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Ball, W. H., Tout, C. A., Żytkow, A. N., & Eldridge, J. J.
2011, MNRAS, 414, 2751

• Material from Chapters 5 and 6 and Appendix A has been published as

Ball, W. H., Tout, C. A., Żytkow, A. N.,
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Abstract

The mechanism by which the supermassive black holes that power bright quasars
at high redshift form remains unknown. One possibility is that, if fragmentation is
prevented, the monolithic collapse of a massive protogalactic disc proceeds via a
cascade of triaxial instabilities and leads to the formation of a quasi-star: a growing
black hole, initially of typical stellar-mass, embedded in a hydrostatic giant-like
envelope. Quasi-stars are the main object of study in this dissertation. Their envelopes
satisfy the equations of stellar structure so the Cambridge STARS code is modified to
model them. Analysis of the models leads to an extension of the classical Schönberg–
Chandrasekhar limit and an exploration of the implications of this extension for the
evolution of main-sequence stars into giants.

In Chapter 1, I introduce the problem posed by the supermassive black holes that
power high-redshift quasars. I discuss potential solutions and describe the conditions
under which a quasi-star might form. In Chapter 2, I outline the Cambridge STARS

code and the modifications that are made to model quasi-star envelopes.

In Chapter 3, I present models of quasi-stars where the base of the envelope is
located at the Bondi radius of the black hole. The black holes in these models are
subject to a robust upper fractional mass limit of about one tenth. In addition, the
final black hole mass is sensitive to the choice of the inner boundary radius of the
envelope. In Chapter 4, I construct alternative models of quasi-stars by drawing
from work on convection- and advection-dominated accretion flows around black
holes. To improve the accuracy of my models, I incorporate corrections owing to
special and general relativity into a variant of the STARS code that includes rotation.
The evolution of these quasi-stars is qualitatively different from those described in
Chapter 3. Most notably, the core black holes are no longer subject to a fractional
mass limit and ultimately accrete all of the material in their envelopes.

In Chapter 5, I demonstrate that the fractional mass limit found in Chapter 3, for
the black holes in quasi-stars, is in essence the same as the Schönberg–Chandrasekhar
limit. The analysis demonstrates how other similar limits are related and that limits
exist under a wider range of circumstances than previously thought. A test is provided
that determines whether a composite polytrope is at a fractional mass limit. In Chapter
6, I apply this test to realistic stellar models and find evidence that the existence of
fractional mass limits is connected to the evolution of stars into the red giants.
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‘Begin at the beginning,’ the King said gravely, ‘and go on
till you come to the end: then stop.’

from Alice’s Adventures in Wonderland,
Lewis Carroll, 1865

1
Supermassive black holes

in the early Universe

Over the last decade, high-redshift surveys have detected bright quasars at redshifts z & 6 (Fan
et al. 2006; Jiang et al. 2008; Willott et al. 2010). Such observations imply that black holes (BHs)
of more than 109 M� were present less than 109 yr after the Big Bang. A simple open question
remains: how did these objects become so massive so quickly? Despite a large and growing body
of investigation into the problem, no clear solution has yet been found (see Volonteri 2010, for a
review).

Begelman, Volonteri & Rees (2006, hereinafter BVR06) proposed that the direct collapse of
baryonic gas in a massive dark matter (DM) halo can lead to an isolated structure comprising
an initially stellar-mass BH embedded in a hydrostatic envelope. Such structures were dubbed
quasi-stars. At the centre of a quasi-star, a BH can grow faster than its own Eddington-limited rate.
Quasi-stars can thus leave massive BH remnants that subsequently grow into the supermassive
black holes (SMBHs) that power high-redshift quasars.

The structure of the gas around the BH is expected to obey the same equations as the envelopes
of supergiant stars. In both cases, hydrostatic material surrounds a dense core. Giant envelopes are
supported by radiation from nuclear reactions in or around the core whereas quasi-star envelopes
are supported by radiation from accretion on to the BH. By choosing suitable interior conditions
to describe the interaction of the BH and the envelope, it is possible to model a quasi-star with
software packages designed to calculate stellar structure and evolution. Such an undertaking was
the initial aim of the work described in this dissertation and the results ultimately shed new light
on the structure of giant stars.



2 Supermassive black holes in the early Universe

The purpose of this chapter is to provide the background for my work on quasi-stars. In
Section 1.1, I provide a synopsis of progress in explaining the existence of high-redshift BHs
and I explain the place of quasi-stars within our present understanding of the early Universe. In
Section 1.2, I describe the structure and evolution of the first luminous objects in the Universe
and the remnants they are expected to leave. Finally, in Section 1.3, I outline the layout of the
rest of this dissertation.

1.1 Supermassive black hole formation

It is broadly accepted that the intense radiation from quasars is produced by material falling on
to massive BHs (Salpeter 1964). To understand how and where such objects came to be, I first
outline the current understanding of cosmic structure formation and then describe how baryonic
material evolves after it decouples from the DM.

1.1.1 The early Universe

The currently accepted cosmological model is ΛCDM (see Peebles & Ratra 2003, for a review).
It is characterised by a non-zero cosmological constant Λ and matter dominance of material
with low average kinetic energy (or cold material) that interacts only via gravity, known as dark
matter (DM). The model fits and is well-constrained by observations of anisotropies of the cosmic
microwave background (Larson et al. 2011), high-redshift supernovae (Kowalski et al. 2008) and
baryon acoustic oscillations (Percival et al. 2010). Quantitatively, ΛCDM describes an expanding
universe that has no spatial curvature, a scale-invariant fluctuation spectrum and a matter-energy
content of, to within about 1 part in 20 of each parameter, 72.5 per cent dark energy, 22.9 per
cent DM and 4.6 per cent baryonic matter (Komatsu et al. 2011).

The ΛCDM cosmology implies that large-scale structure formation is hierarchical. DM in
small density perturbations first condenses and then merges to form larger halos. During each
merger, the identities of the merging halos is lost, leading to a self-similar distribution of halos
over all masses (Press & Schechter 1974). This theoretical scenario is supported by large-scale
simulations of structure formation (e.g. Springel et al. 2005; Kim et al. 2009). More recent results
indicate that such simulations are well-converged and probably do describe how DM structure
formed to the limit of current theory (Boylan-Kolchin et al. 2009).

The baryonic matter, which I refer to just as gas, is shock-heated during these mergers until it
reaches a temperature above which it can cool by radiating. Once the cooling timescale becomes
shorter than the dynamical timescale, the gas contracts towards the centre of the halo (Rees &
Ostriker 1977), while the dissipationless DM does not. As larger halos form, either by merging
or condensing, the temperature of the gas rises until cooling is sufficient to meet the collapse
criterion. Depending on the mass of the halo and the nature of the cooling, the material may



1.1 Supermassive black hole formation 3

fragment into smaller objects and form a protogalaxy (White & Rees 1978). The size of the
first astrophysical objects thus depends directly on how the gas is able to cool. Whether the
gas fragments or undergoes direct monolithic collapse remains an open question and there are
two broad classes of structures for the first luminous objects and, therefore, the progenitors of
SMBHs.

Typically, a cloud of gas cools by emitting radiation via atomic and fine-structure transitions
in metals. In the early Universe, however, there were no metals: primordial nucleosynthesis is
expected to produce only hydrogen and helium in meaningful quantities and trace amounts of
other light elements such as deuterium and lithium (Coc et al. 2004). Atomic hydrogen cooling
is only effective down to T ≈ 104 K. Below this temperature, only molecular hydrogen is able
to cool the gas further and, even then, only to T ≈ 200 K. The effectiveness of cooling by H2

is complicated by its formation via H−, which requires an abundance of free electrons to form.
Both H2 and H− are easily dissociated by an UV background, which could be created by the light
from the first generation of stars in the same or a nearby halo. Models of halo collapse indicate
that the first objects to form were metal-free stars in the centres of halos with virial temperatures
Tvir ≈ 103 K and masses M ≈ 106 M� (Abel, Bryan & Norman 2002). They could provide
sufficient ionizing radiation to suppress or prevent H2 formation on cosmological length scales.
If collapse in nearby minihalos is foiled (Machacek, Bryan & Abel 2001), they might merge into
larger halos that collapse later owing to atomic line cooling.

Tegmark et al. (1997) explored the problem of H2 with semi-analytic methods and concluded
that, as long as the gas temperature is below about 104 K, the absence of free electrons suppresses
H2 formation. Conversely, at higher temperatures, the gas is able to form enough H2 to collapse
and cool quickly. In addition, a sufficient UV background strongly suppresses H2 formation. If
the gas can cool efficiently via H2 (Bromm & Larson 2004), the first generation of stars would
have M ≈ 100 M�. If, instead, the formation of H2 is suppressed, the gas is unable to cool
as rapidly and probably forms a pressure-supported object with M & 104 M� (e.g. Regan &
Haehnelt 2009b).

Schleicher, Spaans & Glover (2010) showed that collisional dissociation suppresses H2 forma-
tion for particle densities over about 105 cm−3 . At lower densities, H2 could be photodissociated
by an ionizing UV background. Shang, Bryan & Haiman (2010) estimated that the necessary
specific intensity exceeds the expected average in the relevant epoch but Dijkstra et al. (2008)
suggested that the inhomogeneous distribution of ionizing sources provides a sufficiently large
ionizing field in a fraction of halos. Spaans & Silk (2006) instead argued that the self-trapping of
Lyα radiation during the collapse keeps the temperature above 104 K and prevents H2 from form-
ing at all. Finally, Begelman & Shlosman (2009) proposed that the bars-within-bars mechanism
of angular momentum transport sustains enough supersonic turbulence in the collapsing gas to
prevent fragmentation, even if the gas cools.
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The structure of the collapsing gas hinges on whether or not H2 forms and radiates efficiently
and it is unclear which is the case or occurs more frequently. The two cases lead to distinct
evolutionary sequences for subsequent baryonic structure formation. I explain these in the next
two subsections.

1.1.2 Accretion and mergers of seed black holes

If the first generation of luminous objects were metal-free stars with masses in the range 100 M� .

M . 1000 M�, stellar models predict that objects with masses over about 260 M� underwent
pair-instability supernovae and left BHs with about half the mass of their progenitors (Fryer,
Woosley & Heger 2001). Stars with masses in the range 140 M� . M . 260 M� also become
pair-unstable but are expected to be completely disrupted. Stars smaller than 140 M� burn oxygen
stably and ultimately develop iron cores that collapse. The largest objects form at the centres of
their host DM halos where these seed BHs accrete infalling material and merge with other seeds
as the DM halos continue to combine into larger and larger structures.

The simplest explanation for SMBHs at high redshift would be that a seed BH accretes gas
from its surroundings. If the radiation is spherically symmetric, the maximum rate at which the
BH can accrete is reached when the amount of radiation released by the material as it falls on
to the BH matches the gravitational attraction of the BH. The total luminosity in this state is
the Eddington limit or Eddington luminosity. The accretion rate that reproduces the Eddington
luminosity is the Eddington-limited accretion rate. If a seed BH accretes at its Eddington-limited
rate with a radiative efficiency ε = LBH/ṀBHc

2 = 0.1, a 10 M� seed takes about 7× 108 yr to
reach a mass of 109 M� (Haiman & Loeb 2001). Though this appears to solve the problem, it
requires that the BH is initially sufficiently large, surrounded by a sufficient supply of gas and
able to accrete with constant efficiency at the Eddington limit. Milosavljević et al. (2009a) argue
that accretion on to the BHs from the surrounding gas is self-limiting and they cannot accrete
faster than 60 per cent of the Eddington-limited rate. For accretion from a uniform high-density
cloud, Milosavljević et al. (2009b) claim that the accretion rate drops as low as 32 per cent of the
maximum. Johnson & Bromm (2007) suggest that the supernova accompanying the formation
of a seed BH rarefies the surrounding gas and delays accretion for up to 108 yr. More recently,
Clark et al. (2011) found that the protostellar accretion disc around a primordial star is unstable
to further fragmentation that leads to tight multiple systems of lower-mass stars instead of single
isolated massive stars. Hosokawa et al. (2011) found that the protostellar disc evaporates because
of irradiation once the protostar reaches a few tens of solar masses. These results show that seed
BHs may have been too small and accreted too slowly to reach the observed masses by z = 6, so
other solutions have been proposed.
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After the first compact objects form, DM halos continue to merge hierarchically and the
baryonic protogalaxies at their centres follow suit (Rees 1978). If the galaxies have core BHs,
they too will merge. This process can be modelled by following sequences of BH mergers through
a hierarchical tree (e.g. Volonteri, Haardt & Madau 2003; Bromley, Somerville & Fabian 2004;
Tanaka & Haiman 2009). In the simplest such models, seed BHs of a certain mass form in halos
of a specified size (or range of sizes) and the halos are given some probability of merging. When
they merge, so do the BHs. This simple picture already requires a number of free parameters
and there are many other physical processes that can be included and parametrized. Sijacki,
Springel & Haehnelt (2009) took advantage of progress in general relativistic modelling of BH
mergers, general relativistic magnetohydrodynamic models of BH accretion and high-resolution
simulations of cosmological structure formation to construct intricate merger trees including
these effects.

In general, according to the authors referred to above, the formation of SMBHs from seeds of
a few hundred M� is sensitive to a number of uncertain conditions. Many models require the BH
to accrete mostly at or near the Eddington-limited rate but it is not clear that this is possible, for
the reasons described above. Those models that do successfully form high-mass, high-redshift
quasars tend to overpredict the number of smaller BHs in the nearby Universe (e.g. Bromley et al.
2004; Tanaka & Haiman 2009) or require that the first stars formed at redshifts z > 30.

Several important factors remain difficult to model. First, a BH’s spin substantially influences
its radiative efficiency. A non-rotating BH has a radiative efficiency of just 5.7 per cent but
this rises to 42 per cent for a maximally-rotating black hole, making accretion less efficient.
Consistent accretion from a disc tends to increase a BH’s spin, whether from a standard thin
disc or a thick, radiation-dominated flow (Gammie, Shapiro & McKinney 2004). Conversely,
random, episodic accretion reduces the BH’s spin (Wang et al. 2009). Secondly, feedback of the
BH’s radiation on the protogalaxy is still excluded. Active accretion can lead to substantial gas
outflows (Silk & Rees 1998), which starve the BH of material over cosmic times and retard its
ability to grow.

There is currently no clear solution that resolves these issues. One possibility is an increase
in the masses of the seed BHs (Haiman & Loeb 2001). Volonteri & Rees (2005) suggest that an
intermediate-mass seed formed in a large halo could undergo a short period of super-Eddington
accretion, effectively increasing the seed mass for subsequent mergers. Spolyar, Freese &
Gondolo (2008) suggested that DM self-annihilation inside primordial stars can significantly
heat them and delay their arrival on the main sequence. This allows protostars to accrete more
material before they begin to produce ionizing radiation. The stars thus achieve larger masses
and leave larger seed BHs (Freese et al. 2008).

It is also possible to form larger seed BHs after a first generation of stars has polluted the
interstellar medium with metals. The second generation of stars would resemble modern metal-
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poor populations. During hierarchical mergers, gas builds up in the cores of halos, fragments
and forms dense stellar clusters (Clark, Glover & Klessen 2008). Such dense environments can
lead to frequent stellar collisions and thence either directly to a massive BH or to a massive star
that leaves a massive BH as its remnant (Devecchi & Volonteri 2009). Mayer et al. (2010) also
found that collisions between massive protogalaxies naturally produce massive nuclear gas discs
that rapidly funnel material to sub-parsec scales and create ideal conditions for collapse into a
massive BH.

In short, the problem of creating massive BHs quickly could be resolved by any mechanism
that allows massive seeds to form. Sijacki et al. (2009) found they could reproduce a BH
population that fits observed properties at high- and low-redshifts by using rare seeds with masses
up to about 106 M�. Fig. 1.1 summarizes several possibilities that lead to intermediate-mass
BHs that are massive enough to grow into SMBHs by redshift z ≈ 6. In the next subsection,
I discuss how such massive seeds can form through the monolithic gravitational collapse of
massive pregalactic clouds.

1.1.3 Direct collapse

Loeb & Rasio (1994) outline a number of obstructions to the direct formation of a SMBH at
the centre of a DM halo. Among them is fragmentation (see Section 1.1.1), which is principally
decided by the efficient formation of H2 molecules and their ability to cool. A further obstruction
is the transport of angular momentum. If angular momentum is not transported efficiently, a large
self-gravitating disc forms. If unstable to fragmentation, such an object is more likely to form a
cluster of smaller objects than a single supermassive one. High-resolution simulations (Regan &
Haehnelt 2009b; Wise & Abel 2007) of material in massive halos (Mtot ≈ 107 M�) indicate that
such discs are gravitationally stable. If these discs do not fragment, does angular momentum still
preclude direct collapse?

Numerical simulations have long indicated the existence of triaxial or bar instabilities in self-
gravitating discs (Ostriker & Peebles 1973). Shlosman, Frank & Begelman (1989) proposed these
as a mechanism for effective angular transport to feed gas to active galactic nuclei. BVR06 invoke
the same mechanism in pregalactic halos. They show that, for a variety of angular momentum
distributions, a reasonable number of halos are susceptible to runaway collapse through a series
of bar instabilities. Indeed, Wise, Turk & Abel (2008) observe such a cascade of bar instabilities
in their simulations of collapsing halos.

What is the nature of the object that forms? There are two possibilities. I shall explore their
evolution in more detail in the next section and provide a simple outline of their structure here.
BVR06 argue that a small protostellar core forms and continues to accrete material at a rate on
the order of 0.1 M� yr−1 . Because the gas accumulates so quickly, the envelope of the star does
not reach thermal equilibrium during its lifetime (Begelman 2010). After hydrogen burning is
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Figure 1.1: A diagram showing possible paths to the formation of massive BHs in halos with Tvir > 104 K. If
the gas fragments, it can form a dense star cluster or high-order multiple system. The stars can collide and form a
massive star that leaves an intermediate mass BH remnant or the stars can evolve independently after which their
remnants can coalesce. If the gas does not fragment, its fate is determined by whether the infall of gas is too rapid to
establish thermal equilibrium in the central hydrostatic core. If thermal equilibrium can be achieved, a supermassive
star forms and it collapses directly into an intermediate mass BH. If the infall is greater than about 0.1 M� yr−1 , the
central star evolves independently and leaves a BH embedded in a growing hydrostatic envelope: a quasi-star.
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complete, runaway neutrino losses cause the core to collapse to a stellar mass BH. The structure
is a then stellar mass BH embedded in and accreting from a giant-like gaseous envelope. This
structure is named a quasi-star.

Alternatively, if thermal equilibrium is established throughout the protostar prior to collapse,
the object resembles a metal-free star, albeit with a mass exceeding 104 M�. If it is sufficiently
massive, an instability from post-Newtonian terms in the equation of hydrostatic equilibrium
leads to gravitational collapse before normal evolution proceeds to completion (Chandrasekhar
1964). This leads to a BH with perhaps 90 per cent of the original stellar mass (Shapiro 2004).
In either case, after the stellar (or quasi-stellar) evolution ends we expect the remnant to be a
massive BH (Regan & Haehnelt 2009a) that can then act as a seed for the merging and accretion
processes described in the previous section.

1.2 The first luminous objects

The gradual collapse of baryonic material in the early Universe can lead to several different types
of objects. Gas could fragment into metal-free stars. If the gas does not break up during the
collapse, a large isolated object could form. The massive body of gas could undergo some form
of stellar evolution or some fraction of it could collapse directly into a BH. In this section, I
describe these various objects and their evolutions.

1.2.1 Population III stars

Metal-free stars, called Population III (Pop III) stars, have a number of properties that distinguish
them from Population I and II stars. Owing to their importance in the early Universe, an extensive
body of research regarding their structure and evolution now exists. I shall discuss here the
aspects of metal-free stellar evolution that distinguish Pop III stars.

Based on simple theoretical arguments, Pop III stars have a top-heavy initial mass function
(IMF, Bromm, Coppi & Larson 1999). That is, Pop III stars tend to have higher initial masses
than metal-polluted stars. In a cloud of gas the smallest mass unstable to collapse, the Jeans

mass, scales with the temperature of the gas. The strongest cooling agent in the early Universe is
molecular hydrogen, which only cools effectively to T ≈ 200K. Present-day molecular clouds
can cool further because of abundant molecules that include carbon, nitrogen and oxygen. This
suggests that Pop III stars are on average more massive than their Pop I or II cousins. Until
recently, consensus suggested Pop III stars would have masses on the order of 100 M� so the
literature is focused on this case (Bromm et al. 1999). Recent work (e.g. Clark et al. 2011;
Hosokawa et al. 2011; Stacy et al. 2012) suggests that Pop III stars may have instead had masses
on the order of 10 M� because the protostellar disc fragments or evaporates before all of the
material has accreted onto the central protostar.
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Massive stars usually burn hydrogen into helium via the catalytic carbon-nitrogen-oxygen
(CNO) cycle. In the absence of any initial carbon, nitrogen or oxygen only the proton-proton
chain (pp chain) is available to slow the gradual contraction of a protostar. The pp chain scales
weakly with temperature and, for such massive stars, fails to halt the contraction of the star up
to core temperatures on the order of 108 K. At these temperatures, the 3α process produces a
trace amount of carbon, which is quickly converted into an equilibrium abundance of carbon,
nitrogen and oxygen. The principal source of energy then shifts from the pp chain to the CNO
cycle (Marigo et al. 2001; Siess, Livio & Lattanzio 2002). In lower-mass stars, sufficient CNO
abundances are only reached during the main sequence but, in stars with M & 20 M�, the
dominance of the CNO cycle is established earlier. For stars more massive than 100 M�, the
equilibrium mass abundance of carbon, oxygen and nitrogen is between about 10−10 and 10−9

(Bond, Arnett & Carr 1984).

These massive stars live short lives. They are radiation-dominated, so L ≈ LEdd, where LEdd

is the Eddington luminosity. Because the main-sequence lifetime τMS scales as τMS ∝M/L and
L ∝M , it follows that τMS is roughly constant. The lifetime of a 100 M� star is about 3.14 Myr

(Marigo, Chiosi & Kudritzki 2003) and decreases only slightly as the mass increases. The cores
are convective on the main sequence and remain so during helium burning. This commences
almost immediately after hydrogen is exhausted so there is no first dredge-up. After burning
helium, the core burns carbon and then contracts on dynamical timescales towards a temperature
and density at which oxygen burns.

Thereafter, stars with M & 140 M� become unstable to an electron-positron pair-production
instability and they are classified as very massive objects (Bond et al. 1984). Their core tem-
peratures are hot enough for photons to spontaneously form electron-positron pairs. This pair
formation reduces the radiation pressure so the star contracts and the core temperature increases.
The increase in temperature leads to more pair-production and the contraction runs away.

The pair-unstable collapse commences after core helium depletion. During the collapse,
oxygen ignites explosively in the core. For stars in the range 140 M� . M . 260 M�, oxygen
ignition releases enough energy to completely disrupt the star in a pair-instability supernova
(PISN, Fryer et al. 2001). These events present an important opportunity to pollute the early
Universe with the metals produced in the first stars because the entire star’s worth of material is
expelled (Heger et al. 2003).

For stars more massive than 260 M�, the collapsing material is so strongly bound that even
the fusion of the entire core into silicon and iron cannot halt its collapse. Most of the mass in the
core is burnt to iron-group elements and the core ultimately collapses into a BH. For a 300 M�

star, the initial BH mass is about 20 M� but it quickly accretes the remaining 120 M� or so of
core material (Fryer et al. 2001). For stars with masses over 260 M�, about half of the star’s mass
contributes to the near-immediate mass of the BH (Ohkubo et al. 2006).
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Figure 1.2: Plot of the final mass of a Pop III object as a function of its initial mass, up to 1000 M�. For stars with
initial masses smaller than 140 M�, the outcomes are broadly similar to those for Pop I or II stars. Between 140 and
260 M�, pair-instability leads to total disruption of the star and no remnant. At higher masses, a BH forms directly
after explosive carbon ignition. (Figure after Heger & Woosley 2002, Fig. 2.)

Fig. 1.2 summarizes the fates of Pop III stars with masses up to 1000 M�. The final mass
of a stellar remnant is plotted as a function of the initial mass of its progenitor according to the
models of Heger & Woosley (2002). The plot includes masses below 140 M�, which I have not
discussed.

There are two notable omissions to the evolution described above. These are mass loss and
rotation. Mass loss from hot stars is usually driven by atomic transition lines but these are absent
in the metal-free atmospheres of Pop III stars and radiation-driven winds are very weak (Kudritzki
2002). Baraffe, Heger & Woosley (2001) and Sonoi & Umeda (2012) additionally found that
mass loss via fusion-driven pulsational instabilities is typically only a few per cent. Consequently,
mass-loss from the surface of Pop III stars is usually ignored (Marigo et al. 2001).

Angular momentum is imparted to primordial gas during hierarchical mergers and is preserved
in its subsequent collapse. Stacy, Bromm & Loeb (2011) estimated the rotation speeds of
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primordial stars by following the velocities and angular momenta of gas in simulations of Pop
III star formation. They found that there is enough angular momentum for the stars to be born
at near break-up speeds. If the stars rotate sufficiently rapidly to shed mass from their surfaces,
angular momentum is quickly lost and further rotational mass loss is limited. However, rotation
can lead to additional mixing processes that bring metals to the surface and allow line-driven
winds to develop. Extra mixing also extends core-burning lifetimes and modifies nucleosynthetic
yields. Chatzopoulos & Wheeler (2012) calculated pre-supernova stellar models for a range of
masses and rotation rates without surface mass loss and found that the minimum mass for a PISN
decreases dramatically. For an initial surface rotation rate of 0.3Ωcr, where Ωcr is the critical
Keplerian rate, the minimum mass is about 85 M�.

For massive PISN progenitors (M & 260 M�), significant rotation delays accretion by the
core BH. Though the delay is not itself significant, it leads to the formation of a disc, which
probably launches a jet (Fryer et al. 2001). Such a jet could experience explosive nucleosynthesis
before polluting the interstellar (or even intergalactic) medium with metals. If the star is more
massive than about 500 M�, the jet cannot escape the stellar atmosphere. The metals would then
pollute the remaining H-rich envelope but the jet itself would go unseen (Ohkubo et al. 2006).

If H2 cools efficiently, we expect Pop III stars to form at the centres of small DM halos (Wise
et al. 2008). If H2 cooling is suppressed, larger objects, that collapse directly into SMBHs, can
form (Regan & Haehnelt 2009b). Next, I outline two possible structures that can form in this way.

