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Abstract

Background: Cellular development requires the precise control of gene expression states. Transcription factors are
involved in this regulatory process through their combinatorial binding with DNA. Information about transcription
factor binding sites can help determine which combinations of factors work together to regulate a gene, but it is
unclear how far the binding data from one cell type can inform about regulation in other cell types.

Results: By integrating data on co-localized transcription factor binding sites in the K562 cell line with expression data
across 38 distinct hematopoietic cell types, we developed regression models to describe the relationship between the
expression of target genes and the transcription factors that co-localize nearby. With K562 binding sites identifying
the predictors, the proportion of expression explained by the models is statistically significant only for monocytic cells
(p-value< 0.001), which are closely related to K562. That is, cell type specific binding patterns are crucial for choosing
the correct transcription factors for the model. Comparison of predictors obtained from binding sites in the GM12878
cell line with those from K562 shows that the amount of difference between binding patterns is directly related to the
quality of the prediction. By identifying individual genes whose expression is predicted accurately by the binding sites,
we are able to link transcription factors FOS, TAF1 and YY1 to a sparsely studied gene LRIG2. We also find that the activity
of a transcription factor may be different depending on the cell type and the identity of other co-localized factors.

Conclusion: Our approach shows that gene expression can be explained by a modest number of co-localized
transcription factors, however, information on cell-type specific binding is crucial for understanding combinatorial
gene regulation.
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Background
Cellular development requires the precise control of gene
expression states. Transcription factors (TFs) are involved
in this regulatory process through their combinatorial
binding to DNA. Although one factor may be identified
as the global regulator of a cell differentiation process,
it often works together with other TFs in complexes
to achieve precise control of expression at different loci
[1]. By coupling high-throughput sequencing technologies
with chromatin immunoprecipitation (ChIP-Seq), recent
studies have identified thousands of regions along the
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human genome where TFs co-localize to interact and
form gene regulatory complexes [2-4]. However, such
binding information for any given TF is only available for
a limited number of cell types. It is therefore of great the-
oretical as well as practical importance to ask how far
differences in binding patterns between cell types limit
our ability to use TF binding patterns from one cell type
to explain gene expression in another. Can we infer a uni-
versal regulatory network from TF binding experiments
in a small range of cell types, so that by using just TF
expression data we can predict gene expression in other
cell types? If this turns out to be difficult, the inference of
a universal gene regulatory network for a broad range of
cell types from just, say, expression data without detailed
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knowledge of actual TF binding in each cell type might be
impossible.

A variety of computational and experimental ap-
proaches can be used to measure the effect of co-localized
TFs on a single target gene [5]. One way is by exploring
the transcriptome over many different conditions, in
order to relate gene expression changes to varying levels
of TF expression [6]. To assess this relationship between
TFs and genes, we can measure how well the TF expres-
sion levels predict the expression levels of genes whose
promoters they bind. Quantitative models have been
useful for predicting the level of gene expression given a
limited set of predictors [7]. By assuming that TF binding
sites are conserved in the genome of an organism, these
models described gene expression as a function of TF
binding affinity, which they estimated using TF expres-
sion and TF binding motifs [8-10]. However, by using
predicted TF binding sites rather than observed sites,
these models achieved limited accuracy at predicting
human cell type-specific expression changes. Some more
recent models have used binding sites of multiple TFs
observed through ChIP-Seq [11-13], but they estimate TF
binding affinity only for the cell type used in ChIP-Seq,
and therefore, cannot predict gene expression in other
cell types. Furthermore, no existing model incorporates
information about the co-localization of TF binding sites,
which may help reduce the number of non-relevant TF
predictors in the model.

In this study, we used a reduced set of co-localized TFs
close to a target gene to select TFs as predictors in a
nonlinear regression model for predicting the expression
of the target gene from TF expression levels. Regression
coefficients for the nonlinear regression models were then
inferred from gene expression data across different cell
types and conditions. Expression prediction models were
tested for the amount of expression prediction accuracy
that can be achieved across 38 distinct cell types and 32
major tissues, given that TF binding information for the
selection of predictors came from only the K562 cell type.

