
RESEARCH ARTICLE Open Access

CMLLite: a design philosophy for CML
Joe A Townsend and Peter Murray-Rust*

Abstract

CMLLite is a collection of definitions and processes which provide strong and flexible validation for a document in
Chemical Markup Language (CML). It consists of an updated CML schema (schema3), conventions specifying rules
in both human and machine-understandable forms and a validator available both online and offline to check
conformance. This article explores the rationale behind the changes which have been made to the schema,
explains how conventions interact and how they are designed, formulated, implemented and tested, and gives an
overview of the validation service.

Introduction
There is an on-going need for formal, computable
representations of scientific data and documents which
are also accessible to humans [1-3]. The challenge is to
devise systems that people will not only use but for
which they will, critically, develop additional tools and
content. Our approach for chemistry is Chemical
Markup Language (CML) (whose evolution and philoso-
phy is described elsewhere in this issue [4]) which has
been developed to support five main areas of chemistry
(molecules, reactions, solid-state, spectroscopy and com-
putational chemistry).
The strengths and weaknesses of CML have been

recently analysed by Dumontier [3] and we quote
directly:
Chemical Markup Language, backed by a controlled

vocabulary, has been rather successful in specifying most
aspects of chemistry, from small molecules and their con-
nectivity to polymers and crystal structures.
Unfortunately, while most elements of this specification

can be parsed out using one of the many XML libraries,
certain elements do not render themselves to facile inter-
pretation. Consider the sample CML specification of a
water molecule [...]. In order to identify the member
atoms in a given bond, it is necessary to carry out string
processing as an intermediate step. Further, while many
of the elements of CML are defined in a controlled voca-
bulary, the lack of explicit, consistent, and formal axio-
matization of the involved concepts gives rise to
difficulties in inferring connections between chemical

concepts where no such connections are stated explicitly,
something that is possible in formal ontology-backed
RDF-based information specifications. Although CML
specifications have been increasingly evolving to incorpo-
rate elements of the Semantic Web, the lack of wide-
spread adoption of the format, and the limited
availability of large-scale CML-based chemical knowl-
edge repositories, have somewhat limited CML-assisted
federation of the world of chemical data. Furthermore,
the implementation of coverage of additional chemical
concepts in most chemical representations requires a for-
mal, rigorous representation specification, complicating
the incorporation of data represented using domain-spe-
cific representation extensions. We believe that an ideal
chemical representation would require no specialized
wrapper or interpreter, would be generic such as to allow
for facile and conflict-free extensions, would be based on
a formal ontology, and would be encoded in a machine-
understandable (as opposed to simply machine-readable,
as in CML) manner and therefore facilitates automated
reasoning and data integration.
This article addresses these points and describes a sys-

tem we have built for managing explicit and implicit
semantics. It was initially developed during the Chem4-
Word (C4W) project [5] (which creates or edits CML
documents in a.NET/Word context) and which we have
now generalised to any CML deployment. In C4W we
agreed that a fundamental part of the design was that
the semantics could be verified. Any document input to
the system must be semantically valid so that the C4W
system would not break for invalid input. Essentially we
designed a contract between the importing system, and
the editing/display system.

* Correspondence: pm286@cam.ac.uk
Unilever Centre for Molecular Science Informatics, Department of Chemistry,
Lensfield Road, Cambridge, CB2 1EW, UK

Townsend and Murray-Rust Journal of Cheminformatics 2011, 3:39
http://www.jcheminf.com/content/3/1/39

© 2011 Townsend and Murray-Rust; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/42335995?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:pm286@cam.ac.uk
http://creativecommons.org/licenses/by/2.0


Rather than rewrite JUMBO [6] and other CML
libraries, we designed a set of rules for conformant
input documents and tools to process validation. These
tools (CML schema3 and CMLValidator) are platform-
independent and are reported in this article.

Semantics in CML
We agree with Dumontier’s analysis and in this article
show how our current approach to semantics in CML is
both achievable and largely compatible with his and
others’ [7,8] ideal chemical representations. As noted,
CML has a small, but important, set of elements (mole-
cule, atom, bond, crystal, spectrum and a few others)
where some semantics are implicit and the rules hard-
coded. This approach is pragmatic; translating the impli-
cit rules to formal semantics is a considerable effort and
makes it more difficult to write libraries to support
them.
However most CML concepts can be automatically

expressed in equivalent semantic form, e.g. using RDF
format [9] for the document and RDFSchema [10] or (if
appropriate) the OWL language to specify an ontology
[11] (see Figure 1) and managed with generic (non-che-
mical) semantic tools. The use of RDF in this manner is
advocated by e.g. the Bio2RDF project [12]. In particular
property and parameter can be completely represented
in RDF and we already use this extensively in Quixote

[13,14] and similar projects (where CML is imported as
RDF).
We have explored a full RDF implementation of CML

through ChemAxiom [15] (an OWL-compatible repre-
sentation of physical chemical properties) and we have
also explored full RDF in Open Bibliography [16]). Both
of these have shown that the entry overhead is high as
the tools are at an early stage. For example there is no
support for RDFSchema-based approaches in chemistry.
At this stage in chemical informatics, therefore, we feel
that CML as a mixture of explicit and implicit semantics
provides a useful infrastructure accessible to a large
number of implementers and users.

