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Abstract 
 
This article assumes general stationary processes for prices and derives the autocorrelation 
function for a general Moving Average (MA) trading rule to investigate why this rule is used. 
The result shows that the MA rule is popular because it can identify price momentum and is a 
simple way of tracing and exploiting price autocorrelation structure without necessarily 
knowing its precise structure. We focus on analyzing the impact of price momentum on the 
profitability of the MA rule because the price momentum effect tends to be stronger and more 
persistent than the return momentum effect. 
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1	Introduction	

 

While fundamental analysts study a company’s underlying indicators of profit such as 

earnings, dividends, new products and R&D, technical analysts focus mainly on price and 

return but, unwittingly or otherwise, also take into account psychological aspects in the 

demand for a company’s stock. Technicians employ many techniques, one of which is the use 

of charts. Using charts, technical analysts seek to identify price patterns and market trends in 

financial markets and attempt to exploit these patterns. Traders and portfolio managers 

continue to use technical analysis that forecast stock price movements using historical prices 

to formulate buy and sell decisions. Momentum is an active research topic and recent studies 

include Grinblatt and Moskowitz (2003), Choria and Shivakumar (2006), Sadka (2006), Zhu 

and Zhou (2009), Hou, Karolyi and Kho (2011), Marx (2012), Fama and French (2012), 

Moskowitz, Ooi and Pedersen. (2012, MOP hereafter), Bajgrowicz and Sxaillet (2012) and 

Menkhoff, Sarno, Schmeling and Schrimpf (2012). Some earlier studies suggest that 

technical analysis beats the market in risk neutral terms, hence its popularity. 

One of the simplest and most widely used trading strategies based on technical 

analysis is the Moving Average (MA) rule. It is an objective rule-based trading strategy in 

which buy and sell signals are determined by the relative magnitudes of short and long term 

MAs. An objective rule-based trading system has well-defined and indisputable buy and sell 

signals following a decision rule based on past data. There are a number of published papers 

on MA rules including Acar and Satchell (1997), Chiarella, He and Hommes (2006) and 

Menkhoff (2010). The MA rule often leads investors to invest with or against the trend, or 

momentum since it assumes that prices trend directionally. It takes advantage of price trend, 

which is closely linked with the rather nebulous idea of price momentum. (Price) Momentum 

is defined by existing literatures as the product of the relative prices over the holding period 

and a past winners strategy is to buy the top n-th of stocks with this characteristic in a 

portfolio. A careful reading of the momentum literatures fails to find clarification over 

whether momentum is present when the price of the asset follows (a) a random walk (b) a 

random walk with drift or (c) a mean reverting process around a linear trend. The issue is 

further complicated by different treatments for prices, returns and earnings. One of the 

purposes of this paper is to try and understand the time series basis of a momentum strategy.  

 Unlike other momentum literatures that focus on the relative performance of 

securities in the cross-section, we emphasize that this paper intends to investigate time series 
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momentum, the momentum within an asset price process. MOP also look at time series 

momentum and argue that time series momentum directly matches the predictions of many 

prominent behavioral and rational asset pricing theories. Barberis, Shleifer and Vishny (1998), 

Daniel, Hirshleifer and Subrahmanyam (1998), and Hong and Stein (1999) all focus on a 

single risky asset, therefore having direct implications for time series, rather than cross-

sectional, predictability. Like-wise, rational theories of momentum (Berk, Green and Naik 

1999; Johnson, 2002; Ahn, Conrad and Dittmar, 2003; Sagi and Seasholes, 2007; Liu and 

Zhang, 2008) also pertain to a single risky asset. Time series momentum focuses purely on a 

security’s own past process. MOP investigate 58 liquid instruments of equity index, currency, 

commodity, and bond futures and find it exists in all assets.  

We assume general stationary processes for prices and derive the autocorrelation 

function for a general MA rule. We focus on analysing the impact of price momentum, 

instead of returns or earnings momentum, on the profitability of the MA rule because (1) 

most of, if not all, trading rules using technical analysis are based on past prices, and (2) the 

price momentum effect tends to be stronger and longer-lived than the return momentum 

effect. There exists another type of price trend besides the time series and cross-section 

momentum discussed, however. Equity prices tend to show a long run market-wide trend. 

This can be due to inflation or other economic conditions. We define this market-wide trend 

by the parameter, μ. We remove the market-wide trend from our price process in order to 

focus on price momentum only. 

This paper presents a simple and straightforward evaluation of the MA rule with one 

investor and one asset. We find that that there are two reasons why the MA rule is popular. 

First, the MA rule can identify the price momentum (trend), which comfortably confirms the 

results of the previous momentum literatures. Second, the MA rule is a simple way of tracing 

and exploiting the price autocorrelation structure without actually knowing its structure. It is 

very hard, if not impossible, to know the real structure of the price autocorrelation of an asset. 

The MA rule provides a simple and clear methodology that can take advantage of the price 

autocorrelation structure. The main contribution of this paper is that we suggest two reasons 

why the technical trading strategy, or Chartism, is popular and this leads to price 

autocorrelation.  

Our finding of the autocorrelation structure of the trading rule used in this study 

directly matches the findings of many prominent behavioral and rational asset pricing 

theories. For example, if a conservatism bias exists in a market, the MA rule would be 
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profitable. A conservatism bias indicates that investors are too slow (too conservative) in 

updating their beliefs in response to recent evidence. This means that they might initially 

underreact to news about a firm, meaning that prices will fully reflect new information only 

gradually. Such a bias would give rise to momentum (price autocorrelation) in the stock 

market. Using AR (1) and MA (1) processes, we take the discussion away from short term 

price trend continuation or long term price reversal. In short, it is not just about buying past 

losers or winners but is also about price trends and the autocorrelation structure. This paper 

does not intend to explain all the reasons for predictability nor does it attempt to explain why 

arbitrage fails to eliminate mispricing.  

The contribution of the paper is clear.  

