Additional file 1 for 'Communicating oscillatory networks: Frequency Domain Analysis'

Table of contents

Supplementary results	2
Crosstalk between oscillatory models of the cell cycle G1/S phase, NF-KB and p53	2
Table S1: Crosstalk in the cell cycle coupled to p53, to NF-κB and both p53 and NF-κB	2
Increased coupling strength	2
Figure S1: Perturbation of the cell cycle by p53a with double coupling strength	3
Figure S2: Perturbation of the cell cycle by NF-κBn with double coupling strength	4
Figure S3: Perturbation of the cell cycle in full model with double coupling strength.	4
Figure S4: Perturbation of the cell cycle by p53a with ten times coupling strength.	5
Figure S5: Perturbation of the cell cycle by NF-κBn with ten times coupling strength	5
Figure S6: Perturbation of the cell cycle in full model with ten times coupling strength	6
Table S2: Crosstalk in the cell cycle coupled to p53, to NF-kB and both p53 and NF-kB with	n
double coupling strength	7
Table S3: Crosstalk in the cell cycle coupled to p53, to NF- κ B and both p53 and NF- κ B with	n
ten times coupling strength.	8
The effect of stochasticity on independent networks	9
Table S4: Differences between reaction-based and quasi-deterministic models in the absence	3
of coupling	9
Supplementary methods	.10
NF-κB system	.10
Cell cycle system	.10
DNA damage transduction system	.11
Stochastic delay differential equations	.12
Model naming convention	.13
Stochastic (reaction-based) models	.14
p53	.14
Cell cycle	.14
NF-κB	.16
Coupling reactions	.16
Quasi-deterministic (combined production / consumption) models	.17
p53	.17
NF-κB	.17
Cell cycle	.18
Coupling reactions	.18
Rate and other constants	.18
Initial numbers of molecules	.20
Supplementary example: a stochastic model of the eukaryotic cell cycle	.20
Figure S7: Time and frequency domain behaviour of CycBT in generic eukaryotic cell cycle	:22
Table S5: Stochastic model of the generic eukaryotic cell cycle	.23
References	.24

Supplementary results

Crosstalk between oscillatory models of the cell cycle G1/S phase, NF- κ B and p53

NF-κB – cell cycl	e D	p53 – cell cycle	D	p53 – NF-кB – cell cycle	D
E2F-Rbpp	0.899	p21	0.968	p21	0.969
CycD-CDK2-p16	0.75	CycA-CDK2-p21	0.941	CycA-CDK2-p21	0.94
CycD-CDK2-p27	0.667	CycE-CDK2-p21	0.822	E2F-Rbpp	0.93
CycE	0.585	CycD-CDK2-p21	0.812	CycD-CDK2-p21	0.849
СусА	0.455	CycE	0.685	CycE-CDK2-p21	0.798
E2F	0.447	CycA	0.613	CycD-CDK2-p16	0.75
CycD-CDK2-p21	0.374	E2F-Rbpp	0.476	CycD-CDK2-p27	0.675
CycD-CDK4/6	0.348	CycA-CDK2	0.438	CycA-CDK2	0.503
CycA-CDK2	0.335	E2F	0.428	CycE	0.366
p21	0.272	CycE-CDK2	0.205	CycD-CDK4/6	0.353
CycE-CDK2	0.224	CDK2	0.19	E2F	0.338
CycE-CDK2-p21	0.222	CycE-CDK2-p27	0.188	СусА	0.209
CycE-CDK2-p27	0.217	CycD-CDK2-p27	0.174	CycA-CDK2-p27	0.201
CycA-CDK2-p27	0.196	Rbpppp	0.098	Rbpppp	0.181
Rbpppp	0.177	CycA-CDK2-p27	0.04	CycE-CDK2	0.152
CycD	0.146	E2F-Rb	0.039	CycD	0.148
CDK2	0.092	p27	0.032	CDK2	0.144
E2F-Rb	0.083	CycD-CDK2-p16	0.032	E2F-Rb	0.083
CDK4/6	0.078	CycD-CDK4/6	0.027	CDK4/6	0.08
CycA-CDK2-p21	0.071	CycD	0.012	p27	0.04
p27	0.028	Skp2	0.011	CycE-CDK2-p27	0.028
Rb	0.009	CDK4/6	0.008	Skp2	0.008
Skp2	0.007	Rb	0.008	Rb	0.007
p16	0.004	p16	0.005	p16	0.006

Table S1 gives the numerical values used to generate Figures 2A-C in the main text.

Table S1: Crosstalk in the cell cycle coupled to p53, to NF-\kappaB and both p53 and NF-\kappaB. Each species of the cell cycle is assigned a *D* value (Equation (4)) in the interval [0,1] by Procedure B (Methods), where larger values indicate greater crosstalk. Values less than 0.1 correspond to amounts of crosstalk which are difficult to discern in the time and frequency plots. In each case, species are listed in descending order of *D*.

Increased coupling strength

The coupling strength of the oscillatory systems is controlled by the values of rate constants R30b and R40b. The initial coupling strength was chosen to be plausible and to respect known parameters and experimentally verified behaviour. To validate our results, we also considered twice and ten times this coupling strength. Figure S1 illustrates the perturbation (*D*) of cell cycle components by p53a using double coupling strength. While the trend of crosstalk is reinforced by most components, in line with intuition, it is noticeable that E2F-Rbpp is apparently influenced *less* with increased coupling strength (D = 0.178 vs. 0.476). With ten times coupling strength (Figure S4) this

unexpected trend is partially reversed (0.369). This counter-intuitive behaviour is to be expected in non-linear dynamical systems that are sensitive to both the amplitude and frequency of perturbations. Overall, Figures S1-S6, variously illustrating the influence of NF- κ B alone, p53 alone and the fully coupled systems with double and ten times coupling strength, tend to follow a more or less intuitive trend of increased measured perturbation with increased coupling. Whereas with single coupling strength the influence of p53a tends to be local and the influence of NF- κ Bn tends to be indirect, with increased coupling strength more species are affected to a greater degree and this demarcation is blurred. There are some noticeable exceptions, however. Species E2F-Rb, p16, Rb and Skp2 are minimally perturbed by any combination of coupling and coupling strengths. Values for double and ten times coupling strength are given in Tables S2 and S3, respectively.

