blastocyst stage. An 

aneuploidy stress -like response may become more significant as the embryo undergoes 

implantation, the time at which the epiblast experiences a rapid burst of proliferation 

(Snow, 1977). Interestingly, the difference was also noted during the time at which the 

metabolic demands of the pre-implantation embryo are known to increase dramatically for 

two reasons: the Na+/K+ ATPase-mediated transport of Na+ ions by TE cells required for 

blastocoel formation, and the onset of embryo growth requiring protein synthesis (Leese et 

al., 2008). 

A link between pre-implantation embryo metabolic activity and viability is well established, 

and has driven a search for metabolic biomarkers with the aim of improving the success of 

IVF. One study directly examined the association between amino acid metabolism and 

aneuploidy in human embryos (Picton et al., 2010). This study demonstrated significant 

differences in amino acid turnover between uniformly euploid and uniformly aneuploid 

embryos (as defined by FISH), but not in mosaic embryos. Given the high prevalence of 

aneuploidy in human embryos, the lack of publications directly comparing the metabolic 

profiles between euploid and aneuploid embryos is surprising. Perhaps this may reflect the 

minimal impact of aneuploidy on metabolism during the pre-implantation stages of 

development. 

 

4.4.2 Investigating the DNA damage hypothesis 
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Investigation of the DNA damage hypothesis was not straightforward and required further 

evaluation of the DDR in the pre-implantation embryo before the original hypothesis could 

be addressed.  

The extensive basal H2AX foci detected in the pre-implantation embryo, together with the 

absence of nuclear 53Bp1 prior to the 8-cell stage, was unexpected. It was hypothesized 

that the absence of 53Bp1 might be due to the inadequate global methylation status of 

H4K20 as 53Bp1 recruitment to chromatin sites of dsDNA damage requires the 

dimethylation H4K20 (Botuyan et al., 2006). Indeed, evaluation of H4K20me2 status 

revealed that H4K20 was dimethylated only from the 8-cell stage onwards, consistent with 

this hypothesis. Beyond the 8-cell stage the distribution of 53Bp1 was consistent with 

H2AX, as would be expected if the foci were a result of the activation of the DDR pathway. 

Moreover, the distribution of an additional DDR factor, Mdc1, characterised for the first 

time in this study, was also found to show co-localisation with H2AX at all stages. These 

findings suggest that a basal constitutive activation of the DDR pathway occurs during 

apparently normal pre-implantation development in the cultured mouse embryo. 

Evaluation of the literature revealed a paucity of systematic characterisations of the DDR in 

pre-implantation embryos. However, one study identified was of particular relevance 

because it specifically characterised the distribution of 53Bp1 and H2AX throughout the 

pre-implantation mouse embryo in the absence of induced DNA damage (Ziegler-Birling et 

al., 2009). For H2AX this study revealed comparable, but not identical, findings to the 

results presented in this thesis. Similarly high basal levels of H2AX were described 

throughout all pre-implantation stages, likewise with the exception of the 2-cell stage where 

it was also shown that basal levels were minimal. Based upon the assessment of the H2AX 

levels (in the absence of phosphorylation) the authors concluded that the 2-cell stage-

specific reduction in H2AX was not secondary to reduction in the actual level of H2AX itself. 

The findings for 53Bp1 distribution were somewhat different than this thesis (Ziegler-Birling 

et al., 2009). In that study 53Bp1 was determined to be nuclear from the 2-cell stage with 

enrichment occurring from the 8-cell stage. From the morula stage and blastocyst stage, 