 

1. Unlike previous literatures that mainly investigate cross sectional momentum among 

various equities, this paper investigates time series momentum. The result suggests 

that momentum trading strategy is popular not only because it takes advantage of 

trend within the times series data but also because it amplifies the autocorrelation. 

This shows that a time series momentum trading strategy is a simple way of 

conditioning on past price information.  

 

2. The paper further investigates the structural change of autocorrelation to identify the 

pattern of the amplification. This is important because such increase in autocorrelation 

is not captured by the standard risk measures such as VaR. The paper provides a 

guideline of how much amplification is occurring. In this respect, the result of the 

paper has risk management policy implication.  

 

3. The paper also provides theoretical justification to wide use of longer period MA for 

price momentum and shorter period MA for return momentum.  

 

This paper could be seen as an extension of MOP in that it investigates another aspect of time 

series momentum, its autocorrelation structure. The current study therefore expands our 

knowledge of time series momentum. The result has risk management and regulatory policy 

implications. It reports un-captured potential source of risk in one of the most popular trading 

strategies. 
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The rest of the paper is organized as follows. Section 2 explains times series 

momentum, the trading rule and how it is related to price momentum. Section 3 presents the 

general model. Section 4 shows the autocorrelation structure of the trading strategy. Section 5 

presents empirical evidence and Section 6 concludes the paper. 

	

2	Backgrounds	

 

2.1 Time Series Price Momentum and Technical Trading Rule 

 

Empirical studies of technical analysis, including Brock, Lakonishok and LeBaron (1992), 

Blume, Easley and O’Hara (1994), Chan, Jegadeesh and Lakonishock (1996), Brown, 

Goetzmann and Kumar (1998), Allen and Karjalainen (1999), Chan, Hameed and Tong 

(2000), Lo, Mamaysky and Wang (2000) and Hou, Karolyi and Kho (2011) focus on the 

relative performance of securities in the cross-section. Many literatures find that such cross 

sectional model works very well. However, Lewellen, Nagel and Shanken (2010) argue that 

the empirical methodologies used in cross sectional asset pricing literatures are often highly 

misleading, in the sense that apparently strong explanatory power (high cross-sectional R2s  

and small pricing errors) can provide quite weak support for a model. There is another kind 

of momentum that could be investigated, time series momentum. MOP argue, “Time series 

momentum is the momentum within asset price process. It is related to but different from the 

phenomenon known as ‘momentum’ in the finance literature, which is primarily cross-

sectional in nature. The momentum literature focuses on the relative performance of 

securities in the cross-section, finding that securities that recently outperformed their peers 

over the past three to 12 months continue to outperform their peers on average over the next 

month. Rather than focus on the relative returns of securities in the cross-section, time series 

momentum focuses purely on a security’s own past return.” 

In this paper, we investigate a technical trading strategy based on this time series 

momentum with the focus on the autocorrelation structure of the trading strategy. Technical 

trading rule takes advantage of Time Series Momentum. In support of MOP, we also find that 

our result is consistent with initial under-reaction and delayed over-reaction stories. We 

employ and expand the definition of the MA oscillator by Brock, Lakonishock and LeBaron 

(1992), which states: “According to the moving average trading rule, buy and sell signals are 
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generated by two moving averages of the level of the index – a long-period average and a 

short-period average. In its simplest form this strategy is expressed as buying (or selling) 

when the short-period moving average rises above (or falls below) the long-period moving 

average.  

The idea behind computing moving averages it to smooth out an otherwise volatile 

series. When the short-period average exceeds the long-period moving average, a trend is 

considered to be initiated. A very popular moving average rule is 1-200, where the short 

period is one day and the long period is 200 days. While numerous variations of this rule are 

used in practice, we attempted to select several of the most popular ones: 1-50, 1-150, 5-150, 

1-200, and 2-200.” However, we can also take into consideration the flip side of the strategy, 

where we buy when the short-period MA falls below the long-period MA and we sell when 

the opposite happens.  

Let l stand for the time period that the MA is computed for a long position and s for 

the time period that the MA is computed for a short position. Hence s > l and they overlap. 

Denote SMA as MA computed over time period s and LMA as MA computed over time 

period l. For example at time t, if s = 7 and l = 3, then SMA is computed over time t – 6 to t 

and LMA is computed over time t – 2 to t. We classify two opposite MA rules with SMA and 

LMA, MAbull(l,s) and MAbear(l,s), and define the MAbull(l,s) rule as taking a long position 

in the asset when SMA > LMA and as taking no position in the asset when SMA < LMA and 

MAbear(l,s) rule does the opposite. 

 

Definition 1: The MAbull(l,s) and MAbear(l,s) position can be represented as 

 

 0),(max),( tslMAbull    0),(1max),( tslMAbear   
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The logic behind the MAbull rule is well known, when a price penetrates the MA from 

below, the bull trend is believed to be established and a trader wants to take advantage of this 
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in the expectation that there will be further upward movements in prices. The MAbear rule 

tells us the opposite story, known to practitioners as short term price reversal. When the price 

falls enough to penetrate the MA from above, this might be due to market over-reaction; 

hence a trader would take a long position, expecting that the price would bounce immediately 

back. 

The relationship between the MA rule and price momentum is well explained in Fong 

and Yong (2005). “In the simplest form, a MA crossover rule operates on the assumption that 

buy signals are generated when the current stock price crosses its moving average from below 

while sell signals are generated when the stock price crosses its moving average from above. 

The rationale for this interpretation is that a trend is said to have emerged when the stock 

price penetrates the moving average. Specifically, an upward (bullish) trend emerges when 

the price rises above its moving average, while a downward (bearish) trend emerges when the 

price falls below its moving average.” Therefore, the MAbull rule takes advantage of the 

bullish trend while the MAbear rule takes advantage of the bearish trend. MAbull strategy 

can be thought as buying a past loser because it takes a long position when the asset price is 

relatively low and liquidates the position when the asset price is relatively high. 