Figure S1: Perturbation of the cell cycle by p53a with double coupling strength. While the pattern of crosstalk evident in Figure 2 is broadly reinforced with increased coupling strength, contrary to intuition the perturbation of species E2F-Rbpp is reduced. Values of perturbation (*D*) are given in Table S2.

Figure S2: Perturbation of the cell cycle by NF-kBn with double coupling strength. Values are given in Table S2.

Figure S3: Perturbation of the cell cycle in full model with double coupling strength. Values are given in Table S2.

Figure S4: Perturbation of the cell cycle by p53a with ten times coupling strength. Values are given in Table S3.

Figure S5: Perturbation of the cell cycle by NF-κBn with ten times coupling strength. Values are given in Table S3.

Figure S6: Perturbation of the cell cycle in full model with ten times coupling strength. Values are given in Table S3.

NF-κB – cell cycle	e D	p53 – cell cycle	D	p53 – NF-кВ – cell cycle	e D
E2F-Rbpp	0.943	p21	0.993	p21	0.989
CycD-CDK2-p16	0.836	CycE	0.969	CycA-CDK2-p21	0.968
CycD-CDK2-p27	0.754	CycA-CDK2-p21	0.967	E2F-Rbpp	0.946
CycE	0.586	E2F	0.954	CycD-CDK2-p21	0.915
СусА	0.525	CycD-CDK2-p21	0.904	CycE-CDK2-p21	0.863
CycD-CDK4/6	0.474	CycE-CDK2-p21	0.888	CycD-CDK2-p16	0.835
CycD-CDK2-p21	0.464	CycA-CDK2	0.86	CycD-CDK2-p27	0.763
CycA-CDK2	0.42	CycA	0.86	CycA-CDK2	0.744
E2F	0.419	CycE-CDK2	0.275	CycE	0.566
p21	0.353	CycE-CDK2-p27	0.267	CycA	0.505
CycE-CDK2-p27	0.324	CDK2	0.256	CycD-CDK4/6	0.482
CycE-CDK2-p21	0.287	CycD-CDK2-p27	0.242	E2F	0.473
CycA-CDK2-p27	0.23	E2F-Rbpp	0.178	CycA-CDK2-p27	0.272
CycE-CDK2	0.22	CycA-CDK2-p27	0.174	CDK2	0.22
CycD	0.211	p27	0.141	CycD	0.22
Rbpppp	0.185	CycD	0.118	Rbpppp	0.188
CDK4/6	0.111	CycD-CDK4/6	0.101	CDK4/6	0.115
CycA-CDK2-p21	0.102	CycD-CDK2-p16	0.057	p27	0.087
CDK2	0.098	E2F-Rb	0.053	E2F-Rb	0.083
E2F-Rb	0.083	Rbpppp	0.042	CycE-CDK2	0.068
p27	0.037	Skp2	0.015	CycE-CDK2-p27	0.061
Skp2	0.011	CDK4/6	0.013	Skp2	0.015
p16	0.01	p16	0.005	p16	0.011
Rb	0.005	Rb	0.004	Rb	0.007

Table S2: Crosstalk in the cell cycle coupled to p53, to NF- κ B and both p53 and NF- κ B with double coupling strength. Each species of the cell cycle is assigned a *D* value (Equation (4)) in the interval [0,1] by Procedure B (Methods), where larger values indicate greater crosstalk. Values less than 0.1 correspond to amounts of crosstalk which are difficult to discern in the time and frequency plots.

NF-κB – cell cycle	e D	p53 – cell cycle	D	p53 – NF-кВ – cell cycl	e D
E2F-Rbpp	0.943	p21 CycD-CDK2-	0.998	p21	0.998
CycD-CDK2-p16	0.932	p21	0.996	CycD-CDK2-p21	0.998
CycD-CDK2-p27	0.856	CycE	0.995	E2F	0.993
CycD-CDK4/6	0.781	E2F	0.994	CycE	0.993
CycA	0.631	CycA-CDK2	0.994	CycA-CDK2	0.99
CycD-CDK2-p21	0.613	CycE-CDK2-p21	0.99	CycA-CDK2-p21	0.98
CycA-CDK2	0.572	CycA-CDK2-p21	0.974	CycE-CDK2-p21	0.976
CycE-CDK2-p27	0.53	СусА	0.958	CycA	0.952
CycE	0.513	CycA-CDK2-p27	0.753	E2F-Rbpp	0.945
p21	0.513	p27	0.469	CycD-CDK2-p16	0.929
CycD	0.451	CycE-CDK2	0.455	CycD-CDK2-p27	0.872
CycE-CDK2-p21	0.431	CycE-CDK2-p27 CycD-CDK2-	0.392	CycA-CDK2-p27	0.828
CycA-CDK2-p27	0.295	p27	0.381	CycD-CDK4/6	0.816
E2F	0.232	E2F-Rbpp	0.369	CycD	0.52
CDK4/6	0.227	CycD	0.33	CycE-CDK2	0.399
CycE-CDK2	0.227	CycD-CDK4/6	0.306	p27	0.36
Rbpppp	0.188	CDK2 CycD-CDK2-	0.263	CDK2	0.262
CycA-CDK2-p21	0.149	p16	0.138	CDK4/6	0.231
CDK2	0.086	E2F-Rb	0.08	Rbpppp	0.19
E2F-Rb	0.083	Rbpppp	0.042	CycE-CDK2-p27	0.162
p27	0.058	CDK4/6	0.016	E2F-Rb	0.083
p16	0.009	Skp2	0.015	p16	0.01
Rb	0.008	Rb	0.009	Rb	0.008
Skp2	0.005	p16	0.005	Skp2	0.007

Table S3: Crosstalk in the cell cycle coupled to p53, to NF- κ B and both p53 and NF- κ B with ten times coupling strength. Each species of the cell cycle is assigned a *D* value (Equation(4)) in the interval [0,1] by Procedure B (Methods), where larger values indicate greater crosstalk. Values less than 0.1 correspond to amounts of crosstalk which are difficult to discern in the time and frequency plots.

