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Abstract

Cytosine methylation is a significant and widespread regulatory factor in plant systems. Methods for the
high-throughput sequencing of methylation have allowed a greatly improved characterisation of the methylome.
Here we discuss currently available methods for generation and analysis of high-throughput sequencing of
methylation data. We also discuss the results previously acquired through sequencing plant methylomes, and
highlight remaining challenges in this field.

Introduction
Cytosine methylation arises from the addition of a methyl
group to a cytosine’s C5 carbon residue. In plant systems,
cytosine methylation occurs in three sequence contexts,
which have significant effects on both the mechanisms
and function of methylation. The most abundant context
of methylation is that which occurs within a C-G dinu-
cleotide (CpG) [1,2], usually symmetrically on both DNA
strands as maintained by the MET1 family of methyl-
trasferases [3]. Cytosine methylation in a non-CpG con-
text is subdivided into the CHH and CHG contexts, where
the ambiguity code H describes a non-guanine residue.
The CMT3 class [4] of methyltransferases acts to maintain
CHG methylation, while CHH methylation is not main-
tained and so is dependent on de novo methylation. In
each context, de novo methylation appears to be primarily
RNA-directed [3,5,6], and requires the DRM gene fam-
ily. Interestingly, most CpG sites are either unmethylated
or methylated in almost all cells from a single biologi-
cal sample (from the same tissue), while CHH and CHG
methylation shows far more variation between cells [1,2].
Demethylation of cytosines can occur either passively,
through a failure of maintenance of methylation during
DNA replication, or actively. Active demethylation in Ara-
bidopsis depends on the ROS [7], DME [8] and DML [9]
glycosylases through a base excision repair process [10].
These proteins exhibit a preference for CpG methylation
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but are able to act in all methylation contexts [10], and
may in part be RNA-directed [11].

Methylation of cytosines in plant DNA plays a key role
in the regulation of gene expression [12,13] and non-
coding factors [14]. Methylation is a wide-spread and
significant form of regulatory factor, with genome-wide
studies in plants reporting between 5-25% [1,2,15] of
cytosines as methylated. Genome wide analyses of pat-
terns of methylation, and the ability to detect differentially
methylated regions, are thus potentially of great value in
a wide range of fields in plant biology, from heritable
responses to environmental [16-18], biotic [19] or viral
stress [20] to studies of heterosis [21] and parental specific
gene expression (imprinting) [22].

In Arabidopsis, and other flowering plants, methylation
shows strong associations with repetitive regions, small
RNA producing loci, and the pericentromeric regions
[12]. Methylation at these locations appears in all con-
texts and is primarily directed by the action of siRNAs
[23,24]. The primary function of this methylation appears
to be to prevent the proliferation of transposable ele-
ments [14]. Gene body methylation, in contrast, is pri-
marily composed of CpG methylation clusters lacking
non-CpG methylation [25] which associate primarily with
the 3’ end of the genes. Gene body methylation has been
shown to correlate with constitutively expressed genes
[12] of medium to high expression [12,26]. Conversely,
methylation in the promoter regions acts to repress gene
expression [12].
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Sequencing the methylome
Cytosine methylation can be measured on a genome
wide scale by the application of bisulphite sequencing
(BS-Seq) [27]. Sodium bisulphite treatment [28] of DNA
deaminates unmethylated cytosine to uracil, while leaving
methylated cytosine unchanged. Amplification of these
sequences then results in a thymine appearing wherever
an unmethylated cytosine had existed. High-throughput
sequencing of the amplified product of bisulphite treated
DNA will result, in the absence of sequencing error, in
a cytosine base being called wherever methylation has
occured and a thymine base where no methylation is
present. By aligning the sequenced reads to a reference
genome, proportions of methylation can be estimated
for each cytosine. Hydroxymethylation, a modification
of cytosines reported in mammals [29,30] also prevents
deamination by sodium bisulphite treatment [31], and
so is indistinguishable from cytosine methylation in the
sequenced data.