 

2.2 Momentum Definition and a Statistical Model 

 

Hong and Satchell (2012) consider the process  

 

)1()()()( tdWdttqtdq    

 

where ttPtq  )(log:)(  

 

With the Ornstein Uhlenbeck process above, they investigate the definition of momentum 

proposed by Achelis, momentum can be interpreted as the sensitivity of the expected price 

ratio with respect to today’s price. If this sensitivity is positive then there is a bullish 

momentum and if negative there is a bearish momentum. Proposition 1 of Hong and Satchell 

(2012) shows the log conditional population momentum with respect to pervious period’s log 

price. They note that for log OU, momentum is about autocorrelation. Equation (3) shows 

that when the price process is mean reverting, the elasticity of momentum is negative while it 

is positive if the price is explosive. This is exactly what we would anticipate. In other words, 



8 

given the high past price, the future price is low if the price process reverts around a mean but 

the future price is high if the price process is explosive. If we were to interpret efficient 

markets as a log random walk with drift, then the elasticity would become zero. Finally, the 

elasticity is independent of the trend. 

 

2.3 Clarification of Notation 

 

We employ a great deal of notations in this paper. Some only differ in super and sub scripts, 

some are context specific. For example,   with or without super and subscripts stand for a 

covariance matrix.   stands for the covariance matrix of current de-meaned price process, 

m  stands for the covariance matrix between the current and m-period lag de-meaned price 

process and T  indicates the covariance matrix of the trading strategy critical value. We 

include a glossary in Appendix A1 to help readers. 

 

3	The	Model	

 

3.1 General Model 

 

Let the de-meaned log price process ttPtq  )(log)(  has distribution  2,0~)( tq . Also 

denote the autocorrelation between )(tq  and )( htq   as )(hA . Since we are using log prices, 

it would be sensible to use geometric price MAs which are equivalent to arithmetic log price 

MAs. 
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Under such a framework, the return at time t is defined as 

 

)3()1(log)(log)1()(  tPtPtqtq  
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Definition 2: The critical value of a MA(s,l)) rule is defined as 
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The derivation of definition 2 is in Appendix A2. Take a long position if C(s,l;t)  becomes 

more than 1 and liquidate the position if C(s,l;t) becomes less than 1. When the MA rule is 

applied based on a positive trending price process, the exit point (where the manager 

liquidates a long position due to the current price penetrating the MA from above) will 

always be higher than the entry point hence the return is always positive. However, the 

manager is simply picking up the price trend and the same return can also be made with a buy 

and hold strategy. This is less interesting. The importance of the autocorrelation within a 

financial time series is also noted in MOP, as they state “We find that positive auto-

covariance in our futures contracts’ return drives most of the time series and cross-sectional 

momentum effects we find in the data. The contribution of the other two return components – 

serial cross-correlations and variation in mean returns – is small”. In order to separate the 

impact of momentum from the market-wide trend, we use the detrended log price, which also 

has useful statistical properties for estimation. The ‘detrended’ MA rule also has a simple 

price interpretation as shown below. Since MAbear rule is simply the opposite of the MAbull 

rule, we only look at the MAbull hereafter. However the MAbear rule would be useful as one 

of benchmarks in evaluating the profitability of MAbull rule. 

Assuming stationarity in the second moments, the bivariate distribution of C(t) and 

C(t-1) can be expressed as, 
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where    is the (s × s) covariance matrix of Q(t) and C  is (s × s) covariance matrix 

between Q(t) and Q(t-1). For now, we do not assume anything about the covariance matrix 

but simply note that the autocovariance is not zero. 

 

Lemma 1: The MAbull (l,s) rule based on a detrended log price is equivalent to buying a unit 

of an asset when 
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The derivation of Lemma 1 is in Appendix A3. Under our log Ornstein Uhlenbeck 

assumptions, C(s,l;t)  has a log normal distribution. 

 

 )('exp);,( tQwtlsC    wwNtQw ',0~)('  

 

Although we apply this model to the price process only, the application of the model does not 

need to be restricted to the price process only. It can also be applied to returns or earnings or 

to any process that would have time series momentum (autocorrelation / trend). This point 

will be discussed again later in the paper. 

 

3.2 The Profitability of the MA Rule 

 

Before we discuss the profitability, we have to emphasize that this paper does not intend to 

investigate the profitability of the MA rule. The only reason that we discuss the profitability 

is because it helps to investigate the transition vector of the critical value, C(s,l;t)  

distribution. However we do not wish to get into a full length discussion of the profitability of 

the trading rule, which is not the main topic of interest in this paper. We plan to investigate 

this topic in a separate study. This point will be emphasized again when we perform 

empirical investigations. 

 

Definition 3: Define );,( tls  as 
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Remark 1: The unconditional and conditional probability of );,( tls  taking the value of 1 

under normality in prices can be expressed as  
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where )1(T : the first order of the trading strategy autocorrelation and

)1()1(' 1   tSMAqtQw t . 

 

The proof of Remark 1 is in Appendix A4. 

 

Proposition 2: The h period return from the MAbull rule from time k, ),( khkrT   can be 

expressed as 
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where ),;,( khklsrT   is the h period return from the MAbull rule from time k to time k+h, 

given s and l. ),( khkrA   is the h period asset return from time k to time k+h . If 

),(),( khkrkhkrT  , then the MA rule is profitable. This is only possible if   is more 

likely to take a value of 1 when the asset return is positive. This provides with us a condition 

that would make the MAbull rule profitable. If 0)1( T  and 0 , the conditional 

probability of  being equal to one larger than 0.5 when 1 tt qq , hence the MAbull rule is 

profitable. 
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Analytically analyzing equation (8) is too complicated hence simulation would be 

useful. We noted that price autocorrelation is important in determining the conditional 

probability of );,( tls . Thus an assumption regarding price autocorrelation needs to be made 

and we assume that the asset price follows the AR(1) process. We use Goldman Sachs (GS) 

data from May 4, 1999 to May 31, 2011 for estimation. There is no special reason for 

selecting such data and time period. The estimation is only to locate some sensible 

parameters. The simulation process is summarized in Appendix A5. This paper is concerned 

with price (level), which tends to have very high autocorrelation. Hence an investigation of 

high level autocorrelations would be more meaningful. For convenience, we examine the 

MA(1,10) rule. 