As potential predictors we used TFs known to regu-
late a wide range of cellular processes (Additional file 1:
Table S1). For example, GATA2 and NFE2 are known
to be involved in the control of hematopoiesis [14,15],
while two widely studied oncogenes, MYC and FOS, are
more ubiquitous TFs [16]. For each gene, a nonlinear
regression model describing the gene’s expression level
is constructed using only TFs that have binding sites
co-localized within the gene’s promoter region. In accor-
dance with common terminology, we define these regions
of binding site co-localization as cis-regulatory modules
(CRMs). The regression models account for both linear
and non-linear effects as well as interactions between
TFs. In the case of YY1, the TF is known to co-regulate
genes, but may itself be regulated by other TFs [17,18].

The models we show describe combinatorial functions for
each set of co-localized TFs, which allowed us to deter-
mine whether a TF, such as YY1, enhances, represses, or
has no effect in the presence of other TFs. We identified
many interacting pairs of TFs not known to co-operatively
work together, presumably because they were previously
examined in a limited number of cell types or using only
linear regression methods.

We took the prediction accuracy of a regression based
on TFs in a particular CRM for a target gene as an indi-
cator of how much influence this CRM exerts over the
target. This allowed us to analyse the relationship between
the features of CRMs, such as their TF composition, and
their effect on target genes. We compared CRMs from
ChiP-Seq data on the GM12878 cell line with equivalent
CRMs from the K562 cell line for differences in bind-
ing TFs, and the effect of these differences on prediction
accuracy. Our analysis shows how far the extensive col-
lection of gene expression and genome-wide TF binding
data across multiple human cell types can be exploited
to provide valuable insight about regulators of cell dif-
ferentiation. It also shows the limitations if binding data
are available only for a restricted set of cell types and
conditions.

Methods
ChIP-Seq data
We obtained ChIP-Seq data of 14 TFs in the K562 cell line
and 11 TFs in the GM12878 cell line from the ENCODE
consortium [3]. Each data set contains a signal map of
ChIP DNA fragments, where the signal height is the num-
ber of overlapping fragments at each nucleotide position
in the genome (NCBI build 36). Enrichment of genomic
regions for protein binding was tested against a set of
input DNA control (p-value ≤ 0.01). Peaks indicating
regions with sufficient signal above peak height thresh-
old (false discovery rate < 0.05) were identified using the
PeakSeq algorithm [19]. After conducting a genome-wide
scan for peaks, we examined tracks of putative binding
sites for each of the 14 TFs (Additional file 1: Table S1).
The position of each binding site was defined by the cen-
ter of each ChIP-Seq peak. Adjacent binding sites that
are within 500bp of each other are grouped. Groups with
peaks from two or more different TFs are defined as
CRMs. We mapped a CRM to a gene if the centre of the
CRM is within 1kb of the gene’s transcription start site
(TSS). All distances reported are from the centre of the
CRM to the TSS. Non-specific binding of TFs may cause
ChIP-Seq to detect randomly distributed binding signals.
To reduce false positives we check that a particular com-
bination of TF binding sites occurs more often than in
randomly generated CRMs. Random CRMs are generated
by resampling (1000 times without replacement) random
TFs to replace the original TFs at binding sites in each
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CRM. The positions of gene TSS are the same as those
used in the mapping microarray probe sets to genes. Dif-
ferences in TF binding between CRMs was measured by
the Hamming distance, which is the number of TFs that
appear in one CRM but not the other. The Jaccard dis-
tance, which is a ratio between the Hamming distance
and the number of TFs binding in either CRM, is also the
proportion of TFs that are different between two CRMs.

Gene expression data
Cell type specific patterns of mRNA expression were
extracted from the Genome Novartis Foundation SymAt-
las data set [20], which measured 79 human tissue sam-
ples and cell lines (2 replicates each) using Affymetric
GeneChip HG-133U arrays [21]. The gene expression pro-
files of 38 distinct populations of human hematopoietic
cells were from the Broad Institute DMap Project [22].
K562 and GM12878 gene expression data were gener-
ated by Ernst et al. (2011) [23]. Quantile normalization
was applied across expression arrays and the log expres-
sion intensities for each gene was mean centered. Probe
sets were mapped to a gene’s TSS via transcript identi-
fiers and probe set annotations provided by the Ensembl
database (release 54). For cases where there are more than
one probe set mapping to a gene’s TSS, the probe set with
the most variable expression profile was accepted. In total,
13916 genes were profiled in the data sets, but RNA genes
and other non-protein coding genes were not included
in our analysis. For more information on the expression
profiles of the co-localized TFs, see Additional file 1.