1.2.2 Supermassive stars

Hoyle & Fowler (1963) suggested that stars with masses exceeding 105 M� could explain the
tremendous luminosity of quasars. Though consensus ultimately settled on quasars being accret-
ing BHs (Salpeter 1964; Lynden-Bell 1969), these objects were modelled extensively and much
of the work cited here is from that era. Only recently have supermassive stars resurfaced, now as
the progenitors of high-redshift SMBHs.

The properties of very massive stars, as described in the previous subsection, hold for
increasing mass until a new instability is invoked. In Newtonian gravity, stars with adiabatic
index γ below the critical value γcrit = 4/3 are known to be dynamically unstable. Purely
radiation-dominated stars have precisely this critical value but pure radiation is not possible
because some gas is always present and raises the adiabatic index. Real radiation-dominated stars
are thus stable, even if only marginally so. However, if we include the post-Newtonian terms of
general relativity (GR) in the equation of hydrostatic equilibrium, the critical adiabatic index is
increased to just over 4/3 (Chandrasekhar 1964) and radiation-dominated stars are susceptible to
the GR instability. Stars that are expected to be GR unstable are classified as supermassive stars

(Appenzeller & Fricke 1971).
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Because radiation pressure depends on temperature and a star’s core temperature increases
over its life, stars of different masses become GR unstable during different phases of evolution. In
the non-rotating case, Fricke (1973) estimated that a zero-metallicity star becomes unstable during
its main-sequence life if M & 105 M� and during its He-burning phase if M & 3.4× 104 M�.
These bounds increase substantially if the star is rotating (Fricke 1974). Once the instability
sets in, collapse is certain: H-ignition in a metal-free star is insufficient to stop it. Fully general-
relativistic calculations (Shibata & Shapiro 2002) confirm that a BH forms with a mass of roughly
90 per cent of the star’s original mass.

A fundamental feature in the formation of a supermassive star is that hydrostatic equilibrium
is established throughout the protostar. If this is not the case, the models above are not valid.
Dynamical, non-homologous collapse can lead instead to a pressure-supported protostellar core
accreting rapidly from the surrounding material and I describe this next.

1.2.3 Quasi-stars

One of the greater obstacles to the collapse of a single, supermassive baryonic object in the early
Universe (see Section 1.1.3) is angular momentum loss (Loeb & Rasio 1994). The collisions
and mergers of DM halos give them angular momentum, which is imparted to the baryonic
material they contain. BVR06 outline a scenario where the angular momentum is transported
via the bars-within-bars mechanism described by Shlosman et al. (1989). Whenever the ratio of
rotational kinetic energy of the gas to the gravitational potential exceeds a critical factor, the disc
is liable to form a bar. The bar transports angular momentum outwards and material inwards
without significant entropy transport. Once the infalling material stabilizes, it cools rapidly and
another bar forms. The result is a cascade of instabilities and the infall of material on dynamical
timescales.

Eventually, the most central material becomes pressure-supported. The instability is then
quenched because rotational support is no longer dominant. The pressure-supported object
accretes at a rate on the order of 0.1 M� yr−1 and becomes radiation-dominated. BVR06 claim
that infalling material creates a positive entropy gradient. This stabilises the pressure-supported
region against convection. It also means that the surface layers compress the underlying material
and that there is a core region of a few M� beneath the radiation-dominated envelope where
the pressure remains gas-dominated. Both claims are supported by models of rapidly-accreting
massive protostars presented by Hosokawa, Omukai & Yorke (2012), who followed the stars’
evolution up to core hydrogen ignition.

Begelman (2010) considered the evolution of the growing thermally-relaxed core. As in
Pop III stars, hydrogen burning begins through pp chains but the core’s contraction continues
until a trace amount of carbon is created through the 3α process. Hydrogen subsequently burns
through the CNO cycle. The hydrogen-burning phase lasts a few million years during which
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the core grows but does not incorporate the total mass of the object. After the core exhausts its
central hydrogen supply, it contracts and heats up to many 108 K. At these temperatures, the core
collapses owing to neutrino losses.

The outcome of this evolution is an initially stellar-mass BH embedded in a giant-like
envelope of material. The BH quickly begins accreting from the surrounding envelope. The
radiation released in the flow settles near the Eddington-limited rate of the whole object and
drives convection throughout the envelope, even if it was convectively stable before core-collapse.
BVR06 called this configuration a quasi-star because the envelope is star-like but the central
energy source is accretion on to the BH rather than nuclear reactions.

BRA08 explored the structure of quasi-stars in some detail. The accretion on to the BH is
taken to be an optically thick variant of spherical Bondi accretion (Flammang 1982) reduced by
radiative feedback and the limitations of convective energy transport from the base of the envelope.
The radiation-dominated envelope is convective (Loeb & Rasio 1994) and well-approximated
by an n = 3 polytrope. At the base of the envelope, 105 . Tc/K . 106 and ρc . 10−6 cm−3, so
nuclear reactions can safely be ignored.

Above the convective region is a radiative atmosphere. Initially, the temperature of the
radiative zone is of order 104 K for a 105 M� quasi-star. As the BH and its luminosity grow,
the atmosphere expands and the photospheric temperature falls. BRA08 claim that once Tph ≈
4000 K, the entire atmosphere experiences super-Eddington luminosity. It expands more quickly,
leading to faster cooling and a runaway process that disperses the photosphere. The convection
zone becomes unbounded and is in effect released from the BH. The life of the quasi-star ends
and leaves a BH of at least a few thousand solar masses. The models in this dissertation do not
support this scenario. The BH is either stopped by reaching a fractional mass limit similar to the
Schönberg–Chandrasekhar limit or it continues to accrete the whole gaseous envelope.

Angular momentum may play a role in the structure of quasi-stars. Its effect is probably
minor for the envelope structure but might be significant for the BH’s immediate surroundings.
The angular momentum of the accreted material leads to the formation of a disc, which decreases
the accretion efficiency. The emission from the disc affects the innermost layers of the envelope
and ongoing accretion affects the spin of the BH.

1.3 Outline of this dissertation

The remainder of this dissertation describes my work in six chapters. In Chapter 2, I provide the
technical details of the Cambridge STARS code, which was used to calculate models in Chapters
3, 4 and 6. In Chapter 3, I describe models of quasi-stars constructed after the example of BRA08
and find two main results. First, the models are highly sensitive to the location of inner boundary
radius. Secondly, the models are all subject to a robust limit on the final mass of the black hole
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as a fraction of the total mass of the quasi-star. In Chapter 4, I confront the first problem by
constructing a new set of boundary conditions and find that the evolution of the models is very
different. For all parameter choices, the BHs ultimately accrete the whole envelope.

In Chapter 5, I explain the fractional mass limits found in Chapter 3. In short, the mass
limit is analogous to the Schönberg–Chandrasekhar limit: the maximum fractional mass that an
isothermal stellar core can achieve when embedded in a polytropic envelope with index n = 3. I
extend my work to incorporate other polytropic limits discussed in the literature. The description
of these limits leads to the construction of a test that determines whether a polytropic model is
at a fractional mass limit. In Chapter 6, the test is applied to realistic stellar models. It appears
that exceeding a fractional mass limit always occurs when a star evolves into a giant and I
introduce and discuss the long-standing problem of what causes this behaviour. In Chapter 7, I
summarize my research and propose directions for future work on SMBH formation and the red
giant problem.



FORTRAN–the "infantile disorder"–, by now nearly 20
years old, is hopelessly inadequate for whatever computer
application you have in mind today: it is now too clumsy,
too risky, and too expensive to use.

Edsger W. Dijkstra, 1975

2
The Cambridge STARS code

A triumph of 20th century astrophysics is the development of a successful stellar model, which
describes stars as spherical, static, self-gravitating fluids in local thermodynamic equilibrium.
This leads to a system of non-linear differential equations that must be solved numerically. With
the advent of modern computing after the second world war, an increasing number of solutions
were calculated and most observable properties of stars and clusters were explained. Nowadays,
these calculations are easily performed using consumer-level hardware and the theory on which
they are based forms a standard body of knowledge. The reader should not infer, however, that
stellar structure and evolution is wholly understood. Though the standard model is successful, it
is also incomplete. There are a number of processes, including rotation and surface mass-loss,
that are poorly understood and the subject of ongoing research.

In this chapter, I describe the standard equations of stellar structure and evolution and the
Cambridge STARS code, which solves them. The STARS code was originally written by Eggleton
(1971, 1972, 1973). It has subsequently been updated and modified by Han et al. (1994), Pols
et al. (1995), Eldridge & Tout (2004), Stancliffe et al. (2005), Stancliffe & Glebbeek (2008) and
Stancliffe & Eldridge (2009) but its distinguishing features remain unchanged. The structure,
composition and distribution of solution points are calculated simultaneously using a relaxation
method.

I describe here the technical details of the standard version of the code, which was used to
produce the stellar models in Chapter 6. I also indicate modifications that I made to improve
accuracy and convergence when modelling quasi-stars. For quantities that are variables in the
parameter input file (usually data) I have given their corresponding names in the STARS code in
a typewriter font. e.g. (EG).
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For the quasi-star models in Chapters 3 and 4, the inner boundary conditions were replaced
with those of the relevant models described in each chapter. For the work described in Chapter
4, I extended a variant of the code that includes rotation (ROSE, Potter, Tout & Eldridge 2012)
by adding corrections to the structure equations from special and general relativity devised by
Thorne (1977). These extensions are described in Section 4.2.

2.1 Equations of stellar evolution

The description of a star as a spherical, static, self-gravitating fluid in local thermodynamic
equilibrium leads to a system of differential equations that allows the calculation of bulk properties
like temperature, density and luminosity as a function of radius in the star. These are the structure

equations. They depend on the microscopic properties of the material, which must be provided
either through approximate functions or as interpolations of tabulated data. These are the matter

equations. Finally, the microscopic properties depend on the chemical composition of the
stellar material. The gradual change in a star’s structure is caused by changes captured by the
composition equations. These describe how the distribution of elements changes over time owing
to redistribution through convection and transformation through fusion. In this section, I briefly
review each set of equations. For complete derivations, the reader should consult any standard
textbook on stellar structure. e.g. Kippenhahn & Weigert (1990).

2.1.1 Structure

The macroscopic structure of a star is described by four differential equations. The spherical
approximation requires one independent variable, which must be monotonic. The usual choices
are the local radial co-ordinate r or the local mass co-ordinate m and the differential equations
are given below for both. The first three equations describe the local conservation of mass,

∂m

∂r
= 4πρr2 or

∂r

∂m
=

1

4πρr2
, (2.1)

hydrostatic equilibrium,

∂p

∂r
= −Gmρ

r2
or

∂p

∂m
= − Gm

4πr4
, (2.2)

and energy generation,

∂L

∂r
= 4πρr2ε or

∂L

∂m
= ε, (2.3)
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where G is the gravitational constant, ρ the density at r, p the pressure, T the temperature, L
the luminosity and ε the total energy generation rate per unit mass. The total energy generation
is a combination of contributions from nuclear reactions εnuc, neutrino losses εν and heating
or cooling via contraction or expansion, referred to here as the thermal energy generation rate
εth = T ∂s/∂t, where s is the local specific entropy and t represents time. The thermal energy
generation εth is zero when the star is in thermal equilibrium.

The fourth structure equation describes how energy is transported through the star. In general,
we write

∂T

∂r
= ∇T

p

∂p

∂r
or

∂T

∂m
= ∇T

p

∂p

∂m
, (2.4)

where ∇ = ∂ log T/∂ log p depends on whether energy is transported by radiation or convection.
If the temperature gradient is due to radiation alone,

∇ = ∇rad =
3

16πacG

p

T 4

κL

m
, (2.5)

where a is the radiation constant, c the speed of light and κ the opacity.

If the radiative temperature gradient ∇rad is greater than the adiabatic temperature gradient,
∇ad = ∂ log T/∂ log p at constant entropy S,a parcel of material that is displaced upward in
the star becomes hotter and sparser than the material around it. In this unstable situation, the
parcel floats upwards until it dissolves and releases its heat into its surroundings. Similarly,
a parcel displaced downward is unstable to sink and cool material beneath it. The net result
is a combination of upward and downward flows that transport heat outwards. We call this
process convection. Regions in the star where ∇rad > ∇ad are convectively unstable and energy
is transported at least in part through the convective motion of material.

To calculate the convective temperature gradient, we use mixing-length theory (Böhm-Vitense
1958). Suppose that a parcel of material rises adiabatically through a radial distance `m, called
the mixing length, before dispersing. The difference in internal energy between a parcel of gas
and its surroundings is ∆u = cp∆T , where u is the specific internal energy and cp the specific
heat capacity at constant pressure. After rising one mixing length, the difference between the
temperature of the parcel and its surroundings is

∆T =

[(
∂T

∂r

)
S

− ∂T

∂r

]
`m (2.6)

=

[
−T

(
∂ log T

∂ log p

)
S

∂ log p

∂r
+ T

∂ log T

∂ log p

∂ log p

∂r

]
`m (2.7)

= (∇−∇ad)T
`m

Hp

(2.8)
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where we have defined the pressure scale height Hp = (∂ log p/∂r)−1. The luminosity from
convective heat transport is the excess heat multiplied by the amount of material that carries it, so
we write

Lcon = 4πr2ρvccp∆T , (2.9)

where vc is the convective velocity. Buoyancy accelerates the parcel at a rate a = −g(∆ρ/ρ) ≈
g(∆T/T ), where g = Gm/r2 is the local acceleration due to gravity. The blob accelerates over
one mixing length `m so its average velocity over the journey is vconv =

√
a`m/2. Incorporating

this into the convective luminosity gives

Lcon = 4πr2ρcpT

(
`m

Hp

)√
gHp

2
(∇−∇ad)

3/2 . (2.10)

The total luminosity is given by combining the radiative and convective components. To complete
the description, the mixing length must be specified. In the STARS code, the mixing length is
`m = αMLTHp, where αMLT (ALPHA) takes a default value 2 based on approximate calibration to
a solar model.

Mixing-length theory is a crude but effective model of convection. It only considers local
conditions and ignores the known asymmetry between the expansion of upward flows and the
corresponding contraction of downward flows. The mixing length can even be larger than the
radial extent of the convective region. In addition, the mixing length is a free parameter. The
scale factor αMLT is chosen so that models agree with observations of the Sun but it is not clear
that the same value of αMLT should apply to all stars or all phases of evolution. Despite these
flaws, mixing-length theory works well. Near the photosphere, convection is very inefficient,
so the temperature gradient takes its radiative value. In deep convective regions, such as the
convective cores of massive main-sequence stars, convection is very efficient and the temperature
gradient is nearly adiabatic. The more difficult intermediate case exists when convection occurs
in the outer envelope as in red giants.

2.1.2 Matter

To solve the differential equations, we require three equations that describe the microscopic
properties of the stellar material as a function of bulk properties and the composition. They are
the opacity law κ, the nuclear and neutrino energy generation rates εnuc and εν , and an equation of
state that relates the pressure, density and temperature. All three matter equations are functions
of density, temperature and the elemental abundances Xi. Simple expressions for these properties
do not generally exist so they are drawn from data produced by either detailed calculations or
experiments.
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The opacity κ is computed by interpolating in a table of values. The most recent ta-
bles were compiled by Eldridge & Tout (2004). For each total metal abundance, or metal-

licity, Z, data are tabulated in a 5-dimensional grid of temperature T , density parameter
R = (ρ/ g cm−3 )/(T/106 K)3, hydrogen abundance XH, carbon abundance XC and oxygen
abundance XO. The data cover log10(T/K) from 3 to 10 in steps of 0.05, log10R from −7 to 1

in steps of 0.5, XH at 0, 0.03, 0.1, 0.35 and 0.7, and XC and XO at 0, 0.01, 0.03, 0.1, 0.2, 0.4, 0.6

and 1. The tables are populated in the temperature range log10(T/K) from 3.75 to 8.70 using data
from the OPAL collaboration (Iglesias & Rogers 1996). At lower temperatures, data are taken
from Alexander & Ferguson (1994). The low temperature tables do not include enhanced carbon
and oxygen abundances so opacity changes due to changes in XC and XO are not calculated when
log10(T/K) < 4. The high-temperature regime log10 T/K > 8.70 is filled according to Buchler
& Yueh (1976). Stancliffe & Glebbeek (2008) replaced the molecular opacities for H2, H2O, OH,
CO, CN and C2 with the procedure described by Marigo (2002).

If the density parameter or temperature takes a value that is not covered by the opacity table,
the subroutine returns the nearest value of the opacity that is in the table. This occurred at the
innermost points of the models described in Chapter 4. There, the temperature is very high, the
density very low and the opacity dominated by Compton scattering. The extrapolation returns a
constant opacity although, in reality, the opacity is a decreasing function of temperature. The
affected region represents less than 0.01 M� of the envelope and has little effect on the results.

Nuclear reaction rates are taken from the extensive tables of data compiled by Caughlan &
Fowler (1988). Cooling rates owing to neutrino losses are drawn from those of Itoh & Kohyama
(1983), Munakata et al. (1987) and Itoh et al. (1989, 1992). The reaction rates provide both the
energy generated and the rate at which elements are transformed through nuclear fusion.

The quasi-star models in Chapter 3 include a substantial fraction of gas mass that is between
the quasi-star envelope and the black hole. Using a temperature profile T ∝ r−1 (Narayan,
Igumenshchev & Abramowicz 2000), I estimated the composition changes owing to pp chains
assuming complete mixing down to 10−4 times the inner radius. I found no significant change
to the hydrogen and helium abundances and conclude that the associated energy generation is
also negligible. Although the temperatures in these regions are well over 108 K, the densities are
typically only a few g cm−3 and decline rapidly. This is two orders of magnitude smaller than at
the centre of the Sun and the objects are much shorter-lived.

The same models also neglect heat loss via neutrino emission. I estimated total neutrino loss
rate using the analytic estimates of Itoh et al. (1996) and integrated them over the interior region
in the fiducial run and found that the neutrino losses are at most 6 per cent of the total luminosity
if the flow extends to the innermost stable circular orbit. Such losses would in effect decrease the
radiative efficiency but the structure is principally determined by the convective efficiency so the
envelopes remain stable against catastrophic neutrino losses.
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Finally, the static structure problem is completed by specifying an equation of state (EoS).
The STARS code uses the EoS developed by Eggleton et al. (1973). The variable used in the
program code is a parameter f which is related to the electron degeneracy parameter ψ by

ψ = log

(√
1 + f − 1√
1 + f + 1

)
+ 2
√

1 + f . (2.11)

In degenerate material, the pressure is calculated by approximating the Fermi–Dirac integrals
as explicit functions of the parameter f . The EoS package provides the pressure p and density
ρ, along with derived parameters, in terms of f and temperature T . The ionisation states of
hydrogen and helium are calculated, as is the molecular hydrogen fraction. Pols et al. (1995)
described additional non-ideal corrections owing to Coulomb interactions and pressure ionization.
It is presumed that all metals are completely ionized. In cool metal-free material, the electron
fraction approaches zero and f tends to zero too. The code refers to log f as an intrinsic variable,
which tends to negative infinity. To avoid associated numerical errors, an insignificant minimum
electron density, ne,0 = 10−6 cm−3 , was added. I compared evolutionary tracks for a 1 M� star
with and without this addition and found no discernible difference in the results.

Quasi-stars are strongly radiation-dominated. The EoS is very close to a simple combination
of ideal gas and radiation,

p =
1

3
aT 4 +

ρkT

µ(Xi)mp
, (2.12)

where mp is the mass of a proton and µ the mean molecular weight. The ionisation state of the
gas is important to determine µ and the detailed EoS in the STARS code provides a significant
improvement over previous models of quasi-stars.

2.1.3 Composition

The structural changes that occur during a star’s life are driven by changes in its chemical
composition. The STARS code solves for seven chemical species i ∈ {1H, 3He, 4He, 12C, 14N,
16O, 20Ne} in the structure equations. The abundances of 28Si and 56Fe are presumed to be
constant. The abundance of 24Mg is set so that all the abundances add up to 1. Additional
equilibrium isotopic abundances can be calculated explicitly after a solution for the current
timestep has been found but I did not use this functionality.

Each chemical species can be created or destroyed in nuclear reactions or mixed by convection.
Mixing is treated as a diffusion process which, combined with the creation and destruction through
fusion, leads to an equation

∂Xi

∂t
= Rc,i −Rd,iXi +

∂

∂m

(
Σ
∂Xi

∂m

)
(2.13)
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for each chemical species. Here, Xi is the fractional mass abundance of element i, Rc,i and
Rd,i are the rates at which the element is created and destroyed and Σ is a diffusion coefficient
related to the linear diffusion coefficient DMLT = vc`m/3 by Σ = (4πr2ρ)2DMLT. In the code, Σ

is approximated by

Σ = KMLT (∇rad −∇ad)
2 M

2
∗

tnuc
, (2.14)

where KMLT = 108 (RCD) is a parameter, M∗ is the total mass and tnuc is the lifetime of the star
in its current evolutionary phase (Eggleton 1972).

In preliminary calculations, I found that quasi-stars do not undergo significant composition
evolution. I therefore removed the composition equations from the calculations in Chapters 3 and
4, which reduced the code runtime by a factor of about four.

2.2 Boundary conditions

To solve the system of differential equations for a star, we need a set of boundary conditions. The
four structure equations are first-order in the dependent variable so we require four boundary
conditions. In addition, we require two equations that specify the inner and outer value of
the independent variable. For each second-order composition equation, two conditions are
specified by requiring no diffusion across the innermost and outermost points. We thus require
six conditions. Three are applied at the surface of the star and three at the centre.

2.2.1 The surface

The surface of the star is defined where the mass co-ordinate is equal to the total mass M∗, which
is given as a parameter in the calculation. If the total mass of the star is changing because of
accretion or mass loss, the total mass is simply changed over time consistently with the model
that is being calculated. There is no provision for additional pressure owing to the velocity of
material leaving from or arriving at the surface. The total luminosity L∗ is specified by assuming
that the star radiates into a vacuum as a black body, which gives

L∗ = 4πR2
∗σT

4
eff, (2.15)

where R∗ is the radius of the surface, σ the Stefan–Boltzmann constant and Teff the effective
temperature. The gas pressure at the surface Pg is given by

Pg =
2g

3κ

(
1− L∗

LEdd

)
, (2.16)
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where LEdd = 4πGcM∗/κ is the Eddington luminosity. At the Eddington luminosity, radiation
pressure alone would balance gravity. If the luminosity were greater, the force of radiation would
accelerate material away from the star.

2.2.2 The centre

At the centre of the star, the formal boundary conditions are L = r = m = 0 but these lead
to divergences in the differential equations. The central point of the model is calculated as an
average of the formal boundary conditions and the values at the first point from the centre. For a
specified innermost mass mc, the central radius rc is defined by

rc =

(
3mc

4πρc

)1
3

(2.17)

and the central luminosity Lc by

Lc = εmc. (2.18)

Quasi-stars are modelled with the STARS code by choosing new boundary conditions for the
innermost point. For example, the inner mass is at least the central black hole mass. Because
the new inner boundaries take finite values, I omit the averaging process used to avoid singu-
larities at the centre. The innermost meshpoint is computed directly on the specified boundary.
Different boundary conditions were used for the models described in Chapters 3 and 4 so detailed
discussions of the boundary conditions in each set of models are deferred to Sections 3.1 and 4.1.

2.3 Implementation

The structure, matter and composition equations define the mathematical problem of calculating
the structure and evolution of a star. To calculate solutions numerically, the variables are
determined at a finite number of meshpoints. The quasi-star models described in Chapters 3 and
4 all have 399 meshpoints; the stellar models of Chapter 6 have 199. The structure equations are
transformed into difference equations that are corrected iteratively until the sum of the moduli
of the corrections is smaller than a user-specified tolerance parameter (EPS). The tolerance
parameter is 10−6 throughout this dissertation. Once a satisfactory solution is reached, the model
is evolved forward by one timestep and a new solution is computed. The time evolution is
fully implicit so that the changes in the time derivatives are computed self-consistently with the
structure.
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Figure 2.1: From left to right, qualitative plots of the second, fourth, fifth and sixth terms of the mesh-spacing
function (equation 2.19). Points are preferentially placed where the gradient of Q is larger. All horizontal axes
are logarithmic in the given variable. The parameters ci control the behaviour of each component and their values
are given in Table 2.1. The pressure term concentrates meshpoints between c9 and ct1 and the temperature term
distributes them near the photosphere. The mass and radius terms both remove points from the centre, where less
resolution is required.

2.3.1 Mesh-spacing

The independent variable in the structure equations can be any monotonic variable in the star. The
STARS code uses the meshpoint number k distributed such that a function Q is equally spaced
on the mesh. In other words, we introduce an equation ∂Q/∂k = C, where C is an eigenvalue.
The function Q, called the mesh-spacing function, can depend on any of the variables in the
model provided that it remains monotonic in k and has analytic derivatives with respect to the
variables. By choosing a function that varies rapidly in regions where greater numerical accuracy
is required, we focus the meshpoints automatically on these regions of interest.

The present version of the STARS code uses a mesh-spacing function

Q = c4 log p+ c5 log

(
p+ c9
p+ ct1

)
+ c2 log

(
p+ c10
p+ ct1

)
+ c7 log

(
T

T + ct10

)
− log

(
1

c6

(
m

M∗

)2/3

+ 1

)
− c3 log

(
r2

c8
+ 1

)
(2.19)

The default parameters ci are specified in table 2.11 and the qualitative forms of the second, fourth,
fifth and sixth terms are shown in Fig. 2.1. Points are concentrated towards where the gradient
of Q is larger. Each term is chosen so that points are either concentrated towards regions that
require additional resolution or distributed away from regions that do not. The default values for
the parameters gave satisfactory results and were used in all models in this dissertation.

The main contributor the the mesh-spacing is the fifth term, which distributes points like
(m/M∗)

2
3 but reduces resolution at the centre. The first term spreads points evenly in the pressure

co-ordinate. The second and third terms allow points to be concentrated within the pressure

1The labels of the parameters ci have been chosen to match the variables used in the code.
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Table 2.1: Default parameters in the mesh-spacing function (equation 2.19).

c1 c2 c3 c4 c5 c6
C(1) C(2) C(3) C(4) C(5) C(6)
9.99 0.00 0.05 0.50 0.15 0.02

c7 c8/ cm2 c9/ dyn cm−2 c10/ dyn cm−2 ct1/ dyn cm−2 ct10/K
C(7) C(8) C(9) C(10) CT1 CT10
0.45 1.0× 1018 1.0× 1015 3.0× 1019 1010c1 2× 104

ranges defined by c9 and ct1 and between c10 and ct1. When the parameters have their default
values, ct1 is so large that the denominator under the logarithm can be ignored as a constant
and the third term is ignored (i.e. c2 = 0). The fourth term concentrates points towards the
upper atmosphere, where T . 20 000 K and extra resolution is required to properly resolve the
hydrogen ionization zones. The sixth term weakly moves points toward regions with r & 109 cm.