 

Table 1: Simulated profitability of the MA(1,10) rule when asset price follows an AR(1) 

process for ρ = 0.99, 0.925, 0.995, 0.9975 and under normality 

 

 

Table 1 presents the simulated results. The error terms are simulated to have a normal 

distribution. The simulated result shows that the conditioning on previous price information 

affects the profitability of the trading strategy when there is positive price autocorrelation. 

The MAbull rule outperforms the other strategies because there is a positive trend in the 

simulated log price process hence   5.01);,(   tlsprob when the asset return is positive. 

This confirms the results of previous literature including Fong and Yong (2005) and is what 

we exactly anticipated. The result also highlights that the degree of autocorrelation affects the 

performance of the trading strategy as well.  

The portfolio position is determined by the sign of C(s,l;t), therefore a further 

investigation of C(s,l;t) transition with respect to time would be meaningful. To gain insight 

into the properties of the MA(1, s) rule, we calculate a transition matrix for C(s,l;t). This 

calculates different values for the autocorrelation probability of C(s,l;t) that is how it changes 

from one sign to the other. If the price process was random and symmetric, this would be a 

quarter in all regions. 

Annual Profit

Rho 0.9900 0.9925 0.9950 0.9975

MA bull 13.19% 13.45% 13.94% 15.09%

MA bear ‐15.54% ‐15.01% ‐13.92% ‐11.73%

Buy and Hold 1.79% 2.40% 3.55% 6.54%
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Table 2: C(s,l;t) Transition Vector of the Simulated Results of the MAbull(1, 10) rule 

 
* R1: C(t-1) > 0 and C(t) > 0 R2: C(t-1) > 0 and C(t) < 0 

   R3: C(t-1) < 0 and C(t) > 0 R4: C(t-1) < 0 and C(t) < 0 

 

The probabilities of region 2 and 3 should be symmetric by the construction of the MA rule. 

When C(s,l;t) is in Region 1, the MAbull rule is likely to be profitable while when it is in 

Region 4, the MAbear rule is likely to be profitable. When in Region 2 (3), the MAbull rule 

will take (liquidate) a position in an asset and the MAbear rule will liquidate (take) a position 

in an asset. With a positive trend and autocorrelation in price, we see that the asset is more 

likely to be in Region 1 than in Region 4, which explains why the MAbull rule makes the 

most profit. The probability of Region 1 increases as price autocorrelation increases, which 

also corresponds to what we have stated previously. The larger the magnitude of the positive 

autocorrelation, the longer the positive trend will remain, hence both the MA (both bull and 

bear) rules should be more profitable. This is also shown in Table 2. 

 

4	Autocorrelation	

 

From the model, more specifically from equation (7), and the simulated results we have seen 

that price autocorrelation is an important factor in the profitability of the MA rule. Hence this 

section investigates autocorrelation of the trading strategy. 

 

4.1 General Autocorrelation Structure 

 

Let )(kA  be the asset price autocorrelation in log prices between k periods. Then the 

covariance matrix between Q(t) and Q(t-m), m , can be expressed as 

 

0.99 0.9925 0.995 0.9975

R1(+,+) 44.44% 45.25% 49.60% 54.04%

R2(+,‐) 7.68% 8.89% 9.49% 7.37%

R3(‐,+) 7.58% 8.99% 9.60% 7.47%

R4(‐,‐) 40.30% 36.87% 31.31% 31.11%
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1)0( A  and )()( kk AA    since we assume stationarity in second moments. Note that 

  is a covariance matrix of Q(t), which is a vector of q(i) values (i = 1 … t). m  is a 

covariance matrix between Q(t) and Q(t-1). 

 And the covariance matrix between C(t) and C(t-m), T
m , can be expressed as 
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Proposition 3: The variance for C(s,l;t) and the covariance between C(s,l;t) and C(s,l;t-m) 

can be expressed as 
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where 





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sl
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11
 and 
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
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s
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Proof of Proposition 3 is in Appendix A6. When the MA rule is practically applied, managers 

often take the shorter time period as 1 (l =1). When l = 1, it is referred to as the “MA 

crossover rule”. This case can be treated as a special case since it makes the equation 

significantly simpler by getting rid of the first of both double summation terms. 

 



15 

Remark 2: The m-th order autocorrelation between C(t) = w’Q(t) and C(t-m) = w’Q(t-m), 

when l = 1, ),,1( msT , can be expressed as  
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The proof of Remark 2 is omitted. Calculation check of Remark 2 is performed with 

simulated result and is included in Appendix 7. 

 Choosing a particular MA(l,s) rule depends upon the autocorrelation properties of prices. 

When s is fixed, ww '  is a constant. Therefore for s > l, the sensitivity of trading strategy 

autocorrelation with respect to m is 
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It may well be reasonable to design optimal properties. We do not pursue this further but 

instead look at the links between the Autocorrelation Function (ACF) of the MA rule and 

some simple time series models. 

 In the next two sections, the autocorrelation structure of the 1 – 10 strategy is investigated. 

Equation (9) is computed m = 30 and A  incrementing from 0.05 to 0.95 with an interval of 

0.05. 
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4.2 Investigation with an AR(1) Price Process  

 

This section investigates the linkage between technical trading rule and the stochastic process. 

Assume that the de-meaned price q follows an AR(1) process. 

 

)11()()1()1()( ttqtq A  
 

 1,0~ N  
 
Then the expected value, variance, m-period autocovariance and autocorrelation of this 
process is well known. 
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Note that 2 stands for the variance of q(t) and )(mA  stands for the m-period 

autocorrelation. The assumed error term is distributed with a variance of 1. The covariance 

matrix between Q(t) and Q(t-m), m , can be expressed as 
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Using this result and Remark 2, we can derive the m-th order autocorrelation between the 

critical values. 