The effect of stochasticity on independent networks

Table S4 quantifies the differences between the fully stochastic and quasi-deterministic models in isolation. Although there are some species with apparently significant differences, the coupling species (p53a and NF- κ Bn) show minimal stochasticity and the effect on crosstalk was found to be negligible. Some interesting behavioural differences are noted in the main text.

p53	D	NF-κB	D	Cell cycle	D	Cell cycle	D
p53i	0.025	nlkB-NF-kB	0.46	CycE-CDK2-p27	0.94	CycA-CDK2-p21	0.017
p53a	0.01	lkBn	0.34	CycE-CDK2-p21	0.863	CycD	0.015
Mdm2	0.01	lkB	0.11	CycD-CDK2-p21	0.685	CycA-CDK2	0.012
I	0.01	IKK-IkB	0.055	CycE-CDK2	0.455	Skp2	0.012
S	0.01	NF-kB	0.035	p21	0.122	Rbpppp	0.011
		KlkB-NF-kB	0.03	CycD-CDK4/6	0.073	Rb	0.008
		lkB-NF-kB	0.025	CycE	0.072	CycD-CDK2-p27	0.007
		lkBt	0.015	E2F	0.053	CDK2	0.006
		IKK	0.015	E2F-Rbpp	0.034	p16	0.006
		NF-kBn	0.01	СусА	0.02	CDK4/6	0.003
				CycA-CDK2-p27	0.019	p27	0.003
				CycD-CDK2-p16	0.019	E2F-Rb	0.003

Table S4: Differences between reaction-based and quasi-deterministic models in the absence of coupling. Each species is assigned a D value (Equation (4)) in the interval [0,1] by Procedure B (Methods), where larger values indicate greater difference. Values less than 0.1 correspond to minimal visible stochasticity in the time courses. Coupling species p53a and NF- κ Bn have very low stochasticity, so the cell cycle is minimally affected by the stochasticity in the perturbing systems.

Supplementary methods

The following subsections describe the construction of the system of networks and simulation models used in the main text. The three networks are given as independent models, with the coupling reactions itemised separately. The rate constants and initial numbers of molecules are common to both the stochastic and quasi-deterministic models. The following general assumptions were made: earlier studies revealed oscillatory NF- κ B activity in cells lacking I κ B β & ϵ [1] and biphasic dynamics in cells in which NF- κ B-inducible I κ B α was over-expressed [2]; induced expression of I κ B ϵ also gives rise to an oscillatory NF- κ B signal that is out of phase with I κ B α -induced oscillations [3] and which helps to keep the late phase of TNF α - and IL1- α -induced NF- κ B activity steady [4]; possibility that oscillations are a trade-off against rapid response to inflammatory signals and the necessity of additional feedback to provide steady supply of active NF- κ B, which might arguably be present in other linking pathways – e.g. p53-MDM2; in contrast to some other models that focus mainly on G1/S-phase transition control [5-9], this model is only interested in key processes involving data sets previously published (which strengthens the idea that cell cycle process can also be induced by NF- κ B active proteins).

NF-κB system

We and others have previously re-constructed a computational model to explain NF- κ B activation events following IKK activation by TNF α stimulation [2, 10]. That model, which represented the most studied aspect of the NF- κ B pathway, comprises NF- κ B, canonical I κ B $\alpha/\beta/\epsilon$ and IKK. Both the IKK and NF- κ B are represented as singular species (without separate descriptions for the IKK α/β heterodimer and its scaffold protein IKK γ). Their synthesis, degradation, cellular localisation and interactions were calculated using a deterministic method. The key processes modelled included: mRNA transcription and protein translation of NF- κ B Inhibitor protein I κ B (I κ B α , I κ B β , I κ B ϵ); the inter compartment transport of I κ B (I κ B α , I κ B β , I κ B ϵ), NF- κ B and their complexes; formation of protein complexes; catalytic activation of canonical and alternative IKK; catalytic degradation of the NF- κ B Inhibitor proteins due to IKK-induced phosphorylation and subsequent ubiquitination.

Cell cycle system

Many groups have reported the construction of the mammalian cell cycle models, the most recent being [11, 12]. Works on models of yeast cell cycle are more advanced and incorporate explicit representation of cell mass and cell growth. For the mammalian cell cycle model used here, we have

not included cell growth, as we were only interested in the events leading to the G1/S transition phase, the point where NF-kB and p53 signal transduction events are active the most. The model comprises: G1 phase; inhibition of cell cycle activity as a result of Rb binding to E2F. For the activation of the cell cycle and thus the transition phase from G1 to S, Rb phosphorylation by the CDKs (CDK4/6, CDK2) is necessary, which results in the activation and release of E2F. However, the CDKs have their inhibitory counterparts (p16, p21 and p27). The model receives as input a signal from the NF- κ B signal transduction pathway for the synthesis of CycD1, which quickly forms a complex with CDK4/6 to become the active form CycD-CDK4/6. This complex can further bind to their inhibitory counterpart forming the following; CycD-CDK4/6-p16, CycD-CDK4/6-p21 and CycD-CDK4/6-p27, out of which formation of CycD-CDK4/6-p16 inhibits its activity. Hypophosphorylation of the bound Rb (Rb-E2F) by complex formation of CycD-CDK4/6 releases E2F. Free E2F is involved in CycE, CycA and Skp2 gene transcription. Free CycE and CycA form complexes with CDK2 to form active compounds. CycE-CDK2 and CycA-CDK2 can also act as a further phosphorylating factor to bound Rb (Rb-E2F), releasing more E2F. CycE and CycA complexes also bind to their inhibitory counterparts forming the following: CycE-CDK2-p27, CycE-CDK2-p21, CycA-CDK2-p27, CycA-CDK2-p21; and is mainly described by mass balance equations. The parameter values have been chosen to quantitatively and qualitatively represent the phases of the cell cycle of interest. The degradation of the components were also accounted for in the model.

DNA damage transduction system

Stimuli such as DNA damage can activate both the NF- κ B and the p53 pathways [13]. While p53 induces cell-cycle arrest or cell death in response to these treatments, the contribution of NF- κ B to cell fate is more complex, and pathways in which it either antagonizes or cooperates with p53 have been described. NF- κ B-mediated negative regulation of p53 can contribute to tumorigenesis and has been shown to operate at a number of levels. The delay oscillator describe by Geva-Zatorsky *et. al* [14] was the model of choice for the p53 system.