Implicit semantics
As a typical example of implicit semantics CML
schema2.4 requires the formalCharge on a molecule to
be consistent with the formalCharges on descendant
molecules and atoms. We can express this in pseudo-
code:

if (not molecule[@formalCharge]) then
molecule@formalCharge: = =
sum (./molecule@formalCharge *./molecule@-
count) +
sum (./atomArray/atom(@formalCharge * @occu-
pancy * @count))

Figure 1 A property represented in CML (top) and the equivalent RDF (bottom)-as used in the Quixote repository [47]. The dictionary is
referenced by compchem:hfenergy for which there must be an entry in an online dictionary. These are completely equivalent and can be
translated in both directions without semantic loss. (There are minor syntactic variants such as the capitalization varying systematically.) It is
always possible to generate RDF from CML; the reverse may not be possible for arbitrary RDF. The challenge is to create communally acceptable
dictionaries/ontologies-the syntax (CML or RDF) is immaterial.

Townsend and Murray-Rust Journal of Cheminformatics 2011, 3:39
http://www.jcheminf.com/content/3/1/39

Page 2 of 22



(If the formal charge (an integer) is missing on a
molecule, calculate it by recursively summing its descen-
dants. This is more complex in practice as we have to
apply semantics for atoms without formalCharge.)
CML has thousands of relationships like this, and they

are relatively straightforward to implement through pro-
cedural code (in libraries such as JUMBO, Chem4Word,
the Chemistry Development Kit (CDK) [17], Open Babel
[18]etc.). This article describes how their combination
with unit tests and other validation procedures creates
strong accessible semantics.

Choice of semantic system
It is commonly believed that the (perceived) ease of use
of a new technology will affect its adoption by commu-
nities [19]. A successful deployed system needs to have
the following interconnected components:

• Accessibility for humans
• Proven infrastructure
• Authoring tools
• Reading tools
• Editors
• Domain libraries
• Critical mass of content
• Agreed concepts and vocabularies
• Critical mass of users.

This requires a large investment to which we also
have to add Postel’s Law [20]: “be conservative in what
you send, liberal in what you accept” i.e. do extra imple-
mentation work to make it forgiving to use. However
we believe the investment in CML [44] has been suffi-
cient to make the semantic approach valuable and
tractable.
There seems to be a conservation law which trades

ease of implementation and deployment for semantic
power. At one of the spectrum is natural language (NL)
which is almost infinitely expressive. It relies on an
implicit fluid vocabulary and the burden on interpreta-
tion is almost completely on the accepter. Its flexibility
also generates ambiguity. At the other end are comple-
tely hardcoded unambiguous systems with very limited
scope (such as InChI [21]); this works because there is a
single global implementation of a canonical InChI gen-
erator. NL can transmit the concept of “boiling point”
because “everybody knows what a boiling point is";
InChI cannot represent the concept at all. To represent
“boiling point” formally, however, is by no means trivial-
we have to think about units, pressure, error estima-
tions, etc. Does boiling point apply to vapour- > liquid
transitions? There are thousands of similar chemical
concepts all of which must be formalized. There is no
escape from this labour.

CML trades full semantic representability for (relative)
ease of implementation together with clarity for humans.
CML takes a pragmatic view that a large number of che-
mical concepts are implicitly very well understood (most
were formulated 100+ years ago) and the semantics can
be hardcoded. This allows us to write software libraries
for analysing orbital energies, balancing reactions, find-
ing moments of inertia, etc. using the common repre-
sentation that CML provides.
Here we explore how CML, which represents a set

of basic chemical “nouns” (objects), can be combined
in flexible, yet rigorous ways. In particular it has to
be possible to write software systems that support
these developments. We do not set a priori con-
straints on how these nouns can be used, but we
require that these usages are documented and valida-
table, allowing us to write conformant software for
each usage.
CML deliberately does not attempt to represent rela-

tionships between objects leaving that to RDF; nor does
it represent processes (we are still searching for a good,
common, formulation). CML is designed to interoperate
with other markup languages (XHTML [22], MathML
[23], SVG [24], etc.) and is incorporated in some
approaches, e.g. BioPAX [25].
At the present time, therefore, CMLLite represents a

cost-effective system which can validate a wide range of
chemical documents.