Several protocols have been suggested for reduced rep-
resentation bisulphite sequencing (RRBS) [32]. These
methods make use of restriction enzymes to isolate CpG-
rich regions of the genome. This approach allows deeper
sequencing in CpG-islands than would otherwise be pos-
sible. Moreover, knowledge of the recognition and cleav-
age sites of the restriction enzyme used allows increased
accuracy in mapping the sequenced reads to the genome.
However, these advantages must be balanced against the
loss of information on much of the genome. Meissner
et al [33], using the Bgl II endonuclease, were able to
sequence only 1-2% of the mouse genome. Gu et al [34]
outline a detailed protocol using the MspI endonucle-
ase that likewise offers coverage of approximately 1%,
though an estimated 25% of five kilobase tiling win-
dows are expected to contain at least one sequenced
read. A further drawback in using reduced representa-
tion methods is the bias that is likely to be introduced
in identifying differential methylation. Differential methy-
lation is most easily detected at a region given a high
number of reads. Consequently, the discovery of differ-
ential methylation will be biased towards those regions
which have the highest density of restriction sites for
the enzyme used, which may not be representative of
the genome as a whole. Targeted sequencing methods
[35], in which specific portions of the genome are cap-
tured before bisulphite treatment and sequencing have
also been suggested [36-38]. Data acquired through this
approach should be relatively unbiased as the capture
efficiencies should be independent of methylation status.
However, the construction of probes with which to cap-
ture the desired portions of the genome will generally
require a well-annotated and complete genome assem-
bly, and adds an additional layer of complexity to the
experimental design.

Enrichment-based technologies provide an alternative
sequencing approach to bisulphite treatment. Methylated
DNA immunoprecipitation sequencing (MeDIP-seq) [39]
relies on the use of some antibody to precipitate fragments
of DNA containing a methylated cytosine. Depending on
the antibody used, either all methylated cytosines can be
targeted, or only those in the CpG context, and meth-
ods have recently been developed for the application of
the technique to low (160ng) DNA concentrations [40].
Related methods are MBD-seq [41] and MethylCap-seq
[42], which use a methyl CpG binding domain protein to
precipitate DNA fragments containing methylated CpG
sites, with a preference for those fragments with a high
density of methylated sites. As with reduced represen-
tation bisulphite sequencing, these approaches have the
advantage that a greatly reduced portion of the genome
need be sequenced, offering high coverage of the genome
at relatively low costs. However, the identification of
methylated sites is not limited to those adjacent to some
restriction site, and so a genome wide view of the methy-
lome is possible. The major drawback of these approaches
is the low resolution available for identifying any methyla-
tion site, as the presence of a sequenced read implies only
that at least one cytosine in the pulled down fragment is
methylated; it is thus only possible to identify methylation
sites to within 150-200 bases [40]. Accurate quantifica-
tion of methylation levels is also problematic using these
technologies as a reduction in sequenced reads may be
attributed to either a decrease in methylation or a reduc-
tion in read coverage.

Before high-throughput sequencing technologies
become widely accessible, similar attempts were made
to measure methylation levels by applying microarray
technologies to bisulphite treated genomic DNA. These
required the construction of two probes for each CpG
site to be analysed, one complementary to the methylated
cytosine and one complementary to the unmethylated
(and thus converted to uracil) cytosine. Due to the high
variation in both non-specific hybridisation and hybridis-
ation efficiencies of probes differing by even a single base,
or because only probes matching the reference genome
were available, controls of genomic DNA untreated by
sodium bisulphite have often been used [43] to allow esti-
mation of this variation. However, such potential sources
of noise are greatly reduced or absent in high-throughput
sequencing, and hence it is not usually necessary to
include such controls when using this technology.

Previous sequencing studies
Early applications of high-throughput sequencing to the
Arabidopsis methylome allowed significant advances to
be made in the characterisation of methylation patterns.
Lister et al [2] identified substantially more cytosines
displaying some degree of methylation than previously
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discovered, and explored the associations of methylation
with small RNA abundance. Cokus et al [1] identified
sequence motifs that associate with high and low methyla-
tion for each different context of methylation. This study
also showed several periodicities in methylation, notably
a ten nucleotide (the length of a helical DNA turn) period
in CHH methylation.