2.3.2 Difference equations

Each differential equation containing a spatial derivative is recast as a difference between values at
two neighbouring points, denoted by subscript k and k + 1. Averages between two neighbouring
points are denoted by subscript k + 1

2
. The distribution of points in the mesh is solved through

mk+1 −mk =

(
∂m

∂k

)
k+ 1

2

. (2.20)

The structure equations for mass conservation, hydrostatic equilibrium and energy generation
become

r3
k+1 − r3

k =

(
3

4πρ

∂m

∂k

)
k+ 1

2

, (2.21)

log pk+1 − log pk = −
(
Gm

4πr4p

∂m

∂k

)
k+ 1

2

(2.22)

and

Lk+1 − Lk =

(
ε
∂m

∂k

)
k+ 1

2

. (2.23)

The energy transport equation is

log Tk+1 − log Tk = −
(
∇ Gm

4πr4p

∂m

∂k

)
k+ 1

2

. (2.24)
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The composition equations become

Σk+ 1
2
(Xi,k+1 −Xi,k)− Σk− 1

2
(Xi,k −Xi,k−1) =

(
Xi,k −X0

i,k

∆t
+Ri,k

)(
∂m

∂k

)
k

− (Xi,k+1 −Xi,k) Ramp

(
∂m

∂t

)
k

+ (Xi,k −Xi,k−1) Ramp

(
−∂m
∂t

)
k

, (2.25)

where I have used the ramp function, Ramp(x) = (x + |x|)/2, and X0
i,k is the abundance of

element i at the previous timestep. The boundary conditions for the composition equations
are in effect Σk± 1

2
= 0 as appropriate. Note that the simultaneous evaluation of the structure,

composition and non-Lagrangian mesh is a defining feature of the Cambridge STARS code.

2.3.3 Solution and timestep

The system of difference equations and their boundary conditions is solved by a relaxation
method (Henyey et al. 1959). Given an initial approximate solution, the variables are varied by a
small amount (DH0) to determine derivatives of the equations with respect to the variables. The
matrix of these derivatives is inverted to find a better solution. This process is iterated through a
Newton–Rhapson root-finding algorithm until the sum of corrections to the solution is smaller
than some parameter (EPS). The solution is then recorded and the next model in time is computed
by the same process.

The timestep is calculated by comparing the sum of fractional changes in each variable at
each point with an input parameter (DDD). The next timestep is chosen so that the two numbers
are equal but the timestep can only be rescaled within a user-specified range (DT1, DT2). If
the relaxation method fails to converge on a sufficiently accurate model, the previous model is
abandoned, the code restores the anteprevious model and the timestep is reduced by a factor 0.2.
I appended code so that if a value of NaN (not a number) is encountered during the convergence
tests, the run is immediately aborted.

The STARS code is versatile and adaptable. Its mesh-spacing function allows it to rapidly
model many phases of stellar evolution without interruption and the concise source code (less
than 3000 lines of FORTRAN) makes modification straightforward. In the next two chapters, I
modify the central boundary conditions to model quasi-stars with accurate microphysics.
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We know that for a long time everything we do will be
nothing more than the jumping off point for those who
have the advantage of already being aware of our ultimate
results.

Norbert Wiener, 1956

3
Bondi-type quasi-stars

In this chapter, I present models of quasi-star envelopes where the inner black hole (BH) accretes
from a spherically symmetric flow. The accretion flow is based on the canonical model of Bondi
(1952) and these quasi-star models are referred to as Bondi-type quasi-stars in later chapters.
Begelman, Rossi & Armitage (2008, hereinafter BRA08) studied these structures using analytic
estimates and basic numerical results. I model the envelope using the Cambridge STARS code,
which accurately computes the opacity and ionization state of the envelope. In Section 3.1, I
describe the boundary conditions used in this chapter. The results of a fiducial run are presented
and discussed in Section 3.2 and further runs with varied parameters are described in Section 3.3.
In Section 3.4, the STARS models are compared with the results of BRA08.

The models in this chapter lead to two main results that are explored further in subsequent
chapters. First, for a given inner radius, the models stop evolving once the BH reaches just over
one-tenth of the total mass of the quasi-star regardless of the total mass of the system or the
radiative efficiency of the accretion flow. Polytropic models of quasi-star envelopes exhibit the
same robust fractional limit on the BH mass and the mechanism that causes the maximum is
thus a feature of mass conservation and hydrostatic equilibrium. In Chapter 5, I show that the
BH mass limit found below is related to the Schönberg–Chandrasekhar limit and, in Chapter 6, I
consider some consequences for the evolution of giant stars.

Secondly, the models are strongly sensitive to the inner boundary radius. Roughly speaking,
the final mass of the BH is inversely proportional to the inner radius. While the boundary
conditions used here are reasonable, the models they produce are unreliable even though the
qualitative evolution may be realistic. In the next chapter, I address this by constructing models
with a different set of boundary conditions and find that the evolution is qualitatively very different
from what is described in this one.
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Figure 3.1: Diagram of the basic model adopted for the radial structure of Bondi-type quasi-stars. The radial
co-ordinate increases to the right but the structure is not drawn to scale. Inside the inner radius r0, the gravitational
potential of the BH overwhelms the thermal energy of the gas and material falls on to the central BH. Outside r0,
there is a convective envelope surrounded by a radiative atmosphere. In models with small BH masses, additional
intermediate radiative zones can be present.

3.1 Boundary conditions

Stellar evolution codes normally solve for the interior boundary conditions r, m, L = 0, where
r is the radial co-ordinate, m is the mass within a radius r and L is the luminosity through
the sphere of radius r. To model quasi-stars, these boundary conditions are replaced with a
prescription for the BH’s interaction with the surrounding gas as described below. Loeb & Rasio
(1994) showed that a radiation-dominated fluid in hydrostatic equilibrium and not generating
energy must become convective so the quasi-star envelope should be approximated by a gas
with polytropic index n = 3. This presumption is used below but in the subsequent calculations
the adiabatic index (γ = ∂ log p/∂ log ρ at constant entropy, where p is the pressure and ρ the
density) is determined self-consistently by the equation-of-state module in the code.

Fig. 3.1 shows the basic components of the model adopted in this chapter. The inner radius
r0 is a fixed multiple of the Bondi radius, inside which material falls on to the central BH. A
substantial amount of mass can be found inside this cavity and its mass is included in the inner
mass boundary condition. The STARS code models the hydrostatic envelope outside the inner
radius. Near r0, the envelope is convective but it is necessarily radiative at the surface because of
the surface boundary conditions. Although not included in the diagram, additional intermediate
radiative zones can exist (see Fig. 3.3).

3.1.1 Radius

The radius of the inner boundary of the envelope should be the point at which some presumption
of the code breaks down. Following BRA08, I choose the Bondi radius rB, at which the thermal
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energy of the fluid particles equals their gravitational potential energy with respect to the BH. By
definition,

1

2
mc2s =

GmMBH

rB
, (3.1)

so

rB =
2GMBH

c2s
, (3.2)

where m is the mass of a test particle, cs =
√
γp/ρ the adiabatic sound speed, MBH the mass of

the BH and G Newton’s gravitational constant.
BRA08 used the inner boundary condition

r0 =
GMBHρ0

2p0

=
1

4
γ

2GMBH

c2s
=

1

4
γrB. (3.3)

We therefore implement the radial boundary condition

r0 =
1

b
rB (3.4)

where b is a parameter that varies the inner radius. Larger values of b correspond to smaller inner
radii and therefore a stronger gravitational binding energy there. Our main results use b = 1

whereas the boundary condition used by BRA08 corresponds to b = 3.

3.1.2 Mass

For the mass boundary condition, consider the mass of the gas inside the cavity defined by the
Bondi radius (equation 3.2). By definition,

Mcav =

∫ rB

rS

4πr2ρ(r)dr, (3.5)

where rS is the Schwarzschild radius. Using a general relativistic form of the equation introduces
terms of order rS/r0 (Thorne & Żytkow 1977), which I ignore because all our models have
rS � r0.

To determine the mass of gas inside the cavity, we must assume a density profile of the
material there because the code does not model this region. The envelope is supported by
radiation pressure and is expected to radiate near the Eddington limit for the entire quasi-star.
This is much greater than the same limit for the BH alone. The excess flux drives bulk convective
motions. The radial density profile of the accretion flow then depends on whether angular
momentum is transported outward or inward. In the former case, the radial density profile is
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proportional to r−
3
2 whereas, in the latter case, it is proportional to r−

1
2 (Narayan, Igumenshchev

& Abramowicz 2000; Quataert & Gruzinov 2000). We presume that the viscosity owing to
small scale magnetic fields is sufficiently large to transport angular momentum outwards even if
convection transports it inwards and thus take ρ(r) ∝ r−

3
2 . In Section 3.3.2, I construct a model

presuming that ρ(r) ∝ r−
1
2 and find that this change to the density profile inside the cavity has

little effect.

Given the density ρ(r0) = ρ0 at the inner boundary, the density profile must be

ρ(r) = ρ0

(
r

r0

)− 3
2

. (3.6)

Evaluating equation (3.5), presuming rS � r0, we obtain

Mcav =
8π

3
ρ0r

3
0. (3.7)

The cavity mass Mcav can be estimated as follows. In a radiation-dominated n = 3 polytrope,
the pressure and density are related by

p =

(
k

µmH

)4
3
(

3(1− β)

aβ4

)1
3

ρ
4
3 = Kρ

4
3 (3.8)

(Eddington 1918), where k is Boltzmann’s constant, µ the mean molecular weight of the gas, mH

the mass of a hydrogen atom and β = pg/p the ratio of gas pressure to total pressure. Taking the
adiabatic sound speed to be cs =

√
4p/3ρ, evaluating the Bondi radius using equation (3.2) and

substituting into equation (3.7), we obtain

Mcav =
8π

3

(
3GMBH

2K

)3

. (3.9)

Fowler (1964) gives β = 4.3(M∗/M�)−
1
2/µ, where M∗ is the total mass of the object. For a

totally ionized mixture of 70 per cent hydrogen and 30 per cent helium by mass, µ = 0.615, so
for a quasi-star of total mass 104 M�, as in the fiducial result, Mcav = MBH when MBH ≈ 390 M�.
The cavity mass Mcav must be included in the mass boundary condition so I use

M0 = MBH +Mcav, (3.10)

where Mcav is given by equation (3.7).
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3.1.3 Luminosity

The luminosity is determined by the mass accretion rate through the relationship

LBH = εṀc2, (3.11)

where c is the speed of light, Ṁ the rate of mass flow across the base of the envelope and ε the
radiative efficiency, the fraction of accreted rest mass that is released as energy. This fraction
is lost from the system as radiation so the total mass of the quasi-star decreases over time. The
rate of accretion on to the BH is ṀBH ≡ (1− ε)Ṁ . i.e. the amount of infalling matter less the
radiated energy. The luminosity condition is related to the BH accretion by

LBH =
ε

1− ε
ṀBHc

2 = ε′ṀBHc
2. (3.12)

It is thus implicitly assumed that material travels from the base of the envelope to the event
horizon within one timestep. The material actually falls inward on a dynamical timescale so this
condition is already implied by the presumption of hydrostatic equilibrium.

To specify the accretion rate, we begin with the adiabatic Bondi accretion rate (Bondi 1952),

ṀBon = 4πλc
(GMBH)2

c3s
ρ0 = πλcr

2
0ρcs, (3.13)

where λc is a factor that depends on the adiabatic index γ as described by equation (18) of Bondi
(1952). When γ = 4/3, λc = 1/

√
2. Almost all of this flux is carried away from the BH by

convection. The convective flux is on the order of ρvc`mdu/dr, where vc is the convective velocity,
`m the mixing length and u the specific internal energy of the gas (Owocki 2003). The convective
velocity is at most equal to the adiabatic sound speed cs because if material travelled faster it
would presumably rapidly dissipate its energy in shocks. The mixing length is on the order of the
pressure scale height p(dp/dr)−1 and the specific internal energy gradient is roughly (dp/dr)/ρ.
The maximum convective flux is therefore on the order of pcs so the maximum luminosity is

Lcon,max = 4πr2
0pcs =

4

γ
πr2

0c
3
sρ =

4

γλc
ṀBonc

2
s . (3.14)

In order to limit the luminosity to the convective maximum, the accretion rate is reduced by
a factor 4c2s/γλcε

′c2. I therefore assume that the actual convective flux is some fraction of the
maximum computed above and implement the mass accretion rate

ṀBH = 16π
η

ε′γ

(GMBH)2

csc2
ρ, (3.15)

where η is the convective efficiency. In the fiducial run, η = ε = 0.1.
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Table 3.1: Properties of the fiducial model as MBH increases. The first and last entries correspond to the initial and
final models in the run, respectively. Density profiles are plotted in Fig. 3.2.

t MBH ṀBH Mcav T0 r0
/106 yr / M� /10−4 M� yr−1 / M� /105 K /100 R�

0.00 5 2.14 0.00 40.3 0.0171
0.51 100 1.79 3.80 3.55 3.66
1.03 200 2.08 25.3 2.23 11.1
2.23 500 2.96 242 1.33 41.3
3.70 1000 3.70 1380 0.88 115
4.22 1194 3.56 3311 0.71 184

L∗ ρ0 Teff R∗
/108 L� / g cm−3 /103 K /104 R�

0.00 5 3.48 8.41× 10−5 14.1 0.312
0.51 100 2.92 5.48× 10−8 5.22 2.09
1.03 200 3.40 1.30× 10−8 4.77 2.70
2.23 500 4.84 2.41× 10−9 4.55 3.54
3.70 1000 6.06 6.42× 10−10 4.49 4.08
4.22 1194 5.83 3.74× 10−10 4.51 3.96

3.2 Fiducial model

I begin the exposition of the results by selecting a run that demonstrates the qualitative features of
a model quasi-star’s structure and evolution. Thereafter, I vary some of the parameters to explore
how the behaviour is affected by such changes. The results presented in this section describe a
model quasi-star with initial total mass (BH, cavity gas and envelope) M∗ = 104 M�, initial BH
mass 0.0005M∗ = 5 M� and a uniform composition of 0.7 hydrogen and 0.3 helium by mass.
The envelope is allowed to relax to thermal equilibrium before the BH begins accreting.

3.2.1 Structure

In the model, the luminosity is approximately equal to the Eddington luminosity at the boundary
of the innermost convective layer. The accretion rate varies between about 1.8 × 10−4 and
3.7× 10−4 M� yr−1 as the convective boundary moves. The details of the variation are described
in Section 3.2.2. A corollary of the self-limiting behaviour is that the only major effect of
changing the material composition is to change its opacity and therefore the Eddington limit. The
accretion rate changes but the structure is almost entirely unaffected. In the convective regions,
the envelope has an adiabatic index of about 1.34 (corresponding to a polytropic index n ≈ 2.90)
confirming that the envelope is approximated by an n = 3 polytrope. The boundaries of the
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Figure 3.2: Plot of density against radius for models in the fiducial run with MBH/ M� = 5, 100, 200, 500, 1000
and 1194 (see Table 3.1). At the base of the envelope the density profile steepens because a steeper pressure gradient
is required to balance the BH gravity. In the outer layers the density is inverted, as discussed by BRA08. In the initial
model, the inner radius of 1.66 R� is too small to be seen.

convective regions depend on the ionization state of the gas but, for most of the evolution, all but
the outermost few 10 M� are convective.

Fig. 3.2 shows a sequence of density profiles of the envelope when MBH/M� = 5, 100, 200,
500, 1000 and 1194. Further parameters are listed in Table 3.2. These profiles demonstrate two
features of the envelope structure. First, the centre is condensed as can be seen from the rise in
the density at the innermost radii. This is clearer for smaller BH masses. It is caused by the lack
of pressure support at the inner boundary. To maintain hydrostatic equilibrium, the equations
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require

dp

dr

∣∣∣∣
r0

= −GM0ρ

r2
0

(3.16)

at the inner boundary so the pressure gradient steepens and the density gradient follows. Huntley
& Saslaw (1975) called such structures loaded polytropes.

Secondly, the density in the outer layers is usually inverted as in all but the first density profile
in Fig. 3.2. The density inversion appears once the photospheric temperature Teff drops below
about 8000 K. Thereafter, the surface opacity increases owing to hydrogen recombination, the
Eddington luminosity falls and the quasi-star’s luminosity apparently exceeds the limit. Density
inversions are possible when the temperature gradient becomes strongly superadiabatic (Langer
1997), as is the case in regions where convection occurs but is inefficient. As an additional check,
we calculated the volume-weighted average of (3γ − 4)p and found it to be positive, indicating
dynamical (but not pulsational) stability (Cox & Giuli 1968, p. 1057).

3.2.2 Evolution

The sequence of density profiles in Fig. 3.2 shows the interior density decreasing over time. If we
consider equation (3.15), ignoring constants and using p ∝ ργ , then

ṀBH ∝M2
BHρ

3−γ
2 . (3.17)

The accretion rate ṀBH never increases faster than M2
BH so for any reasonable adiabatic index

(γ < 3), ρ decreases at the inner boundary. Initially, the density decreases rapidly and the envelope
expands owing to the hydrogen opacity peak at the surface. The expansion or contraction of the
surface is at most about 0.1 R� yr−1, which is five orders of magnitude smaller than the free-fall
velocity. The models are thus still in hydrostatic equilibrium.

Fig. 3.3a shows the accretion rate on to the BH as a function of its mass. Fig. 3.3b shows the
locations of convective boundaries as a function of BH mass and demonstrates how the rapid
changes of the BH accretion rate while MBH < 120 M� coincide with the disappearance of
radiative regions owing to the decreasing density throughout the envelope.

Before the end of the evolution the accretion rate achieves a local maximum. At the same
time, the photospheric temperature reaches a local minimum and the envelope radius a maximum
(see Fig. 3.3b). We do not have a simple explanation for this but believe it is related to the
increasing mass and radius of the inner cavity. Whereas a giant expands owing to contraction of
the core, the inner part of the quasi-star is in effect expanding so the envelope is evolving like a
giant in reverse. Initially, the expansion of the inner radius is greater than the relative contraction
of the surface but the situation reverses when the surface radius reaches its maximum.
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Figure 3.3: Plots of (a) the BH accretion rate ṀBH and (b) the radial structure of the envelope against BH mass MBH
for the fiducial run. The lower and upper solid lines in (b) are the inner and outer radii of the envelope. The shaded
areas correspond to radiatively stable regions, whose disappearance leads to the discontinuities in the gradient of the
accretion rate, as shown by the dashed vertical lines. The surface layers of the envelope are also radiative but too
narrow to be seen here. The rest of the envelope is convective.
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3.2.3 Inner mass limit

In the fiducial run, evolution beyond the final BH mass of 1194 M� is impossible. The code
reduces the timestep below the dynamical timescale indicating that we cannot construct further
models that satisfy the structure equations. The non-existence of further solutions can be
demonstrated by constructing polytropic models of quasi-star envelopes as follows. A complete
derivation of the Lane–Emden equation and an analysis of its homology-invariant form is provided
in Appendix A but the relevant details are reproduced below.

Consider the equations of hydrostatic equilibrium and mass conservation truncated at some
radius r0 and loaded with some mass M0 interior to that point. The equations are

dp

dr
= −Gmρ

r2
(3.18)

and

dm

dr
= 4πr2ρ (3.19)

with central boundary condition m|r0
= M0, where r0 and M0 are fixed. We scale the pressure

and density using the usual polytropic assumptions

p = Kρ1+ 1
n (3.20)

and

ρ = ρ0θ
n. (3.21)

We define the dimensionless radius by

r = αξ, (3.22)

where

α2 =
(n+ 1)K

4πG
ρ

1
n
−1

0 . (3.23)

We scale the mass interior to a sphere of radius r by defining

φ(ξ) =
m

4πρ0α3
. (3.24)
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The non-dimensional form of the equations is then

dθ

dξ
= − 1

ξ2
φ (3.25)

and

dφ

dξ
= ξ2θn (3.26)

with boundary conditions θ(ξ0) = 1 and φ(ξ0) = φ0 (where, by definition, ξ0 = r0/α).1

The dimensionless BH mass φBH is expressed in terms of the inner radius by rescaling
equation (3.2) as follows.

ξ0 =
r0
α

=
2G

bα

MBH

c2s
(3.27)

=
2G

bα
4πρ0α

3φBH
n

(n+ 1)K
ρ
− 1

n
0 (3.28)

=
2n

b
α2φBH

4πG

(n+ 1)K
ρ

1− 1
n

0 (3.29)

=
2n

b
φBH. (3.30)

Similarly, from equation (3.7), Mcav is expressed by

φcav =
8π
3
ρ0(αξ0)

3

4πρ0α3
=

2

3
ξ3
0 . (3.31)

The dimensionless mass and radius boundary conditions are now related by

φ0 ≡ φ(ξ0) =
b

2n
ξ0 +

2

3
ξ3
0 . (3.32)

Thus, for a given polytropic index n, we can choose a value ξ0 and integrate the equations.

I integrated a sequence of solutions for n = 3 and found that there exists a maximum value
of φBH/φ∗ = 0.102, where φ∗ is the total dimensionless mass of the quasi-star. The maximum
occurs when ξ0 = 0.995. Similar limits appear for polytropic indices between 2 and 4. For
n = 2, the maximum is φBH/φ∗ = 0.127 when ξ0 = 1.012 and for n = 4 the maximum is
φBH/φ∗ = 0.089 at ξ0 = 0.968. Fig. 3.4 shows plots of the curves of the ratio of inner to outer
envelope radius (ξ0/ξ∗ in dimensionless variables, where ξ∗ is the outer radius of the envelope)
against the fractional BH mass (φBH/φ∗ in dimensionless variables) for n = 2, 3 and 4 together
with our results for the fiducial model. The maximum mass ratio is clear in each curve. In

1If one takes ξ0 = φ0 = 0, differentiates equation (3.25) and substitutes for dφ/dξ using equation (3.26), one
arrives at the usual Lane–Emden equation.
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Figure 3.4: Plot of the ratio of BH mass against total mass against inner envelope radius to outer envelope radius.
The short-dashed, long-dashed and dotted lines correspond to polytropic solutions with n = 2, 3 and 4. The solid
line represents the fiducial evolution. The polytropic models show an upper limit to the BH mass ratio. The fiducial
results reach a similar limit but the mass ratio cannot decrease so the evolution terminates.

principle, further hydrostatic solutions exist along the sequence computed by STARS but they
require that the BH mass decreases.2

The existence of a maximum inner mass ratio is therefore a robust feature of the structure
equations. Maximum ratios exist for all choices of inner radius and cavity mass in this chapter.
In particular, a maximum also exists when the cavity mass is ignored completely. The cause of
the maximum mass ratio is not generally clear but in Chapter 5 we show that, without the cavity
gas, the maximum exists for the same reason as the Schönberg–Chandrasekhar limit. The cavity
gas modifies the inner boundary condition, and therefore the envelope solution, but the same
mechanism is at work.

2I tried to compute hydrostatic solutions on the other side of the maximum mass ratio but never succeeded.



3.3 Parameter exploration 39

3.2.4 Post-quasi-star evolution

At the end of the fiducial run the cavity contains 3311 M�. Under our assumptions, some of this
material is already moving towards the BH and may become part of it. If the BH accretes all the
mass in the cavity, its final mass would be MBH ≈ 4505 M�, nearly half of the total mass of the
original quasi-star. Presuming the BH accretes at its Eddington-limited rate, this growth would
take about 51 Myr.

What actually happens to the material in the cavity after the end of the hydrostatic evolution?
It appears that the entire envelope might be swallowed but it is not certain that this should be the
case. The accretion flow is at least partly convective so there must be a combination of inward and
outward flowing material within the Bondi radius. In the theoretical limit for a purely convective
flow, the accretion rate is zero (Quataert & Gruzinov 2000) and half of the material is moving
inward and half outward. If the flow is sustained, we might expect at least half of the cavity mass
to be accreted. On the other hand the flow structure might change completely. The infalling
material could settle into a disc and drive disc winds or jets so that the overall gain in mass is
relatively small. Hydrostatic equilibrium is probably failing in the envelope so its dynamics might
also change drastically.

Johnson et al. (2011) modelled the accretion on to massive BHs formed through direct collapse.
They assumed that the BH accretes from a multi-colour black-body disc after its quasi-star phase
and found that, once the BH mass exceeds about 104 M�, the accretion rate decreases owing to
radiative feedback. This result supports the case for a substantial decrease in the BH growth rate
if a thin disc forms after the quasi-star phase but additional growth can occur during the transition
to a new structure.

3.3 Parameter exploration

In Section 3.2, I established the basic qualitative structure and evolution of the quasi-star envelope.
In this section, I explore their dependence on some of the parameters of the model. I begin in
Section 3.3.1 with the radiative and convective efficiencies ε and η. I then vary the choice of
cavity mass in Section 3.3.2, surface mass loss and gain in Section 3.3.3 and the total initial
envelope mass in Section 3.3.4. Finally, in Section 3.3.5 I vary the inner radius.

3.3.1 Radiative and convective efficiencies

Fig. 3.5 shows the accretion history against BH mass for a number of choices of radiative
efficiency ε and convective efficiency η. Because the luminosity always settles on the same
convection-limited rate, a change in ε only rescales the accretion rate through equation (3.11) and
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Figure 3.5: Plot of BH accretion rate ṀBH against BH mass MBH for various pairs of radiative and convective
efficiencies (ε, η). The fiducial values (0.1, 0.1) correspond to the solid line. A change to the radiative efficiency
changes ṀBH but leaves the overall structure unaffected. A decrease of η causes the envelope to be hotter and denser
in order to achieve the same luminosity. This the discontinuities in the gradient of the accretion rate to later times
and leaves a smaller final BH.

does not affect the structure. The final BH mass and intermediate properties are the same. The
only difference is that the evolution takes longer for larger values of ε.