 
Remark 3: The m-th order autocorrelation between C(t) = w’Q(t) and C(t-m) = w’Q(t-m), 

when l = 1 and q(t) follows Equation (11), ),,1( msT , can be expressed as  
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The proof of Remark 2 is omitted. This is a direct result of Remark 2. Comparing equation 

(12) with )(mA  gives us exact magnitude of autocorrelation amplification under the AR(1) 

price process framework.  

 

Proposition 4: The difference between m-th order MA trading strategy (l=1) autocorrelation 

and m-the order de-meaned asset price autocorrelation can be expressed as  
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The proof of Remark 2 is in Appendix A8. Note that s > 3 should hold to make equation (13) 

meaningful, which is a reasonable assumption to make. For )(mA  > 0, the sign of equation 

(13) depends on the term  
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Figure 1 shows the MA(1,10) rule autocorrelation structure under AR(1) asset price 

autocorrelation and asset price autocorrelation structure when asset price follows AR(1) 

process with 0.5 first order autocorrelation. 
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Figure 1: Trading Strategy, MA(1,10) Rule, Autocorrelation Structure vs. Asset Price 

Autocorrelation Structure when the Asset Price Follows an AR(1) Process with 0.5 First 

Order Autocorrelation – First 30 Lags 

 
x – axis: lag time period, m y – axis: autocorrelation 

 

Figure 1 is consistent with behavioral literatures in that the ACF of the MA rule shows initial 

under-reaction and delayed over-reaction or price reversals. We can see that the 

autocorrelation amplification of the trading strategy, compare to the underlying asset price, 

occurs when price reversal happens. This seemingly behavioral result is driven without 

assuming any behavioral aspect in determining asset price process. This might suggest that 

such initial under reaction and price reversal might be a product of the underlying security’s 

autocorrelation structure and the trading rules adopted by market participants. This would be 

an interesting future research topic. 

 

4.3 The MA(l,s) vs. Price Autocorrelation 

 

The benefit of calculating the autocorrelation functions of the MA(l,s) rule, ),,( mslT , is that 

we can see if the imposition of the rule leads to an increase / decrease in autocorrelation in 

‐0.25

‐0.15

‐0.05

0.05

0.15

0.25

0.35

0.45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Trading Strategy Asset



19 

the money amounts associated with trading. To do this we need an overall measure of 

autocorrelation and a natural one is the sample statistics analogue to  

 Ljung-Box measure. We will use sum of squared autocorrelation and call it LB. Hence 

population LB is computed using the population autocorrelations, 

1

2

j j  and sample LB 

statistic is computed using the sample autocorrelations, 

1

2ˆ
j j . For a simple model this can 

be calculated analytically with population values. For an AR(1) with correlation coefficient ρ, 

Pt = β + ρPt-1 + νt where Pt is price of an asset at time t and νt is the residual term from the 

estimated regression equation, LBpopulation   1 ;1/ 22   . This section presents 

relative LB based on price autocorrelation, which is assumed to follow an AR(1) process. By 

investigating the statistics of the MAbull(l,s) autocorrelation structure we can gain a good 

idea of how the autocorrelation structure of the MAbull(l,s) rule amplifies that of the price 

itself. 

 MOP investigate the correlation structure of the momentum strategy to find “Time 

series momentum strategies are positively correlated within an asset class, but less so than 

passive long strategies.” At first glance, it looks like their result is contradicting our result. 

However, close investigation of their trading strategy reveals that it is consistent with our 

result. Their strategy is stated as follows. “We consider whether the excess return over the 

past k months is positive or negative and go long the contract if positive and short if negative, 

holding the position for h months.” This is ‘buying the past winner’ strategy. The MAbull 

rule investigated in our paper, as previously discussed, does exactly the opposite. Although 

we have not explicitly shown this, extension of our result should predict that the impact of the 

trading strategy used in MOP would decrease the amount of autocorrelation, and this is what 

they find. Hence their result can be seen as a possible empirical confirmation of our 

theoretical result. 

 As previously stated, although we apply this model to the price process only, the 

application of the model does not need to be restricted to the price process only. It can also be 

applied to returns or earnings or to any process that would have time series momentum. 

Typical return autocorrelation lies between -0.2 and 0.2 while typical price autocorrelation, if 

the process is stationary, is higher than 0.6. This motivates Table 3 and 4. Table 3 reports 

relative population LB measures for the first order autocorrelation, ρA(1), from -0.2 to 0.2 and 

Table 4 reports for ρA(1) larger than 0.6 in the increment of 0.05.  
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Table 3: Relative* Population LB Measures when the Asset Price Process Follows AR(1) 

Process with the parameter ρA(1) from -0.2 to 0.2, ρA(1) incrementing by 0.5 cumulated 

up to 100 Lags 

 
* Values are normalized relative to the underlying process 

 

Table 4: Relative* Population LB Measures when the Asset Price Process Follows AR(1) 

Process with the parameter ρA(1) from 0.6 to 0.95, ρA(1) incrementing by 0.5 cumulated 

up to 100 Lags 

 
* Values are normalized relative to the underlying process 

 

As s increases, for l =1, the autocorrelation of the MA rule amplifies, see Table 3 and 4. This 

result highlights the fact that the MA rule traces the price autocorrelation structure and 

amplifies it, although the rule does not explicitly identify the structure. Looking at Table 3 

and Table 4, we see that for plausible values, the strategy has led to increased LB for ‘short’ 

rules (1 – 5 or 1 – 10) and low autocorrelation (returns) whilst it has increased autocorrelation 

for ‘long’ rules (1 – 50 or 1 – 100) and higher autocorrelation (prices). What these results 

indicate is that when time series (price, earnings, returns) autocorrelation is low an MA rule 

with a small s should be used whilst an MA rule with a large s should be used with a highly 