53Bp1 was identified only in the cytoplasm of the outer cells with complete exclusion from 

the inner cell population; a small minority of outer cells showed some nuclear 53Bp1 
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localisation. Further, there was minimal co-localisation of 53Bp1 with H2AX foci. The 

differences between this published study and the work presented in this theses are likely 

secondary to experimental variations. In the published study embryos were recovered fresh 

from natural matings, in contrast to this thesis where embryos were obtained following 

super-ovulation, and cultured in vitro from the 2-cell stage (with the exception of zygotes 

which were recovered fresh). Although it is possible that super-ovulation and in vitro culture 

may affect the distribution of H2AX and 53Bp1 this was deemed unlikely based upon pilot 

studies conducted during the course of this thesis; E3.5 blastocysts obtained following 

natural matings and in vivo culture were evaluated and appeared identical to the findings in 

the superovulated, in vitro cultured embryos. It is most likely that the source of most 

differences between the two findings lie in the imaging techniques, and for 53Bp1 the IF 

protocol. For the purposes of this study it was essential to optimise a stringent imaging 

regime that would later be used for quantitative analysis of DDR foci. As discussed in section 

4.3.3.3, during optimisation it was noted that the images were exquisitely sensitive to 

imaging conditions. Attempts to image throughout the entire 3D structure of the embryo 

were abandoned in favour of fewer, higher quality single planes, due to vast differences in 

images acquired from the same embryo between the upper and lower-most z-plane. In 

addition, to capture images of reasonable quality for the detection of well-defined foci, the 

application of averaging function was essential. Imaging for 53Bp1 was particularly 

demanding due to high levels of background noise; frame averages of 16 times were 

required to generate images of sufficient quality to clearly demarcate foci from background 

signal noise. Precise imaging details were not given in the published paper, however in all 

cases the images are presented as projections of serial z-stacks (Ziegler-Birling et al., 2009). 

However, despite some differences in overall findings both the published study and this 

thesis found the basal H2AX levels remarkable. Zeigler-Birling et al. speculated that their 

findings may be unrelated to DNA damage and instead be reflective of the genome-wide 

chromatin remodelling that occurs during the epigenetic reprogramming characteristic of 

pre-implantation development. This hypothesis is plausible and indeed the differences in 

DDR foci between ICM and TE lineages in this thesis from the blastocyst stage onwards were 

notable (as assessed by Mdc1 foci in the TE and ICM in section 4.3.4). Non DNA damage-

related populations of small H2AX foci have previously been described in cultured 
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mammalian cell lines (McManus and Hendzel, 2005). Their exact function remains 

speculative but is considered to be distinct from DNA damage due to the absence of other 

associated DDR factors. However, the detailed imaging protocol in this thesis revealed that 

the majority of larger H2AX foci in mouse blastomeres were associated with both Mdc1 

foci, and with 53Bp1 foci beyond the 8-cell stage (with the earlier absence due to the stage-

specific methylation status of H4K20). Therefore the co-localisation of H2AX with both 

53Bp1 and Mdc1 is highly suggestive of constitutive activation of the DDR pathway in the 

pre-implantation embryo, in the absence of externally induced DNA damage. However, 

whether this is a response to endogenously arising dsDNA damage or an alternative 

unknown trigger remains unclear. That the pre-implantation embryo genome may naturally 

be in a state of constant damage and repair seems unlikely. Unfortunately, a detailed 

investigation into these interesting findings was beyond the scope of this study. 

Despite these unexpected findings, a series of experiments exposing embryos to different 

doses of IR to induce dsDNA damage did confirm that embryos underwent the expected 

response of an increase in DDR foci and cell-cycle delay/ checkpoint activation. Therefore 

the DNA-damage hypothesis could be investigated.  