A larger convective efficiency η allows a greater flux to be radiated by the accretion flow
and therefore a larger accretion rate for given interior conditions. To establish the same overall
luminosity, the envelope must be less dense so the discontinuities in the gradient of the accretion
rate appear later. In addition, the lower density means that, although the final total inner masses
are similar, the cavity mass is smaller and the BH mass larger. Conversely, for smaller values of
η, the envelope is denser, the discontinuities appear earlier and the final BH mass is smaller.
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Figure 3.6: Plot of BH accretion rate ṀBH against BH mass MBH for the fiducial run and runs with a shallower
radial dependence of the interior density, no cavity mass, constant accretion on to the surface of the star, and a
Reimers (1975) mass loss rate. A shallower radial dependence of the interior density leads to a smaller cavity mass
and thus a smaller interior density and accretion rate. The accreting envelope gives final quasi-star and BH masses
of 14 511 M� and 1753 M�, which give a similar mass ratio of 0.121. With a Reimers mass-loss rate, the final
quasi-star and BH masses are 7754 M� and 940 M�, which also give a ratio of 0.121.

3.3.2 Cavity properties

If the inward transport of angular momentum by advection and convection is greater than the
outward transport by magnetic fields and other sources of viscosity, the density profile in the
cavity tends towards ρ(r) ∝ r−

1
2 (Quataert & Gruzinov 2000; Narayan et al. 2000). Recomputing

the cavity mass from equation (3.5), we find

Mcav =
8π

5
ρ0r

3
0. (3.33)
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The corresponding quasi-star evolution is shown in Fig. 3.6. The smaller interior mass leads to a
less evident density spike at all times. The decreased interior mass is subject to a lower mass limit
for the BH and leaves a BH of 1077 M�. Although the change to the cavity properties affects the
numerical results, there is no qualitative change to the quasi-star evolution, which still terminates
owing to the same physical mechanism as the fiducial run.

The maximum mass ratio is not principally caused by the cavity mass. Fig. 3.6 also shows
a run with Mcav = 0. The BH achieves a final mass of 800 M�. A maximum mass ratio still
exists, though with a different numerical value, and a similar limit is found for polytropic models
with no cavity mass. In this case, the maximum mass ratio exists for the same reason as the
Schönberg–Chandrasekhar limit. The connection between the mass limits is demonstrated in
Chapter 5.

3.3.3 Envelope mass loss and gain

To illustrate the effect of net accretion on to the surface of the envelope, Fig. 3.6 shows the
evolution of the fiducial run if the envelope accretes at a constant rate of 2 × 10−3 M� yr−1 .
Although this rate initially exceeds the quasi-star’s Eddington limit, such rapid infall is believed
to occur as long as the bars-within-bars mechanism transports material towards the centre of the
pregalactic cloud. Accreted mass is added to the surface mass co-ordinate and no additions are
made to any other equations. In particular, we do not include a ram pressure at the surface.

The only qualitative change to the evolution is that it takes longer than if the total mass had
been kept constant at the same final value of 14 511 M�. The final BH mass is subject to the same
ratio limit and the larger final envelope permits a larger final BH mass of 1753 M�.

To investigate the effect of mass loss we use a Reimers rate (Reimers 1975), an empirical
relation that describes mass loss in red giants. The mass-loss rate is

Ṁloss = 4× 10−13L∗R∗

M∗

M�

L� R�
M� yr−1 . (3.34)

Fig. 3.6 shows the evolution for a quasi-star envelope with this prescription. The mass loss is
significant but, again, there is no qualitative change in the results. The limit holds and the BH
has a smaller mass of 940 M�. This is in proportion with the decrease in the total mass of the
quasi-star to 7754 M�.

3.3.4 Initial envelope mass

The structure of the envelope appears to be chiefly dependent on the ratio of envelope mass to
BH mass. Fig. 3.7 shows the evolution of the the BH mass and of the accretion rate divided by
total mass for quasi-stars of total initial masses M∗/M� = 104, 3 × 104, 105, 3 × 105 and 106.
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Figure 3.7: Plot of the evolution of quasi-stars of total initial masses M∗/ M� = 104, 3 × 104, 105, 3 × 105 and
106. The BH mass and accretion rates have been divided by the total quasi-star mass to illustrate the consistency of
the upper mass ratio limit of 0.121 and the slight dependence of the accretion rate with quasi-star mass. Because
larger quasi-stars permit greater scaled accretion rates, they have shorter hydrostatic lifetimes.

The fractional upper BH mass limit holds for all the quasi-star masses in this range though the
BH-envelope mass ratio after which the entire envelope is convective depends on the envelope
mass.

For a given mass ratio, once the entire envelope has become convective, the following
approximate relations hold for the properties of two quasi-stars of different masses (denoted by
subscripts 1 and 2).(

T0,1

T0,2

)
=

(
M∗,1

M∗,2

)−0.04

, (3.35)
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(
Teff,1

Teff,2

)
=

(
M∗,1

M∗,2

)0.01

, (3.36)(
R∗,1

R∗,2

)
=

(
M∗,1

M∗,2

)0.54

, (3.37)(
ρ0,1

ρ0,2

)
=

(
M∗,1

M∗,2

)−0.66

, (3.38)

and (
ṀBH,1

ṀBH,2

)
=

(
M∗,1

M∗,2

)1.14

. (3.39)

For example, compared with a quasi-star of mass 104 M� at the same BH-envelope mass ratio,
a 105 M� quasi-star roughly has an interior temperature that is 100.04 = 1.10 times smaller, a
surface temperature that is 100.01 = 1.02 times greater, an outer radius that is 100.54 = 3.47 times
greater, an interior density that is 100.66 = 4.57 times smaller and a mass accretion rate that is
101.14 = 13.8 times greater. Equations (3.35) and (3.36) imply that the temperature profiles of
the envelopes depend almost exclusively on the BH-envelope mass ratio. The variation in inner
or surface temperature, for a given mass ratio, with respect to the total mass of the quasi-star is
less than 0.1 per factor of ten in the total mass. The density and radius profiles are more strongly
dependent on the mass of the envelope.

The final relation (equation 3.39) implies that the lifetime of a quasi-star scales roughly as
τQS ∝M−0.14

∗ so larger quasi-stars have slightly shorter hydrostatic lifetimes. By fitting a straight
line to the log τQS–logM∗ relation for the five models described here, we find

log10(τQS/Myr) = −0.127 log10(M∗/M�) + 1.13. (3.40)

Note that M∗ here denotes the initial mass of the quasi-star. In all other relations M∗ decreases
slowly during the quasi-star’s evolution owing to the mass-energy lost as radiation in the accretion
flow.

3.3.5 Inner boundary radius

Fig. 3.8 shows the evolution of quasi-stars where the inner radius was changed to a third, half and
twice the Bondi radius through the parameter b. The final BH mass is strongly affected although
the evolution is qualitatively similar. The results of our polytropic analysis are affected in a
consistent manner. I further found that I could not construct model envelopes with r0 . 0.3rB

and that this is reflected in the polytropic models. Although reasonable, our choice of inner radius
is somewhat arbitrary and critical in deciding the quantitative evolution of the BH.
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Figure 3.8: Plot of BH accretion rate ṀBH against BH mass MBH for different inner radius parameters b = 1/3,
1/2, 1 and 2. The various values of r0 lead to qualitatively similar results but the quantitative evolution is strongly
affected. The final BH mass is approximately b1.11 times the fiducial value of 1194 M�.

Despite this, the total mass inside the cavity is broadly similar across the models. For
models with b = 3, 2, 1 and 1/2, the total inner masses (BH and cavity) are approximately
M0/M� = 5253, 4904, 4505 and 4328.3 If the BH ultimately accretes most of the material in
the cavity after its quasi-star phase ends, it reaches a similar mass for any choice of b.

Begelman (2010, private communication) pointed out that, in the presence of a substantial
mass of gas in the cavity, the Bondi radius should be defined for the total mass inside r0, not
just the BH mass. Presuming the gas has a density distribution ρ(r) ∝ r−

3
2 inside the cavity, this

3The last figure is interpolated from the model profiles, which were not recorded near the last model before
convergence began to fail.
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gives the equation

r0 =
2G

bc2s

(
MBH +

8π

3
ρ0r

3
0

)
. (3.41)

For an n = 3 polytrope, we can substitute for dimensionless variables (see Section 3.2.3) to
obtain

φBH +
2

3
ξ3
0 −

1

6
bξ0 = 0, (3.42)

which only has a real positive root if φBH < b
3
2/(18

√
3). For maximum φBH, the ratio of BH

mass to total mass is 0.017 for b = 1 and for b = 3 it is 0.126.

3.4 Comparison with Begelman et al. (2008)

BRA08 estimated some envelope properties by presuming that the envelope is described by an
n = 3 polytrope. They employed an overall accretion efficiency parameter4 αBRA, which is
determined by numerical factors in the accretion rate including the radiative efficiency, convective
efficiency and adiabatic index. I calibrated αBRA through the BH luminosity (equation 3 of
BRA08) and chose αBRA = 0.257 for the fiducial run. The analytical BH luminosity is then
accurate to within 0.2 per cent over the entire evolution. I also compared a run with b = 3 by
using αBRA = 0.0287, which is similarly accurate to within 0.3 per cent.

BRA08 provide the following analytic estimates for the inner temperature, photospheric
temperature and envelope radius (equations 7, 11 and 10 in their paper, respectively).

T0 = 1.4× 104

(
L

LEdd

)2
5
(
αBRA

M2
BH

M2
�

)− 2
5
(
M∗

M�

)7
10

K, (3.43)

Teff = 1.0× 103

(
L

LEdd

)9
20
(
αBRA

M2
BH

M2
�

)− 1
5
(
M∗

M�

)7
20

K (3.44)

and

R∗ = 4.3× 1014

(
L

LEdd

)− 2
5
(
αBRA

M2
BH

M2
�

)2
5
(
M∗

M�

)− 1
5

cm. (3.45)

Here, LEdd = 4πGcM∗/κ is the Eddington luminosity. BRA08 computed this using the opacity
at the boundary of the convective zone but such estimates differ by a factor of the order of κ/κes

when compared with our results. The comparison is thus made using the Eddington limit with
opacity κes = 0.34 cm2 g−1 .

4This should not be confused with α defined in Section 3.2.3.
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Figure 3.9: Comparison for the fiducial run (solid lines) of analytic estimates for interior temperature (top), surface
temperature (middle) and envelope radius (bottom) by BRA08 (dashed lines) against results. BRA08’s estimate
of the interior temperature is accurate but those for the photospheric temperature and envelope radius become
increasingly inaccurate as the BH grows.

The three estimates are plotted against the fiducial run in Fig. 3.9. The estimate for the interior
temperature is accurate to within 20 per cent. The deviation grows as the approximation of the
envelope to an n = 3 polytrope becomes increasingly poor. The estimate for the photospheric
temperature is not accurate. At the end of the run the estimated photospheric temperature is
about 2400 K compared with the model result of about 4500 K. Because the BH luminosity
estimate is accurate, it follows that the envelope radius is not because the surface luminosity
is L∗ = πacR2

∗T
4
eff. This is confirmed in the bottom panel of Fig. 3.9. BRA08 used an inner

boundary with b = 3 so the analytic estimates are compared with such a run in Fig. 3.10. The
interior temperature estimate is worse but the photospheric temperature estimate is better. The
final surface temperature remains remains underpredicted and the surface radius inaccurate.
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Figure 3.10: Comparison for a run with b = 3 (solid lines) of analytic estimates for interior temperature (top),
surface temperature (middle) and envelope radius (bottom) by BRA08 (dashed lines) against results. BRA08’s
estimate of the interior temperature is less accurate than before but the photospheric temperature is closer.

The analytic estimates by BRA08 can be compared with the scaling relations found in Section
3.3.4. By fixing MBH/M∗ and L/LEdd, equations (3.43), (3.44) and (3.45) can be re-arranged to
give

T0 ∝M
− 1

10
∗ , (3.46)

Teff ∝M
− 1

20
∗ , (3.47)

and

R∗ ∝M
3
5
∗ . (3.48)
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These compare reasonably with the scaling relations derived from the STARS models. Written
similarly as power-laws in M∗, equations 3.35, 3.36 and 3.37 have indices −0.04, 0.01 and 0.54,
respectively.

BRA08 argue that quasi-star evolution terminates owing to the opacity at the edge of the
convection zone increasing. An increased opacity causes the envelope to expand and the opacity
increases further. The envelope then expands even more and the process is claimed to run away.
BRA08 refer to this process as the opacity crisis. Our results do not terminate for this reason.
Similar behaviour does occur at the beginning of the evolution while the photospheric temperature
is greater than 104 K but it does not disperse the quasi-star. For most of a quasi-star’s evolution,
the opacity at the convective boundary is already beyond the H-ionization peak and is decreasing
as the BH grows.

Instead, my models terminate because of a basic property of mass conservation and hydrostatic
equilibrium. I have shown that further models do not exist in the sequence by showing that
the same fractional mass limit exists in polytropic models. Direct calculation of the polytropic
mass limits shows that they are similar to the results found with the STARS code. In Chapter
5, I show how the fractional mass limit found here for quasi-stars is directly related to the
Schönberg–Chandrasekhar limit as well as several related limits in the literature.

3.5 Conclusion

The models presented in this chapter provide several important results. The first is the existence
of a robust upper limit on the ratio of inner BH mass to the total quasi-star mass, equal to about
0.121. The limit is reflected in solutions of the Lane–Emden equation, modified for the presence
of a point mass interior to some specific boundaries. All the evolutionary runs here terminate
once the limit is reached and it is difficult to say what happens after the hydrostatic evolution
ends. Some of the material within the Bondi radius has begun accelerating towards the BH so we
expect that it can be captured by the BH. The remaining material may be accreted or expelled,
depending on the liberation of energy from the material that does fall inwards. After the BH has
evolved through the quasi-star phase, it is probably limited to accrete at less than the Eddington
rate for the BH alone and thus much less than the accretion rate during the quasi-star phase.

These results suggest that quasi-stars produce BHs that are on the order of at least 0.1 of
the mass of the quasi-star and around 0.5 if all the material within the inner radius is accreted.
For conservative parameters, this growth occurs within a few million years after the BH initially
forms. Realistic variations in the parameters (e.g. larger initial mass, lower radiative efficiency)
lead to shorter lifetimes. Such BHs could easily reach masses in excess of 109 M� early enough
in the Universe to power high-redshift quasars.
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However, it is also clear that the models are critically sensitive to the choice of inner boundary
radius and the results should be treated with due caution. While the Bondi radius used here is
reasonable, it is worthwhile to consider other sets of boundary conditions. In the next chapter, I
construct models that use a qualitatively different set of boundary conditions, which lead to very
different quasi-stars than the Bondi-type models.



With four parameters I can fit an elephant, and with five I
can make him wiggle his trunk.

John von Neumann, attrib.

4
CDAF-ADAF quasi-stars

In the work reported in Chapter 3, the structure of quasi-stars is calculated under the assumption
that the dynamics in the cavity around the black hole (BH) are described by Bondi accretion.
Although the corresponding models are reasonable and self-consistent, they are strongly sensitive
to the choice of the inner radius. In this chapter, I construct models with a different set of
boundary conditions and find that the corresponding models evolve very differently.

The model of the accretion flow, described in Section 4.1, depends critically on the presence
of rotation in the envelope. The inner boundary of the envelope becomes sufficiently small that
relativistic effects cannot be ignored as they were in Chapter 3. In Section 4.2.1, I introduce ROSE,
a variant of the STARS code that incorporates rotation in the structure equations. In Section 4.2.2,
I describe additional relativistic corrections I added to the code based on the work of Thorne
(1977).

In Section 4.3, I present a fiducial set of results that demonstrate the main qualitative features
of the evolution of the models. The most important result is that the BH ultimately accretes nearly
the whole envelope. This is in stark contrast with the results for the Bondi-type quasi-stars of
Chapter 3, where the BH was subject to a robust fractional mass limit. In addition, the accretion
rates in the models presented here are about an order of magnitude greater. I vary the free
parameters of the model in Section 4.4 and find that the evolution remains qualitatively similar to
the fiducial run. There are, however, selections of parameters for which the evolution can only
be modelled if we begin with larger BH cores. Finally, there are also parameters for which so
much energy is trapped in the accretion flow that the envelope cannot be supported and the initial
models fail to converge.
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Figure 4.1: Diagram of the basic model adopted for the radial structure of CDAF-ADAF quasi-stars. The radial
co-ordinate increases to the right but the structure is not drawn to scale. At the inner radius r0, the inward advective
velocity is equal to the convective velocity and outward convective energy transport balances inward advective
transport. Outside but near to r0, the convective envelope loses energy to advection. As in Bondi-type quasi-stars,
the convective envelope is necessarily surrounded by a radiative atmosphere.

4.1 The convective-advective boundary

Accretion on to a black hole admits solutions in which a substantial fraction of energy is trapped
in the infalling gas and never radiated away. The advection of energy across the event horizon is
possible when the material is so optically thick that radiation takes too long to scatter out through
the gas or the gas is so sparse that radiation is inefficient. The loss of energy to the BH permits
advection-dominated accretion flows (ADAFs, Narayan & Yi 1994), which are unique to BHs
(see Narayan & McClintock 2008, for a review).

It is understood that these flows are convectively unstable in the radial direction. Narayan,
Igumenshchev & Abramowicz (2000) and Quataert & Gruzinov (2000) independently found
self-similar accretion flows with convection where the outward transport of angular momentum
by viscosity is precisely balanced by the inward transport by convection. Because the structure is
defined by convection, such flows were called convection-dominated accretion flows (CDAFs).

Self-similar CDAFs extending to zero radius have zero net accretion and are in effect con-
vective envelopes around BHs (Narayan et al. 2000). In reality, the BH has a finite mass and
radius and the structure of the flow admits a small but finite accretion rate. Abramowicz et al.
(2002, hereinafter AIQN02) showed both analytically and numerically that a real convective flow
must surround an inner advection-dominated flow. The boundary between the two regimes can
be estimated by equating the rate at which energy is advected into the BH and the convective
luminosity in the CDAF. Lu, Li & Gu (2004, hereinafter LLG04) confirmed these results by
integrating the vertically-averaged structure equations of the accretion flow.
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With ROSE, I model the accretion flow on to the BH in a quasi-star as a massive CDAF
that surrounds an ADAF and central BH. In contrast to the Bondi-type quasi-stars described
in Chapter 3, I refer to these models as CDAF-ADAF quasi-stars. Below, I use the results of
AIQN02 and LLG04 to construct a new set of boundary conditions. The basic structure of the
models is shown in Fig. 4.1. The inner radius r0 is placed where the inward advective velocity
is equal to the convective velocity. Inside this radius, all material necessarily flows inward and
there is no outward transport of energy. Beyond r0, the structure is calculated by ROSE. The
amount of energy is advected inwards is substantial at small radii but declines as r increases. The
advected energy is correctly computed but the pressure does not incorporate the gradual increase
of the bulk velocity as material approaches the inner radius. As in the Bondi-type quasi-stars, the
surface is necessarily radiative because of the surface boundary conditions.

4.1.1 Black hole mass and accretion rate

As in Chapter 3, the mass boundary condition is taken to be the mass of the BH and any gas
inside the inner radius r0. According to AIQN02 and LLG04, the inner radius should be of the
order of a few tens of Schwarzschild radii rS = 2GMBH/c

2 ≈ 3(MBH/M�) km so the cavity
mass should be negligible. Regardless, the mass boundary condition (see Section 3.1.2)

M0 = MBH +
8π

3
ρ0r

3
0, (4.1)

where ρ0 is the density at r0, is implemented in the code.

The boundary between the CDAF and ADAF is characterised by the point at which the inward
velocity of the flow vadv = ṀBH/4πr

2ρ is equal to the convective velocity vcon (see Fig. 1 of
AIQN02), where ṀBH is the BH accretion rate, r is the radial co-ordinate and ρ is the density
at r. At this point, the total velocity of any parcel of gas must be directed inwards because
the advective velocity is greater. In other words, the inward transport of energy by advection
overwhelms the outward transport by convection.

The accretion rate is, by definition,

ṀBH = 4πr2ρvadv. (4.2)

Replacing the velocity we obtain the accretion rate

ṀBH = 4πr2ρvcon, (4.3)

which is determined entirely in terms of variables calculated by the STARS code.
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4.1.2 Luminosity conditions

The remaining boundary conditions are determined by the energetics of the accretion flow at the
CDAF-ADAF boundary. The total luminosity throughout the flow has three components: the
advective luminosity Ladv, the viscous luminosity Lvis and the convective luminosity Lcon.

Consider first the convective outer flow. The viscous flux depends on the total angular
momentum flux J̇ , which is a sum of contributions from convection and advection. A defining
characteristic of the CDAF is the balance between these angular momentum fluxes so the net
flux is presumed to be exactly zero (AIQN02). Hence, there is no viscous flux in the CDAF. The
convective luminosity is the luminosity variable L determined by the code and the advective
luminosity is in effect calculated by the thermal energy generation rate

∂L

∂r
= ṀBHT

∂s

∂r
, (4.4)

where L is the local luminosity in the envelope, T the temperature and s the specific entropy of
the gas (Markovic 1995).

In the advective inner flow, convection no longer functions so Lcon is set to zero. The gas
possesses angular momentum that must be removed by viscous processes. As in Section 3.1.3,
the finite viscous luminosity is taken as

Lvis = εṀBHc
2, (4.5)

where c is the speed of light and ε the radiative efficiency. As in Section 3.1.3, the fraction
of mass that is converted into energy is lost from the quasi-star and its total mass decreases
over time. Across the CDAF-ADAF boundary, the advective luminosity is presumed to be
continuous and therefore equal on both sides. For the total luminosities to be equal, the convective
luminosity in the envelope Lcon must be the same as the viscous luminosity in the ADAF Lvis.
The corresponding boundary condition is

L = εṀBHc
2, (4.6)

where I have used the code variable L that represents the convective luminosity Lcon.

The boundary conditions are completed by balancing the luminosities inside the ADAF. As
stated, there is no convective luminosity. The total flux is the sum of the advective and viscous
luminosities Ladv and Lvis. The total flux is the fraction of viscous flux that is not advected
on to the BH. In their integrations AIQN02 and LLG04 take the advective luminosity to be
Ladv = ṀBHB, where the Bernoulli function B is in essence the total specific energy of the gas
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and is determined by

B = u+Gm/(r − rS) + (v2
adv + r2Ω2)/2 (4.7)

evaluated at the innermost meshpoint. Here, u is the specific internal energy of the gas and
the post-Newtonian potential Φ = Gm/(r − rS) (Paczyńsky & Wiita 1980) has been used to
approximate the effects of general relativity. I presume that some fraction η, which I call the
advective efficiency, of the viscous flux is lost to advection and use the boundary condition

ṀBHB = ηεṀBHc
2. (4.8)

The fiducial value of η = 0.8 is estimated from the work of LLG04 (Fig. 2) and this parameter is
varied in Section 4.4.3.

To summarize, the three boundary conditions that replace the usual stellar conditions r, m, Lr =

0 are

M0 = MBH +
8π

3
ρ0r

3
0, (4.9)

L0 = εṀBHc
2 (4.10)

and

B = ηεc2. (4.11)

The third boundary condition is approximate because of both the form of the gravitational
potential and the use of the Bernoulli function in the advective luminosity of the ADAF.

4.2 Additional physics

Based on the calculations of AIQN02 and LLG04, the inner radius of CDAF-ADAF quasi-star
models is expected to be of the order of tens of Schwarzschild radii. In Chapter 3, rotation was
ignored on the grounds that even Keplerian rotation at a few hundred Schwarzschild radii is
dynamically insignificant at the Bondi radius when convection enforces constant specific angular
momentum. The compact surroundings of the BH are now incorporated into the region modelled
by the code so rotation can no longer be ignored. Its effects are included by building on the
variant of the STARS code developed by Potter, Tout & Eldridge (2012), ROSE. In Section 4.2.1, I
summarize the modifications to the structure equations and derive the boundary condition for the
rotation variable.
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In addition, general relativity introduces effects on the order of rS/r and these must also
be incorporated. This is achieved by including corrections to the structure variables, described
by Thorne (1977). In Section 4.2.2, I restate the original correction factors and describe their
implementation in ROSE. The corrections of Thorne (1977) also cater for special relativity and it
should be noted that the CDAF-ADAF models do not properly treat relativistic rotation. Based
on the largest rotational velocities encountered in the models, the effects of relativistic rotation
are less than a few per cent. A fully relativistic description of rotation is not warranted in the
presence of other approximations and the exploratory nature of this work.

4.2.1 Rotation

Potter et al. (2012) based the rotating stellar evolution code ROSE on the Cambridge STARS code
as described in Chapter 2. The effects of rotation are introduced by modifying the structure
variables and equations according to prescriptions of Endal & Sofia (1978) and Meynet & Maeder
(1997). Let Sp be the area of a surface of constant pressure p, Vp the volume it contains and rp

the radius of a sphere with the same volume. In the following, some quantities are averaged over
the surface and we define

〈q〉 =
1

Sp

∮
Sp

qdσ, (4.12)

where dσ is a surface area element. The main assumption of the structure model is the Roche

approximation: the gravitational potential at radius rp is the same as if all the mass inside the
surface Sp were spherically distributed within rp.

The mass conservation equation becomes

∂mp

∂rp

= 4πr2
pρ, (4.13)

where ρ is the density on the constant-pressure surface Sp and mp the mass it encloses. The
equation of hydrostatic equilibrium changes to

∂p

∂mp

= −Gmp

4πr4
p

fp, (4.14)

where

fp =
4πr4

p

GmpSp

〈g−1
eff 〉

−1. (4.15)

Here, geff is the magnitude of the effective gravity, which is a sum of the gravitational and
centrifugal accelerations.
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The rotational profile of convective zones is controlled by a parameter in ROSE. Mixing-length
theory implies that a buoyant parcel of gas retains its specific angular momentum until it disperses.
This drives the rotational profile to a state of constant specific angular momentum. Magnetic
fields may modify the angular momentum distribution but, because they are disregarded here, the
convective zones are presumed to tend towards a state of constant specific angular momentum.
Note that convection is thought strong enough that modifications owing to rotation can be ignored.
The criterion for convective instability is implemented unmodified from the STARS code.

Several diffusion coefficients for angular momentum mixing are implemented in ROSE. For
CDAF-ADAF quasi-stars, we chose DMLT = vcon`m/3, where `m is the mixing length determined
by ROSE in convective zones. In radiative zones, the shear component of the diffusion coefficient
is determined by the model of Talon et al. (1997) and the horizontal component by the model of
Maeder (2003). The parameter used in this chapter corresponds to case 4 of Potter et al. (2012).