Community requirements and CMLLite conventions
CML is now largely developed by communities who
build prototypes and provide feedback on how well they
work; CMLLite has been created and deployed in this
way (Table 1).
The greater flexibility introduced with CML schema3

allows users to create valid documents almost as they
want but requires a greater effort understanding for
both humans and machines to understand the docu-
ment. Here are typical community requirements:

• CMLSpect. “All spectra MUST contain x-data and
y-data”.
• CMLComp. “only the following CML elements are
allowed: module, molecule, atom, property,...” “bond
MUST NOT appear as it is not a QM concept”
• molecular (from the Chem4Word project). “a bond
MUST contain references to two distinct atoms, the
atoms MUST exist, and be in the same ancestor
molecule”.
• compchem (from Quixote). “a document MUST
have a list of jobs, and each job MUST describe
environment, initialization, calculation, and finaliza-
tion”. All molecules MUST obey the molecular
convention.

Townsend and Murray-Rust Journal of Cheminformatics 2011, 3:39
http://www.jcheminf.com/content/3/1/39

Page 3 of 22



• dictionary. “all entries MUST have a definition and
MAY have one description.”
• Unit-dictionary. “there SHOULD be a specific dic-
tionary for SI units and unitTypes.”

The terms are used as in the IETF’s RFC 2199 [29]:
“MUST”, “MUST NOT”, “REQUIRED”, “SHALL”,
“SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL”. This
approach is central to CMLLite.
These domains of chemistry think about chemistry

differently from each other; often this means a very
tight specification of rules in one particular area of
expertise and very little if any applied to the rest. The
loosening of the content model in schema3 allows users
to combine the elements and attributes as they need.
However, users still need to be able to specify a set of
rules (constraints) which model their particular domain.
The entire set of constraints which the CML should
conform to is called a convention. Every convention
requiring another recursively inherits (aggregates) the
requirements from that convention.
A convention should be the result of community

engagement and discussion reflecting historical practice
and experience. The social aspects of the process of
agreeing conventions are discussed in the companion
articles [13,30].
A convention is:

• A description to a human reader of the purpose of
the convention, its scope and its implementation. A
human MUST be able to hand-craft a compliant
document by reading the specification.
• A description to an implementer of exactly how
software SHOULD, MAY, MUST and MUST NOT
behave when given any possible input. For example
software validating a document purporting to be
compliant to a particular convention MUST raise an
error if it encounters a node defined in the conven-
tion but used incorrectly. If it encounters a node not
in the convention, its behaviour is undefined but the
default should be to inform the user.

• A statement of interest in a particular subset of
CML by a community.

The prime purpose of the convention is validation of
documents before transferring them to software. As a
result the software is more straightforward to implement
and test.

The Need for Validation
Validation of input documents is at the heart of the
CMLLite approach. There are two complementary
approaches to validation (see also Figure 2). Both com-
ponents (Schema and convention) are validators and are
normally run sequentially

• XSD Schema [31,32]. CML has used this for many
years. It works well for isolated elements and attri-
butes with uncomplicated child content. It breaks or
is inappropriate for several chemical concepts, com-
plicated content and relationships. In this article we
report schema3 where many of the broken and
inflexible constraints have been removed. Note that
all CML documents now should validate against
schema3.
• Conventions. These add power to schema3 and
allow many complicated concepts to be represented
(in XSLT [33]/XPath [34]).

These components are now described in more detail.

CML Schemas-Evolution to schema3
In themselves, schema constraints can provide little che-
mical validation but provide good support for other sim-
ple concepts (e.g. numeric, date, and containers) and are
the platform on which further constraints are built.
Content Models
Schema2.4 introduced flexibility through more relaxed
content models than previous incarnations (an unor-
dered child set with no enforced cardinality), and re-
usable attributes. Schema3 has even more flexible con-
tent (effectively “any” for most elements) and much of
the burden of validation has been devolved to

Table 1 Current communities in CML

Convention requires status Notes

unitType complete “standard” for all CML unitTypes

unit unitType complete “standard” for all CML units

Dictionary unit complete “standard” for all CML dictionaries

Molecular dictionary beta “simple” molecules without properties or spectra

Compchem molecular alpha Computational chemistry, especially for Quixote

CMLComp [26] implicit solid-state software

CMLSpect [27] implicit Spectra consistent with JSpecView [28]

Note: CMLComp and CMLSpect formulated a set of rules but do not have explicit CMLLite validators.