Stochastic delay differential equations

Unlike the cell cycle and NF-kB models, which are described by standard chemical and enzymatic reactions that can be straight-forwardly converted into the stochastic domain, the original p53 model is constructed around delay differential equations (DDEs) and requires special consideration when simulating stochastically. DDEs allow the current rate of a reaction to be dependent on the state of the system at some time in the past, abstracting potentially very complex (unknown) mechanisms into a combination of delays. Stochastic simulations based on a variant of the Gillespie algorithm [15] treat the evolution of the system as a Markov process, such that the current rate of a reaction is only dependent on the *current* state of the system. To incorporate a model based on DDEs into a stochastic simulation of this kind, it is also necessary to store the past states of the system. We thus implemented a function in our simulation software which returns the number of molecules of species X at τ time units in the past: delay(X, τ). Given that the time course of a stochastic simulation consists of the numbers of molecules of different species recorded at irregular time points 0, t_1 , t_2 , ... etc., where $0 < t_1 < t_2 < ...$, the amount of species X at time t can be described by the sequence X_0 , X_{t_1} , X_{t_2} , ..., etc. At time t, the value returned by delay(X,τ) is then X_{t_i} , where i is the maximum value that satisfies $t_i \le t - \tau$. If $t \le \tau$ (as may happen at the beginning of a simulation), delay(X,τ) returns X_0 . This algorithm is consistent with the standard deterministic interpretation of delay differential equations and guarantees that for any specified initial state and past state corresponding to the delay used, the magnitude and direction of the average rate of leaving the state in the stochastic and quasi-deterministic models is *identical* (allowing for the conversion from concentration to numbers of molecules) to that for the deterministic case.

Model naming convention

For the purposes of simulation we used simplified names of the chemical species. The following table maps the names used in the text to the names used in the models.

Text	Model	Text	Model	Text	Model
p53i	p53i	CycA-CDK2-p21	CycACDp21	CycA	СусА
p53a	р53а	CycA-CDK2-p27	CycACDp27	CycD	CycD
Mdm2	Mdm2	CycA-CDK2	CycACDK2	CycE	CycE
I	I	CycD-CDK4/6	CycDCDK46	CDK4/6	CDK46
S	S	CycD-CDK2-p27	CycDCDp27	Skp2	Skp2
lkBn-NF-kBn	nlkBNFkB	CycD-CDK2-p16	CycDCDp16	Rbpppp	Rbpppp
lkBn	lkBn	CycD-CDK2-p21	CycDCDp21	Rb	Rb
lkB	lkB	CycE-CDK2	CycECDK2	CDK2	CDK2
IKK-IkB	IKKIkB	CycE-CDK2-p27	CycECDp27	p16	p16
NF-kB	NFkB	CycE-CDK2-p21	CycECDp21	p27	p27
IKK-IkB-NF-kB	KIkBNFkB	E2F-Rbpp	E2FRbpp	p21	p21
lkB-NF-kB	IkBNFkB	E2F-Rb	E2FRb	E2F	E2F
lkBt	lkBt				
IKK	IKK				
NF-kBn	NFkBn				

Stochastic (reaction-based) models

The following models are based on standard chemical reactions of the kind $A + B \rightarrow C + D$, where a single reaction event simultaneously consumes molecules of A and B while producing molecules of C and D. Where not otherwise stated, the rates of reactions are calculated using the given constants and the assumption of mass action. An explicit rate function to generate the reaction *propensity* [15] is given for reactions where this does not apply. The function delay(·) is defined above. The symbol \emptyset is used to denote an arbitrary source or sink in creation and degradation reactions, respectively.

p53

Rate constant / function
kap53i
kbp53i
kap53a
w×(S ⁿ /(S ⁿ +Ts))×p53i
R46
kaMdm2
R48
kbMdm2×delay(p53a,tau)
kai
kbi×(delay(p53a,tau)+delay(p53i,tau))
R47
R45a
kas
kbs×e

Cell cycle

Reaction	Rate constant
CycDCDK46 \rightarrow CDK46	R1
CycDCDK46 + p16 \rightarrow CycDCDp16	R29
CycDCDK46 + p27 \rightarrow CycDCDp27	R6
CycDCDK46 \rightarrow CDK46 + CycD	R21b
CycD + CDK46 \rightarrow CycDCDK46	R21a
$CDK46 \rightarrow \emptyset$	R32
CycACDK2 + E2F \rightarrow CycACDK2	R15
$\emptyset \rightarrow E2F$	R43
$E2F \rightarrow E2F + E2F$	R42
$CycE \rightarrow \emptyset$	R26
$E2F \rightarrow CycE + E2F$	R2
$CycECDK2 \rightarrow CDK2$	R3

$CycECDK2 \rightarrow CDK2 + CycE$	R24b
$CDK2 + CycE \rightarrow CycECDK2$	R24a
$CDK2 + CycA \rightarrow CycACDK2$	R25a
$CDK2 \rightarrow Ø$	R33
$CycA \rightarrow Ø$	R27
$E2F \rightarrow CycA + E2F$	R4
$CycACDK2 \rightarrow CDK2$	R5
$CycACDK2 \rightarrow CycA + CDK2$	R25b
p27 + CycECDK2 \rightarrow CycECDp27	R7
p27 + CycACDK2 \rightarrow CycACDp27	R8
$\emptyset \rightarrow p27$	R20
CycECDp27 + Skp2 \rightarrow Skp2 + CycECDK2	R9
CycACDp27 + Skp2 \rightarrow Skp2 + CycACDK2	R10
$Skp2 \rightarrow \emptyset$	R34
$\emptyset \rightarrow \text{Skp2}$	R31
$Rb \to \emptyset$	R18
$Rb + E2F \rightarrow E2FRb$	R11
$\emptyset \rightarrow Rb$	R17
$Rbpppp \to Rb$	R16
CycDCDK46 + E2FRb \rightarrow E2FRbpp + CycDCDK46	R12
CycDCDp27 + E2FRb \rightarrow E2FRbpp + CycDCDp27	R13
CycDCDp21 + E2FRb \rightarrow E2FRbpp + CycDCDp21	R41
$E2FRbpp + CycECDK2 \rightarrow CycECDK2 + Rbpppp + E2F$	R14
CycDCDp16 \rightarrow p16	R19
$p16 \rightarrow Ø$	R23
$\emptyset \rightarrow p16$	R28
$CycD \rightarrow Ø$	R22
$E2F \rightarrow CycD + E2F$	R44
$\emptyset \to CycD$	R30a
p21 + CycDCDK46 \rightarrow CycDCDp21	R35a
p21 + CycECDK2 \rightarrow CycECDp21	R36a
p21 + CycACDK2 \rightarrow CycACDp21	R37a
$\emptyset \rightarrow p21$	R40a
CycDCDp21 \rightarrow p21 + CycDCDK46	R35b
CycECDp21 \rightarrow p21 + CycECDK2	R36b
Skp2 + CycECDp21 \rightarrow CycECDK2 + Skp2	R38
CycACDp21 \rightarrow p21 + CycACDK2	R37b
Skp2 + CyCACDp21 \rightarrow CycACDK2 + Skp2	R39