Lister et al [2] and Cokus et al [1] also confirmed
previous associations between the context of methyla-
tion and the enzymes involved in de novo methylation,
maintenance of methylation and demethylation. Recent
work by Stroud et al [44] has substantially extended and
refined the characterisation of regulatory factors of the
methylome by examining eighty-six Arabidopsis mutants,
suggesting that individual sites of methylation may be reg-
ulated by novel RNA-directed pathways in addition to
identifying new components of known pathways. How-
ever, some care must be taken in interpreting the methy-
lomes identified in knock-out studies, as illustrated by
Havecker et al [45], in which a region exhibiting differen-
tial methylation between a wild-type strain of Arabidopsis
and an ago5 knockout was identified as a spontaneous and
heritable change in methylation rather than one depen-
dent on the AGO5 protein. The work of Schmitz et al
[46] and Becker et al [47] in Arabidopsis thaliana exam-
ined such events on a genome-wide scale, showing that,
over several generations, genetically identical individuals
under controlled environmental conditions acquire vari-
ation in methylation status at numerous locations. The
presence of such metastable changes in methylation status
independent of genomic variation has also been observed
in two inbred lines of maize [48].

Characterisation of genome-wide patterns of methyla-
tion in plant systems have largely been carried out in the
model organism Arabidopsis. However, high-throughput
sequencing technologies make the analysis of a methy-
lome in any organism with a reference genome rela-
tively straightforward. Feng et al [49] carried out shotgun
sequencing of methylation in the flowering plants rice,
poplar and Arabidopsis in a study comparing plant and
animal methylomes. Zemach et al [15] carried out a simi-
lar study in which the methylomes of rice and Arabidopsis
were sequenced. Distributions and abundances of methy-
lation in each sequence context appear broadly similar
in the flowering plants across gene regions, exon/intron
boundaries, and repetitive regions, suggesting that the
mechanisms involved in methylation identified in Ara-
bidopsis are conserved in other flowering plants. More
distant species appear to show substantial divergence
in methylation profiles. The early diverging land plants
Selaginella moellendorffii and Physcomitrella patens show
almost no gene body methylation in any sequence con-
text, although the pattern of methylation is similar to
that in flowering plants around repeat regions [15]. The

green algae Chlorella sp. NC64A and Volvox carteri show
very little methylation in non-CpG contexts in genes,
and greatly reduced or absent non-CpG methylation at
repetitive regions, with Volvox carteri showing greatly
reduced methylation in all contexts compared to other
plant species [15]. Similarly, the distributions of methyla-
tion in the green algae Chlamydomonas, while not wholly
divergent from those in flowering plants [49], show much
lower levels of methylation at both genes and repeti-
tive regions than Arabidopsis. Moreover, the relationships
between CpG and non-CpG methylation differ substan-
tially in Chlamydomonas from those in flowering plants,
suggesting that the mechanisms involved have diverged,
as previously reported [50].

Alignment
The first step in analysis of high-throughput sequenc-
ing data specific to BS-Seq is that of alignment. Multiple
alignment tools have been developed for the alignment
of bisulphite treated sequence data. Perhaps surprisingly,
these can show substantial differences in performance
and quality of mapping [51,52], considerations which
appear to depend chiefly on the underlying alignment
algorithm used. Several BS-seq aligners make use of exist-
ing alignment tools, notably Bowtie [53-57] and SOAP
package [58], both methods exploiting Burrows-Wheeler
transformations [59] for rapid low-memory alignments.
Alignment methods based upon customised hashtable
matching [60-62], adaptive seeding and Blast-like align-
ment [63] have also been developed specifically for BS-
Seq data. As is usual in alignment of high-throughput
sequencing data, the trade-offs are principally those of
computational time against the total number of reads for
which an alignment is found.

The alignment of BS-Seq data does differ in one key
respect from alignment of ordinary sequence data in
that the conversion of unmethylated cytosines to uracil
(sequenced as thymine) decreases the total information
available for alignment of the sequenced reads against a
reference genome. Two conceptual approaches have been
suggested to address this issue. The first approach is to
align sequenced cytosines to reference genome cytosines,
and to align sequenced thymines to either cytosines or
thymines in the reference genome. The BSMap [58] and
RMAP-BS [64] aligners take this approach. The alter-
native approach removes the bias towards alignment of
methylated reads at the cost of degrading the total infor-
mation available for alignment. An in silico conversion
of each cytosine to thymine is carried out on both the
sequenced reads and the reference genome and align-
ment carried out on these data. Having constructed an
alignment from these data, the original sequence infor-
mation can then be used to call the presence or absence
of methylation at each cytosine location. Most methods
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for aligning bisulphite sequence data (e.g. BS-Seeker [54],
Bismark [55], MethylCoder [56], BRAT [60]) take this
approach.