Autocorrelation MA(1,5) MA(1,10) MA(1,20) MA(1,50) MA(1,100)
-0.20 2.4159 1.5071 1.2131 1.0766 1.0369
-0.15 3.7055 2.0310 1.4515 1.1668 1.0812
-0.10 7.5538 3.6667 2.2114 1.4583 1.2250
-0.05 29.1607 13.2707 6.7679 3.2275 2.1011
0.05 32.4513 17.0475 9.0806 4.2432 2.6232
0.10 9.0363 5.5357 3.3738 1.9720 1.4895
0.15 4.5158 3.2538 2.2329 1.5160 1.2616
0.20 2.8410 2.3971 1.8056 1.3455 1.1764

Autocorrelation MA(1,5) MA(1,10) MA(1,20) MA(1,50) MA(1,100)
0.60 0.6554 1.1268 1.2536 1.1542 1.0859
0.65 0.5394 1.0253 1.2250 1.1570 1.0898
0.70 0.4432 0.9131 1.1851 1.1617 1.0959
0.75 0.3550 0.7885 1.1244 1.1672 1.1048
0.80 0.2736 0.6512 1.0293 1.1697 1.1173
0.85 0.1979 0.5019 0.8831 1.1562 1.1334
0.90 0.1275 0.3419 0.6685 1.0788 1.1428
0.95 0.0631 0.1741 0.3743 0.7880 1.0428
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autocorrelated process. As we discussed earlier, the application of our current model is not 

necessarily restricted to the price process. Based on our results in this section, when the MA 

rule is employed with a price MA, where price autocorrelation is very high, an MA rule with 

a large s would be appropriate. And when the MA rule is applied to a return process, which 

has lower autocorrelation than the price process in general, a smaller s would be suitable. 

 

5	Empirical	Evidence	

 

5.1 Detrended Log Price 

 

The previous section has focused on analysing how the MA rule amplifies price 

autocorrelation structure in a simulated setting where we know the actual price 

autocorrelation structure. This allowed us to see situations where autocorrelation is amplified. 

It would also be meaningful to apply the MA rule to real historical data. In this section, we 

investigate the MA rule and its amplification of the autocorrelation with 15-year daily data of 

11 major international stock indices from 1998 to 2012. Table 5 lists the 11 international 

equity indices and Table 6 presents their descriptive statistics. 

 

Table 5: List of 11 International Equity Indices 

 

 
Table 6: Descriptive Statistics of (Normalized relative to the first observed price of 

1998) International Indices from 1998 to 2012 

Country Index

US S&P500 Index

Canada S&P/TSX Index

UK FTSE 100 Index

France CAC 40 Index

Germany DAX 30 Index

Italy FTSE MIB Index

Netherlands AEX Index

Japan NIKKEI 225 Index

Korea KOSPI Index

China Hang Seng Index

Australia S&P/ASX 200 Index
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* Sample date from January 2, 1998 to December 31, 2012 

 

Rather than reporting the trade result over the entire sample period together, we report each 

year’s trading separately so that it could be easier to interpret. Since we have approximately 

250 trading days each year, it seems reasonable to use a 100 day look back period in 

estimating log price trend (µ) and long term moving average (SMA). Also 100 days is 

consistent with our theoretical result in Table 3 and 4 that a longer period MA rule is suitable 

to a time series with high first order autocorrelation. A 200 day lag is chosen to compute a 

sample LB as discretized in Section 4.3. A lag length of 200 is the maximum number of lags 

that provides meaningful autocorrelations. A 240-day lagged autocorrelation in 250 trading 

observation can be calculated but would likely to be noisy and very close to 1. Figure 2 

depicts the linear trend line of S&P500 log price from January 2, 2009 to May 31, 2011 as an 

example.  Table 5 reports the detrended log price first order autocorrelation for international 

indices used in this section.  

 

Figure 2: Linear Trend Line of S&P500 Log Price 

Mean Variance Skewness Kurtosis

US 1.2356 0.0336 ‐0.3066 2.4448

Canada 1.4901 0.1393 0.0704 1.6581

UK 1.0436 0.0226 ‐0.4853 2.2771

France 1.3937 0.1032 0.6425 2.5024

Germany 1.2873 0.0922 ‐0.1965 2.2567

Italy 1.1949 0.1303 0.0384 2.0807

Netherlan 1.0051 0.0786 0.4811 2.2236

Japan 0.8366 0.0471 0.4428 1.9226

Korea 2.9595 1.7812 0.2356 1.6963

China 1.5133 0.2161 0.3180 2.1824

Australia 1.5622 0.1540 0.6287 2.6500
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* Sample date from January 2, 2009 to May 31, 2012 

 

In figure 2, we can see that although the index level has moved up significantly from 931.8 to 

1314.55 between January 2, 2009 and May 31, 2011, the detrended log price has actually 

decreased. If a manager only takes advantage of upward market movement in general to 

generate profit, the profit is not due to the manager’s ability to actively manage the portfolio. 

Therefore this is the reason why we use detrended price process instead. 

Of course, the number of days can vary for different parameters. We uniformly apply 

100 day to all the parameters to keep the empirical investigation simple. We expect the main 

result would not change significantly in other cases. Any activities or decisions made at time t 

will be conditioned on the information up to time t-1 and hence we assume that a manager 

only has information up to time t-1 at time t. This means µ will be computed based on the log 

prices from t-101 to t-1. Then µt is subtracted from the log price at t to estimate q(t). The C(t-

1) is computed based on q(t-1) and a MA(1,100) at time t-1, then the holding position at time 

t is decided using C(t-1). 

 The profitability of the moving average trading rule would be another interesting topic 

for further study. This paper is about the autocorrelation structure of the trading positions 

rather than the profitability of the trading rule. Deviating from the main focus and discussing 
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the empirical profitability could keep the discussion away from the main theme of the paper. 

We try to avoid this by focusing only on the empirical autocorrelation structure of S&P500 

detrended log prices and the critical values. Hence in this empirical section, we will focus on 

the aggregate level of the autocorrelation in the detrended log price process, q(t), and the 

critical value, C(t).  

 

5.2 Empirical Autocorrelation Function 

 

Since we investigated the index level trend of international indices, an investigation of the 

autocorrelation structure of the major international indices should follow. Figure 6 presents 

the historical autocorrelation structure. To be consistent with the rest of the empirical section, 

we use a lag length of 200 in Figure 6. 