Expression prediction model
We employed a simple and flexible modeling framework
to describe the relationship between co-localized TFs and
target genes [24]. The generalized additive model (GAM)
is interpretable, because each predictor term is simply the
expression of a single TF which occupies a CRM. The
GAM implementation in the R package ”mgcv” provides
the option of smoothing spline functions for each predic-
tor term, which gives us the flexibility of incorporating
non-linear relationships between TFs and genes [25]. For
each gene-CRM pair, we considered a model with one or
more additive functions:

E(yi) = β0 +
n∑

j=1
sj(xij) +

∑

1≤j<k≤n
sjk(xij, xik) (1)

where E(yi) is the expected log expression of the target
gene in cell type i, β0 is the mean expression set to zero,
xij is the log expression of TF j in cell type i, n is the num-
ber of TFs in the CRM, and sj is a spline function, where

the degree of smoothing is chosen by cross validation in
the mgcv package. As opposed to using linear predic-
tors, the estimated non-parametric function can reveal
non-linearities in the effect of TF on target gene. In this
model we also allow for second-order interactions where
sjk(xij, xik) is now a set of unknown partial bidimensional
functions. This accounts for possible interactions between
TFs in a CRM, whereby a TF’s effect on gene expression
varies according to the effect of another TF in the CRM.
To ensure that each model does not simply describe the
mean expression level of a target gene, we mean centered
all the expression profiles.

Training and testing
Every gene with a CRM located within its promoter region
(1kb around the TSS) was tested for expression prediction.
For each CRM-gene pair, we inferred the parameters β0, sj
and sjk for the regression equation above using the expres-
sion profiles xij of the co-localized TFs j and yi of the gene
across samples i ∈ ST from the training set ST . We then
predicted gene expression across the samples i ∈ SP in
the test set SP using the TF expression xij in those sam-
ples as predictors. The prediction step gave us a predicted
gene expression value ŷi for each target gene in a sam-
ple i ∈ SP . The prediction accuracy was then measured
by calculating the square of the Pearson correlation coef-
ficient (denoted by R2) between the predicted expression
ŷi and the observed expression yi for all samples in SP.
5-fold cross-validation was performed to assess how well
predictions for each gene would generalize to new sam-
ple data sets. The R2 statistics reported were averaged
over the cross-validations. When predicting expression
variation across a single cell types, leave-one-out cross-
validation was performed. The R2 statistic in this case is
the square correlation coefficient between the predicted ŷg
and observed yg for a single cell type in SP across genes g ∈
G, where G is the set of all genes with CRMs in their pro-
moters. This involved training the models on expression
profiles from all cell types except for one and then predict-
ing gene expression for the left-out cell type. Since each
cell or tissue type has two biological replicates, we used
the average R2 between replicates. We used the Wilcoxon
rank sum test to compare the R2 and the squared predic-
tion error statistics between models generated by different
CRMs.

Assessing expression prediction significance
The R2 statistic for prediction by any given model may
be biased by the correlation between expression profiles
in the training set and test set. Therefore, we tested to
see if the observed co-localized TFs predict target gene
expression better than any other set of TFs. For each gene
expression model, we produce two types of null expres-
sion models with the same number of predictors, but we
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resampled the TFs. In one type of null model, instead
of using the TFs observed to be in the CRM, we ran-
domly resample from the 14 different TFs found in K562.
For the second type of null model, we randomly resam-
ple TFs from a larger set of 41 different TFs identified
as important for regulators of hematopoiesis [22]. A TF
is resampled only if it is expressed in K562 cells, and if
its binding sequence motif is enriched (p-value < 10−7)
in the target gene (within 1kb of the transcription start
site). Further details about the six different motif-finding
methods and a motif-clustering pipeline used by Nover-
shtern et al. can be found from the Broad DMap Project
(http://www.broadinstitute.org/dmap). Finally, we use the
1000 replicates of null models to bootstrap each R2 statis-
tic generated by our expression models. This gives us a
p-value for a how well the observed co-localized TFs in a
CRM predicts target gene expression compared to other
possible sets of TFs.