The experiments described in this chapter found no evidence to suggest that acute 

chromosome segregation errors occurring  in pre-implantation blastomeres resulted in DNA 

damage, either as a consequence of cleavage furrow-generated forces during cytokinesis 

(Janssen et al., 2011) or through defective replication and repair within the micronuclei 

(Crasta et al., 2012). It is possible that the high levels of DDR foci found within the pre-

implantation embryo may have masked small increases in DDR foci arising secondary to 

chromosome missegregation with the resolution of the imaging assay insufficiently sensitive 

to detect the difference. To exclude this possibility the effect on the cell-cycle was also 

evaluated, as dsDNA breaks result in activation of checkpoint kinases causing transient cell-

cycle arrest (Jackson and Bartek, 2009). Re-evaluation of the time-lapse imaging movies 

presented in the preceding chapter revealed no evidence of transient cell-cycle arrest in 

reversine-treated blastomeres at the 16- to 32 cell division (the first division following the 

induction of chromosome missegregation), compared to control blastomeres in chimeric 

embryos. 
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Thus there was no evidence of DNA damage arising as a consequence of chromosome 

missegregation errors in the pre-implantation embryo. Although these findings were in 

contrast to several studies in other model systems, as discussed in section 4.1, other studies 

have also failed to demonstrate the occurrence of DNA damage in association with 

chromosome missegregation (Burds et al., 2005, Thompson and Compton, 2010, Li et al., 

2010). In colorectal cancer HCT116 cells chromosome missegregation resulted in a p53-

mediated limitation of proliferation without any accompanying increase in H2AX foci 

(Thompson and Compton, 2010). Likewise, Li et al. also demonstrated a p53-mediated 

response to aneuploidy in SAC-inactivated MEF cells, resulting in poor proliferation and 

apoptotic cell death with no evidence of elevated H2AX foci (Li et al., 2010). Interestingly, 

this study also found elevated levels of ROS and increased glucose consumption similar to 

the findings in the chronic aneuploidy studies previously discussed (Torres et al., 2007, 

Williams et al., 2008). Finally, MEF cells derived from Mad2-/-p53-/- embryos also showed no 

increase in H2AX levels despite high levels of chromosome missegregation (Burds et al., 

2005). Therefore it is likely that different cell types respond to acute chromosome 

missegregation in different ways, with some more susceptible to DNA breakage than others. 

In those cells which do not accumulate DNA damage it is likely that other physiological 

responses contribute to the poor proliferation or elimination of aneuploid cells. Notably in 

these three studies that did not find any evidence of DNA damage, all demonstrated an 

important role for p53 in inhibiting the proliferation of aneuploid cells (Burds et al., 2005, 

Thompson and Compton, 2010, Li et al., 2010). The study by Burds et al. was of particular 

interest, as it showed that the early embryonic lethality in Mad2-/- embryos could be 

postponed by the additional deletion of p53  (Burds et al., 2005). As discussed previously in 

the Introduction chapter, it is most likely that the embryonic lethal phenotype is a direct 

consequence of aneuploidy arising due to SAC deficiency secondary to the absence of Mad2. 

It would be interesting to determine if the outcome of reversine-treated embryos would be 

any different if carried out on a p53 null genetic background. 

When micronuclei induced by reversine-treatment were specifically assessed for DDR 

factors it was noted that Mdc1 only co-localised with H2AX in 9% of cases, in stark contrast 

to the consistent co-localisation found within the main nuclei of both treated and control 

blastomeres. The deficient recruitment of DDR factors to DNA damage within micronuclei 
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has previously been described in cell culture studies and it has been proposed that this is a 

consequence of defective nucleo-cytoplasmic transport of DDR factors through the 

micronuclear envelope (Terradas et al., 2010, Terradas et al., 2012, Crasta et al., 2012). If 

micronuclei contain damaged chromatin this phenomenon could have a significant 

detrimental impact upon the genetic constitution of the cell as a result of ineffective DNA 

repair (Terradas et al., 2010, Terradas et al., 2012). Although there was no evidence of 

acutely arising DNA damage in micronuclei in this study, it is still possible that the lack of 

recruitment of Mdc1 to sites of H2AX may have a detrimental effect on the cell. This may 

be of particular relevance for cells that missegregate their chromosomes but do not become 

aneuploid, for example when a lagging chromosome segregates to the correct daughter cell 

but becomes encapsulated in a micronucleus and remains as a separate entity from the 

main nucleus. However, until the role of the high basal levels of DDR factors in the pre-

implantation embryo is established, it is not possible to determine exactly what that effect 

may be. 