NF-ĸB

Reaction	Rate constant / function
$lkB \rightarrow Ø$	kdeg1
$lkB \rightarrow lkBn$	ktp1
$IkB + NFkB \rightarrow IkBNFkB$	la4
$lkBt \rightarrow lkB + lkBt$	ktr1
$lkBn \rightarrow lkB$	ktp2
lkBn + NFkBn \rightarrow nlkBNFkB	la4
$lkBn \rightarrow \mathcal{O}$	kdeg1
$nIkBNFkB \rightarrow IkBn + NFkBn$	kd4
$nIkBNFkB \rightarrow IkBNFkB$	k2
$nIkBNFkB \rightarrow NFkBn$	kdeg5
$lkBNFkB \rightarrow nlkBNFkB$	k3
$lkBt \rightarrow Ø$	ktr3
$\emptyset \to lkBt$	tr2a
$\emptyset \to lkBt$	tr2×(NFkBn) ^h
$IkBNFkB \rightarrow IkB + NFkB$	kd4
$IkBNFkB \rightarrow NFkB$	kdeg4
$IKK + IkB \rightarrow IKKIkB$	la1
$IKK + IkBNFkB \to KIkBNFkB$	la7
$IKK \to Ø$	k02
$IKKIkB \rightarrow IKK + IkB$	kd1
$IKKIkB \to IKK$	kr1
$IKKIkB + NFkB \to KIkBNFkB$	la4
$KIkBNFkB \rightarrow IKK + IkBNFkB$	kd2
$KIkBNFkB \rightarrow IKKIkB + NFkB$	kd4
$KIkBNFkB \rightarrow NFkB + IKK$	kr4
$NFkB \rightarrow NFkBn$	k1
$NFkBn \rightarrow NFkB$	k01

Coupling reactions

Rea	ction	Rate constant / function
$\emptyset ightarrow$	• CycD	R30b×(NFkBn) ^h
p53a	a → p21 + p53a	R40b

Quasi-deterministic (combined production / consumption) models

The following models are based on quasi-deterministic 'reactions', where a single reaction event is an unsynchronised production or consumption of a single molecule of a given species. The *propensity* [15] of a quasi-deterministic reaction is given by an explicit rate function that is the signed sum of the propensities of creation and consumption reactions.

p53

Species	Combined rate function of production and consumption
p53i	kbp53i-kap53i×Mdm2×p53i-w×(S ⁿ /(S ⁿ +Ts))×p53i
n53a	w×(S ⁿ /(S ⁿ +Ts))×p53i-
poou	kap53a×Mdm2×p53a+R46×p53a×ARF
Mdm2	kbMdm2×delay(p53a,tau)-kaMdm2×Mdm2-
manie	R48×ARF×Mdm2
I	kbi×(delay(p53a,tau)+delay(p53i,tau))-kai×l
ARF	R45a-R46xp53axARF-R47xARF-R48xARFxMdm2
S	kbsxe-kasxIxS

NF-ĸB

Species	Combined rate function of production and consumption
lkB	-(kdeg1+ktp1)×lkB+ktp2×lkBn+ktr1×lkBt+kd4×lkBNFkB+kd1×lKKlkB-la1×lkB×lKK -la4×lkB×NFkB
lkBn	ktp1×lkB+kd4×nlkBNFkB-ktp2×lkBn-la4×lkBn×NFkBn-kdeg1×lkBn
nlkBNFkB	-kd4xnlkBNFkB-k2xnlkBNFkB-kdeg5xnlkBNFkB+k3xnlkBNFkB+la4xlkBnxNFkBn
lkBt	tr2a-ktr3×lkBt+tr2×(NFkBn) ^h
lkBNFkB	k2×nlkBNFkB-kd4×lkBNFkB-kdeg4×lkBNFkB-la7×lkBNFkB×lKK-k3×nlkBNFkB +kd2×KlkBNFkB+la4×lkB×NFkB
IKK	-la1xlkBxlKK-la7xlkBNFkBxlKK-k02xlKK+kd1xlKKlkB+kr1xlKKlkB+kd2xKlkBNFkB +kr4xKlkBNFkB
IKKIkB	la1xlkBxlKK-kd1xlKKlkB-kr1xlKKlkB+kd4xKlkBNFkB-la4xlKKlkBxNFkB
KIkBNFkB	la7xIkBNFkBxIKK-kd2xKIkBNFkB-kd4xKIkBNFkB-kr4xKIkBNFkB+la4xIKKIkBxNFkB
NFkB	kd4×lkBNFkB+kdeg4×lkBNFkB+kd4×KlkBNFkB+kr4×KlkBNFkB+k01×NFkBn-k1×NFkB -la4×lkB×NFkB-la4×lKKlkB×NFkB
NFkBn	kd4xnlkBNFkB+k1xNFkB+k3xnlkBNFkB-k01xNFkBn-la4xlkBnxNFkBn