The boundary condition for the specific angular momentum Ωr2, which is now a variable in
the code, is determined by conservation of angular momentum and the stipulation that convective
zones are driven to constant specific angular momentum. Angular momentum redistribution is
implemented as a diffusion process, which can be used to replace the rate of change of the specific
angular momentum. Almost all of the envelope is fully convective throughout the evolution so
the rate of change of total angular momentum of the envelope J∗ can be written as

∂J∗
∂t

=
∂

∂t

∫ M∗

M0

Ωr2dm (4.16)

= Ṁ∗Ω∗R
2
∗ − ṀBHΩ0r

2
0 +

∫ M∗

M0

∂

∂t
(Ωr2)dm (4.17)

= Ṁ∗Ω∗R
2
∗ − ṀBHΩ0r

2
0 +

∫ R∗

r0

1

ρr2

∂

∂r

(
ρDconr

2 ∂

∂r
(Ωr2)

)
4πr2ρdr (4.18)

= Ṁ∗Ω∗R
2
∗ − ṀBHΩ0r

2
0 +

[
4πρDconr

2 ∂

∂r
(Ωr2)

]R∗

r0

. (4.19)

Above, Ṁ∗ is the rate of change of the mass of the envelope at the surface, either by accretion or
mass-loss, and Dcon is the angular momentum diffusion coefficient in the convective zones, as
calculated in ROSE. The subscript 0 indicates variables evaluated at the innermost meshpoint,
Ω∗ is the angular velocity at the surface and R∗ is the outer radius of the envelope. To conserve
angular momentum in the envelope, the final term must be equal to zero. In normal stars, the
photosphere is presumed radiative and the surface boundary condition is ∂Ω/∂r = 0. At the
innermost meshpoint, I apply the modified boundary condition for the rotation variable,

∂

∂r
(Ωr2) = 0. (4.20)
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4.2.2 Special and general relativity

In his formulation of the equations of relativistic stellar structure, Thorne (1977) introduced two
new variables and two associated differential equations to compute them. The mass variable m
represents the total rest mass inside radius r. The total mass variable mtr is given by the total mass
inside a radius r, including the contributions of the material’s nuclear binding energy, internal
energy and gravitational potential. The gravitational potential Φ is related to the metric tensor.

In terms of these variables and the standard structure variables (see Chapter 2), Thorne (1977)
defined five correction factors for the structure equations. They are

RT = exp(Φ/c2), (4.21)

VT =

(
1− 2Gmtr

c2r

)−1/2

, (4.22)

GT =
1

m

(
mtr +

4πr3p

c2

)
, (4.23)

ET = 1 +
u

c2
(4.24)

and

HT = 1 +
u+ p/ρ

c2
. (4.25)

The gravitational acceleration g is replaced with GTVTg, the pressure scale height Hp with Hp/HT

and the radiative gradient ∇rad with ∇radHTGTVT + (1 − ET/HT). The additional structure
equations are

∂mtr

∂m
=
ET

VT
(4.26)

and

∂Φ

∂m
=

Gm

4πr4ρ
GTVT. (4.27)

The mass conservation equation becomes

∂m

∂r
= 4πr2ρVT (4.28)

and hydrostatic equilibrium is written

∂p

∂m
= − Gm

4πr4
GTHTVT. (4.29)
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Here, the correction factors are simplified by taking mtr = (E/V)m and

Φ = (1/2)c2 log
∣∣1− 2Gm/c2r

∣∣ , (4.30)

which removes the need for the additional differential equations. The correction factors are
implemented as

R =

√
1− 2Gm

c2r
= V−1, (4.31)

G = 1 +
4πr3p

mc2
, (4.32)

E = 1 +
u

c2
(4.33)

and

H = 1 +
u+ p/ρ

c2
= 1 + E +

p

ρc2
. (4.34)

They are applied to the structure variables as described above. The relativistic corrections are thus
not exact but still represent an improvement over the Newtonian treatment (see Section 4.3.3).

4.3 Fiducial model

In this section, I present the evolution of a quasi-star with total mass M∗ = 104 M�, initial
BH mass 84 M� = 0.0084M∗ and a uniform composition of 0.7 hydrogen and 0.3 helium by
mass. The initial BH mass is larger than that of the models described in Chapter 3 because none
evolved smoothly from states with interior radiative zones into a state of total convection. The
advective and radiative efficiencies η and ε are 0.8 and 0.04 respectively. The envelope initially
has a constant specific angular momentum profile. The specific angular momentum at the inner
envelope boundary j0 = 1.83 × 1017 cm2 s−1 is chosen so that a BH with the same specific
angular momentum would have a dimensionless spin parameter a∗ = JBH/(GM

2
BH/c) = 0.5 (see

Section 4.4.1).

The strong advective luminosity in the quasi-star envelope constitutes a departure from
thermal equilibrium. Because the evolving models are not thermally relaxed, it is impossible to
initialize a model in thermal equilibrium. Instead, models are initialized with a constant energy
generation term of εc = 5× 104 erg s−1 g−1 , which adds a total luminosity of about two thirds
of the Eddington luminosity for a given object. The extra energy declines exponentially like
exp(−0.008t/ yr) so that εc < 10−2 erg s−1 g−1 after less than 2000 yr.
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Figure 4.2: The top plot (a) shows the evolution of the BH luminosity LBH (solid line) and surface luminosity L∗
(dashed line) in the fiducial run. The inner luminosity is divided into three phases but these are not reflected in the
surface luminosity. A varying and initially substantial fraction of the BH luminosity is lost to advection and not
radiated from the surface. The lower plots (b, c) show the evolution of the inner radius r0 and surface radius R∗ in
units of the BH’s Schwarzschild radius rS. The surface radius reflects the smooth behaviour of the surface luminosity
but the inner radius shows changes that are connected to the changing BH luminosity and accretion rate. Although
the changes are correlated, it is unclear which are causal.
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4.3.1 Evolution

Fig. 4.2 shows the evolution of the BH and surface luminosities as a function of BH mass and
contains all the qualitative behaviour present in any of the model sequences. The BH luminosity
exhibits three humps of decreasing maximum magnitude and increasing width. The peaks
correspond to luminosities L∗/109 L� = 3.07, 1.98 and 1.65 when MBH/M� = 143, 1738 and
5115. The BH luminosity is defined by equation (4.6) and is related to the accretion rate by ṀBH =

1.696×10−3(L∗/109 L�) M� yr−1 so the accretion rate has peaks of ṀBH/10−3 M� yr−1 = 5.21,
3.35 and 2.79. I refer to these local maxima, in both the BH luminosity and accretion rate, as the
luminosity humps.

The evolution terminates after 3.64 Myr at which time 11.8 M� remains in the envelope and
the BH has grown to 9592 M�. Thus, the BH accretes all but 0.12 per cent of the available
mass and this fraction varies very little between the models presented in this chapter. The nearly
complete accretion of the envelope on to the BH is the most important feature of the models in
this chapter. Neither is there an opacity crisis nor is the BH limited to the fractional mass limit
found in Chapter 3.

It remains unclear why the accretion rate exhibits the three-humped behaviour. Just as the
surface luminosity in Fig. 4.2, none of the surface properties shows any humps so they must
be caused either at the inner boundary or deep inside the envelope. It is, however, difficult to
disentangle the possibilities. The humps are certainly not caused by changes in the location of
convective zones. Throughout the evolution, the only convectively stable region is adjacent to
the surface and extends over less than 100 M� by mass. I suspect that the humps are related
to changes in the opacity or ionization state of the gas but I have not been able to demonstrate
this. They are possibly also affected by further departures from thermal equilibrium because
the thermal timescale tKH = Gm2/rL increases both with time and towards the inner boundary.
During the final hump, the thermal timescale at r0 is a few 105 yr.

Figs 4.2b and 4.2c show the locations of the inner and surface radii in units of rS as the BH
mass grows. The inner radius has a typical magnitude of a few tens of times the Schwarzschild
radius. This is consistent with the estimates and integrations by AIQN02 and LLG04. Some
differences can be attributed to their results being calculated for thick discs with finite opening
angles whereas the quasi-star envelopes are spherical. Variations in the rate of change of the
inner radius co-incide with similar shifts in the BH luminosity and accretion rate but it is unclear
whether changes in the luminosity or accretion rate affect the location of the inner radius or vice
versa.
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Table 4.1: Properties of the fiducial model as MBH increases. The first and last entries correspond to the initial and
final models in the run, respectively. Luminosity profiles are plotted in Fig. 4.3 and density profiles in Fig. 4.4.

t MBH ṀBH L0 T0 r0
/106 yr / M� /10−3 M� yr−1 /109 L� /105 K / R�

0.00 84 1.53 0.90 168 0.00769
0.29 1000 3.17 1.87 39.9 0.175
0.59 2000 3.30 1.95 24.4 0.463
1.65 5000 2.79 1.65 8.26 3.49
3.64 9592 0.86 0.51 6.96 3.96

ρ0 L∗ Teff R∗
/ g cm−3 /108 L� /103 K /104 R�

0.00 84 1.27× 10−5 3.51 4.76 2.76
0.29 1000 5.09× 10−8 7.27 4.43 4.59
0.59 2000 7.69× 10−9 9.54 4.39 5.35
1.65 5000 1.19× 10−10 12.6 4.41 6.09
3.64 9592 5.39× 10−11 4.36 5.79 2.08

4.3.2 Structure

The variation of luminosity with radius for the models listed in Table 4.1 is shown in Fig. 4.3.
The portion of the envelope that experiences strong advection is visible in each profile. In
addition, the decreasing relative strength of the advection for increasing BH mass can be seen.
This phenomenon is also apparent in Fig. 4.2 where the difference between the BH and surface
luminosities broadly decreases as the BH grows. Note that the first luminosity profile shows
a large trough because the initial constant energy generation εC is still present. Owing to the
low density throughout the envelope, the region of the quasi-star with a significant advective
luminosity is small in mass. In all the models in the fiducial run, the thermal energy generation
εth is less than 1000 erg s−1 g−1 beyond 60 M� and less than 200 erg s−1 g−1 outside of the first
220 M� of the envelope.

The density profiles of the models in Fig. 4.4 exhibit an inversion near the inner boundary.
That is, the density increases outwards. This is theoretically unstable to the Rayleigh–Taylor
instability. Density inversions are understood to appear near the surfaces of one-dimensional
models of red supergiants. However, the implications of an inversion near the centre of the
CDAF-ADAF quasi-stars are unclear. The models are not in a steady state, so a a sufficient
increase in the advection velocity may be represented by a corresponding decrease in the density
in order to keep the mass accretion rate constant throughout the model.
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Figure 4.3: Plot of luminosity against radius for models in the fiducial sequence with MBH/ M� = 84, 1000, 2000,
5000 and 9592 (see Table 4.1). In the outer envelope, the luminosity is roughly constant. Near the inner boundary,
advection affects the luminosity. Advection carries energy inwards and acts like a negative thermal energy generation
so the luminosity decreases outwards. The initial model has a constant energy generation rate of 5×104 erg s−1 g−1

and the luminosity consequently increases outwards at the outer edge.

4.3.3 Non-rotating and non-relativistic models

To evaluate the importance of rotation and relativity in the models, three additional runs were
conducted with no rotation, no corrections due to relativity or both. The evolution for each case
is plotted in Fig. 4.5. Rotation only makes a significant difference during the first luminosity
hump with relativity included. It otherwise plays a small role in the structure of the envelope.
This is not surprising. The inner radius increases almost monotonically with rS, which is itself
proportional to the BH mass. The specific angular momentum Ωr2 is roughly constant so the
angular velocity falls at least as 1/M2

BH and faster if the inner radius increases as a multiple of
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Figure 4.4: Plot of density against radius for models in the fiducial run with MBH/ M� = 84, 1000, 2000, 5000
and 9592 (see Table 4.1). The models show an increasingly strong density inversion at the centre. This is formally
unstable but the large advection velocity might depress the density to conserve mass.

the Schwarzschild radius. The Keplerian velocity ΩK =
√
GMBH/r3 falls off more slowly, as

1/MBH. Thus the ratio Ω0/ΩK decreases over time, as do the structural effects of rotation.

The relativistic corrections introduce the contribution of the energy density to the gravitational
potential, which is therefore steeper than its Newtonian counterpart. The inner radius is smaller,
the advected luminosity greater and the accretion rate larger. At later times, when the inner radius
exceeds 100rS, relativity has little effect on the structure and the accretion rates converge.

All the runs achieve roughly the same final BH mass of about 9592 M�. Both the non-
relativistic rotating and the non-relativistic non-rotating models have lifetimes of 3.87 Myr. The
non-rotating relativistic model achieves its final BH mass after 3.65 Myr, which is very similar to
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Figure 4.5: Plot of the evolution of quasi-stars with or without rotation or relativistic effects. The inset has the same
scales on the axes. For MBH & 500 M�, the rotating and non-rotating models are indistinguishable. The relativistic
models have smaller inner radii, larger advective luminosities and so larger accretion rates.

the lifetime of the fiducial model. The difference in the lifetimes exists mainly because of the
higher accretion rates in the relativistic models.

4.4 Parameter exploration

Having established the basic properties of CDAF-ADAF quasi-stars, I now present models with
different choices of the free parameters, as in Section 3.3. I begin by varying the speed of rotation
in Section 4.4.1 and discussing the evolution of the BH spin. In Sections 4.4.2 and 4.4.3, I vary
the radiative and advective efficiencies and, in Section 4.4.4, I consider changes to the total mass
of the quasi-star, both in the initial model and during the evolution.



66 CDAF-ADAF quasi-stars

4.4.1 Rotation

Reasonable values for the rotation of the envelope are chosen such that a BH with the same
specific angular momentum has a realistic spin. If the BH has spin parameter a∗, its specific
angular momentum jBH is given by

jBH =
JBH

MBH
=
a∗GM

2
BH

cMBH
=
a∗GMBH

c
(4.35)

= 4.43× 1015

(
MBH

M�

)
a∗ cm2 s−1 , (4.36)

where JBH is the total angular momentum of the BH. Thus, the fiducial choice j0 = 1.83 ×
1017 cm2 s−1 corresponds to a spin parameter a∗ = 0.5 for an 84 M� BH. Fig. 4.6 shows the
evolution of central luminosity against BH mass for j0 corresponding to initial spin parameters
a∗ = 0.5, 1 and 2. Choices of a∗ larger than 1 can be regarded as cases where the BH was born
with a smaller specific angular momentum than the envelope. For a given angular velocity, a
rigidly-rotating sphere with constant density would have 0.6 times and a rigidly-rotating n = 1

polytrope about 0.37 times the angular momentum of a sphere with constant specific angular
momentum. More centrally-condensed objects would have even smaller values so if the BH was
born from a gas with such a profile it would have a smaller spin parameter to that inferred from
the envelope under the presumption of constant specific angular momentum.

Because the angular velocity in the envelope declines rapidly, as noted in Section 4.3.3,
different rotation speeds only matter near the beginning of the evolution. After the first luminosity
hump, the inner radius increases significantly and, forMBH & 300 M�, the evolutionary sequences
are nearly indistinguishable. All the runs end with BH masses of about 9592 M�.

Fig. 4.7 shows the evolution of the spin parameters a∗ for the quasi-stars in Fig. 4.6. The spin
of the BH is calculated by recording the total angular momentum lost at the inner boundary and
presuming that it becomes part of the BH. In all three cases, the spin parameters are proportional
to 1/MBH and this is easily explained. If a BH is born from and accretes matter with some constant
specific angular momentum j, its angular momentum increases as J̇BH = jṀBH. Convective
transport of angular momentum maintains a constant specific angular momentum profile. The
BH’s total angular momentum is the sum of its initial angular momentum and whatever it accretes
and is therefore

JBH = jMBH,i + j(MBH −MBH,i) = jMBH, (4.37)
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Figure 4.6: Plot of the evolution of quasi-stars with different rotation rates. The inset has the same scales on the axes.
The models have constant specific angular momenta and are parametrized by the spin of a BH with the same specific
angular momentum and of the same initial mass as in the relevant evolution. The initial BH masses in these runs are
84 M� and the spins a∗ = 0.5, 1 and 2 correspond to specific angular momenta Ω0r

2
0/1017 cm2 s−1 = 1.83, 3.66

and 7.31. The rotation rate falls off rapidly and does not affect the evolution beyond MBH ≈ 300 M�.

where a subscript i represents an initial value. The BH’s spin parameter is

a∗ =
JBHc

GM2
BH

=
c

GMBH

a∗,iGMBH,i

c
(4.38)

= a∗,i
MBH,i

MBH
. (4.39)

Because the initial values are constant, it follows that the spin parameter is inversely proportional
to the BH mass.
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Figure 4.7: Plot of BH spin as a function of BH mass for the quasi-star models in Fig. 4.6. In each model, the spin
parameter a∗ is inversely proportional to the BH mass to high accuracy. The spin thus decreases rapidly as the BH
grows.

4.4.2 Radiative efficiency

The evolution of quasi-stars with radiative efficiencies 0.02, 0.03 and 0.05 is plotted in Fig. 4.8
along with the fiducial evolution in which ε = 0.04. The accretion rate increases for smaller ε
because a larger accretion rate is required to achieve the same surface luminosity. The dependence
is non-linear and also related to the properties of the advective luminosity. Decreasing the radiative
efficiency by one quarter to 0.03 roughly doubles the accretion rate over the evolution. The
surface luminosities are nearly the same so the advection luminosity must be much greater.

The non-linear effect of the radiative efficiency is understood as follows. A smaller radiative
efficiency requires a larger accretion rate and the envelope contracts and becomes denser and
therefore hotter. The advected luminosity is also greater and therefore even more accretion



4.4 Parameter exploration 69

0.02
0.03
0.04
0.05

M
B
H
/1
0-
3 M

☉
.y
r-1

0

2.5

5

7.5

10

12.5

15

MBH/M☉

0 2000 4000 6000 8000 10000

Figure 4.8: Plot of the evolution of quasi-stars for radiative efficiencies ε = 0.02, 0.03, 0.04 and 0.05. For ε = 0.02,
models could only be constructed with MBH & 300 M� and the initial BH mass was 331 M�. In all cases, larger ε
leads to smaller accretion rates and narrower luminosity humps. For ε = 0.02 and 0.03, the humps are broader than
the total quasi-star mass so there is one fewer hump. Models with larger values of ε also achieve slightly larger final
BH masses because less mass is destroyed to produce energy.

is required. If the advective luminosity were a fixed fraction of the total in the envelope, the
relationship would be linear. However, the advective luminosity increases for smaller ε so a larger
accretion rate is required than would be just to achieve the same surface luminosity.

This also explains the non-existence of any converged models for radiative efficiencies below
some minimum. For the fiducial run, I could not evolve quasi-stars with radiative efficiencies
below 0.021. In short, such models advect all of the luminosity inwards. Without any energy to
support the envelope, it collapses on to the BH. The advection luminosity is more modest after
the first BH luminosity hump so models with smaller radiative efficiencies can be constructed if
the initial BH mass is larger. For this reason, the evolution with ε = 0.02 begins with initial BH
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mass 331 M� but its subsequent evolution follows the same trends as the models with the same
initial BH mass as the fiducial run.

The qualitative evolution of the runs is similar but the major quantitative difference between
them is that the luminosity humps are narrower in MBH for larger values of ε. For ε = 0.02 and
0.03, the first hump is wider than the total mass so there is one fewer hump in those sequences.
This is probably because the envelopes are hotter and denser for smaller values of ε and the
microphysical change that causes the three-humped behaviour is delayed.

The radiative efficiency ε is defined by the inner luminosity boundary condition (equation
4.6). We can also define an overall radiative efficiency ε∗ = L∗/ṀBHc

2 = εL∗/LBH. It has
already been shown that L∗/LBH varies during the evolution of a CDAF-ADAF quasi-star and
the overall efficiency therefore varies too. Notably, when advection is strongest, the surface
efficiency is smallest. In the runs here, the overall efficiency reaches a low of 0.15ε during the first
luminosity hump. During the second hump, the ratio is between about 0.3 and 0.5. Thereafter,
where applicable, the ratio is between 0.7 and 0.85. The non-existence of models with ε < 0.21

for initial BH masses less than about 100 M� can be thought of as the overall efficiency ε∗ being
negative.

4.4.3 Advective efficiency

The advective efficiency η represents the fraction of the luminosity generated in the advected
zone that falls on to the BH without being radiating away. Larger values of η correspond to less
energy being released and should require a higher accretion rate to provide the same overall
luminosity. Fig. 4.9 confirms this. The fiducial run is shown with runs where η = 0.7, which
has a lower accretion rate, and η = 0.9, which has a higher rate. The accretion rates converge at
larger BH masses once the role of the advective luminosity has declined. The luminosity humps
occur at roughly the same points in each run but with different amplitudes.

4.4.4 Initial mass and total mass loss or gain

The final free parameter that is varied is the total mass of the quasi-star. Evolutionary sequences
for quasi-stars with total initial masses M∗/M� = 104, 3× 104 and 105 are plotted in Fig. 4.10.
The BH masses and accretion rater are divided by the total masses so that the different runs can
be compared. In general, I found it difficult to find suitable parameters for successful models with
larger total masses. The 105 M� quasi-star is initialized with a BH mass of 6356 M� ≈ 0.064M∗.
This is nearly an order of magnitude larger than the initial fractional BH mass in the fiducial run.
I was unable to construct models with larger total masses and could not determine why.
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Figure 4.9: Plot of the evolution of quasi-stars for advective efficiencies η = 0.7, 0.8 and 0.9. Stronger advection
requires larger accretion rates to support the envelope. Once the effect of advection has declined, the models converge
to similar accretion rates.

More massive quasi-stars have smaller scaled accretion rates before and larger scaled accretion
rates during the final luminosity hump. The humps are narrower in fractional mass but the first
two are of roughly the same width (about 2500 M�) in absolute BH mass. The complicated
dependence of the accretion rate on total mass means there is not a simple scaling relation for
quasi-stars’ lifetimes as there was for the Bondi-type quasi-stars. Measuring the lifetime from
the initial fractional mass of the 105 M� model, the fiducial model evolved for 3.48 Myr, the
3× 104 M� model for 3.49 Myr and the 105 M� model for 3.13 Myr. The trend towards larger
scaled accretion rates during the final luminosity hump appears to continue to higher masses so I
expect that larger quasi-stars have shorter lifetimes than the most massive model presented here.
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Figure 4.10: Plot of evolution of quasi-stars with total initial masses M∗/ M� = 104, 3× 104 and 105, as well as
models with surface mass loss and gain. For larger total masses, the first two luminosity humps are narrower in MBH
and smaller in magnitude when scaled by the total mass. The final phase of accretion is more rapid. In addition,
more massive models achieve higher fractional BH masses.

Fig. 4.10 also shows evolution where the quasi-star loses mass at a Reimers (1975) rate,

Ṁloss = 4× 10−13L∗R∗

M∗

M�

L� R�
, (4.40)

or gains mass at a constant rate of Ṁgain = 2× 10−3 M� yr−1 . The trends identified above hold
for the total masses. At the end of the run, the model with mass loss contains a BH of mass
5321 M� inside an envelope of 1.53 M�. The model that gains mass finishes with a BH of mass
14063 M� and an envelope of 0.677 M�. As in the models that do not have additional mass loss
or gain from the surface, the BH is able to consume almost all of the envelope.
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4.5 Discussion

What, if anything, do CDAF-ADAF quasi-stars have in common with the Bondi-type models of
Chapter 3? Regarding the structure, very little. The accretion rates of the CDAF-ADAF models
are about an order of magnitude larger and the BHs ultimately accrete almost all of the available
gas in the envelope. The mass limit found in Chapter 3 is robust but CDAF-ADAF quasi-stars are
not in thermal equilibrium and therefore the polytropic analysis does not apply to them. While
the CDAF-ADAF quasi-stars in this chapter are not necessarily more reliable, they demonstrate
that the choice of the inner boundary is critical in determining the qualitative and quantitative
behaviour of the envelope’s structure.

The surface behaviour of the CDAF-ADAF quasi-stars, however, is not so different from
the Bondi-type models. In both cases, the surface temperatures are effectively set by the
Hayashi limit and are therefore quite accurately around 4500 K. More roughly, the surface
luminosity is on the order of the Eddington luminosity of the quasi-star. The surface bound-
ary condition L∗ = 4πR2

∗σT
4
eff requires that the envelope’s surface radius is on the order of

322(M∗/M�)
1
2 R� ≈ 1.5(M∗/M�)

1
2 AU. Although the details of the structure depends crit-

ically on selecting appropriate boundary conditions, the surface properties of the objects are
reasonably similar. The most important quantitative difference in the evolution of the observable
properties is the total lifetime, which determines the duty cycle of the quasi-star phase.

For comparison, the location of the Bondi radius can be found in the CDAF-ADAF models.
In the fiducial run, the Bondi radii (where c2s = 2GMBH/rB) when MBH/M� = 200 and 1000

are rB/R� = 436 and 1.46× 104, respectively. For the corresponding BH masses in the fiducial
Bondi-type quasi-star, the inner radii are r0/R� = 373 and 1.15×104, which compare reasonably
well. However, forMBH & 1200 M�, a Bondi radius cannot be found in the CDAF-ADAF models.
This is consistent with the existence of a BH mass limit when the inner radius is defined through
the Bondi radius but also suggests that Bondi-type models fail to capture the true behaviour of
the models at higher BH masses.

The three-phase behaviour of the CDAF-ADAF models was also not seen in the Bondi-type
quasi-stars and probably occurs because of changes in the advective luminosity owing to some
microphysical property of the envelope material. Some models require that the first hump is
avoided entirely. The high initial accretion rate might indicate that the BH generally grows at
first through a very rapid accretion phase before the envelope settles into a state described by
approximate hydrostatic equilibrium.

The changing advective luminosity implies that the overall radiative efficiency of accretion,
defined by ε∗ = L∗/ṀBHc

2, is not constant. It may be possible to construct CDAF-ADAF
quasi-stars by regarding ε∗, rather than ε, as a constant. LLG04 adopted this approach and found
ε∗ = 0.0045. In the late phases of the quasi-star evolution, such a low value of ε∗ would almost
certainly admit a much larger accretion rate and therefore shorter lifetimes.
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4.6 Conclusion

I have presented quasi-star models that employ boundary conditions based on the global accretion
solutions of AIQN02 and LLG04. An advection-dominated flow is presumed to be surrounded by
a convective envelope, the structure of which is computed with approximate treatments of rotation
and relativity. The behaviour of the models is qualitatively and quantitatively distinct from the
Bondi-type models described in Chapter 3. In my opinion, the most important conclusion to draw
here is that the results computed using near-spherical hydrostatic quasi-stars are only as good as
the inner boundary conditions that they use.