Results
High number of TF co-localization hot-spots along the
genome
In order to gain insight into the distribution of TF co-
localization across the human genome, we first analyzed
the ChIP-Seq data of 14 TFs from the K562 cell line [3].
Peaks for DNA fragment enrichment in each data set are
signals along the genome for where a specific TF binds.

By comparing all TF binding sites in a cell type, we iden-
tified 37529 regions where two or more TFs co-localize
within 500bp of each other. As shown in Figure 1, a high
concentration of co-localizations lie within 1kb of the
transcription start site (TSS). We defined regions of TF
co-localization as CRMs, because they are in the vicinity
of gene promoters and may have regulatory potential.
Each CRM contains different combinations of co-
localized TFs. In the K562 cell, we identified 9665 CRMs
containing two or more bound TFs, and with 1051 differ-
ent binding combinations (Additional file 2: Data set). We
noticed that 355 unique combinations of co-localized TFs
have a probability of less than 1 × 10−4 of occurring as
many times by chance. All known pairs of interacting TFs
(Additional file 1: Figure S2) appear in significant combi-
nations. Only such frequently occurring combinations of
TFs in CRMs were analyzed further to determine if they
have potential to influence target gene expression.

Co-localized TFs predict target gene expression
We examined 6582 genes in the K562 cell type with CRMs
positioned within their promoter region (± 1kb from
the TSS), and generated expression prediction models for
every CRM-gene pair. A CRM is mapped to a gene if
at least one of their TF binding sites is located within
the promoter. The co-localized TFs in each CRM are the
explanatory variables used in each model. We assessed

Figure 1 TF binding distribution. Adjacent TFs are grouped into CRMs if they lie within 500bp of one another. A high proportion of CRMs (19%)
are concentrated within 1kb of a gene TSS.
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whether a CRM is an active gene regulatory region by how
well its TFs can predict the expression of target genes.

High accuracy of expression prediction for single samples
We analyzed the K562 ChIP-seq data to identify the co-
localized TF binding sites, and assessed the presence of
active gene regulatory regions across 79 different tissue
and cell samples from the Novartis SymAtlas data set.
The expression predictions, as shown in Figure 2, cor-
related well with the observed gene expression in CD8
T-cells, but less well for pancreatic islet cells. The mod-
els predict gene expression more accurately for samples
with a single cell type compared to samples composed
of many different cell types (Additional file 1: Table S2).
Given that TF expression levels and TF-TF interactions
are cell type-specific [21,26], the expression prediction
models are expected to be less accurate for heterogenous
samples. The prediction accuracy for our models also dif-
fers depending on the cell type in each sample. Compared
to other cell types, we observed a significantly higher
expression prediction accuracy (p-value = 1.9×10−10) for
samples containing blood cells or certain neuronal cells.
Since the prediction accuracy measure is an indicator of
how likely the CRM is an active gene regulatory region,
the results suggest that K562 CRMs may only be active in
cell types of a common lineage or with similar phenotypic
characteristics.

CRMs explain cell type-specific expression
Since the prediction accuracy for gene expression models
is high for blood cell samples in the Novartis SymAtlas,
we further assessed differences in prediction accuracy
when the gene expression models were applied to dis-
tinct hematopoietic cell types (DMap data set) [22]. Co-
localized TFs in K562 CRMs were used once again to
define the explanatory variables in each gene expression
model. We analyzed the predictions made for gene expres-
sion in each terminally differentiated hematopoietic cell