Cell cycle

Species	Combined rate function of production and consumption
CycDCDK46	-R1xCycDCDK46-R29xCycDCDK46xp16-R6xCycDCDK46xp27-R35axCycDCDK46xp21 -R21bxCycDCDK46+R35bxCycDCDp21+R21axCycDxCDK46
CDK46	R1xCycDCDK46+R21bxCycDCDK46-R21axCycDxCDK46-R32xCDK46
E2F	R43+R42×E2F+R14×E2FRbpp×CycECDK2-R11×Rb×E2F-R15×E2F×CycACDK2
CycE	R2xE2F+R24bxCycECDK2-R24axCycExCDK2-R26xCycE
CycECDK2	-R3xCycECDK2-R7xCycECDK2xp27-R36axCycECDK2xp21-R24bxCycECDK2 +R36bxCycECDp21+R24axCycExCDK2+R9xCycECDp27xSkp2+R38xCycECDp21xSkp2
CDK2	R3×CycECDK2+R5×CycACDK2+R24b×CycECDK2+R25b×CycACDK2 -R24a×CycE×CDK2-R25a×CycA×CDK2-R33×CDK2
CycA	R4xE2F+R25bxCycACDK2-R25axCycAxCDK2-R27xCycA
CycACDK2	-R5xCycACDK2-R8xCycACDK2xp27-R37axCycACDK2xp21-R25bxCycACDK2 +R37bxCycACDp21+R25axCycAxCDK2+R10xCycACDp27xSkp2 +R39xCycACDp21xSkp2
p27	R20-R6xCycDCDK46xp27-R7xCycECDK2xp27-R8xCycACDK2xp27
CycDCDp27	R6xCycDCDK46xp27
CycECDp27	R7xCycECDK2xp27-R9xCycECDp27xSkp2
CycACDp27	R8xCycACDK2xp27-R10xCycACDp27xSkp2
Skp2	R31-R34×Skp2
Rb	R17+R16×Rbpppp-R18×Rb-R11×Rb×E2F
E2FRb	R11×Rb×E2F-R12×E2FRb×CycDCDK46-R13×E2FRb×CycDCDp27 -R41×E2FRb×CycDCDp21
E2FRbpp	R12xE2FRbxCycDCDK46+R13xE2FRbxCycDCDp27 +R41xE2FRbxCycDCDp21- R14xE2FRbppxCycECDK2
Rbpppp	R14xE2FRbppxCycECDK2-R16xRbpppp
CycDCDp16	R29xCycDCDK46xp16-R19xCycDCDp16
p16	R28+R19xCycDCDp16-R29xCycDCDK46xp16-R23xp16
CycD	R44xE2F+R21bxCycDCDK46-R21axCycDxCDK46-R22xCycD+R30a
p21	R40a-R35axCycDCDK46xp21-R36axCycECDK2xp21-R37axCycACDK2xp21 +R35bxCycDCDp21+R36bxCycECDp21+R37bxCycACDp21
CycDCDp21	R35axCycDCDK46xp21-R35bxCycDCDp21
CycECDp21	R36a×CycECDK2×p21-R36b×CycECDp21-R38×CycECDp21×Skp2
CycACDp21	R37axCycACDK2xp21-R37bxCycACDp21-R39xCycACDp21xSkp2

Coupling reactions

Species	Combined rate function of production and consumption with coupling
CycD	R44xE2F+R21bxCycDCDK46-R21axCycDxCDK46-R22xCycD+R30a+R30bx(NFkBn) ^h
p21	R40a-R35axCycDCDK46xp21-R36axCycECDK2xp21-R37axCycACDK2xp21 +R35bxCycDCDp21+R36bxCycECDp21+R37bxCycACDp21+R40bxp53axp21

Rate and other constants

The following constants are common to both sets of models. The reaction rates are derived from models based on concentration, hence *alpha* has units of $l mol^{-1}$ and is the constant which is used to

convert these into numbers of molecules. A nominal value of alpha = 100000 was chosen, based on an estimate of nuclear volume. Rate constants defined as a value divided by *alpha* generally correspond to bimolecular reactions of the kind $A + B \rightarrow ...$ and have units $mol^{-1}l$ minutes⁻¹, while rate constants defined as a value multiplied by *alpha* generally correspond to creation reactions of the kind $\emptyset \rightarrow ...$ and have units $mol \ l^{-1}minutes^{-1}$. Reaction rate constants which are not a function of *alpha* generally correspond to simple degradation reactions of the kind $A \rightarrow ...$ and have units minutes⁻¹. There were no homodimerisation reactions.

Name	Value	Name	Value	Name	Value
alpha	100000	R8	7.0×10 ⁻² /alpha	R35b	5.0×10 ⁻³
h	2	R9	0.225/alpha	R36a	1.0×10 ⁻² /alpha
kdeg1	0.16	R10	2.5×10 ⁻³ /alpha	R36b	1.75×10 ⁻⁴
ktp1	0.018	R11	5.0×10 ⁻⁵ /alpha	R37a	7.0×10 ⁻² /alpha
ktp2	0.012	R12	1.0×10 ⁻⁴ /alpha	R37b	1.75×10 ⁻⁴
ktr1	0.2448	R13	1.0×10 ⁻² /alpha	R38	0.225/alpha
kd4	0.00006	R14	0.073/alpha	R39	2.5×10 ⁻³ /alpha
la1	0.1776/alpha	R15	0.022/alpha	R40a	5.0×10 ⁻⁵ ×alpha
kd1	0.000888	R16	5.0×10 ⁻⁸	R40b	1.0×10 ⁻³
la4	30/alpha	R17	5.0×10 ⁻⁵ ×alpha	R41	1.0×10 ⁻² /alpha
k2	0.552	R19	5.0×10 ⁻² /alpha	R42	1.0×10 ⁻⁴
k3	0.00006	R20	1.0×10⁻⁴×alpha	R43	5.0×10⁻⁵×alpha
tr2a	0.000090133×alpha	R21a	2.0×10 ⁻³ /alpha	R44	3.0×10 ⁻⁴
ktr3	0.020733	R21b	8.0×10 ⁻³	R45a	8.0×10 ⁻⁵ ×alpha
tr2	0.5253/alpha ^(h-1)	R22	7.5×10 ⁻³	R45b	0.008
kdeg4	0.00006	R23	5.0×10 ⁻³	R46	2.333×10 ⁻⁵ /alpha
kdeg5	0.00006	R24a	8.0×10 ⁻³ /alpha	R47	0.01167
la7	6.06/alpha	R24b	3.9×10 ⁻³	R48	1.167×10 ⁻⁵ /alpha
kd2	0.095	R25a	8.0×10 ⁻³ /alpha	kbp53i	0.015×alpha
kr1	0.012	R25b	4.0×10 ⁻³	kbMdm2	0.01667
kr4	0.22	R26	2.5×10 ⁻³	kap53i	2.333/alpha
k1	5.4	R27	5.0×10 ⁻⁴	kaMdm2	0.01167
k01	0.0048	R28	2.0×10 ⁻⁴ ×alpha	tau	80
k02	0.0072	R29	5.0×10 ⁻⁴ /alpha	kap53a	0.02333/alpha
R1	5.0×10 ⁻⁶	R30a	0.004×alpha	kas	0.045/alpha
R2	4.5×10 ⁻³	R30b	0.9961/alpha ^(h-1)	kbi	0.01667
R3	5.0×10 ⁻³	R31	5.0×10⁻⁴×alpha	kai	0.01167
R4	2.5×10 ⁻³	R32	8.0×10 ⁻⁴	kbs	0.015×alpha
R5	5.0×10 ⁻⁴	R33	8.0×10 ⁻⁴	е	1
R6	5.0×10⁻⁴/alpha	R34	9.0×10 ⁻⁴	n	4
R7	1.0×10 ⁻² /alpha	R35a	5.0×10 ⁻⁴ /alpha	W	11.665
				Ts	1×alpha ⁿ

Initial numbers of molecules

The following table contains the initial numbers of molecules used by all the simulation models. Note that the values are either 0 or some number (an initial concentration in units of *mol* l^{-1}) multiplied by *alpha*, the global constant used to specify the number of molecules in the system.