In CDAF-ADAF quasi-stars, the properties of the advective luminosity dictate how the central
BH evolves. The models indicate a three-phase behaviour in which the importance of advection
gradually decreases. The initial hump in the accretion rate can be sufficiently large to disrupt
numerical convergence. For runs with small radiative efficiencies or large total initial masses,
I bypassed this phase entirely. It may correspond to a rapid initial growth of the BH before an
approximately hydrostatic configuration can be established.

For all the parameters explored here, the BH ultimately accretes nearly all of the available
material. The precise fraction varies very little with the parameters of the model and is more
than 0.9988 in all the models tested here. The lifetimes of the objects are only a few millions of
years so CDAF-ADAF models create larger BHs more rapidly than Bondi-type quasi-stars. Thus,
CDAF-ADAF quasi-stars can certainly leave BHs that are massive enough to reach masses of
109 M� by redshift z ≈ 6 but whether these structures are accurate models of the quasi-star phase
is not yet established.



As far as the laws of mathematics refer to reality, they are
not certain; and as far as they are certain, they do not refer
to reality.

from Sidelights on Relativity,
Albert Einstein, 1922

5
The nature of the

Schönberg–Chandrasekhar limit

Schönberg & Chandrasekhar (1942) showed that, if embedded in a polytropic stellar envelope
with index n = 3, there is a maximum fractional mass that an isothermal core can achieve in
hydrostatic equilibrium. This upper limit is known as the Schönberg–Chandrasekhar (SC) limit.
If the core is less massive, it remains isothermal while nuclear reactions continue in a surrounding
shell. If the core is more massive, it contracts until it is supported by electron degeneracy pressure
or helium begins to burn at the centre. The idealised result provides an estimate of the point at
which an evolved isothermal core embedded in an extended envelope begins to contract and is
sufficiently accurate that it has become a well-established element of the theory of the post-main
sequence evolution of stars.

In Chapter 3, I showed that the black hole (BH) masses of Bondi-type quasi-stars are subject
to a robust fractional limit. I have determined why this limit exists in terms of contours of
fractional core mass of solutions when plotted in the space of homology invariant variables U
and V . I further found that the SC limit can be explained in the same way.

Fractional mass limits have been computed for a number of other polytropic solutions. Beech
(1988) calculated the corresponding limit for an isothermal core surrounded by an envelope
with n = 1. Eggleton, Faulkner & Cannon (1998, hereinafter EFC98) found that, when n = 1

in the envelope and n = 5 in the core, a fractional mass limit exists if the density decreases
discontinuously at the core-envelope boundary by a factor exceeding 3. They further proposed
conditions on the polytropic indices of the core and envelope that lead to fractional mass limits. I
refer to all these limits, including the original result of Schönberg & Chandrasekhar (1942) as
SC-like limits.



76 The nature of the Schönberg–Chandrasekhar limit

In this chapter, I present my analysis, which unifies SC-like limits and indicates that they exist
in a wider range of circumstances than the handful of cases discussed in the literature. In Section
5.1, I present the new interpretation of SC-like limits. In Section 5.2, I provide a description that
captures all the SC-like limits of Section 5.1 and I consider broad classes of models that must
also exhibit SC-like limits. I close by discussing some implications for real stellar models when
they reach SC-like limits.

5.1 Fractional mass contours in the U–V plane

The analysis presented here employs the plane of homology invariant variables U and V . A
thorough exposition of its features are provided in Appendix A but I briefly review here the most
important. An equation of state is polytropic if it obeys the relation

p = Kρ1+ 1
n , (5.1)

where p is the pressure, ρ the density, n the polytropic index and K a constant of proportionality.
By defining the dimensionless temperature θ by ρ = ρ0θ

n, the equations of mass conservation,

dm

dr
= 4πr2ρ, (5.2)

and hydrostatic equilibrium,

dp

dr
= −Gmρ

r2
, (5.3)

can be written in the dimensionless forms

dθ

dξ
= − 1

ξ2
φ (5.4)

and

dφ

dξ
= ξ2θn, (5.5)

where ρ0 is the central density, r is the radial co-ordinate, m the mass inside r, ξ = r/η is the
dimensionless radius1 and φ = m/4πη3ρc is the dimensionless mass. The radial scale factor η is
defined by

η2 =
(n+ 1)K

4πG
ρ

1
n
−1

c . (5.6)

1The scale factor is usually α. We have used η to avoid confusion with the density jump at the core-envelope
boundary, which EFC98 called α.
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Equations 5.4 and 5.5 are equivalent to the Lane–Emden equation (LEE, A.9).

Homology invariant variables U and V are defined by

U =
d logm

d log r
=
ξ3θn

φ
(5.7)

and

V = −d log p

d log r
= (n+ 1)

φ

θξ
(5.8)

and obey the differential equation

dV

dU
= −V

U

(
U + (n+ 1)−1V − 1

U + n(n+ 1)−1V − 3

)
. (5.9)

Consider the problem of fitting a polytropic envelope to a core of arbitrary mass and radius.
For a given n < 5, we can regard a given point (U0, V0) in the U–V plane as the interior boundary
of a polytropic envelope by integrating the LEE from that point to the surface. More precisely,
we can take interior conditions

θ0 = 1, (5.10)

so that ρ0 is the density at the base of the envelope,

ξ0 =
√

(n+ 1)−1U0V0 (5.11)

and

φ0 =
√

(n+ 1)−3U0V 3
0 (5.12)

and integrate the LEE up to the first zero of θ, where we set ξ = ξ∗. This point marks the
surface of a polytropic envelope, at which φ∗ is the total dimensionless mass of the solution,
including the initial value φ0. The ratio q = φ0/φ∗ is the fractional mass of a core that occupies a
dimensionless radius ξ0. By associating each point in the U–V plane with the value of q for a
polytropic envelope that starts there, we define a surface q(U, V ). We use the contours of this
surface to characterise the SC limit.

Figs 5.1, 5.2 and 5.3 show contours of q(U, V ) for polytropic envelopes with n = 3, 4 and 1

respectively, along with a selection of interior solutions that lead to SC-like limits. For n < 3 the
contours are dominated by the critical point Vs = (0, n+ 1) and for n > 3 by Gs = (n−3

n−1
, 2n+1

n−1
).

Away from Vs or Gs all the contours at first curve away from the U -axis and then tend towards
straight lines.
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Figure 5.1: The dashed lines are contours of a core’s fractional mass q = φ0/φ∗ beneath an envelope with n = 3.
They increase in steps of 0.1 from 0.1, at the bottom, to 0.9, at the top. The larger solid spiral is the isothermal
core with α = 1. The smaller spiral represents an isothermal core when α = 2. The upper and lower straight lines
represent the inner boundaries for quasi-stars with b = 3 and b = 1 respectively (see Section 5.1.2).

5.1.1 The Schönberg–Chandrasekhar limit

Kippenhahn & Weigert (1990, p. 203) discuss the SC limit in terms of fractional mass contours.
Cannon (1992) also explicitly described the SC limit in terms of fractional mass contours,
although he employed a different set of homology-invariant variables. Fig. 5.1 shows the
isothermal solution along with the fractional mass contours for n = 3 envelopes. The SC limit
exists because the isothermal solution only intersects fractional mass contours up to a maximum
qmax = 0.359 when α = 1. In other words, along the isothermal solution, the function q(U, V )

achieves a maximum of 0.359.
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The SC limit is usually derived by defining the core pressure using virial arguments and
maximizing it with respect to the core radius (e.g. Kippenhahn & Weigert 1990, p. 285). Such an
explanation partly describes the SC limit but our interpretation makes clear that the existence of
the SC limit has as much to do with the behaviour of the envelope solutions as the isothermal
core. For example, changing the polytropic index of the envelope changes the mass limit.

If the density jumps by a factor α at the core-envelope boundary, U and V must be transformed
at the edge of the core to find the base of the envelope in the U–V plane. That is, if ρ→ α−1ρ,
then (U, V ) → α−1(U, V ). The contraction of the isothermal core for α = 2 is included in
Fig. 5.1. The inner boundary of the envelope shifts to a smaller fractional mass of about 0.09 so
the SC limit falls too.

The argument presented here implies that SC-like limits exist whenever an envelope is
matched to a core that only intersects fractional mass contours of that envelope up to some
maximum. We now use this to explain the existence of other SC-like limits.

5.1.2 Quasi-stars

In Chapter 3, I showed that the fractional BH mass limit for Bondi-type quasi-stars also exists in
polytropic models. Using fractional mass contours in the U–V plane, I now show how the limit
is essentially the same as the SC limit, at least in the case of zero mass in the cavity. When the
cavity mass is included, the connection between the SC limit and the fractional BH mass limit is
not clear but it is qualitatively the same and a similar mechanism is at work.

The interior boundary condition for the quasi-star models can be written as

r0 =
1

b

2Gm0

c2s
, (5.13)

where b is a scale factor, m0 the mass interior to r0 and cs =
√
γp/ρ the adiabatic sound speed.

The boundary condition is a fraction 1/b of the Bondi radius, where mc2s/2 = Gm/r. Begelman,
Rossi & Armitage (2008) used b = 3; the models in Chapter 3 used b = 1. Accretion on to the
central BH supports the envelope by radiating near the Eddington limit of the entire object so
the envelope is strongly convective and the pressure is dominated by radiation. The envelope is
approximately polytropic with index n = 3. Now, at the interior boundary, c2s = Kρ

1/n
0 (n+1)/n,

m0 = 4πη3ρ0φ0, and r0 = ηξ0 so

φ0 =
b

2n
ξ0. (5.14)

Transforming to U and V gives U0 = 2nξ2
0/b and V0 = b(n+ 1)/2n. Varying ξ0 traces a straight

line, parallel to the U -axis. Fig. 5.1 includes the straight lines V0 = 2/3 and 2, which correspond
to b = 1 and 3, respectively, for n = 3. The line of V0 does not intersect all the contours of
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Figure 5.2: The dashed lines are contours of fractional mass q = φ0/φ∗ for n = 4. The solid spiral is again the
isothermal core solution. The upper and lower straight lines represent the inner boundaries for quasi-stars with b = 3
and b = 1 respectively. The behaviour of the contours is dominated by the critical point Gs = (1/3, 10/3).

fractional core mass because many of them are positively curved. Thus, a mass limit exists, as in
previous cases. For larger values of b, V0 is also larger and intersects more of the contours. The
mass limit is therefore larger.

We have limited ourselves to the case where n = 3. The fractional mass contours in Figs
5.1 and 5.3 show similar behaviour. Convective envelopes are approximately adiabatic and have
effective polytropic indices between 3/2 and 3, depending on the relative importance of gas and
radiation pressures. All such envelopes possess fractional mass contours that are similar to the
two cases here and we conclude that a fractional mass limit for the BH exists in all realistic
cases. Envelopes with 3 < n < 5 have more complicated fractional mass contours so we cannot
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immediately draw similar conclusions. For n = 4, Fig. 5.2 shows that the fractional mass limits
for quasi-star cores behave as described above only for b . 4.4.

In trying to move r0 inwards, I found I could not construct models with the STARS code
with b ≥ 3.8 in equation (5.13). The reason for this can be determined from the behaviour
of the polytropic limit. As b increases, V0 increases and eventually passes the critical point Vs

when the contours change from increasing along V0 as U increases to decreasing along V0 as U
increases. In other words, if a polytropic envelope is integrated from small U0 and V0 < n+ 1 it
has q ≈ 0. If the envelope is instead integrated from V0 > n + 1, it has q ≈ 1 and q decreases
if U0 increases. When V0 > n+ 1, b > 2n so small inner masses correspond to envelopes with
negligible envelope mass. It becomes impossible to embed a small BH inside a massive envelope.
The mass limit becomes a minimum inner mass limit. For the models presented in Chapter 3,
the finite mass of the BH corresponds to a finite value of U0 that displaces the envelope slightly
from the V -axis. The fractional mass contours are closely packed near Vs so a small value of U0

introduces a minimum inner mass limit for some b < 2n.

5.1.3 Other polytropic limits

Fig. 5.3 shows the fractional mass contours for n = 1, the isothermal solution and n = 5

polytropes with α = 1, 2, 3 and 4 as used by EFC98. Beech (1988)2 calculated a SC-like limit
of about 0.27 for an isothermal core embedded in a polytropic envelope with n = 1. Because
the behaviour of fractional mass contours is similar for n = 1 and n = 3, the existence of the
limit is now no surprise. Inspection of Fig. 5.3 suggests qmax ≈ 0.5, which differs from the value
found by Beech (1988). This is at least partly because he included the radiation pressure of
the isothermal core. The value determined here can be partly reconciled by replacing p with
p + pr = p(1 + pr/p), where pr = aT 4/3 is the radiation pressure with the radiation constant
a. The pressure appears in the definition of V , which is therefore replaced with V/(1 + pr/p).
The isothermal cores of Beech (1988) have central temperature 2× 107 K and ρ0 = 103 g cm−3 .
The density at the core-envelope boundary is about 20 g cm−3 so pr/p is about 0.016 and V is
reduced by a similar fraction. The inclusion of radiation pressure thus explains a small fraction
of the difference between the result presented here and that of Beech (1988). I am still unsure
where the remainder of the difference is found.

The conclusions of EFC98 are also accommodated. The critical point Vs = (0, n + 1)

separates solutions, and thus contours, with q ≈ 0 from those with q ≈ 1. EFC98 concluded
that, for n = 1 envelopes, cores with n < 5 are never subject to a SC limit; those with n > 5

always are; and those with n = 5 constitute the marginal case for which the limit exists when

2There appears to be an error in equation (17) of Beech (1988). The right-hand side, which should be dimension-
less, has dimensions ( g cm−3 )

1
2 . I suspect that the appearance of ρc in the denominator should be should actually

be ρ
1
2
c . The mistake does not appear to propagate into subsection equations.
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Figure 5.3: The dashed lines are contours of fractional mass q = φ0/φ∗ for n = 1. The solid spiral is again the
isothermal core solution. The top-most diagonal line is the polytrope of index 5 with α = 1. The other diagonal
lines are, from top to bottom, core-envelope boundary conditions for the envelope when α = 2, 3, 4 for n = 5 as
shown by EFC98.

α > 3. The three cases are demonstrated in Fig. 5.3. When α = 1 or 2 the core solution intersects
all the contours. When α = 4 the core solution is everywhere below the point (0, 2) and only
intersects contours up to qmax ≈ 0.15. The marginal case is α = 3, for which the core solution
intersects (0, 2) exactly and separates the values of α for which the core is or is not subject to
a SC-like limit. Because these conclusions are based on the critical behaviour of the solutions,
which is reflected in the behaviour of the contours, the same results follow here. We have shown
how they are characterised by the contours in the same way as other limits and are a particular
example of our broader result. That is, we have shown that SC-like limits exist whenever the core
solution fails to intersect all fractional mass contours. The cases identified by EFC98 fall within
this description.
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5.2 Consequences for stellar evolution

I complete this chapter by discussing four points that connect the polytropic results above to
real stellar evolution. First, I identify broad classes of polytropic models that are similar to real
models and subject to SC-like limits. Secondly, I discuss how stellar structure responds to a
SC-like limit and, thirdly, how SC-like limits are related to the instability described by Ebert
(1955), Bonnor (1956) and McCrea (1957). Finally, I introduce a theoretical test of whether a
composite polytrope is at a SC-like limit.

5.2.1 General limits

The SC-like limits discussed above all exist because each locus of core-envelope boundaries only
intersects fractional mass contours with q smaller than some qmax. This condition is generally
satisfied whenever the curve defining the inner edge of the envelope touches but does not cross
some fractional mass contour. That is, the condition is satisfied when the core solution is
tangential to the contour with q = qmax. This condition allows one to identify immediately the
existence of additional SC-like limits and estimate their value. For example, Fig. 5.4 shows
fractional mass contours for polytropic envelopes with n = 3/2 as well as the isothermal core and
the Bondi radius of a quasi-star with b = 1. By inspection, a SC-like limit exists for an isothermal
core embedded in an n = 3/2 envelope and the corresponding limit is roughly 0.46. Yabushita
(1975) used such composite polytropes to model neutron stars and computed their maximum total
and core masses. Although he did not explicitly calculate the maximum fractional core mass, a
rough value of 0.46 can be determined by fitting the core and total mass curves in his Fig. 1. The
precise value of the maximum fractional core mass is 0.464. Similarly, a SC-like limit must exist
for quasi-stars with n = 3/2 envelopes. By inspection, the limit is about 0.10 for b = 1, which
compares well with the value 0.105 determined by integrating polytropic envelopes.

The condition for the existence of SC-like limits also identifies large classes of core solutions
to which the limits apply. For example, a SC-like limit must exist whenever the core solution has
everywhere V < n+ 1, where n < 5 is the polytropic index of the envelope, because there are
always contours that have everywhere V > n+ 1. Any composite polytrope with n > 5 in the
core and n < 5 in the envelope satisfies this condition and is subject to a SC-like limit. Cores
described by n = 5 polytropes with α > 6/(n + 1) envelopes, as discussed by EFC98, fail to
intersect all contours. An example is plotted in Fig. 5.3, where the core solution with n = 5 and
α = 4 clearly does not intersect contours with q & 0.15 for envelopes with n = 1. SC-like limits
exist when there is a layer with n � 5 at the base of the envelope, on top of a polytropic core
with n < 5. In fact, the analysis is not restricted to polytropic models so even contrived core
solutions, such as V = 1− (U − 2)2, exhibit SC-like limits.
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Figure 5.4: The dashed lines are contours of fractional mass q = φ0/φ∗ for n = 3/2. The solid spiral is the
isothermal core solution and the horizontal straight line is the Bondi radius of a quasi-star with b = 1. The values of
SC-like limits for an isothermal core inside an n = 3/2 envelope and a polytropic quasi-star with n = 3/2 can be
estimated by inspection to be roughly 0.46 and 0.10.

The envelope solution can also vary as long as its fractional mass contours allow the above
condition to be satisfied. Although the contours are qualitatively similar for n < 5, it is not
obvious that there are useful non-polytropic envelopes that have contours conducive to the
existence of SC-like limits. One useful case, at least, is the convective model described by
Henrich (1941). This is adiabatic with varying contributions from radiation and gas pressures.
Envelopes calculated with his model behave like polytropic envelopes with n = 3 near the inner
boundary and n = 3/2 near the surface.

In real stars, nuclear burning shells can meet the criteria for the existence of a SC-like limit.
Nuclear reactions usually depend strongly on temperature and flatten the temperature gradient.
Regions of a star where nuclear reactions are taking place therefore tend to have larger values of
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n so SC-like limits can be present. The criteria become even stronger if the density gradient at
the core-envelope boundary becomes steeper or the mean molecular weight jump becomes more
pronounced. These effects shift the limiting region to smaller U and V where the fractional mass
contours correspond to smaller fractional masses.

5.2.2 Evolution beyond the limit

What happens when an isothermal core exceeds a SC-like limit? To remain in hydrostatic
equilibrium, its effective polytropic index must change. This can happen in two ways. Under
suitable conditions, the inner part of the core becomes degenerate. Degenerate matter is described
by a polytropic equation of state with n = 3 or n = 3/2 in relativistic or non-relativistic cases,
respectively. The inner core can tend to such an equation with an isothermal layer further from
the centre. A SC-like limit still exists but the isothermal layer is displaced upwards in V so a
larger core mass is possible.

Alternatively, the core can develop a steeper temperature gradient by departing further from
thermal equilibrium. For an ideal gas the stellar structure can be described by a varying polytropic
index such that d log p/d log ρ = 1+1/n = 1+d log T/d log ρ so an increase in the temperature
gradient decreases the effective polytropic n. As long as n� 5, a SC-like limit persists but, as in
the previous case, it corresponds to a larger fractional core mass. In the original SC limit, the
core is isothermal so any outward temperature gradient is enough to relax the limit. For SC-like
limits in general, the core can be mass-limited even if it is not in thermal equilibrium.

The structure of the envelope offers some respite from the constraints imposed by the core.
For radiative envelopes, where n is not much greater than 3, the fractional mass contours are
similar to those shown in Fig. 5.1. If the envelope becomes convective, the effective polytropic
index varies between 3/2 and 3. An SC-like limit still exists but the behaviour of the fractional
mass contours is less extreme near Vs for smaller values of n (compare Figs 5.1 and 5.3). Away
from Gs, contours run along smaller values of V for smaller n. Equivalently, q(U, V ) is larger at
a given point (U, V ) for smaller values of n. For example, for n = 3, q(2, 4) = 0.528, whereas
for n = 3/2, q(2, 4) = 0.562 and for n = 1, q(2, 4) = 0.576. Thus, a smaller polytropic index in
the envelope permits a larger fractional core mass.

5.2.3 Stability of polytropic cores

It is known that an isothermal sphere, of mass M and temperature T , is unstable if its radius is
smaller than the critical value

rc = 0.41
GM

kT
µmp, (5.15)
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where mp is the mass of a proton (Ebert 1955; Bonnor 1956; McCrea 1957). The sphere is
unstable in the sense that, if its radius decreases, its surface pressure decreases too. In the
presence of an external pressure, the sphere is compressed further and the contraction runs away.
Equivalently, if the surface pressure is increased by an external agent, the sphere is doomed to
collapse. The marginally stable solution is known as a Bonnor–Ebert sphere. Bonnor (1958)
extended his analysis to polytropes with index n > 0 and determined that a polytropic core with
n > 3 is unstable whenever the expression

1− n−3
2

(
dθ
dξ

)2
θ−(n+1)

1− n−3
n−1

ξ−1θ−n dθ
dξ

(5.16)

is negative. In terms of homology-invariant variables, this is equivalent to

U + UG

VG
V

U − UG

, (5.17)

where UG = (n− 3)/(n− 1) and VG = 2(n+ 1)/(n− 1) are the U and V co-ordinates of Gs.
The homology-invariant form of the criterion was independently derived by Hiroshi & Liu (1979).
The numerator and denominator of expression (5.17) define straight lines in the U–V plane. The
line that corresponds to the numerator passes through the origin and Gs. The line that corresponds
to the denominator is a vertical line through Gs. For given n, the critically stable polytropic core
can be determined by finding the first intersection of the core with one of the two lines because
infinitesimally small cores are stable. For the isothermal case, the point of intersection defines
the Bonnor–Ebert sphere and similar solutions for all n > 3 can be found in the same way.

The perturbations that lead to instability require only that, during the perturbation, the core
has constant mass, remains in hydrostatic equilibrium and satisfies the same polytropic relation.
These conditions are satisfied by the cores of composite polytropes so it is natural to ask whether
the existence of Bonnor–Ebert spheres for n > 3, demonstrated by Bonnor (1958), is related to
the existence for SC-like limits for n > 5, demonstrated here. I contend that they are not for
several reasons. First, the limits are invoked at different points along the core solution. In the case
of an isothermal core embedded in an n = 3 envelope, the fractional mass of the Bonnor–Ebert
sphere would be q = 0.341 whereas the SC limit is found at q = 0.359. Secondly, the statements
have different characters. The work of Bonnor (1958) regards stability whereas SC-like limits
regard the existence of solutions. Thirdly, the stability of the isothermal core is independent of the
envelope unlike SC-like limits. Although SC-like limits and Bonnor–Ebert stability are different
concepts, they occur at similar points in a sequence of composite polytropes with growing cores.
All else being equal, a core that reaches the critical Bonnor–Ebert mass achieves a SC-like limit
shortly thereafter. Thus, if the core becomes unstable and begins to contract, it soon finds itself
unable to accommodate additional mass.
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Figure 5.5: An application of the SC-like limit test for an isothermal core and polytropic envelope with n = 3, as in
the original SC limit. The contours corresponding to the fractional masses of each core solution are plotted in dashed
lines. The envelopes to the right and left are not tangential to the relevant contours and therefore fail the test. The
middle envelope is exactly tangential and at a SC-like limit. As expected, this model has the maximum fractional
mass originally found by Schönberg & Chandrasekhar (1942).

5.2.4 Identifying mass-limited models

It is possible to test whether a composite polytrope is at a SC-like limit. If the core solution
touches but does not cross the contour corresponding to the given fractional core mass, the model
is at a SC-like limit. That is, given the polytropic model and the index in the envelope, the
fractional mass at the core-envelope boundary can be computed and the whole solution plotted
with the relevant fractional contour for the envelope. The condition can be applied to determine
whether the model is limited. If the condition is satisfied, extending or contracting the core can
only admit a smaller fractional core mass. Fig. 5.5 demonstrates the test applied to a model at its
SC limit. The core-envelope solution touches and is curved away from the contour with fractional
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mass q = 0.359 so our test confirms that the model is at a limit. The other models, with q = 0.3,
are not tangential to the contours and are therefore not at a SC-like limit.

The test can be applied to realistic stellar models and allows us to connect the purely theoretical
results of this chapter with real stellar models. It is, however, difficult to identify stars that have
reached a SC-like limit because the inner edge of the envelope is not clearly defined and the
effective polytropic index varies throughout the envelope. In the next chapter, the test is applied
to realistic stellar models from the Cambridge STARS code and the results suggest that there is a
connection between stars reaching SC-like limits and subsequently evolving into giants.



I would not recommend anyone, particularly if they are in
a temporary research position, to waste any time looking
for a sufficient condition.

Peter Eggleton, 2000

6
Fractional mass limits

and the structure of giants

When the core of a main-sequence star exhausts its supply of hydrogen, it undergoes a number of
qualitative changes. Nuclear burning moves from the centre to a shell around the inert core and
the mean molecular weight gradient at the core-envelope boundary steepens. At the same time,
the envelope begins to expand increasingly quickly. With the total luminosity roughly constant,
the surface temperature drops until the star reaches the Hayashi track and a deep convective zone
penetrates inwards from the surface, marking the beginning of the red giant branch. The rapid
decrease in surface temperature means that few stars are found in the so-called Hertzsprung gap.
During this phase, a star’s envelope expands greatly, potentially by orders of magnitude, and
continues to do so as it ascends the red giant branch.

Though the evolution of main-sequence stars into giants has in essence been reproduced since
the pioneering calculations by Hoyle & Schwarzschild (1955), the cause of a star’s substantial
expansion after leaving the main sequence remains unknown. This red giant problem continues
to receive occasional attention. Some authors have claimed both to solve the problem and explain
why previous solutions were incomplete only to have the same claim made against them by others.
It appears that whether or not the red giant problem is an open question is itself an open question.