type (Figure 3). The models show that K562 CRMs explain
a higher proportion of expression for B-cells and mono-
cytes compared to other cell types. The high proportion
of explained variation may be due to by chance correlation
in expression between genes and TFs, or due to low varia-
tion in expression for many of the genes. Hence, we tested
whether a specific set of TF expression profiles predicts
a specific target gene’s expression better than a random
set of TFs by comparing the R2 from our gene expression
models to the R2 from null models. One type of null model
was generated by replacing each TF occupying a CRM by
a randomly selected one from the list of 14 TFs found in
K562. The other null model was generated from TFs that
were identified as important for hematopoiesis and which
have binding motifs enriched in the target gene [22]. The
null models based on binding motifs show that there are
other TFs not profiled in K562 which may be impor-
tant regulators in other cells, like HSC and T-cells. Only
for monocytic cells did the expression prediction models,
generated from K562 CRMs, explain significantly more
variation (p-value < 0.001) than the two null models.
It has been reported that K562 cells have characteristics
similar to early-stage monocytes [27], and their gene-TF
relationships may too be similar.

Dissimilar CRMs have different regulatory activities
We assessed how robust the TF co-localization patterns
are across the different cell types. From the ChIP-Seq
data for the K562 cell line and the GM12878 cell line,
we compared the binding profiles of 11 TFs assayed in
both cell lines. Of the 12763 CRMs detected along the
K562 genome and 12824 CRMs in GM12878, 3450 of
the regions in both cell types overlap. Two CRMs are
considered to overlap if the intervals of the CRMs both
overlap by more than 50%. Within these overlapping
CRM regions, we examined the dissimilarity of TF bind-
ing site profiles between the cell types. The dissimilarity

Figure 2 Predicted vs observed expression. Predicted versus observed fold changes in gene expression for peripheral blood T-cells and
pancreatic islet cells. We predicted expression for all genes with co-localized TFs at their promoters (within 1kb of TSS).
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Figure 3 Expression prediction accuracy across terminally differentiated hematopoietic cells. Comparison of R2 between observed and
predicted expression in hematopoietic cell populations; erythroid cells (ERY5), megakaryocytes (MEGA2), neutrophils (GRAN3), monocytes (MONO2),
eosinophils (EOS2), basophils (BASO1), myeloid dendritic cells (DENDA2), naive B cells (BCELLA1), mature NK cells (NK4), Naive CD8+ T cells
(TCELLA2), and CD4+ effector memory T cells (TCELLA7). R2 from expression models generated from K562 CRMs (red) are compared to models with
TFs randomly selected from the 14 in K562 (green), and models generated from binding motifs of 41 TFs important to hematopoiesis (blue). Bars
show 95% confidence intervals for the null models.

between overlapping CRMs was estimated by the number
of changes in the TF binding profile (Hamming distance)
and by the proportion of different TF binding sites (Jac-
card distance). At the promoter regions, we observed less
dissimilarity in CRMs between K562 and GM12878 than
by chance (Figure 4). 62% of the overlapping CRMs have
a difference in binding of one or two TFs between the cell
types, and 63% of those contain only three or four TFs
in K562. Interestingly, at the promoters of genes, which
are differentially expressed between K562 and GM12878,
there is a higher than expected proportion of overlap-
ping CRMs which have no difference in TF binding.
When we predicted the level of expression for these
genes using the co-localized TFs, we observed a mean
squared prediction error (MPSE) of 2.05 for expression
levels in GM12878, but a MPSE of 7.95 for expression
levels in K562. Although GM12878 and K562 have the
same TFs co-localized at the promoters for some differ-
entially expressed genes, it seems that only in GM12878
are the co-localized TFs showing a regulatory effect on the
target gene.

The extensive dissimilarity in TF binding profiles at
gene promoters between the two hematopoietic cell types
could also influence differential expression. To examine
the cell type-specific regulatory effect CRMs have on