Species	Amount	Species	Amount
p53i	0	CycECDK2	0
р53а	0.1×alpha	CDK2	2.0×alpha
Mdm2	0.15×alpha	СусА	0
I	0.1×alpha	CycACDK2	0
S	0	p27	1.0×alpha
ARF	0	CycDCDp27	0.001×alpha
lkB	0	CycECDp27	0
lkBn	0	CycACDp27	0
nlkBNFkB	0	Skp2	1.0×alpha
lkBt	0	Rb	1.0×alpha
IkBNFkB	0.2×alpha	E2FRb	1.95×alpha
IKK	0.2×alpha	E2FRbpp	1.0×10 ⁻³ ×alpha
IKKIkB	0	Rbpppp	1.02×alpha
KIkBNFkB	0	CycDCDp16	1.0×10 ⁻⁵ ×alpha
NFkB	0	p16	1.0×alpha
NFkBn	0.025×alpha	CycD	0
CycDCDK46	0	p21	0
CDK46	5.0×alpha	CycDCDp21	0
E2F	0	CycECDp21	0
CycE	0	CycACDp21	0

Supplementary example: a stochastic model of the eukaryotic cell cycle

The presented technique of frequency domain analysis can be particularly useful and revealing when applied to stochastic simulations of chemical systems containing one or more species in low copy numbers. The apparent behaviour in such simulation time courses may be very noisy, yet the underlying average behaviour will nevertheless be obvious to human observers. Frequency domain analysis is a means to formalise the perceived behaviour. Figure S7 illustrates the differences between stochastic and deterministic simulations, using as example the generic model of the eukaryotic cell cycle in [18]. Table S5 describes the stochastic model, extracted from the ODEs, comprising elemental reactions using mass action kinetics, enzymatic reactions with arbitrary kinetics and mass balance equations. Parameters are chosen to represent budding yeast and the species names are those used in [18]. The deterministic model exhibits limit cycle oscillation,

making it conceivable to run arbitrarily long stochastic simulations and so arbitrarily define the resolution of the frequency domain analysis. This is not in general guaranteed: when a continuous deterministic model is discretised and made stochastic (or quasi-deterministic, as described above), it may contain states which have a non-zero probability of being reached but from which the system cannot exit. These *absorbing states* may exist in reality or may be unforeseen artefacts of the ODE approximation of reality, hence the validity of stochastic models created from deterministic systems containing arbitrary simplifications and abstractions is sometimes questioned. Such questions may be answered by the presented methodology.

Figure S7A shows a typical time course of CycBT (black) in the stochastic model of the budding yeast cell cycle, exhibiting variable amplitude and phase. In red is the result of averaging 800 such time series: random phase shifts between independent simulation runs cause average oscillatory behaviour to decay with time and for the oscillatory waveform to become more sinusoidal; the average trajectory gets closer to the long term mean number of molecules of CycBT (grey line). Figure S7B compares frequency spectra of deterministic (black), quasi-deterministic (blue) and fully stocahastic (red) models of the budding yeast cell cycle. The deterministic spectrum (created from a single time course of 10000 minutes sampled at 5 minute intervals) is clearly 'spiky' in nature, with many evident high frequency components and apparent numerical artefacts. By contrast, the average stochastic frequency spectrum (red) contains only four discernable low frequency peaks that are relatively rounded. The spectrum of the quasi-deterministic simulation appears closer to the fully stochastic than to the deterministic, however it contains three more discernable peaks and at higher frequencies it follows more closely the trend of the deterministic spectrum. The peaks of the stochastic and quasi-deterministic spectra apparently align with peaks in the deterministic spectrum, suggesting that the three systems have the same average primary mode of oscillation, however this alignment between models is not in general guaranteed. In each case the spectral value at zero frequency corresponds to the long term mean of the time series.

Figure S7: Time and frequency domain behaviour of CycBT in generic eukaryotic cell cycle

A Typical (black) and average (red) time series of CycBT in the stochastic version of the generic model of the eukaryotic cell cycle of Table S5. As a result of random phase shifts between simulation runs, oscillatory behaviour in the average trace decays with time and hovers around the long term average number of molecules of CycBT (grey line). **B** Average frequency distribution of CycBT in stochastic (red), quasi-deterministic (blue) and determinist (black) models. The deterministic spectrum is clearly more 'spiky' than the stochastic spectra and has many high frequency components that are apparently 'lost in the noise' of the other models. The average time course was created from 800 simulation traces of 4000 minutes sampled at 2 minute intervals. The average frequency spectra were created from 800 traces of 10000 minutes sampled at 5 minute intervals. The deterministic spectrum was created from a single trace of 10000 minutes sampled at 5 minute intervals.