Some clarity is achieved by more precisely specifying the problem. In my opinion, there are
in fact two red giant problems that are discussed and accusations of incomplete solutions have
been directed at authors who were actually answering a different question. The first question is
“why do stellar cores necessarily contract after leaving the main sequence?” The second question
is “why does a modest contraction of the core lead to extensive expansion of the envelope?”
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Many potential solutions have been posed (and an approximately equal number contested)
to both of these problems. Eggleton & Cannon (1991) showed that if the effective polytropic
index of a star is everywhere less than some nmax < 5, it is less centrally condensed (i.e. the
ratio of central to mean density is smaller) than the polytrope of index nmax. Eggleton (2000)
further conjectured that the evolution of dwarfs into giants during shell burning therefore requires
that a significant part deep in the envelope has an effective polytropic index n � 5. Because
these conditions are similar to those under which SC-like limits exist, I explore in this chapter
the possible connection between SC-like limits and giant formation. In Section 6.1, I summarize
some ideas on the red giant problem from the last thirty years. Then, in Section 6.2, I apply the
test for SC-like limits devised in Section 5.2.4 to realistic stellar models to determine if there is
a deeper connection between SC-like limits and the evolution of dwarfs into giants. I close the
chapter by discussing, in Section 6.3, the results with respect to the two questions above.

6.1 A brief history of the red giant problem

Eggleton & Faulkner (1981) summarized and refuted a number of potential causes for the
formation of giants. They first assert that the red giant problem is not resolved by the development
of convective envelopes, the development of degenerate cores, the Virial Theorem or the SC limit.
The first two points are discussed below. The Virial Theorem is discounted because it regards the
whole star and says nothing of the density or temperature distribution within the star. The role of
the SC limit is the subject of this chapter. Eggleton & Faulkner (1981) assert that the evolution
of stars into giants is caused by the formation of a molecular weight gradient and the shift from
core burning to shell burning. They also concede that the evidence is complicated. First, the
molecular weight gradient develops before hydrogen is exhausted in the core and only reaches
a factor of two even though the envelope expands by several orders of magnitude. Secondly,
despite developing a “strong” shell source, low-mass helium stars do not become giants. Finally,
the burning shells in massive stars are not strong at first. Thus, to explain the red giant problem
with the molecular weight gradient or shell burning, one must also explain why some stars do not
become giants even when one or both of the conditions is present.

In this section, I review a handful of contributions to the literature since the summary by
Eggleton & Faulkner (1981). Some are corroborations of the points they raised. Others are novel
ideas. Ultimately, any discussion of the red giant problem is a contemporary snapshot of an
unresolved problem. The discussion demonstrates the complicated nature of the problems of
isolating cause and effect in full stellar calculations and in connecting simplified models with real
physical behaviour.
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6.1.1 Convection, degeneracy and thermal stability of the envelope

If the ongoing discussion shows a lack of consensus on what causes stars to become giants, at
least there is some consensus on physical changes that do not lead to giant formation, neither
in the sense of explaining why the core contracts nor why the expansion of the envelope is
disproportionately large. First, the development of a deep convective zone adjacent to the stellar
surface is not relevant. Secondly, the increasing contribution of electron degeneracy to the pressure
in the core is also unrelated. Massive stars begin to expand towards giant proportions before
either condition is true and low-mass stars evolve into giants even if convection is artificially
suppressed in numerical models (Stancliffe et al. 2009).

Renzini (1984) suggested that the expansion of the envelope is caused by a runaway thermal
instability of the envelope. He used the diagnostic W = d logLrad/d log r to decide whether the
envelope is unstable to an increased incident luminosity at the edge of the shell. His parameter is
related to the thermal conductivity and therefore opacity, so he argued that the runaway expansion
of the envelope is a result of radiation being locked in the envelope by increasing opacity. Only
the onset of convection on the Hayashi track assuages the instability.

Already, Weiss (1989) questioned this approach by demonstrating that the approximate
formula for W used by Renzini (1984) is generally inaccurate, often including its sign, and
there exist regions of the envelope that are supposedly unstable by this criterion but are actually
stable. Renzini et al. (1992) later restated Renzini’s (1984) solution to the red giant problem with
little detailed discussion of the work of Weiss (1989). Iben (1993) also pointed out that thermal
instability is not a necessary condition because stars still become giants when overall thermal
equilibrium is artificially enforced. For low-mass stars, there is little difference between models
with and without thermal equilibrium. Thus, the thermal instability in the envelope cannot be the
cause of a star’s evolution to gianthood.

The final word in the conversation of papers appears to belong to Renzini & Ritossa (1994),
who argue that, while stars expand into giants when the opacity is constant or thermal instability
is artificially suppressed, in these cases the core luminosity must exceed a critical value. Low-
metallicity massive stars only reach sufficient luminosity after core-helium burning begins.
Renzini & Ritossa (1994) claim that this supports their argument. First, this appears to be a
concession that their envelope instability does not account for at least some giants. Secondly, it is
not clear what the critical luminosity is or why it should exist. In fact, massive low-metallicity
stellar models successfully evolve into giants at lower luminosities if nuclear transformations
are stopped (which fixes the mass location of shell-burning) and only energy from expansion,
contraction and hydrogen-burning is included (so that core-helium burning cannot restore thermal
equilibrium). The observation of thermal instability is probably a confusion of cause and effect.
Stellar envelopes expand increasingly quickly in the Hertzsprung gap and, whatever the cause, the
expansion is necessarily reflected in an increasing thermal imbalance between core and envelope.
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6.1.2 Molecular weight gradients, shell burning and polytropic indices

Eggleton & Faulkner (1981) already claimed that stars expand to giant dimensions because the
molecular weight gradient between the core and the envelope steepens and the nuclear reactions
proceed in a shell rather than the core. Eggleton & Faulkner (1981) also acknowledge that these
two qualities are insufficient when isolated. A molecular weight gradient develops during the
main sequence but stars only evolve into giants after hydrogen is exhausted in the core. Low-mass
(less than about 0.7 M�) helium stars have strong burning shells but do not evolve into giants, so
the burning shell alone does not cause giant behaviour. These observations are corroborated by
Stancliffe et al. (2009), who show that, if the molecular weight gradient is suppressed, a 1 M�

Pop I stellar model does not become a giant but a 5 M� model does.

Eggleton (2000) expanded on the connection of these two effects in terms of the effective
polytropic index n of a stellar model, where n is defined by

1 +
1

n
=

d log p

d log ρ
. (6.1)

In a perfect gas, an increase in the mean molecular weight causes an increase in n. Nuclear
burning has a thermostatic effect and flattens the temperature gradient where it occurs, which
also increases n. Eggleton (2000) demonstrated that, using the variation of n with log p in a
stellar model, one can distinguish dwarf-like models from giant-like models by the presence of
substantial regions where n is much greater than 5. The shortcoming of this argument is that it
only says that a model without any such regions is dwarf-like. It is not clear how large n must be
or in how large a region for a star to be giant-like.

Sugimoto & Fujimoto (2000) quote similar conditions under which stellar models in the
U–V plane cross the line where dV/dU = V/U . Their claim that curves that cross this line
have divergent radii is refuted by Faulkner (2005) as a mathematical misinterpretation. It is true,
however, that solutions that have loops in the U–V plane cross this line twice. Such solutions
can accommodate a greater fractional mass in the envelope and this is a characteristic of giants.
However, the presence of loops has not been demonstrated to be the cause of a star’s evolution
to a giant. Faulkner (2005) contests that giant structure occurs because the stellar core cannot
accommodate more mass without first inflating the envelope. This is similar to the situations
identified by SC-like limits.

Based on the calculation of fractional mass limits in Chapter 5, the conditions described by
Eggleton (2000) correspond well with the conditions under which fractional mass limits are likely
to exist. Certainly, when there is a layer between the core and envelope where n→∞, a SC-like
limit exists. Whether or not a stellar model reaches the limit depends on the extent of that region.
The purpose of the remainder of this chapter is to evaluate when stellar models appear to reach
SC-like limits and whether it corresponds to the evolution of a star into a giant.
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6.2 Fractional mass limits in realistic stellar models

Realistic stellar models are now tested for the presence of SC-like limits. In particular, I analyse
U–V profiles of stellar models with masses between 3 and 15 M� at solar metallicity (Section
6.2.1), between 0.5 and 1 M� at solar metallicity (Section 6.2.2), and between 0.5 and 1 M�

with helium instead of hydrogen (Section 6.2.3). No convective overshooting or mass loss was
included and the models are initially of homogeneous composition.

The fractional mass limit test is applied by searching for the first model in the evolution for
which its U–V profile contains a segment that is tangential to a fractional mass contour. Models
shortly before and after the limit are also tested to show that the behaviour is similar to the SC
limit. The fractional mass contours presume that the envelope’s effective polytropic index is 3. In
a given model, a larger effective polytropic index would admit a smaller fractional mass earlier in
a star’s evolution. The approximation of n = 3 in the envelope is usually reasonable but some
models have polytropic indices as low as 2 or as high as 4. In these cases, the value 3 is justified
because the models ultimately exceed the limits for other choices of n and the fractional mass is
approximate at a similar level to errors introduced by changing the envelope’s polytropic index.

6.2.1 Intermediate-mass Population I giants

Fig. 6.1 shows evolutionary tracks for stars of solar metallicity at masses 3, 5, 7, 9, 12 and 15 M�.
As each star consumes its core hydrogen, it becomes slightly brighter and redder, moving up and
to the right in the Hertzsprung–Russell diagram (HRD). During the main sequence evolution, the
core is convective but the convective boundary slowly retreats, leaving a composition gradient
outside the convective core. When it exhausts its hydrogen, the whole core does so simultaneously
and there is a phase of contraction before hydrogen shell-burning commences. The shrinking
envelope briefly becomes bluer before moving redward across the Hertzsprung gap. The models
were followed to the top of their ascent on the red giant branch. Note that all of these stars become
red giants in the sense that they ultimately cross the Hertzsprung gap completely but the 12 M�

and 15 M� stars ignite helium in the core before they reach the base of the red giant branch.

Fig. 6.2 shows the U -V profiles of the models marked with open circles in Fig. 6.1. The
middle model in each case is at a SC-like limit. The molecular weight gradient extends from
q ≈ 0.1 to q ≈ 0.4 so the composition profile does not define a clear core-envelope boundary. The
fractional core mass is determined by finding, by eye, the first envelope contour that is tangential
to a segment of the model. This process clearly identifies a particular contour and the fractional
core masses are roughly consistent with those found by other measures such as the centre of the
composition gradient. The models are compared to the same fractional mass contour because the
core mass does not appear to change noticeably between them. In all cases, the result of the test
is similar: the models approach, reach and exceed the mass derived from the polytropic contour.
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Figure 6.1: Evolutionary tracks of intermediate-mass Pop I stars in the theoretical Hertzsprung–Russell Diagram.
The models are labelled by their total masses and are run from the main sequence up to the tip of the red giant branch.
The open circles mark the models whose profiles are plotted in Fig. 6.2.

The masses are larger than traditional values of the core mass because the limiting region is now
the base of the envelope. The limiting mass includes the shell where hydrogen shell-burning
begins, which is initially quite thick.

The point in the HRD at which models reach a SC-like limit is always near core hydrogen
depletion. There are two important observations to be made. First, this is earlier than the point at
which most authors say a star reaches the SC limit. A 5 M� star, for example, is usually thought
to reach the SC limit while it crosses the Hertzsprung gap. Secondly, stars are usually thought to
reach the SC limit at different points. Broadly, higher-mass stars reach the SC limit earlier in their
evolution. The results presented here suggest that all intermediate-mass stars reach mass limits
once hydrogen is depleted in the core. The core structure is subject to a SC-like limit during the
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Figure 6.2: The solid lines are profiles of the intermediate-mass Pop I stars in the U–V plane when the stars are at
points marked by open circles in Fig. 6.1. The dashed lines are fractional mass contours of the indicated fractional
masses for polytropic envelopes of index 3. The models evolve towards the left for V > 7/2. The middle model in
each panel was selected by finding by eye the first model where a segment of the profile appears to reach a fractional
mass limit and the earlier and later models were selected to show the behaviour of the models on either side of any
apparent SC-like limit. The boxes indicate the regions of interest, which are magnified in the subplots.
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Figure 6.3: Evolutionary tracks of low-mass Pop I stars in the theoretical Hertzsprung–Russell Diagram. The
models are labelled by their total masses and are run from homogeneous composition near the main sequence up to
the tip of the red giant branch. The open circles mark the models whose profiles are plotted in Fig. 6.4.

whole evolution into a giant, irrespective of whether the core (or any other part of the star) is in
thermal equilibrium.

6.2.2 Low-mass Population I giants

Fig. 6.3 shows evolutionary tracks for stars of solar metallicity at masses 0.5, 0.6, 0.7, 0.8, 0.9

and 1 M�. The cores of these stars are convectively stable during the main sequence so there is a
gradual progression from core-burning to shell-burning. Specifically, there are no blueward hooks,
as in the previous section. The evolution was followed up to core helium ignition. In low-mass
stars, the core becomes electron degenerate and roughly isothermal before core helium-burning
begins. As a result, helium is ignited almost simultaneously across the core. The sudden, rapid
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Figure 6.5: Evolutionary tracks of helium stars in the theoretical Hertzsprung–Russell Diagram. The models are
labelled by their total masses and are run from homogeneous composition near the main sequence up to the tip of the
red giant branch. The open circles mark the models whose profiles are plotted in Fig. 6.6.

and unstable increase in luminosity is known as a flash. Such flashes are a known stumbling
block of the STARS code.

As in Section 6.2.1, Fig. 6.4 shows the U -V profiles of the models marked with open circles
in Fig. 6.3 and the middle profile is thought to have reached a SC-like limit. The profiles bend at
large V because the polytropic index of the envelope changes to 3/2 in the surface convection
zone, which is always present. Outside the surface convection zones, the envelopes have larger
polytropic indices than the intermediate-mass stars, so the fractional masses are probably a few
hundredths smaller and occur when the luminosities are smaller by a few per cent. Aside from this
approximation, the models all appear to reach SC-like limits shortly after hydrogen is exhausted
in the core.
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The 0.5 M� track turns towards higher surface temperatures near the end of the run because
the unburned hydrogen envelope contains less that 5 per cent of the total mass. The run halts
because of degenerate helium ignition. Slightly less massive models do not ignite helium and
evolve to the helium white dwarf cooling sequence. The fact that the 0.5 M� model does not truly
finish its life as a giant does not undermine any effort to identify why it became a giant in the first
place.

6.2.3 Helium giants

Fig. 6.5 shows evolutionary tracks for helium stars with Pop I metal content and masses 0.5,
0.6, 0.7, 0.8, 0.9 and 1 M�. The stars have convective cores during the core helium-burning
phase. As the helium nears depletion, the core convective zone extends further out, mixing in
unburned helium. This extends the core burning phase. The episodes of ingestion cause loops
in the theoretical HRD that are known as breathing pulses after the repeated contraction and
expansion of the core. Once the core evolves past the last breathing pulse, it depletes helium
completely and convection stops. Helium-shell burning begins at the small loop to the left of
the breathing pulses. Models were followed either until their effective temperatures began to
decrease on a white dwarf cooling track or until a surface convection zone formed, indicating that
the star arrived on the helium red giant branch.

Fig. 6.6 again shows the U -V profiles of the models marked with open circles in Fig. 6.5.
These models also appear to reach SC-like limits but only after a substantial amount of mass
has been added to the core during shell burning. The connection between SC-like limits and
gianthood is weaker here. Although the models appear to reach limits, they do not clearly exceed
them as the hydrogen-burning models did. That is, for masses less than 0.8 M�, the models never
have U -V profiles where the gradient ∂V/∂U is clearly greater than a contour that passes through
the nuclear burning shell. Indeed these models do not become giants although the 0.6 and 0.7 M�

models do undergo some expansion. The 0.8 M� model expands like the 0.9 and 1 M� models
but it turns back towards the white dwarf cooling tracks when the surface temperature reaches
about 40 000 K. As with the 0.5 M� Pop I star, the envelope mass becomes negligible and the
star is almost entirely described by the core.

The helium stars presented here indicate that stars appear to expand when they are at or near
a SC-like limit. Weaker nuclear burning shells and shallow molecular weight gradients reduce
the effective polytropic index and diminish the prospects of a star being subject to a SC-like limit.
The response of the envelope may restore the stellar profile to a state where it is not subject to a
limit, in which case it continues to become bluer until it finally moves on to a white dwarf cooling
track.
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6.3 Discussion

The analysis presented above suggests that stars begin to evolve into giants when they reach a
SC-like limit. In this section, I discuss the combined evidence with respect to the two red giant
problems. In Section 6.3.1, I address whether SC-like limits explain the contraction of the core.
In Section 6.3.2, I consider how SC-like limits are related to the drastic expansion of the envelope.

6.3.1 Core contraction

Traditional discussions of the relevance of the SC limit compare the mass of the exhausted core
to a fractional mass limit of q ≈ 0.1. Stars of different masses reach this limit at different stages
of evolution. Here, all the stellar models that begin to evolve into giants appear to reach a SC-like
limit just before depleting the nuclear fuel in their cores. This implies three important distinctions
from the usual interpretation of the SC limit. First, fractional mass limits like the SC limit are
relevant earlier than usually thought. Secondly, the point in a star’s evolution at which the mass
limit is relevant is roughly the same independent of mass. Thirdly, the limiting mass co-ordinate
is located in the burning shell and does not only include the exhausted core. That all stars that
evolve into giants achieve a limiting fractional mass at the same point suggests a connection
between SC-like limits and evolution into giants but the issue is far from clear cut.

In the low-mass Pop I models and helium stars, SC-like limits do correlate with expansion
of the envelope. Models that reach and exceed a SC-like limit start to expand even though the
expansion sometimes ceases. There are many possible reasons for this. In the simplest cases,
shell-burning continues to increase the core mass and the envelope becomes vanishingly small by
mass. As the shell-burning declines, the limiting region (with n� 5) vanishes and the SC-like
limit is relaxed. The 0.7 M� helium star and 0.5 M� Pop I model demonstrate such behaviour.
It can be argued that these stars started to become giants but the envelope was transformed into
core material before the transition was accomplished. Another option is that the microphysics of
the limiting region responds to the expansion of the envelope such that a SC-like limit is avoided
and never encountered again. For example, the 0.6 M� helium star expands slightly and briefly
after core helium exhaustion but shell burning is weakened by the expansion and the envelope
is processed by nuclear reactions before another limit is encountered. The 0.5 M� star never
appears to exceed a SC-like limit although it does roughly reach one. It expands only slightly
during the shell-burning phase but soon turns back towards the white dwarf cooling sequence.

The intermediate-mass Pop I models also reach a limit as they exhaust their core hydrogen
supplies but they briefly contract rather than expand. The envelopes do expand once shell-burning
begins but not before. This suggests that SC-like limits are connected to the contraction of the
core but not necessarily the expansion of the envelope. The model adhere to the same SC-like
limit during the contraction so the core may be able to sustain the limit until shell-burning begins.
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Figure 6.7: The dashed lines are contours of the ratio of total radius to core radius R∗/r0 for an envelope with n = 3.
They are spaced logarithmically in steps of 0.5 dex from 0.5, at the top, to 5.0, near the critical point Gs = (0, 4)
(see Section 6.3.2). The inset is a magnification of the boxed region and shows the extreme behaviour of the contours
near the critical point.

These conclusions are all subject to the approximations of the test. There is no well-defined
core-envelope boundary at the end of the main sequence so it is not surprising that there are
differences between the core masses determined by the test and masses determined by other
methods. The polytropic index is certainly not constant and in some models deviates quite
substantially from 3, which was used to test the models for fractional mass limits. A variable
polytropic index might change the shape of the fractional mass contours depending on how it
varies through the envelope. Despite this, the overall shape of the envelope profiles is broadly
consistent with some SC-like limit even if it occurs at a slightly different point in evolution.



6.3 Discussion 103

6.3.2 Envelope expansion

Let us now consider the other problem: why are the envelopes of red giants so extended? Fig. 6.7
shows contours of constant ratio of total radius to core radius R∗/r0 for polytropic envelopes
with n = 3. The figure is created in the same way as the figures showing contours of constant
fractional mass. Here, the inverse of the fractional ratio is shown and the contours are spaced
logarithmically. As an example, if the core radius is fixed, an envelope with an inner boundary
along the 101.0 curve is

√
10 ≈ 3.16 times smaller than an envelope with an inner boundary along

the 101.5 curve. The plot shows that the fractional surface radius increases as U or V decreases.
The behaviour is particularly extreme near the critical point Gs = (0, 4).

Given a composite polytrope for which a SC-like limit exists, there are usually two models
with the same fractional core mass. Fig. 5.5 shows this for isothermal cores with fractional mass
q = 0.3 embedded in envelopes with n = 3. The two solutions have different fractional radii so,
for fixed core radius, the envelope is more extended in the model for which U is smaller at the
core-envelope boundary. The more extended model is giant-like and the other is dwarf-like.

Realistic models are initially in the dwarf-like configuration. The feature that forces the
core-envelope boundary to smaller U is a large effective polytropic index between the core and
the envelope. The large polytropic index means the solution tries to orbit the critical point Gs

in the U–V plane. Hence, if a star has a region with n� 5 between the core and envelope, its
radius is larger than if this region did not exist. As discussed in Section 5.2.1, shell burning and a
molecular weight gradient increase the effective polytropic index and they are both connected to
the large surface radii of giants. Convection drives the effective polytropic index towards 3/2, for
which the critical point Vs = (0, 5/2) is closer to the point around which isothermal solutions
spiral, Gs = (1, 2). On the other hand, polytropic envelopes with n = 3/2 behave less extremely
near Vs because Vs and Gs do not co-incide as they do for n = 3. It is not clear whether or not
the envelope’s expansion is more extreme once convection develops.

The argument above offers an explanation of why the envelopes of giants are so large. It does
not explain why the core-envelope boundary evolves such that the envelope becomes even larger.
Do SC-like limits play a role? It has already been noted that stars expand at the same time as they
reach SC-like limits. All else being equal, the core cannot accommodate more mass by continuing
to larger radii because the effective polytropic index at the core-envelope boundary is too large.
A change in the core’s structure is required, be it the central density, the effective polytropic
index or something else, and this change might be unstable. For example, if the core contracts,
its mean density increases. If the presence of a nuclear burning shell prevents the density at the
core-envelope boundary from increasing by the same amount, U decreases, potentially enough
that the envelope’s expansion is greater than the core’s contraction. It is thus possible that, once a
SC-limit has been exceeded and the core adjusts to incorporate more mass, the additional mass
forces it to adjust further but I have not been able to demonstrate that this is the case.
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6.4 Conclusion

Three sets of stellar models have been tested for the presence of SC-like limits. All stars that
become giants appear to reach a limit shortly before the end of their core-burning phases. When
the transition to shell-burning is continuous, the limit is associated with expansion of the envelope.
That is, the star begins to become a giant. Whether the star continues to expand depends on
whether the rest of the envelope is transformed into core material and how the burning-shell
responds to the envelope’s expansion. Stars that are convective during core-burning contract
until shell-burning begins, after which the envelope expands. Some stars never appear to exceed
a SC-like limit and proceed directly to a white dwarf cooling sequence without any period of
significant expansion.

Though the test is approximate, it suggests that SC-like limits are relevant immediately at the
end of the main sequence in all stars and are determined within the burning shell or molecular
weight gradient. Stars that become giants must have previously reached a SC-like limit. As with
all possible explanations of the red giant problem, it is difficult to isolate cause and effect. The
presence of loops, as identified by Sugimoto & Fujimoto (2000), already requires that giants
reach SC-like limits at some point in their evolution but it is unclear which phenomenon, if either,
is causal. Nevertheless, we have demonstrated that the original SC limit is a particular case of
a broader phenomenon, that SC-like limits apply earlier in a star’s evolution than previously
thought and that there is evidence for a connection between exceeding these limits and evolving
into a giant.



Now, this is not the end. It is not even the beginning of
the end. But it is, perhaps, the end of the beginning.

Sir Winston Churchill, 1942

7
Conclusions

In this final chapter, I summarize the work presented in this dissertation, give it contemporary
context and propose directions for future work. The initial aim of this dissertation was to examine
models of quasi-stars with accurate microphysics. These models were presented in Chapters 3
and 4 and my findings are discussed in Section 7.1. In Chapter 5, I presented a detailed analysis
of the fractional mass limit found in Chapter 3 and I demonstrated that it is of the same nature as
the Schönberg–Chandrasekhar limit. In Chapter 6, I assessed whether realistic stellar models are
subject to the limit and found evidence that the limits are connected to the evolution of starts into
giants. I discuss these results in Section 7.2.

7.1 The formation of supermassive black holes

In Chapters 3 and 4, I presented models of quasi-stars constructed with the Cambridge STARS code.
The two sets of models made use of distinct inner boundary conditions to describe conditions
at the base of the giant-like envelope. In Chapter 3, I followed the work of Begelman, Rossi
& Armitage (2008) and placed the base of the envelope at the Bondi radius. In Chapter 4, I
instead drew on the work of Abramowicz et al. (2002) and Lu, Li & Gu (2004) and placed
the inner boundary at a theoretical transition from a convection-dominated accretion flow to
an advection-dominated flow. I refer to the models of Chapters 3 and 4 as Bondi-type and
CDAF-ADAF quasi-stars, respectively.

The evolution of the Bondi-type and CDAF-ADAF quasi-stars is qualitatively and quantita-
tively very different. Black holes (BHs) embedded in Bondi-type quasi-stars accrete about 10−8

of the total mass of the quasi-star each year and respect a robust upper fractional mass limit of
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about 0.1, depending on the choice of parameters. In all cases, the quasi-star phase ends after a
few million years. The fate of the remaining material is unclear. A further 40 per cent or so of the
quasi-star’s mass is within the Bondi radius. If the BH accretes this material, it probably does so
on the order of its own Eddington-limited rate. If the material is in some way dispersed, it could
return to the BH and be accreted later. Whatever the details, quasi-stars are certainly a possible
mechanism by which early BHs could grow quickly enough to become the supermassive objects
that power high-redshift quasars.

The BHs in CDAF-ADAF quasi-stars accrete roughly an order of magnitude faster than their
Bondi-type cousins. This is because a substantial fraction of the BH luminosity is lost to the bulk
flow of material towards the BH. More importantly, the BHs are not subject to any upper mass
limit and ultimately accrete all of the available gas under all circumstances. They do so through a
series of peaks in the accretion rate that appear to be related to the interaction of microphysical
processes, such as ionization, with the inward advection of energy. The nature of these peaks
depends on the choices of parameters in the boundary conditions but they do not depend closely
on the rotation of the quasi-star envelope.