target genes, we compared the dissimilarity in TF binding
between K562 and GM12878 to any difference in expres-
sion prediction accuracy. For each target gene, we con-
structed two expression prediction models which differ
in their predictor terms. One model contains predictors
which are co-localized TFs that bind to CRMs in the K562
cell. In the other model, the co-localized TFs are those
that bind to CRMs detected in the GM12878 cell. Both
sets of models were trained on the DMap expression data
set of 38 distinct hematopoietic cell populations. We then
assessed how well the two sets of models predicted tar-
get gene expression in K562. The models generated from
GM12878 CRMs that are identical to K562 CRMs had a
MSPE of 0.469. In contrast, a MSPE of 1.58 was observed
for models generated from GM12878 CRMs that are 80%
dissimilar in TF binding compared to their correspond-
ing K562 CRMs. The models generated from GM12878
CRMs, where more than 50% of the TF binding sites are
different from the corresponding K562 CRMs, have sig-
nificantly higher expression prediction errors (p-value =
1.6 × 10−4). There is no significant difference in expres-
sion prediction errors (p-value = 0.681) if less than 30%
of the TF binding sites are different. The general trend
of expression prediction errors seem to be increasing for
GM12878 CRMs that are more dissimilar to K562 CRMs
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Figure 4 Distribution of dissimilar CRMs at differentially
expressed genes. The dissimilarity between CRMs at the promoter
regions of all genes (red bars) and at the promoter regions of
differentially expressed genes (blue bars) are compared to the
dissimilarity between randomly generated CRMs (green bars with
95% confidence intervals). Dissimilarity between an overlapping pair
of CRMs is described by the number of different TFs (Hamming
distance) bound to a K562 CRM compared to a GM12878 CRM.

(Figure 5). This suggests that prediction of gene expres-
sion is sensitive to the cell type-specificity of the TF
binding profiles.

TF co-localization patterns specific to differentially
expressed genes.
The differential expression between genes in K562 and
GM12878 seems to correspond to the occurrence of spe-
cific TFs in CRMs (Figure 6A). Genes that are under-
expressed in GM12878 compared to K562 have a higher
than expected number of TFs binding promoters only in
K562. In contrast, genes expressed higher in GM12878
compared to K562 have a higher than expected number of
TFs binding to promoters only in GM12878. The absence
and presence of TFs that correlate with over-expression
and under-expression of genes may indicate the role of
these TFs as activators or repressors. This is most appar-
ent for EGR1, GABP, and MAX. However, TFs interact
with other factors in CRMs, so the main effect of a TF
is difficult to define. We found that different factors co-
localize with YY1 and FOS in K562 and GM12878 cells
(Figure 6B), and this could explain why binding by those
TFs are associated with both over-expression and under-
expression of genes. When we compared how well CRMs

detected in K562 and GM12878 predicted the expres-
sion of the top 50 genes with the most variable expres-
sion across hematopoietic cell types, neither K562 nor
GM12878 CRMs had significantly high prediction accu-
racy across all cell types (Figure 7). Despite this, we still see
that some K562 and GM12878 CRMs can accurately pre-
dict the expression of genes in some cell types. In the case
of a possible tumor suppressor, BNIP3L, the combination
of TFs FOS and PU1 binding to the gene’s promoter (as
observed in GM12878 cells) predicted the gene’s expres-
sion accurately only in B-cells. Differences in the predic-
tion accuracy of a gene exist even between very similar
cell types. For example, the expression of another possi-
ble tumor suppressor, LRIG2, in early-stage erythrocytes
and monocytes is accurately predicted (p-value < 0.01)
using K562 CRMs, but its expression in late-stage erythro-
cytes and monocytes is not predicted accurately. When we
compare prediction accuracy of K562 CRMs to GM12878,
we see that LRIG2 is better predicted by the K562 CRM
across most cell types (Additional file 1: Figure S6A). This
could be explained by the missing EGR1 binding site and
the additional FOS, TAF1, and YY1 binding sites in the
K562 CRM compared to the GM12878 CRM (Additional
file 1: Figure S6B). Given that K562 cells belong more to
the myeloid lineage and GM12878 cells belong more to
the lymphoid lineage of blood cell development, it is sur-
prising that there is no indication of K562 or GM12878

Figure 5 Differences in expression prediction accuracy between
dissimilar CRMs. Different models, one generated from GM12878
CRMs and the other from K562 CRMs, were used to predict gene
expression levels in the same cell type (K562). The ratio between the
mean squared prediction errors of the GM12878 model
(MSPE.GM12878) and K562 model (MSPE.K562) is higher for CRMs
where a larger proportion of TF binding sites (Jaccard distance) differ
between the two cell types.
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CRMs predicting expression accurately across genes in
their respective blood cell lineages.