A biased alignment of the sequenced reads makes maxi-
mum use of the available information and should allow the
successful and unambiguous alignment of the largest pos-
sible number of sequenced reads. However, this approach
is biased towards an alignment of the methylated reads.
Sequenced reads from unmethylated locations contain
less information after bisulphite conversion and are thus
more difficult to align than sequenced reads from methy-
lated locations. Conversely, an unbiased alignment, by
converting in silico all sequenced cytosines to thymines
ensures that the methylated reads used for alignment con-
tain no more information than the unmethylated reads,
and removes this bias. However, with less information
available, fewer reads will align unambiguously to the
genome. Figure 1 illustrates this distinction.

The use of SOLiD [65] technology to identify those
cytosines that have undergone conversion to thymine
as a result of bisulphite technology has been attempted

[66]. This technology, in which overlapping di-nucleotides
rather than single bases are encoded in ‘colourspace’,
allows robust detection of single nucleotide mismatches
between sequence and reference. This appears attractive
for methylation analysis, in which unmethylated cytosines
will result in such mismatches; however, many reads
contain too many mismatches to be aligned with stan-
dard tools for such data. Moreover, the encoding of
di-nucleotides by this technology means that a single mea-
surement error in a read results in all downstream bases of
that read being incorrectly identified, and so any attempt
to call individual bases of reads and then align using stan-
dard tools will be error-prone. This also prevents the
straightforward use of in silico conversion of cytosines to
thymines, and hence an unbiased mapping of reads. Meth-
ods for unbiased mapping must instead consider each
possible subsequence of the genome within colourspace
[67] that might arise from the presence of either a cytosine
or thymine at the genomic positions originally contain-
ing a cytosine. Such an approach is necessarily highly
computationally intensive, and attempts have been made

(a) (b) (c)

Figure 1 Alignment choices for bisulphite treated data. Biased and unbiased alignments of bisulphite treated data. Bisulphite treatment
converts unmethylated cytosines to uracil, which are sequenced as thymine. In a biased alignment, sequenced thymines are treated as
ambiguously cytosine/thymine (ambiguity code Y). In case (b), of a unmethylated read, this ambiguity allows the converted read to align to two
separate locations on the reference genome (blue), while in case (c), which consists of the same nucleotide sequence but contains methylated
cytosines, the read aligns to a single location. This results in a greater confidence in the alignment of the methylated read. In the case of an unbiased
alignment, all cytosines on both the sequenced reads and the reference genome are converted to thymines, and the sequences in both (b) and (c)
align to the same locations on the genome, with no additional confidence in the alignment of the methylated read. In case (a), the read aligns to a
single location in both a biased and unbiased alignment; however, in the unbiased case less information is available to make this alignment.
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to reduce the computational load by filtering on likely
methylation patterns [68] or by assuming relatively low
numbers of mismatches between the sequenced reads and
reference genome [69].

Post-alignment analysis
Following alignment, analysis of methylation data can pro-
ceed upon two main paths. The first path, which has been
that predominantly considered in studies to date, is the
discovery of genome-wide associations of methylation,
on either an annotation [2,15,49] or sequence [1] level.
Analyses of this type are attractive as each methylated
site (perhaps within a particular context, or in proximity
with some known annotation feature) may be consid-
ered a replicate case. The need for sequencing biological
replicates is thus largely removed.

The second form of analysis is that which attempts to
identify individual methylation sites or loci that exhibit
some behaviour of interest, usually differential methyla-
tion. Analyses of this type have been suggested by the
work of Schmitz et al [46] and Becker et al [47], how-
ever, these studies limited themselves primarily to iden-
tification of genome-wide associations of differentially
methylated regions rather than analysis of individual sites.

Analysis of individual locations of the methylome
requires the evaluation of the methylation status of each
cytosine within each sequenced biological sample. The
methylation status of a given cytosine is not necessar-
ily preserved across multiple cells in the same biological
sample. For each cytosine on the reference genome the
number of reads which identify that cytosine as methy-
lated and the number of reads which identify that cytosine
as unmethylated can be identified. This pair of values will
in most cases form the basis of subsequent analysis of
the methylome. However, several sources of variation exist
that complicate the analyses of these data.