В

Elemental reaction	Mass action rate constant		Other cor	Other constants	
$\emptyset \rightarrow CycBT$	k1	0.04×alpha	k3.1	1×alpha	
$CycBT \rightarrow Ø$	k2.1	0.04	k3.2	10	
$Cdh1 + CycBT \rightarrow Cdh1$	k2.2	1/alpha	k4	35	
$CycBT + Cdc20A \rightarrow Cdc20A$	k2.3	1/alpha	k4.1	2	
$\emptyset \rightarrow Cdc20T$	k5.1	0.005×alpha	k5.2	0.2×alpha	
$Cdc20T \rightarrow Ø$	k6	0.1	k7	1	
$Cdc20A \rightarrow Ø$	k6	0.1	k8	0.5	
$IE \to \emptyset$	k10	0.02	k9	0.1/alpha	
$\emptyset \rightarrow CKIT$	k11	1×alpha	k15.1	1.5×alpha/beta	
$CKIT \rightarrow Ø$	k12.1	0.2	k15.2	0.05	
$CKIT + SK \to SK$	k12.2	50/alpha	k16.1	1×alpha	
$CKIT + CycB \to CycB$	k12.3	100/alpha	k16.2	3	
$\emptyset \rightarrow SK$	k13.1	0×alpha	J3, J4	0.04×alpha	
$TF \to SK + TF$	k13.2	1	J5	0.3×alpha	
$SK \rightarrow Ø$	k14	1	J7, J8	0.001×alpha	
			J15, J16	0.01×alpha	
			mu	0.005	
			Mstar	10×beta	
			Kdiss	0.001×alpha	

Enzymatic reaction	Reaction kinetics
$\emptyset \rightarrow Cdh1$	(k3.1+k3.2×Cdc20A)×(alpha-Cdh1)/(J3+alpha-Cdh1)
$Cdh1 \rightarrow Ø$	(k4.1×SK+k4×CycB)×Cdh1/(J4+Cdh1)
$\emptyset \rightarrow Cdc20T$	k5.2×CycB ⁴ /(J5^4+CycB ⁴)
$\emptyset \rightarrow Cdc20A$	k7×IE×(Cdc20T-Cdc20A)/(J7+Cdc20T-Cdc20A)
$Cdc20A \rightarrow Ø$	k8×Mad1×Cdc20A/(J8+Cdc20A)
$\emptyset \to IE$	k9×(alpha-IE)×CycB
$\emptyset \to TF$	(k15.1×M+k15.2×SK)×(alpha-TF)/(J15+alpha-TF)
$TF \to \mathcal{O}$	(k16.1+k16.2×CycB)×TF/(J16+TF)
$\varnothing ightarrow M$	mu×M×(1-M/Mstar)

Mass balance equations

BB = CycBT+CKIT+Kdiss

CycB = (1-2×CKIT/(BB+sqrt(BB²-4×CycBT×CKIT)))×CycBT×M/beta

Table S5: Stochastic model of the generic eukaryotic cell cycle. The ODE model of [18] was resolved into elemental reactions with mass action kinetics and enzymatic reactions having arbitrary kinetic laws. A constant of *alpha* = 424 $l mol^{-1}$ was used to convert initial concentrations and rate constants to numbers of molecules. To discretise the cell growth, a mass granularity constant of *beta* = 1000 was adopted.

References

- 1.The IκB-NF-κB signaling module: temporal control and selective gene activation/
Supporting Material. [http://www.sciencemag.org/cgi/data/298/5596/1241/DC1/2]
- Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA, Foreman BE, Nelson G, See V, Horton CA, Spiller DG *et al*: Oscillations in NF-κB signaling control the dynamics of gene expression. *Science* 2004, 306(5696):704-708.
- 3. Kearns JD, Basak S, Werner SL, Huang CS, Hoffmann A: **IκBepsilon provides negative feedback to control NF-κB oscillations, signaling dynamics, and inflammatory gene expression**. *J Cell Biol* 2006, **173**(5):659-664.
- 4. Ihekwaba AE, Wilkinson SJ, Waithe D, Broomhead DS, Li P, Grimley RL, Benson N: Bridging the gap between in silico and cell-based analysis of the nuclear factor-κB signaling pathway by in vitro studies of IKK2. *Febs J* 2007, 274(7):1678-1690.
- 5. Obeyesekere MN, Herbert JR, Zimmerman SO: A model of the G1 phase of the cell cycle incorporating cyclin E/cdk2 complex and retinoblastoma protein. *Oncogene* 1995, 11(6):1199-1205.
- 6. Obeyesekere MN, Tucker SL, Zimmerman SO: A model for regulation of the cell cycle incorporating cyclin A, cyclin B and their complexes. *Cell Prolif* 1994, **27**(2):105-113.
- 7. Kohn KW: Functional capabilities of molecular network components controlling the mammalian G1/S cell cycle phase transition. *Oncogene* 1998, **16**(8):1065-1075.
- 8. Aguda BD, Tang Y: **The kinetic origins of the restriction point in the mammalian cell cycle**. *Cell Prolif* 1999, **32**(5):321-335.
- 9. Qu Z, Weiss JN, MacLellan WR: **Regulation of the mammalian cell cycle: a model of the G1-to-S transition**. *Am J Physiol Cell Physiol* 2003, **284**(2):C349-364.
- 10. Ihekwaba AEC, Broomhead DS, Grimley RL, Benson N, Kell DB: Sensitivity analysis of parameters controlling oscillatory signalling in the NF-κB pathway: the roles of IKK and IκBα. Systems Biology 2004, 1(1):93-103.
- 11. Iwamoto K, Tashima Y, Hamada H, Eguchi Y, Okamoto M: Mathematical modeling and sensitivity analysis of G1/S phase in the cell cycle including the DNA-damage signal transduction pathway. *Biosystems* 2008, **94**(1-2):109-117.
- 12. Ling H, Kulasiri D, Samarasinghe S: Robustness of G1/S checkpoint pathways in cell cycle regulation based on probability of DNA-damaged cells passing as healthy cells. *Biosystems* 2010, **101**(3):213-221.
- 13. Perkins ND: Integrating cell-signalling pathways with NF-κB and IKK function. *Nat Rev Mol Cell Biol* 2007, **8**(1):49-62.
- 14. Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, Milo R, Sigal A, Dekel E, Yarnitzky T, Liron Y, Polak P, Lahav G *et al*: **Oscillations and variability in the p53 system**. *Mol Syst Biol* 2006, **2**:2006 0033.
- Gillespie DT: A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. *Journal of Computational Physics* 1976, 22:403-434.
- 16. Kreyzig E: Advanced Engineering Mathematics, 8th edn: John Wiley & Sons; 2005.
- 17. Lin CC, Segel LA: Mathematics Applied to Deterministic Problems in the Natural Sciences Society for Industrial and Applied Mathematics; 1988.
- Tyson JJ, Novak B: Regulation of the Eukariotic Cell Cycle: Molecular Antagonism, Hysteresis and Irreversible Transitions. *Journal of Theoretical Biology* 2001, 210:249-263.