Non-linear interactions between TFs and target genes
It is necessary to understand the combinatorial relation-
ships between TFs given the high co-localization of TFs
in the promoter regions. An advantage of modeling each
target gene’s expression using a specific CRM is that we
can describe the relationship between the target gene
and multiple TFs. Of the 6582 total K562 CRMs tested,
2938 CRMs (45%) modeled using non-linear spline func-
tions on the TF predictors fit significantly better (p-value
< 0.01) compared to linear models. The TF-target expres-
sion profiles (Additional file 1: Figure S7) clearly illustrates
the non-linear relationship that target gene, SMNDC1, has
with its TF predictors, MYC, MAX, and YY1. Our model
uses MYC as a predictor, which is reassuring considering
that MYC is known to form a complex with MAX [28].
Furthermore, the U-shaped expression profile of MYC
when plotted against SMNDC1 suggests that MYC has
divergent roles in different tissues. This divergent role of
TFs not only appears in different tissues, but also in dif-
ferent genes. The smoothing functions from our models
suggest that TFs like MYC and MAX may have both
repressor and activator functionalities depending on their
target gene (Additional file 1: Figure S9) . It is interesting
to note that YY1 and MYC also seem to interact differently
with the same target gene (Figure 8). Non-linear regres-
sion allowed us to incorporate TF-TF interactions into our
expression prediction models, however, of all the CRMs
we examined in this study, only 2.2% of them have sig-
nificant TF-TF interaction terms when used in models to
predict target gene expression.

Discussion
In summary, we have identified and characterized various
regions of co-localized TFs in human K562 and GM12878
cells. The difference in co-localization patterns between
GM12878 and K562 cells explains the differential expres-
sion in genes that may determine cell states. Dynamic
CRM occupancy have been suggested as a regulator of
temporal gene expression during cell development, but
it cannot be inferred from TF binding motifs or static
expression values [29]. Subsequently, our gene expression
models were unable to predict with high accuracy the
gene expression profiles of cell types that do not arise
from a lineage similar to that of K562. The systematic
analysis of CRMs dissimilar between K562 and GM12878,
demonstrated that K562 gene expression could not be
explained using GM12878 CRMs if its TF binding pro-
files are too dissimilar from that of the K562 TF binding
profiles. Nevertheless, we found several cases where TF
combinations detected in K562 or GM12878 CRMs could

Figure 8 3D plot of correlation between TF and target gene
expression. Regression plane of TF expression (MYC and YY1) against
target gene SMNDC1. Repression activity of MYC and the activation
activity of YY1 are captured in our model. The observed expression
values (pink) are plotted on the surface along with their
corresponding predicted expression values (blue if below, or red if
above the observed values).

be used to predict gene expression in other cell types.
Genes for which we know little about, like LRIG2, but
associated with poor prognosis of different cancer types
[30], have been detected by our method to correlate with
the expression of three TFs (FOS, TAF1 and YY1) across
blood cell groups.

This study assumes that expression levels of the TFs
explain less target gene expression if their binding loca-
tions are found further away from the target gene’s TSS.
This could be justified by the decreasing affinity and reg-
ulatory influence on the target gene as the CRM is posi-
tioned further away from the TSS [11,31]. The observed
decrease in prediction accuracy by CRMs further than
1kb from the TSS is the reason for why we considered
only CRMs proximal to the target gene when predicting
gene expression in a single cell sample (Additional file 1:
Figure S8). Nevertheless, more distal CRMs can also
have a large effect on target gene expression if DNA is
folded in a way that distant elements can interact [32,33].
A more complete expression prediction model may be
to include co-localized TFs which also bind distal to a
target gene.