 

4.4.3 Investigating additional potential causes of apoptosis within the ICM 

In the previous chapter it was shown that cells undergoing apoptosis within the ICM were 

significantly more likely to arise from the clone with a previous history of chromosome 

missegregation. However, 20% of the control ICM cells also underwent apoptosis. The 

occurrence of apoptosis within the ICM during blastocyst cavity expansion is well 

documented (Copp, 1978, Hardy et al., 1989). Although environmental factors such as in 

vitro culture and hyperglycaemia can increase the rates of apoptosis, it also occurs during in 

vivo development (Pampfer and Donnay, 1999). 

It is possible that cells within the control clone may also have harboured aneuploidies which 

were then eliminated by apoptosis. This hypothesis is currently under investigation in 

collaboration with Dr Thierry Voet and the results are awaited (May 2013). 

However, other hypotheses unrelated to aneuploidy have also been proposed to account 

for this phenomenon and these were investigated in a series of experiments. 
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Having developed an assay to evaluate DDR foci levels in pre-implantation embryos this 

assay was applied in order to determine if DNA damage could be a significant cause of ICM 

apoptosis in vitro cultured mouse embryos. There was a small but highly significant 

difference in the mean number of Mdc1 foci within the ICM of embryos cultured in the 

presence of an apoptosis inhibitor. Within the TE lineage the foci levels were comparable 

with controls. Evaluating the distribution of the number of foci per ICM cell within that 

apoptosis-inhibited group did not reveal a subpopulation of cells containing high levels of 

Mdc1 foci above which were not present within the control group; a finding which may have 

been expected if there was a threshold of damage above which cells underwent apoptosis. 

It was thus concluded that dsDNA damage itself is unlikely to be the major cause of ICM 

apoptosis, although it may be responsible for some limited instances.  

During these experiments it was also noted that a minority of embryos contained ICM cells 

expressing Cdx2 protein, a TE-specific transcription factor. If apoptosis was a means by 

which embryos eliminated ICM cells that retained the potential to differentiate into TE it 

was figured that apoptosis-inhibited embryos may harbour greater numbers of Cdx2-

positive ICM cells than controls. This was not found to be the case. This finding was in 

contrast to a previous study that investigated this hypothesis using a different experimental 

approach (Pierce et al., 1989).  Two different strains of murine embryonal carcinoma cells 

with differing TE-potentials were injected into the cavity of giant blastocysts (created by 

aggregating several embryos together), thus exposing the cells to blastocoel fluid. Injected 

cells derived from the clone with TE potential were significantly more likely to undergo 

apoptosis within the cavity than those without TE potential. However the relevance of these 

findings to the developing embryos is questionable due to the unphysiological experimental 

system used to investigate the hypothesis. It is possible that the experimental design of the 

study presented in this thesis was unable to detect all ICM cells with TE-potential, as it could 

be that some retain TE-potential without expressing Cdx2 or other TE-specific transcription 

factors. 

The work presented in the previous chapter represents the first study to demonstrate that 

apoptosis has a direct role in the elimination of aneuploid cells from the ICM lineage of the 

mammalian blastocyst.  Whether aneuploidy accounts for the majority of ICM apoptosis 

that is observed during unperturbed development remains to be determined. In the 
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absence of strong experimental evidence in support of other hypotheses accounting for ICM 

apoptosis in control blastocysts, the results of the ICM array-based karyotyping experiments 

conducted in control and apoptosis-inhibited ICM will be most enlightening.  
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CONCLUDING REMARKS 

 

The major aim of this thesis was to develop a mouse model for acutely arising diploid-

aneuploid chromosome mosaicism in the pre-implantation embryo. This model was then to 

be used to investigate the fate of abnormal cells within the developing embryo, and to 

determine the ultimate developmental potential of mosaic embryos.  