Despite the differences between Bondi-type and CDAF-ADAF models, both predict that
quasi-stars leave BHs with masses on the order of a tenth of the total quasi-star mass and that the
quasi-star phase lasts just a few million years. In addition, all models have luminosities roughly
equal to the Eddington luminosity of the whole quasi-star, surface radii on the order of 100 AU

and effective temperatures that are consistently around 4500 K. It thus appears that quasi-stars
have similar outward properties regardless of their inner structure or even the details of their
evolution. However, although their observable properties are not sensitive to the choice of inner
boundary conditions, quasi-stars like those modelled in this dissertation are short-lived and would
be difficult to find.

The most important conclusion that I draw from the work on quasi-stars summarized above
is that, when regarded as spherical, hydrostatic objects, their detailed structure hinges on the
conditions imposed at the inner boundary. The boundary conditions presented in Chapters 3
and 4 are reasonable but there are several ways in which modelling the inner region could be
improved. First, incorporating the bulk velocity of the envelope material as a structural variable,
as is the pressure or luminosity, should allow models to be followed close to the inner sonic point
of the accretion flow. Markovic (1995) modelled a small black hole at the centre of the Sun with
a similar technique but he solved the structure equations with a shooting method and did not
integrate all the way to the Bondi radius.

Another possibility is modelling a quasi-star with three-dimensional fluid simulations. In
general, solving the multi-dimensional problem is much more difficult and more computationally
demanding but I believe it is a realistic possibility in the near future. Barai, Proga & Nagamine
(2011) used the smoothed particle hydrodynamics code GADGET-3 to model Bondi accretion on
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to a supermassive BH with both the sonic radius and Bondi radius resolved in the simulation.
The main difference between their model and a quasi-star envelope is that the mass of gas in the
accretion flow was much smaller that the mass of the BH. If this situation can be reversed, it
should be possible to simulate the dynamical structure of a quasi-star for a brief moment in its
evolution. Details derived from such a model could be used to corroborate or improve boundary
conditions for spherically symmetric models.

The recent discovery of a bright quasar at redshift z ≈ 7 (Mortlock et al. 2011) and new
simulations that suggest the first stars were less massive than previously thought (Clark et al.
2011; Hosokawa et al. 2011; Stacy, Greif & Bromm 2012) both aggravate the problem of
luminous quasars at high redshift. The solution must now explain how BHs grew even more
rapidly from even smaller seeds. But the solution needs only a small number of such objects. The
comoving space density of bright high-redshift quasars is only a few per Gpc3 and simulations
of sufficiently large volumes indicate that, given sufficiently large BH seeds, there is enough
material to feed a growing BH (Di Matteo et al. 2012).

The direct collapse of massive protogalactic clouds remains an appealing option for a solution
to the problem provided that fragmentation can be prevented. Dijkstra et al. (2008) estimate
that a fraction between 10−8 and 10−6 of sufficiently large dark matter halos are illuminated
by stars and stellar mass BHs in nearby protogalaxies. Molecular hydrogen formation can be
suppressed and fragmentation thus prevented. The fate of the collapsing gas then depends on
the accretion rate of the central object. If it is slow enough for accreted material to relax into
thermal equilibrium, a supermassive star might form and collapse directly into a massive BH.
If the accretion is so rapid that only the central stellar core is relaxed, a quasi-star can form. In
either case, a BH on the order of 0.1 of the total mass is left.

This is not to say that other mechanisms for massive BH formation do not occur. Many
protogalactic clouds can fragment into stars and, even if the initial mass function of metal-free
stars is less top-heavy than previously thought, the most massive of these stars can leave BH
remnants. As the hierarchical growth of large-scale structure continues, these BHs grow and
migrate towards the centres of their host galaxies via dynamical friction. There might exist
a currently undetected population of smaller BHs that power less luminous quasars. For the
problem of the bright high-redshift objects that are already known, however, I believe the direct
collapse mechanism is currently the strongest candidate solution.

7.2 The red giant problem

The quasi-star models presented in Chapter 3 exhibit a robust upper limit to the fractional mass
of the inner BH. In Chapter 5, I showed how this limit is, in essence, the same as the Schönberg–
Chandrasekhar limit. I further demonstrated that both limits are particular examples of the same
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general phenomenon. I refer to all such limits as SC-like limits. By considering the contours
of constant fractional mass of polytropic envelopes, it is straightforward to determine whether
a given core solution corresponds to a SC-like limit, even when the core solution itself is not
polytropic. An additional product of my analysis is that, given a composite polytrope, one can
test whether the model is at a SC-like limit. In Chapter 6, I applied this test, albeit approximately,
to realistic stellar models and found evidence that there is a connection between a star reaching a
SC-like limit and evolving into a giant. In a sense, Chapter 5 contains a strong theoretical result
and Chapter 6 a weaker practical one.

The difficulty in resolving the red giant problem lies in distinguishing cause and effect. Any
star that becomes a red giant must have previously reached a SC-like limit because loops are
always present in the U–V profiles of giants. However, this sheds no light on whether a star
expands into a giant because of the SC-like limit. Furthermore, the test that is applied in Chapter
6 suffers from two drawbacks. First, the effective polytropic index in the envelope of a realistic
stellar model varies. Secondly, the models appear to reach the limit before a clear core-envelope
boundary has developed. Despite these flaws, my analysis does indicate a connection between
SC-like limits and gianthood. Stars that expand appear to do so when they reach SC-like limits.
Whether a star continues to expand and evolve into a giant depends on the detailed response of
envelope to its own expansion. For example, if the density in the burning shell decreases too
much, nuclear reactions cease and a dwarf-like structure is restored. The SC-like limit might
therefore address the question of why a star begins to become a giant but it offers no clear answers
to the question of why giants become so extended while the contraction of the core remains
moderate.

Some of these shortcomings could be addressed with further work. The test could be applied
to realistic models for a range of indices simultaneously. I doubt, however, that this would be
enlightening given that the behaviour of the envelope solutions is qualitatively similar across
all the polytropic indices encountered in realistic giant envelopes. It may be more useful to
investigate the behaviour of the contours when the effective polytropic index is allowed to vary
continuously. These envelope solutions would be a better approximation to realistic envelopes
and would more accurately identify the point at which a star reaches a SC-like limit.

Confronted with a long-standing problem that has already drawn and still occasionally draws
detailed study, it is difficult to imagine a straightforward solution. I believe that progress is
only achieved by a meticulous study of stars that do and do not become giants. Such a survey
should include both realistic models and contrived models where specific physical effects or
evolutionary processes are numerically isolated or removed. If a new hypothesis is formed, it
should be thoroughly tested in the cases where it makes predictions, even if the predictions are
only relevant in contrived or unphysical models. The red giant problem will not be solved easily
but the work presented in this dissertation at least provides new clues to the answer.
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... by means of that gruesome tool: the
U–V plane!

Martin Schwarzschild, 1965

A
Polytropes and the U–V plane

The analysis in Chapters 5 and 6 makes extensive use of solutions of the Lane–Emden equation
in the plane of homology-invariant variables U and V . In this appendix, I provide the background
material for that analysis. I derive the Lane–Emden equation (LEE) from hydrostatic equilibrium
and mass conservation, introduce homology invariant variables U and V and explain their physical
meaning, present the homology invariant transformation of the equation and study its solutions in
the U–V plane. I hope that, by presenting concisely the details of the U–V plane in a context
where it is usefully applied, I might partly remove its stigma as ‘that gruesome tool’.1

A.1 The Lane–Emden equation

Consider a star that obeys everywhere a polytropic equation of state,

p = Kρ1+ 1
n , (A.1)

where p is the pressure, ρ the density, n the polytropic index and K a constant of proportionality.
A polytropic equation of state approximates a fluid that is between the adiabatic and isothermal
limits. Shallower temperature gradients correspond to larger effective polytropic indices and the
isothermal case (zero temperature gradient) corresponds to n→∞. In this case, the equation
of state must be transformed differently but the limit is well-defined when working in the with
homology invariant variables in the U–V plane.

1Faulkner (2005) explains that Martin Schwarzschild described the U–V plane as such in a referee’s report
in 1965. The same quote is presumably the citation by Eggleton et al. (1998) of ‘(Schwarzschild 1965, private
communication)’.
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Real stars are locally polytropic in the sense that an effective polytropic index n can be defined
at each point by

d log p

d log ρ
= 1 +

1

n
. (A.2)

When the star is globally polytropic, this definition reproduces the polytropic index. Certain
conditions correspond to certain values of n. In convective zones, the temperature gradient is
approximately adiabatic, so an ideal gas without radiation has n = 3/2 and pure radiation has
n = 3. Real stars are more radiation-dominated towards the centre and n varies between these
limiting values in convection zones. In radiative zones, n can also depend on the opacity or
energy generation rate. It can be shown, for example, that for a polytropic model with uniform
energy generation and a Kramer’s opacity law, n ranges from 13/4 for a pure ideal gas to 7 for
pure radiation (Horedt 2004, p. 556). Nuclear burning shells and ionisation regions have shallow
temperature gradients and therefore large values of n. Thus, the effective polytropic index can
vary widely within a star.

Consider the equations of mass conservation,

dm

dr
= 4πr2ρ, (A.3)

and hydrostatic equilibrium,

dp

dr
= −Gmρ

r2
, (A.4)

where r is the distance from the centre of the star and m is the mass within a concentric sphere of
radius r. One can define the dimensionless temperature2 θ by ρ = ρ0θ

n, where ρ0 is the density at
the centre of the star. By re-arranging and differentiating the equation of hydrostatic equilibrium,
we obtain

d

dr

(
r2

ρ

dp

dr

)
= −Gdm

dr
. (A.5)

By using mass conservation to replace dm/dr and dividing both sides by r2 we obtain

1

r2

d

dr

(
r2

ρ

dp

dr

)
= −4πGρ. (A.6)

2This is by the analogy to an ideal gas, for which T ∝ p/ρ.
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Substituting the pressure via the polytropic equation of state, replacing the density with the
dimensionless temperature and defining the dimensionless radius3 ξ = r/η, we write

η2

ξ2

d

dξ

(
ξ2Kρ

1
n
0 (n+ 1)

dθ

dξ

)
= −4πGρ0θ

n, (A.7)

which we render dimensionless by choosing

η2 =
(n+ 1)K

4πG
ρ

1
n
−1

0 . (A.8)

The dimensionless differential equation is the LEE,

1

ξ2

d

dξ

(
ξ2dθ

dξ

)
= −θn. (A.9)

Let us define the dimensionless mass φ = m/4πη3ρ0. Introducing the dimensionless mass,
temperature and radius directly into equations (A.3) and (A.4) allows us to write

dφ

dξ
= ξ2θn (A.10)

and

dθ

dξ
= − 1

ξ2
φ. (A.11)

The expression of the LEE as two first-order equations (A.10 and A.11) preserves the physical
meaning of the equations and easily permits arbitrary boundary conditions for the inner mass and
radius.

Solutions of the LEE that are regular at the centre have ξ0 = φ0 = 0. The subset of solutions
that extend from the centre to infinite radius or the first zero of θ are polytropes of index n. I
refer to solutions that are regular at the centre but truncated at some finite radius as polytropic

cores. Conversely, solutions that extend from a finite radius to infinity or the first zero of θ are
polytropic envelopes. Models in which polytropic cores are matched to polytropic envelopes are
referred to as composite polytropes. For n < 5 polytropes are finite in both mass and radius while
for n > 5 they are infinite in mass and radius. The case n = 5 represents the threshold between
the two: it has a finite mass but infinite radius.

3The scale factor is usually denoted by α. Here, the variable η is used to avoid confusion with the density jump
at the core-envelope boundary, which Eggleton et al. (1998) called α.
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Figure A.1: Plot of dimensionless temperature θ versus dimensionless radius ξ for polytropes with n = 1, 3, 4, 5
and 6. Note that the surface radius increases with n. For n ≥ 5, there is no surface and the polytrope extends to
infinite ξ.

A.2 Homology and homology-invariant variables

If, given a solution to a differential equation, further solutions can be found by rescaling the given
solution, the differential equation is said to admit an homology transformation (Chandrasekhar
1939, p. 102). Two solutions related in this way are homologous; the similarity between them is
homology. The LEE admits an homology and the appropriate scaling relation is now derived.

Consider the usual second-order form of the LEE (equation A.9) with a solution θ(ξ). If there
is a further solution of the form θ′(ξ′) = Ckθ(Cξ), it must satisfy the equation

1

ξ2

d

dξ

(
ξ2dθ

′(ξ′)

dξ

)
= −θ′n(ξ′). (A.12)
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Figure A.2: Plot of normalized density θn versus dimensionless radius ξ for polytropes with n = 1, 3, 4, 5 and 6,
from right to left. Note that as n increases, so the polytrope is more centrally condensed.

The left-hand side can be manipulated as follows.

1

ξ2

d

dξ

(
ξ2 dθ′(ξ′)

dξ

)
(A.13)

=
1

ξ2

d

dξ

(
ξ2 d

dξ
Ckθ(Cξ)

)
(A.14)

=C2+k 1

(Cξ)2

d

d(Cξ)

(
(Cξ)2 d

d(Cξ)
Ckθ(Cξ)

)
(A.15)

=− C2+kθn(Cξ) (A.16)
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If the last line is to be the same as −θ′n(ξ′) = −(Ckθ(Cξ))n, we must have 2 + k = kn and
hence k = 2/(n − 1). The homology transformation of the LEE for θ is therefore θ(ξ) →
C2/(n−1)θ(Cξ).

To find the transformation for φ, we seek φ′(ξ′) = Chφ(Cξ) that satisfies

dφ′(ξ′)

dξ
= ξ2θ′n(ξ′) (A.17)

and

dθ′(ξ′)

dξ
= − 1

ξ2
φ′(ξ′). (A.18)

The left-hand sides of the two equations can be considered separately and simultaneously.

d

dξ
φ′(ξ′)

d

dξ
θ′(ξ′) (A.19)

=
d

dξ
Chφ(Cξ) =

d

dξ
C

2
n−1 θ(Cξ) (A.20)

=Ch+1 d

d(Cξ)
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2
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+1 d

d(Cξ)
θ(Cξ) (A.21)

=Ch+1(Cξ)2θn(Cξ) =C
2
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(
−φ(Cξ)

(Cξ)2
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(A.22)

=Ch+3−2n/(n−1)ξ2C2n/(n−1)θn(Cξ) =C
2

n−1
−1−h

(
−Chφ(Cξ)

ξ2

)
(A.23)

=Ch− 3−n
n−1 ξ2θ′(ξ′) =C

3−n
n−1

−h

(
−φ′(ξ′)
ξ2

)
(A.24)

In both cases, the remaining exponent of C must be zero and thus h = (3− n)/(n− 1). That is,
the homology transformation for φ is φ(ξ) → C(3−n)/(n−1)φ(Cξ).

By choosing variables that are invariant under the homology transformation, the LEE can be
formulated as a single first-order equation that captures all essential behaviour. The variables
used here are

U =
d logm

d log r
=

3ρ

ρ̄
(A.25)

and

V = −d log p

d log r
=
Gm

r

ρ

p
, (A.26)

where ρ̄ = 3m/4πr3 is the mean density of the material inside r. Although U and V have
been defined to reduce the order of the LEE, the corresponding physical definitions make them
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Figure A.3: Some general features of the U–V plane. The solid lines are, from top right, polytropes of index 1, 3, 5,
6 and ∞. The arrows point in the direction of increasing ξ. The dashed line is a STARS model of a 1 M� star of solar
metallicity when its radius is 1.012 R� and its luminosity 0.974 L�. The dotted line shows the locus of the critical
points Gs. The locus begins in the plane at (0, 4) when n = 3 and tends to (1, 2) as n increases to ∞. A polytrope
with n = 4 is not plotted to avoid cluttering the Sun-like model.

meaningful for discussions of any stellar model. A brief excursion is made to explain these
definitions.

The physical variables are all positive so only the first quadrant of the U–V plane is of
interest. The variable U is three times the ratio of the local density to the mean density inside
that radius. As r → 0, so also ρ → ρ̄ and thus U → 3. We expect the density of a stellar
model to decrease with radius, so ρ/ρ̄ < 1 and hence U < 3. The variable V is related to the
ratio of specific gravitational binding energy to specific internal energy. At the centre, p and ρ
are finite and m ∼ 4π

3
ρr3, so V → 0. Thus, in all physical solutions that extend to r = 0, the

centre corresponds to (U, V ) = (3, 0). If an interior solution has V everywhere smaller than the
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appropriate polytrope, it behaves as if it has a finite point mass at its centre. Huntley & Saslaw
(1975) referred to similar models, integrated outwards from a finite radius, as loaded polytropes.
If a solution has V everywhere greater than the polytrope, it reaches zero mass before zero radius.
Such solutions have a massless core with finite radius, which is unphysical. At the surface, ρ→ 0

so U → 0 too. On the other hand, Gm/r takes a finite value but p/ρ ∝ T → 0 so V →∞. All
realistic models, be they polytropes, composite polytropes or output from a detailed calculation,
must adhere to these central and surface conditions in the U–V plane. They therefore extend from
(3, 0) towards (0,∞). Fig. A.3 shows this behaviour for polytropes of indices 1, 3, 5, 6 and ∞.
The n = 1 and n = 3 models extend properly to the surface. The n = 5, 6 and ∞ polytropes do
not and therefore cannot represent real stars. In addition, we have plotted a 1 M� model produced
by the Cambridge STARS code to show that it also satisfies the boundary conditions described
above. Note that this model has not been calibrated to fit the Sun precisely.

For a composite polytrope, the pressure, mass and radius are continuous at the join. If the
density decreases by a factor α (c.f. Eggleton et al. 1998), U and V decrease by the same factor. In
other words, if ρ→ α−1ρ then (U, V ) → α−1(U, V ). The corresponding point on the U–V plane
is contracted towards the origin by the factor α. Such a jump occurs if there is a discontinuity in
the mean molecular weight µ between the core and the envelope. In this case, α = µc/µe.

Let us now return to the polytropic solutions for which we defined U and V in the first place.
From the definitions above,

U =
d log φ

d log ξ
=
ξ3θn

φ
(A.27)

and

V = −(n+ 1)
d log θ

d log ξ
= (n+ 1)

φ

ξθ
. (A.28)

To demonstrate that U and V are homology invariant, note that the homology transforma-
tions θ′(ξ′) = C2/(n−1)θ(Cξ) and φ′(ξ′) = C(3−n)/(n−1)θ(Cξ) are equivalent to θ′(ξ/C) =

C2/(n−1)θ(ξ) and φ′(ξ/C) = C(3−n)/(n−1)θ(ξ). Making the homology transformation with
ξ → ξ/C,

U ′ =
ξ3

C3

θ′n(ξ/C)

φ′(ξ/C)
V ′ = (n+ 1)

C

ξ

φ′(ξ/C)

θ′(ξ/C)
(A.29)

= C
2n

n−1
− 3−n

n−1
−3 ξ

3θn(ξ)

φ(ξ)
= (n+ 1)C

3−n
n−1

− 2
n−1

+1 φ(ξ)

ξθ(ξ)
(A.30)

=
ξ3θn(ξ)

φ(ξ)
= U = (n+ 1)

φ(ξ)

ξθ(ξ)
= V , (A.31)

which proves that U and V are homology invariant.
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Let us differentiate logU and log V as they are defined for polytropes. This gives

1

U

dU

dξ
=

1

ξ
(3− n(n+ 1)−1V − U) (A.32)

and

1

V

dV

dξ
=

1

ξ
(−1 + U + (n+ 1)−1V ). (A.33)

The ratio of these two equations yields the first-order equation

dV

dU
= −V

U

(
U + (n+ 1)−1V − 1

U + n(n+ 1)−1V − 3

)
(A.34)

in which the dependence on ξ has been eliminated. We refer to equation (A.34) as the homologous
Lane–Emden equation (HLEE). The SC-like limits we wish to reproduce are shared by polytropic
models so we now explore the behaviour of these solutions in the plane defined by U and V .

A.3 Topology of the homologous Lane–Emden equation

The behaviour of solutions of the HLEE may be described in terms of its critical points, where
dU/d log ξ and dV/d log ξ both tend to zero. Horedt (1987) conducted a thorough survey of the
behaviour of the HLEE, including the full range of n from −∞ to ∞ in linear, cylindrical and
spherical geometries.4 Below, we use his convention for naming the critical points but consider
only spherical cases with n ≥ 1. Though realistic polytropes take n in the range 3/2 to infinity,
we extend it to accommodate SC-like limits discussed in the literature for polytropic envelopes
with n = 1.

From the numerator of equation (A.34), we see that dV/dU = 0 when V = 0 or U + V/(n+

1) = 1. The former indicates that solutions that approach the U -axis proceed along it until
they reach infinity or a critical point. The latter defines a straight line in the U–V plane along
which solutions are locally horizontal. Following Faulkner (2005) we refer to this line as the
line of horizontals. Similarly, from the denominator, we find dU/dV = 0 when U = 0 or
U+nV/(n+1) = 3. Again, the first locus implies that solutions near the V -axis have trajectories
that are nearly parallel to it, while the second gives another straight line, this time along which
solutions are vertical, hereinafter referred to as the line of verticals. The critical points of the
HLEE are located at the intersections of these curves. Below, we consider the stability of the
critical points as n varies.

4Readers should note that the definition of V used by Horedt (1987) differs by a factor n + 1.
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Table A.1: Critical points of the HLEE. ∆n =
√

1 + n(22− 7n).

Critical point Eigenvalues Eigenvectors

Os (0, 0) 3 −1 (1, 0) (0, 1)
Us (3, 0) −3 2 (1, 0) (−3n, 5 + 5n)
Vs (0, n+ 1) 1 3− n (0, 1) (2− n, 1 + n)
Gs

(
n−3
n−1

, 2n+1
n−1

)
n−5±∆n

2−2n
(1− n∓∆n, 4 + 4n)

From equations (A.32) and (A.33), we find

dU

d log ξ
= −U(U + n(n+ 1)−1V − 3) (A.35)

and

dV

d log ξ
= V (U + (n+ 1)−1V − 1). (A.36)

This is an autonomous system of equations: the derivatives depend only on the dependent
variables U and V . The linear behaviour of such systems around the critical points can be
characterised by the eigenvectors and eigenvalues of the Jacobian matrix

J =

(
∂

∂U
dU

d log ξ
∂

∂V
dU

d log ξ
∂

∂U
dV

d log ξ
∂

∂V
dV

d log ξ

)
(A.37)

=

 3− 2U − n
n+1

V − n
n+1

U

V −1 + U + 2
n+1

V

 , (A.38)

at the critical point in question (e.g. Strogatz 1994, p. 150). In particular, if the real component of
an eigenvalue is positive or negative, solutions tend away from or towards that point along the
corresponding eigenvector. Such points are sources or sinks. When the point has one positive
and one negative eigenvalue it is a saddle. If the eigenvalues have imaginary components then
solutions orbit the point as they approach or recede. We describe these as spiral sources or sinks.
If the eigenvalues are purely imaginary, solutions form closed loops around that point, which
we call a centre. The choice of independent variable, in this case log ξ, is not relevant in such
analysis.

Table A.3 shows the eigenvalues and eigenvectors for the critical points as functions of n.
The topologies of the HLEE in the U–V plane for the cases n = 1, 3, 4, 5, 6 and n → ∞ are
plotted in Fig. A.4. The origin is the first critical point. It is a saddle with solutions on the V -axis
approaching and those on the U -axis escaping. Solutions near the origin move down and to the
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Figure A.4: Topology of the homologous Lane–Emden equation for n = 1, 3, 4, 5, 6 and ∞. The value of n is
indicated in the top-right corner of each plot. The solid lines are solutions of the equation with the arrows indicating
the direction of increasing ξ. Each solution has only one arrow. The dashed lines are the lines of horizontals and
verticals. The critical point Gs is at the intersection of these two lines. For n < 3, Gs is at U < 0 so does not appear
in the first quadrant. When n = 3 it co-incides with the critical point Vs on the V -axis. Once in view, Gs is at first a
spiral source (e.g. n = 4). For n = 5, it is a centre and the U–V plane adopts a particular topology. As n continues
to increase, Gs becomes an increasingly strong spiral sink. In the limit n →∞, all solutions spiral onto Gs.
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right in the U–V plane. There is a further critical point on each of the axes. On the U -axis,
Us = (3, 0) is a saddle for all values of n. It is stable along the U -axis and unstable across it. This
point coincides with the regular centre of realistic stellar models that was discussed previously.
Along the V -axis, Vs = (0, n+ 1) is also a critical point. For n < 3 it is a source and for n > 3 a
saddle. The intersection of the lines of horizontals and verticals is the final critical point Gs. For
each n, Gs = (n−3

n−1
, 2n+1

n−1
). The character of these points varies with n.

The behaviour of Gs and Vs distinguishes the topology of solutions into three regimes. For
n < 3, Vs is a pure source: it is unstable across and along the V -axis. The point Gs has U < 0

and therefore does not feature in the first quadrant of the U–V plane but approaches the V -axis
from the left as n→ 3. When n = 3, Vs and Gs co-incide. The point is marginally stable across
the axis. For n > 3, Vs and Gs separate. Vs is a saddle and Gs a source, gradually moving
towards its position at (1/2, 3) when n = 5. Fig. A.4 illustrates some features of the HLEE when
n = 3. The lines of verticals and horizontals meet at Gs, which has just appeared on the U–V
plane at (0, 4).

When n = 5, which separates the cases of finite and infinite polytropes, the U–V plane takes
on a particular topology, illustrated in Fig. A.4. The n = 5 polytrope is a straight line from
Us = (3, 0) to Vs = (0, 6). The point Gs is a centre, with solutions forming closed loops around
it. The polytrope separates solutions that circulate around Gs from those that go from (∞, 0) to
(0,∞) entirely above the polytrope. These solutions have zero mass at non-zero inner radius but,
unlike the polytrope, have a finite outer radius.

As n increases further Gs becomes a spiral sink. Polytropes start at Us and spiral into Gs (see
Fig. A.4). There is an unstable solution that proceeds from (∞, 0) to Vs above which solutions
extend to (0,∞). As n→∞ we also find Vs → (0,∞) and, in the limiting case of the isothermal
sphere, all solutions ultimately spiral into Gs because they cannot lie above the unstable solution.



We have been going around the workshop in the basement of the building of

science. The light is dim, and we stumble sometimes. About us is confusion and mess

which there has not been time to sweep away. The workers and their machines are

enveloped in murkiness. But I think that something is being shaped here—perhaps

something rather big. I do not quite know what it will be when it is completed and

polished for the showroom. But we can look at the present designs and the novel tools

that are being used in its manufacture; we can contemplate too the little successes

which make us hopeful.

from The Expanding Universe,
Arthur S. Eddington, 1936
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