A large source of variation in the number of methy-
lated cytosines counted at a given site is the read cov-
erage at that location. Figure 2, a re-analysis of BS-Seq
data (GEO series GSE10966) from wild-type (Col-0) and
met1 mutant in the Lister et al study [2] demonstrates
the signficance of coverage on the abundance of methy-
lated sites, as in many locations the reported coverage
drops to very low levels and makes reliable identifica-
tion of methylation or differential methylation highly
problematic. In this instance, the variation in coverage
appears to be conserved between the two sequencing
runs shown, suggesting a bias in sample preparation or
alignment. Such variation is the principal reason that BS-
Seq data must be considered not simply as a count of
the number of methylated cytosines observed at a given
location, but as a pair of values describing the both the
number of methylated and unmethylated cytosines at
that location.

The base calling reported by the sequencing technology
is likely to contain errors [70,71], with an average 0.16%
base substitution rate being reported in Illumina HiSeq
data. However, this error rate may be substantially higher
(up to 8.83% has been reported) at specific genomic loca-
tions, and is generally higher in GC-rich regions [70]. This
may lead to either a cytosine being incorrectly reported
where a thymine is present, or a thymine being incorrectly
reported where a cytosine is present. In either case, the
alignment of the read will not be affected, but the methy-
lation status of that base will be incorrectly reported.
Incorrect calling of other bases may also lead to errors
in alignment, as may differences between the genome of
the sequenced samples and the reference genome. Where
a read aligns incorrectly, any sequenced cytosines and
thymines which by chance align to a cytosine in the ref-
erence genome will result in an incorrect evaluation of
methylation at that location.

A further source of noise in high-throughput sequenc-
ing of bisulphite treated DNA is the incomplete
conversion of unmethylated cytosines to uracil. Where
this occurs, a cytosine rather than a thymine will be
sequenced, and will therefore be treated as evidence of
methylation at that base. For a given sample, the rate of
incomplete conversion may be estimated by consider-
ing those sequenced reads mapping to the chloroplast
genome [2], which appears to be generally unmethylated
[72]. In the Lister et al study, incomplete conversion rates
were estimated at between 1-3

In addition to the technical sources of noise described
above, the identification of consistent differential methy-
lation must also account for biological variation in methy-
lation status. At present, few studies are available with
which to determine the variability of methylation status
between biological replicates. Hansen et al [57] showed
in a study of human cancers that there exist regions of
the genome that show substantial variation in the preva-
lence of methylation between individuals. Such variation
is perhaps to be expected in oncological studies, which
tend to be heterogeneous in many respects, and is likely
to be reduced in biological replicates under more strin-
gent control of environmental conditions. However, the
spontaneous changes in methylation identified between
individuals separated by a relatively small number of gen-
erations [46,47] suggest that some level of variability will
exist in almost all circumstances.

Proper use of biological replicates can be used to control
for both technical noise and biological variation within
sequencing data. In order to effectively use the data from
biological replicates, properly designed statistical tools are
required. Several methods have been proposed for methy-
lation analysis of microarray data [73], however, the prop-
erties of high-throughput sequencing data are sufficiently
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Figure 2 Post-alignment data. An example of the data available for analysis of methylation following alignment of the sequenced reads to a
reference genome. The data are taken from Lister et al [2] and show the first ten thousand bases of the positive strand of two samples of Arabidopsis
in wild type (Col-0) and met1 knockout mutant. The number of times a cytosine is observed to be methylated is shown by the height of the
coloured bars, with the colour indicating the context of methylation. The abundance of reported methylation is heavily dependent on the read
coverage (black curve) at each base, which exhibits high variability.

different to those of microarray data that new analytical
tools are required. These tools should account for both the
characteristics of the data describing the methylation sta-
tus of a single cytosine and the ‘large n, small p’ nature of
high-throughput sequencing data. Methods that account
for biological replication and the dimensionality of the
data have been developed for the analysis of data pro-
duced from RNA-Seq experiments [74-76] that ‘borrow’
information from the whole dataset in order to improve
power when evaluating individual data points. However,
the data acquired for the methylome is qualitatively dif-
ferent from that produced by RNA-Seq experiments in
that, for each sample, the information for a methylation
region is defined by a pair of numbers; the number of
unmethylated cytosines and the number of methylated
cytosines sequenced from that region. Generalised linear
model approaches have been suggested for the analysis of

paired data from high-throughput sequencing [77], and
these may be appropriate to the analysis of methylation
data. Our recently developed approach for the detection
of differential expression in paired data [78] is also suit-
able for the discovery of differential methylation from
biological replicates.