The TFs examined in this study are involved in many
processes and are co-expressed with many different genes.
This means that the high prediction accuracy may be due
to the by chance selection of TFs which are co-expressed
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Figure 6 TF binding differences between CRMs at differentially expressed genes. (A) Dissimilarity of TF binding sites at the promoters of
genes which are under-expressed and over-expressed in GM12878 compared to K562. We compared the enrichment (observed/expected
numbers) of TFs that bind to CRMs in GM12878 but not in K562 (black bars) and TFs that bind to CRMs in K562 but not in GM12878 (white bars). (B)
Hierarchical clustering of TFs based on co-occurrence at promoters of the differentially expressed genes. TFs are clustered closer together if their
binding sites co-localize more often in the CRMs of K562 and GM12878.

with the target gene. This could result in over-fitting of
the models, therefore, it was important to compare the
prediction accuracy with null models. We selected CRMs
which describe target gene expression with high accu-
racy across cell types, and examined features of those
models that are indicative of TF binding position. We
found that most of these CRMs contain a high number of
co-localized TFs, some of which are known to form het-
erodimers. For instance, pairs of TFs known to form het-
erodimers, such as MYC-MAX, NFYA-NFYB, and FOS-
JUN, co-occur in many of the detected CRMs. Target
genes whose expression is not accurately predicted and

have a low number of co-localized TF predictors in their
promoters may be better modeled by nucleosome occu-
pancy signals, or other epigenetic determinants [34,35].
These other signals may also explain some of the spa-
tial variability in our expression predictions. For instance,
detection of open chromatin in the promoter region of a
gene may indicate more TFs that bind to the region and
regulate the gene [36].

In this study, we demonstrate that many of the highly
predictive expression models describe non-linear inter-
actions between TFs and target genes. This suggests
that many TFs have divergent roles in regulating gene
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Figure 7 Expression prediction accuracy for top 50 most variable genes across hematopoietic cell groups. Significance of expression
prediction accuracy across hematopoietic cell types for K562 and GM12878 CRMs. We used CRMs to predict the expression of each gene in a cell
type and calculated the mean squared prediction error from the observed expression. To test whether the prediction error is significantly low, we
found the probability (p-value) of obtaining a prediction error just as low from using randomly generated CRMs to predict expression. Only the
differentiated cell types are column labeled; left of each label are the columns for their progenitors.

expression, for example, a TF may contribute to activating
a gene in one cell type but repress it in other cell types.
When we modeled the gene expression of SMNDC1, its
TF regulator MYC is shown to have repression activ-
ity only during low levels of YY1. Although we detected
co-occurring binding sites for both MYC and YY1, our
expression model suggests that YY1 silences the repres-
sion activity of MYC. This is consistent with recent find-
ings showing that YY1 negatively regulates MYC activity
in certain tumour cells [37]. Another example of nega-
tive regulation between TFs is the repression of FOS by
YY1. Of the 1422 CRMs detected which contain both
FOS and YY1 binding sites, only one of these CRMs
significantly predicted target gene expression. The under-
representation of possible regulatory modules containing
both FOS and YY1 may be due to the transcriptional
repression of the FOS gene by YY1 [38]. This repression
activity of other TFs may explain why we cannot clearly
define the effect of YY1 on differentially expressed target
genes. Although not captured in our models, the repressor
activity of YY1 is regulated through acetylation by p300
and PCAF [39]. The lack of post-translational information

in our models represents a limitation in the inference of
TF activity.

Conclusion
Our simple method of modeling gene expression based
on the expression of co-localized TFs have shown that
cell type-specific TF binding information is required for
determining cell type-specific gene expression. However,
by modeling each gene individually, we have shown that
TF combinations detected in one cell type could in some
cases predict gene expression in other cell types. This
could suggest possible regulators of a gene in a cell
type for which we do not have TF binding data. Fur-
ther extension of this basic approach may be needed
to account for TFs that bind to non-genic regions and
interact over a large genomic distance due to tertiary
chromosome structure [40]. This requires integration of
additional genomic markers for identifying target genes of
distal regulators. Since we expect more cell type-specific
data to be generated on TF binding and chromatin struc-
tures, our perspective of dynamic CRM occupancy will
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only become more complex. Therefore, we hope that this
approach of integrating co-localized TFs to predict target
gene expression will provide a useful way of capturing the
combinatorial effect of TFs in different human cell types.

Additional files

Additional file 1: Supplementary methods, figures and tables.
Contains additional information on methods, supplementary figures 1–9
and supplementary tables 1–2.

Additional file 2: Supplementary data. Contains additional information
on supplementary data set of CRM locations.
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