The work described in Results I characterised the development of a mouse model for 

acutely arising diploid-aneuploid chromosome mosaicism in the pre-implantation embryo. 

This is the first mouse model of its kind to be developed and offered a unique opportunity 

to probe the fate of abnormal cells and mosaic embryos during development. Research on 

human pre-implantation embryos is constrained by practical and ethical limitations, and 

there is a dearth of alternative models suitable for research. Given that in-vitro fertilization 

(IVF) is now a routine treatment option for sub-fertility, there is a pressing need for the 

development of relevant animal models. Moreover, using animal models bypasses the 

majority of ethical issues associated with human research; opening up the range of 

experiments that are possible. Additionally, the mouse offers unique advantages due to its 

relatively low research costs, the availability of large numbers of embryos, and the potential 

for genetic manipulation; characteristics that were exploited during this thesis. 

The work presented in Results Chapter II utilized this mouse model to explore the fate of 

chromosomally abnormal cells in mosaic embryos. Time-lapse imaging revealed that 

abnormal cells were progressively depleted from the pre-implantation embryo during 

blastocyst maturation. Moreover, it was directly demonstrated that inner cell mass (ICM) 

cells with chromosome abnormalities exhibited higher rates of apoptosis than controls, and 

that abnormal cells within the trophectoderm (TE) lineage were more likely to exhibit 

prolonged cell-cycle lengths or arrest. This study provides the first direct evidence that ICM 

cells containing chromosome abnormalities are subject to higher rates of apoptosis during 

pre-implantation development. The potential role of apoptosis in eliminating cells with 

chromosome abnormalities has frequently been speculated upon, but until now has never 

been demonstrated (Hardy, 1997, Pampfer and Donnay, 1999, Fabian et al., 2005). Taken 

together, these findings provide direct evidence for the clonal normalisation hypothesis 
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(section 1.3.4.3 and Figure 1.4), whereby the euploid clone of cells has an advantage over 

the abnormal clone ultimately resulting in depletion of the abnormal clones from the 

developing embryo. The depletion of abnormal clones from the embryos emerged during 

the maturation of the blastocyst; however the majority of depletion occurred following 

implantation. These results suggest that the early pre-implantation embryo is relatively 

tolerant of chromosome abnormalities and that regulation occurs pre-dominantly at or after 

implantation. The post-implantation studies confirmed on-going depletion of abnormal 

clones as development proceeded.  

The unique application of time-lapse imaging technology also demonstrated directly that 

there was no evidence to support the hypothesis that aneuploid cells are preferentially 

allocated to the TE-lineage during pre-implantation development (section 1.3.4.3 and Figure 

1.4); a finding that added support to previous observational studies in the human embryos 

that had provided indirect evidence against this hypothesis (Evsikov and Verlinsky, 1998, 

Magli et al., 2000, Derhaag et al., 2003, Johnson et al., 2010, Northrop et al., 2010). In 

addition, the time-lapse imaging experiments evaluating the development of diploid-

tetraploid mosaic embryos demonstrated that tetraploid cells behave altogether differently 

from aneuploid cells; tetraploid cells were preferentially allocated to the TE lineage through 

the increased frequency of symmetric divisions at the time of the first cell-fate decision in 

cleavage stage embryos. The fate of tetraploid cells in diploid-tetraploid mosaic embryos 

has been cited as evidence for the development of confined placental mosaicism (CPM) 

(Mackay and West, 2005). Given that the cells in CPM are aneuploid rather than tetraploid, 

the findings of this study demonstrate conclusively that diploid-tetraploid mosaicism is not a 

suitable model for CPM. Moreover, if next generation pre-implantation genetic screening 

(PGS) approaches are to focus on blastocyst (and hence TE) biopsy, this study adds further 

evidence that the chromosome status of the TE cell is representative of the ICM lineage. 