Conclusions
The application of high-throughput sequencing to eval-
uation of cytosine methylation has already made signif-
icant contributions to characterisation of the functions
and mechanisms of methylation in plant systems. Bisul-
phite sequencing is the current gold standard for genome
wide mapping of the methylome, offering largely unbi-
ased, base-level resolution maps of methylation. Alterna-
tive methods, while usually offering higher coverage over
some regions of the genome, either exhibit strong biases
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in the portions of the genome sequenced, or are of low
resolution. Plummeting sequencing costs [79] suggest that
the advantages offered by these methods over bisulphite
sequencing are unlikely to outweigh these drawbacks.

Despite the progress being made in analysis of high-
throughput sequencing data and specifically that pertain-
ing to the methylome, there exist some clear areas for
improvement. The question of multireads [80], sequenced
reads that map equally well to multiple locations on
the genome has yet to be comprehensively addressed.
Most currently existing analyses simply discard multi-
reads in constructing genome-wide maps of the methy-
lome [2,46,47] and this strategy is implemented without
alternatives in most alignment tools. Given the known
association of methylation with repetitive elements [12],
this may be a suboptimal strategy, as reads from these
regions will be more likely to match to multiple loca-
tions and consequently be discarded. The development of
tools for the methylome such as RSEM [81] or IsoformEx
[82], which attempt to resolve the location of multiply
mapping reads in RNA-Seq analyses by considering the
signal observed in the uniquely mapping reads, appears an
attractive strategy. However, several problems make this a
substantially more challenging problem in the methylome.
There is likely to be considerably more variation within
the methylation status of neighbouring cytosines than
exists in the reads sequenced from an RNA transcript, and
so the inferences that can be made from uniquely map-
ping reads are less reliable. Computational difficulties also
arise due to the loss of information introduced by cytosine
to thymine conversions; as a consequence of this, it is pos-
sible for a converted read to map to multiple locations but
carry different information at each location, depending on
which sequenced thymines map to thymines and which to
cytosines at each location.

A further challenge in analysis is the robust iden-
tification of methylation ‘loci’; regions of the genome
where neighbouring cytosines have a positively correlated
methylation status that implies co-regulation. This has
been partially addressed through moving windows [2], by
merging any neighbouring cytosine positions within fifty
bases of each other showing similar patterns of methy-
lation [47], and by identifying bins of some minimal
length that contain some minimal number of methylated
cytosines before merging those bins that are sufficiently
close [44,46]. These approaches give an initial approxi-
mation to methylation loci; however, since the loci are
defined based on arbitrarily defined thresholds the results
may vary not only with these parameters but the depth of
sequencing and the extent to which sources of noise, espe-
cially incomplete bisulphite conversion, are present within
the data. Dependent on the system being studied, varia-
tion in methylation between biological replicates may also
need to be accounted for when defining methylation loci.

Most genome wide analyses of methylation have been
carried out in Arabidopsis, as this model organism pos-
sesses a small, well annotated genome with relatively few
repetitive regions, however, comparisons with distribu-
tions in methylation in other flowering plants [15,49]
suggest that many mechanisms are conserved. With both
the generation and analysis of bisulphite sequencing data
becoming increasingly straightforward, characterisation
of the methylome of a diverse range of species, including
non-model and crop plants, is likely to take place in the
near future.

Although a wide range of tools have been developed
for alignment and quantification of methylation levels
from bisulphite sequencing data, methods for the post-
alignment analysis of quantified methylation levels are less
well developed at present. Analyses have thus far focused
primarily on characterisation of genome-wide properties
of methylation and, as such, have identified multiple sig-
nificant factors influencing the presence or absence of
methylation. A largely unaddressed problem thus far has
been the identification of individual regions of differential
methylation, allowing the integration of the methylome
into a systems biology framework to be assessed. Appro-
priate methods for such analyses are now becoming avail-
able, and large scale studies of the regulatory effects of the
methylome are likely to follow.
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