 

Figure 3: Historical Daily Major International Indices Detrended Log Price Process 

Autocorrelation Structure 

 
x – axis: lag time period, m y – axis: autocorrelation 

* Sample date from January 2, 1998 to December 31, 2012 

 

Just like the simulated result, the empirical result in Figure 3 is also consistent with 

behavioral literatures in that they show initial under-reaction and delayed over-reaction or 

price reversal. Sample LB statistics are computed; they are truncated at the 200th 

autocorrelation and are presented in Table 8. 
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Table 8: Relative sample LB Statistics for Indices (Detrended Log Prices) and C(t) 

 
* Sample date from January 2, 1998 to December 31, 2012 

 

Table 9 reports mean and the variance of the relative sample LB values and t-statistics 

 

Table 9: Mean, Variance and t-statistics of Relative Sample LB Statistics 

 

 

We see that the expected value of the relative sample LB statistics for all the indices are 

larger than 1. Our aim is to see whether the mean of the relative sample LB is statistically 

larger than 1 or not. 

 

H0: E(LB) = 1 and H1: E(LB) > 1 

 

Based on Table 8, for all indices but one, KOSPI, we reject the null hypothesis of white noise 

at 5% significance level. The degrees of freedoms are 14 and hence the critical value is 2.145. 

For all indices but KOSPI, we cannot reject the null hypothesis at 5% level. At 10% level, we 

reject the null for all indices. From the above empirical investigation, we can conclude that 

S&P500 S&P/TSX FTSE 100 CAC 40 DAX 30 FTSE MIB AEX NIKKEI 225 KOSPI Hang Seng S&P/ASX 200

1998 1.245 1.229 1.060 0.957 1.093 NA 0.885 0.640 0.880 1.053 1.179

1999 0.645 1.218 1.140 1.116 1.111 1.410 1.210 1.097 1.023 1.148 0.645

2000 0.848 1.198 1.050 0.903 1.367 2.432 0.769 1.952 1.038 1.396 1.343

2001 1.046 0.925 1.014 1.037 1.024 1.040 1.039 1.303 0.800 0.966 1.166

2002 1.716 1.771 1.483 1.728 1.586 1.822 1.609 1.137 1.754 1.175 1.228

2003 1.346 1.765 1.638 1.691 1.282 1.574 1.299 1.910 1.539 0.944 1.037

2004 1.049 1.090 1.292 1.064 1.103 1.015 0.994 1.586 1.132 1.637 1.531

2005 0.801 1.015 1.035 0.969 1.203 0.930 1.047 0.550 1.536 1.099 1.107

2006 1.131 1.236 1.071 1.246 1.237 0.959 1.170 1.139 1.400 1.585 1.153

2007 1.468 1.505 1.550 1.488 1.413 1.463 1.807 1.338 0.842 1.370 2.631

2008 0.993 0.865 0.805 1.005 0.955 1.103 0.915 1.031 0.589 0.871 0.886

2009 1.207 1.503 0.717 0.884 0.874 0.753 0.834 1.930 1.407 1.371 1.198

2010 1.589 1.452 0.985 0.916 1.426 1.279 1.948 1.344 1.950 1.303 1.008

2011 1.385 1.335 1.309 1.473 1.234 1.338 1.220 1.072 1.038 1.575 1.563

2012 1.207 0.918 1.215 0.970 0.986 1.001 1.161 1.416 0.937 1.009 1.131

Index S&P500 S&P/TSX

Mean 1.1786 1.2684

Variance 0.2958 0.2876

t‐statistic 2.3376 2.3376

Index FTSE 100 CAC 40 DAX 30 FTSE MIB AEX

Mean 1.1575 1.1633 1.1929 1.2942 1.1938

Variance 0.2603 0.2907 0.1989 0.4384 0.3484

t‐statistic 2.3436 2.1757 3.7570 2.5994 2.1538

Index NIKKEI 225 KOSPI Hang Seng S&P/ASX 200

Mean 1.2963 1.1910 1.2335 1.2538

Variance 0.4233 0.3874 0.2492 0.4436

t‐statistic 2.7117 1.9096 3.6281 2.2154
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the amplification of the overall correlation in log price occurs when the MA rule is applied. 

We believe this can explain why the momentum trading strategy is still valid and widely used 

in matured markets where there has been no significant upward trend in markets. 

 

6	Conclusion	

 

This paper first presents a technical definition of momentum in order to investigate how 

technical analysis, especially the MA rule, becomes profitable and theoretically demonstrates 

that the trading rule is profitable. The theoretical examination revealed that, in addition, price 

autocorrelation might be another fundamental reason for profitability, and the further 

investigation of the autocorrelation structure of the MA rule showed that the MA rule reflects 

the price autocorrelation structure, without identifying it. This analysis sheds some light on 

why analysts use technical trading rules. There are three main findings in this paper: 

 

1. The MA rule identifies the presence of price trend and takes advantage of it. 

2. The MA rule is a simple and straightforward way of exploiting price 

autocorrelation without actually knowing its structure. 

3. Empirically we observe that in the case of MA(1, s) rules, where s is a time period 

for the short position’s MA,  the amplification of the autocorrelation structure is 

more prominent for a small s when the level of autocorrelation (LB) is low and for 

a large s, when the level of autocorrelation (LB) is high 

 

The first finding is already well known and discussed in the earlier literature. We confirm it 

by constructing a simple model with a single asset. The second finding has not been 

investigated in the previous literature due to the lack of a precise technical definition of 

momentum. We show this with simulated results and empirical data from 6 international 

indices from developing and mature markets. The third finding suggests what length of s 

should be applied in employing the MA rule. In particular our results indicate the different 

treatment for price and return based on the difference in the level of autocorrelation. 