A key finding in Results II was the rescue of embryonic lethality by the presence of control 

blastomeres within the pre-implantation embryo, with the effectiveness of rescue 

determined by the number of control blastomeres present. Based on these results it was 

hypothesized that the presence of chromosomally abnormal cells may act as ‘carrier cells’ 

that actually serve to maximise the developmental potential of the mosaic embryo by 

increasing the likelihood that the epiblast population attains the critical number of euploid 
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cells required for on-going development. It is speculated that this finding may be of clinical 

significance when viewed in the context of embryo biopsy and PGS, and potentially an 

underlying cause of why cleavage stage embryo biopsy was found to detrimental to IVF 

success rates in couples with a poor prognosis for IVF (Twisk et al., 2006, Mastenbroek et al., 

2007). This finding also adds additional support for the current sea-change away from 

biopsy at the cleavage stage towards blastocyst biopsy, when removal of cells has less 

impact on the overall constitution of the embryo.  

Results III focused on identifying the potential mechanisms underlying the elimination of the 

chromosomally abnormal cells from the developing embryo. No such study has previously 

been undertaken in the pre-implantation embryo. Therefore hypotheses were proposed 

based upon a review of published literature investigating aneuploidy in the context of 

cancer, and focussed on the potential role of an ‘aneuploidy stress response’ or the 

possibility of acutely arising  double-stranded DNA (dsDNA) damage following chromosome 

missegregation (section 4.1 & Figure 4.1). This study found no evidence of activation of the 

DNA damage response (DDR) following chromosome missegregation in embryos and thus 

this hypothesis was rejected. However, during investigation of the DNA damage hypothesis 

it was found that there was a degree of basal activity of the DDR pathway in the pre-

implantation embryo in the absence of externally arising DNA damage. This finding was 

unexpected and it remains unknown if this activation was related to underlying DNA 

damage or an alternative, as yet undermined, reason. 

A detailed study of the aneuploidy stress response was constrained by the limited 

developmental time-frame and the small number of cells in pre-implantation embryo. 

However this study revealed that embryos harbouring increased levels of aneuploidy 

(induced by reversine treatment) fared less well than control embryos, when cultured in 

media with fewer energy sources, as determined by a small but significant depletion in their 

cell number during blastocyst cavity expansion. This suggests that aneuploidy arising during 

pre-implantation development may result in increased metabolic demands, similar to the 

characteristics of the aneuploidy stress response. If so, it is likely that these effects may 

accumulate over time and manifest as poor proliferation. Implantation is associated with a 

burst of cellular proliferation and thus increased energy requirements. This study found that 

the embryonic lethality associated with reversine treatment (and thus aneuploidy) occurred 
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at the peri- / early post-implantation stage of development; notably coinciding with the time 

of rapid proliferation and growth in the embryo.  Thus it is possible that the impact of the 

metabolic consequences of aneuploidy is minimal during pre-implantation development, 

and perhaps explains why a firm link between aneuploidy and metabolic imbalances has 

never been established in the human embryo. Recently, significant progress has been 

achieved in establishing in vitro culture systems and consequently improving accessibility to 

embryos at the time of implantation (Morris et al., 2012a). In the future the application of 

such in vitro culture systems may provide the opportunity to investigate this hypothesis in 

greater detail. 

Overall the development of a novel mouse model for pre-implantation diploid-aneuploid 

mosaicism in this thesis has enabled valuable insights to be gained for the first time into the 

developmental outcomes and consequences of mosaicism. Such studies would not be 

possible in the human embryo, and to date have not been conducted in other mammalian 

embryos. The direct findings of this thesis are in keeping with indirect observational 

evidence gained from studies in human embryos, most notably that aneuploid cells become 

depleted from the embryo as development progresses from the cleavage to blastocyst stage 

(Evsikov and Verlinsky, 1998, Clouston et al., 2002, Coonen et al., 2004, Santos et al., 2010, 

Johnson et al., 2010, Capalbo et al., 2012), that aneuploid cells are not preferentially 

allocated to the TE lineage (Evsikov and Verlinsky, 1998, Magli et al., 2000, Derhaag et al., 

2003, Johnson et al., 2010, Northrop et al., 2010) and that the diploid-aneuploid mosaic 

embryos can be associated with full developmental potential (Vanneste et al., 2009, 

Mertzanidou et al., 2013). In addition, the findings in this study were also consistent with 

those in mouse embryo models of chromosomal instability (CIN) (Kalitsis et al., 1998, 

Howman et al., 2000, Kalitsis et al., 2000, Dobles et al., 2000, Putkey et al., 2002, Wang et 

al., 2004a, Lightfoot et al., 2006, Jeganathan et al., 2007, Iwanaga et al., 2007), and shared 

characteristic features associated with aneuploidy in cultured cells lines including poor 

proliferation and apoptosis (Thompson and Compton, 2010, Li et al., 2010).  

However, a notable key difference between the mouse and human embryos was the finding 

that the induction of aneuploidy in the mouse embryo did not result in increased rates of 

arrested development or abnormal morphology such as fragmentation and irregular 

blastomere size; features typically associated human embryo development. One recent 
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publication utilized time-lapse imaging to study the developmental characteristics of human 

embryos from the zygote to the 4-cell stage (Chavez et al., 2012).  This study reported high 

levels of cellular fragmentation, often arising during interphase, amongst embryos that were 

found to be aneuploid when evaluated at the 4-cell stage. Many of these fragments 

contained chromatin. Cellular fragments exhibited a range of different dynamics as 

development proceeded; some remained as fragments, some re-adsorbed into their 

blastomere of origin, while others fused with neighbouring blastomeres. Based upon these 

findings, the authors proposed that fragmentation may occur as a response to acutely 

arising aneuploidy in the human embryo and speculated that this phenomenon could be a 

survival mechanism. In brief, their hypothesis proposed that the embryo responds to 

misaligned or lagging chromosomes that arise during mitosis by encapsulating the 

chromosome within a micronucleus that then forms a cellular fragment. The cellular 

fragment may resorb during interphase and thus restore the ploidy status of the blastomere 

back to normal. If resorption does not occur or if the fragment fuses with the wrong 

blastomere the result will be the generation of complex aneuploidies and compromised 

development (Chavez et al., 2012). However, cellular fragmentation is not a typical response 

to acutely arising aneuploidy secondary to lagging chromosomes or abrogation of the 

spindle assembly checkpoint (SAC) in a range of human or mouse cell culture lines. Likewise, 

the pre-implantation mouse embryos studied in this thesis did not exhibit fragmentation 

following the induction of high levels of chromosome missegregation, consistent with the 

mouse models of CIN (Kalitsis et al., 1998, Howman et al., 2000, Kalitsis et al., 2000, Dobles 

et al., 2000, Putkey et al., 2002, Wang et al., 2004a, Lightfoot et al., 2006, Jeganathan et al., 

2007, Iwanaga et al., 2007). Consequently, until more direct experimental evidence is 

presented, the hypothesis proposed above remains speculative (Chavez et al., 2012). An 

alternative hypothesis may be that aneuploidy arises as an indirect consequence of a yet 

uncharacterized aberration in the human embryo that itself could be responsible for high 

rates of embryo arrest and blastomere fragmentation that ultimately contributes to the 

poor success rate of IVF.  

Thus while the mouse model developed in this thesis has provided new and valuable 

insights into the developmental fate of diploid-aneuploid mosaic embryos, there is still a 

clear necessity for additional models to be developed in order to dissect the underlying 
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causes for responsible for aneuploidy, fragmentation and embryo arrest. More research on 

non-murine mammalian embryos that share greater similarities with the human, such as the 

cow or non-human primates, may be further enlightening. Given that IVF treatment is now 

increasingly offered as routine treatment option for couples experiencing subfertility 

throughout the world, the need for such research is even greater now than ever before.
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