 These findings should be considered important in themselves since they identify why 

the MA rule is used. However, the practical application of this is also interesting. One of 

many natural questions that can be asked is how well would the MA rule would perform if 

the full price autocorrelation structure was known. After all, we saw that the MA rule is all 
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about simplification of conditioning on the past price information. Therefore, if we use the 

entire past price information, this should outperform the MA rule. However, in practice the 

tradeoff between the inefficiency and the cost of knowing the full autocorrelation would 

justify the use of the MA rule. This weakness of autocorrelation structures will be 

exacerbated by estimation error. Nevertheless the extent of the efficiency gain would be a 

worthy area for future research.  
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Appendix	

 

A1 Glossary 

 

market wide trend: a long run market-wide trend that can be due to inflation or other 

economic conditions. In this paper, it is noted as μ. 

 

de-meaned price process, q(t): price process without time dependent market wide trend, 

computed as ttPtq  )(log)( , where P(t) is the asset price process. 

 

MA, l, s, SMA, LMA: MA is moving average; l is the time period that the MA is 

computed for long position; s is the time period that MA is computed for short position, 

hence s > l and they overlap. SMA is the MA computed over the period of s, LMA is the 

MA computed over the period of l. 

 

MA(s, l) = MAbull(s, l): MA bull rule constructed with s and l MAs 

 

trends: Trends, in this paper, refers to upward or downward movements in de-meaned 

price process for more than s consecutive days. 

 

v(s, l; t): variable v at time t that is dependent on moving average time period s and l. 

 

r(s, l; t1, t2): return computed over time t1 and t2 that is dependent on moving average time 

period s and l. 

 

 , m , T , T
m :   is the covariance matrix of Q(t); m  is the covariance matrix 

between Q(t) and Q(t-m); T  is the covariance matrix of C(s,l;t); T
m  is the covariance 

matrix between C(s,l;t) and C(s,l;t-m) 

 

)(mA  and )(mT : )(mA  is the m-period autocorrelation of asset price and )(mT  is the 

autocorrelation of trading strategy critical value.      
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population LB and sample LB: LB is the sum of squared autocorrelations from 1st order 

to pre-specified order. (30th in Section 4 and 200th in Section 5), population LB is computed 

with population autocorrelations and is defined as 

0

2

j j   and sample LB is computed 

with population autocorrelations and is defined as 

0

2ˆ
j j . 

 
A2 Derivation of Definition 2 
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A3 Derivation of Lemma 1 
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A4 Proof of Remark 1 
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  and 222 )1( XYX   , the unconditional and the 

conditional probability distribution of C(t) can be written as 
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A5 Simulation Procedure 

 

1. We have cttPtq  )(log)( , assume tA tqtq   )1()(  

From GS data (May 4, 1999 - May 31, 2011), estimate c, and   

182011.4c ,  0.002687 , 0.0008  and set 0  

Let % trading cost = 0%, annual risk free rate: 2%  daily risk free rate: 0.008% 

 

2. Simulate  2,0~  N  
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4. % Return from the MA rule: 
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35 

A6 Proof of Proposition 3 

 

Decompose   into four pieces where 11  is ll , 12  is )( lsl  , 21  is lls  )( and 

22  is )()( lsls  , also decompose  ''' 21 www 
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A8 Calculation Check of Remark 2 

 

In this section, the previous result is checked with a simulation result assuming one of the 

most popular strategies, 1 – 10 (l = 1 and s = 10) and that the autocorrelation function, )(m , 

follows the AR(1) process. 2000 sets of 5000 observations of q(t) are simulated where 

ttqtq   )1()( ,  1,0~ N  and 95.0 . LMA(t) and SMA(t) are computed from the 

simulated q(t), then subtracted to get )(' tQw . The autocorrelation of )(' tQw  is compared 

with (4) with l = 1 and s = 10 and the percentage differences are reported. 

 

Table A1: Simulation vs. Theoretical Result: 

Autocorrelation of )(' tQw when l = 1 and s = 10 

 

 

Table 3 shows that our computation is correct 

Simulated AR(1) Theoretical AR(1) % Difference

wOmw[1] 0.8127 0.8131 0.0415%

wOmw[2] 0.6321 0.6325 0.0629%

wOmw[3] 0.4611 0.4619 0.1736%

wOmw[4] 0.3039 0.3051 0.3909%

wOmw[5] 0.1643 0.1658 0.9555%

wOmw[6] 0.0461 0.0479 3.8566%

wOmw[7] ‐0.0469 ‐0.0448 ‐4.5953%

wOmw[8] ‐0.1110 ‐0.1083 ‐2.4332%

wOmw[9] ‐0.1417 ‐0.1387 ‐2.1642%

wOmw[10] ‐0.1348 ‐0.1317 ‐2.3007%

wOmw[11] ‐0.1282 ‐0.1251 ‐2.3803%

wOmw[12] ‐0.1216 ‐0.1189 ‐2.2386%

wOmw[13] ‐0.1152 ‐0.1129 ‐1.9212%

wOmw[14] ‐0.1089 ‐0.1073 ‐1.5143%

wOmw[15] ‐0.1029 ‐0.1019 ‐0.9676%

wOmw[16] ‐0.0968 ‐0.0968 0.0307%

wOmw[17] ‐0.0910 ‐0.0920 1.1268%

wOmw[18] ‐0.0856 ‐0.0874 2.0700%

wOmw[19] ‐0.0808 ‐0.0830 2.7619%

wOmw[20] ‐0.0763 ‐0.0789 3.3288%

wOmw[21] ‐0.0727 ‐0.0749 3.0680%

wOmw[22] ‐0.0693 ‐0.0712 2.6541%

wOmw[23] ‐0.0661 ‐0.0676 2.3749%

wOmw[24] ‐0.0629 ‐0.0642 2.1334%

wOmw[25] ‐0.0600 ‐0.0610 1.7012%

wOmw[26] ‐0.0573 ‐0.0580 1.1180%

wOmw[27] ‐0.0546 ‐0.0551 0.8748%

wOmw[28] ‐0.0518 ‐0.0523 0.9222%

wOmw[29] ‐0.0491 ‐0.0497 1.2625%

wOmw[30] ‐0.0466 ‐0.0472 1.3013%
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