Townsend and Murray-Rust Journal of Cheminformatics 2011, 3:39
http://www.jcheminf.com/content/3/1/39

Page 4 of 22



conventions. Specific issues are described below (and are
also addressed in the CML retrospective paper). The
move away from the ‘one-size-fits-all’ model imposed by
schema2.4 to a more modular, flexible approach, with
supporting tools for implementation, has been driven by
challenges in the general areas listed below in approxi-
mate order of importance:

• Content Model (what elements are allowed as
children of which elements). Schema3 explicitly
removes as much of the content model as possible.
• Attribute names and attributeGroups. Schema2.4
allowed attributes to be defined independently of
elements. For maintenance purposes each attribute
was defined in its own attributeGroup. Unfortunately
some attributes used polymorphic names (e.g. “type”)
and were not re-locatable. The desire to maintain
backward compatibility with the majority of existing
software means that we were unable to redesign the
attribute names..

• Union of enumerated values. Some attributes
(and string content) used the XSD union approach
to express both controlled (enumerated) and uncon-
trolled vocabulary. Here enumerated values are of
one data type whilst the UNIONed value is of a dif-
ferent type, and has to be processed differently. The
CMLLite approach restricts attribute values to a sin-
gle data type, and uses the dictionary (dictRef)
mechanism to provide additional information as
required.
• Mixed content (text and element children). This
was used to support free text but is technically chal-
lenging and we are deprecating its use in favour of
(say) XHTML constructs.
• Aliases (e.g. ‘1’ and ‘S’ for the order of single
bonds). These cause a huge overhead in software,
are deprecated, and will trigger warnings when the
CML is validated against the validation service
based on schema3. Normalisation is advised at this
stage.

Figure 2 (a) historical approach to CML processing. Software was expected to perform a wide variety of tasks including validation and
transformations (processing). (b) the CMLLite approach: each module performs only one task i.e. validation, normalisation or transformation
(processing). This makes each of the modules more straightforward to understand and produces cleaner code.

Townsend and Murray-Rust Journal of Cheminformatics 2011, 3:39
http://www.jcheminf.com/content/3/1/39

Page 5 of 22



CML has grown to have a collection of approximately
100 elements and approximately 100 attributes. Most of
these are in common use, but there are very few docu-
ments which use more than about 20 elements and 20
attributes at a time. For example a solid-state calculation
has relatively little in common with the textual report of
a chemical synthesis. Most elements in CML can be
used independently of most other elements and
schema3 explicitly supports this. For example a spec-
trum might occur with a molecule, with a crystal struc-
ture or with a computational chemistry output. Some
elements have a more restricted use, for example bonds
and atoms normally only occur within the context of a
molecule. Attributes are more varied, in that some are
specific to particular elements (e.g. atomRefs2 normally
only occurs on the bond elements) while others are very
generic (e.g. title, id, dictRef). The CML schema deter-
mines some of the pattern of attribute occurrence, but
leaves others up to the individual conventions.
Almost all changes are backward-compatible as

schema3 is more forgiving than schema2.4; a few ele-
ments contained mixed content and have been obso-
leted (annotation, appinfo, documentation, relatedEntry).
Attributes
Attributes define string values and can constrain syntax,
dataTypes, lists and other constructs. In schema2.4
many attributes had data types defined by a union of
enumerations and a “namespaceRef” pattern (effectively
a QName). This has now been relaxed to the enumera-
tion with the addition of “other”. Constraints are then
added with XPath/XSLT rules. The polymorphism of
attributes with names such as type (Appendix A) has
not yet been addressed. In schema3 attributes are used
in the same way as in schema2.4 and rely on additional
constraints added through conventions. Elements with
text-only content (scalar, array, matrix) are polymorphic
(e.g. can be numeric, string, date) and are not supported
well by schema constraints.

Conventions
A convention specifies and can enforce the relationships
between schema components and consists of (often a
large number of) statements (rules) that can be under-
stood by humans and enforced by machines. The choice
of language for implementation is in principle, arbitrary.
We initially used the Schematron [35,36] approach but
have since moved to XSLT making heavy use of XPath,
an extremely expressive language. XSLT has the advan-
tage that it is implemented in all major languages and
highly portable.
CMLLite has to support documents in a rigorous

manner whilst accepting that these could come from a
variety of sources and describe a wide range of possible
chemical concepts. Therefore any CML element in the

schema should be allowed, but would not by default
have specific constraints. Any foreign XML elements
would also be allowed and again would not have any
specific constraints.

• An element can have text-only or element-only
content (which may be empty, but there are no spe-
cifically empty models). For elements described in a
defined convention constraints may apply. There are
no restrictions on the order of elements in most
content models.
• A document MAY contain more than one conven-
tion. Conventions are allowed to mandate other
conventions.
• An element not specifically mentioned in a con-
vention is effectively ignored by any tools that pro-
cess after validation has succeeded (i.e. treated as
any other foreign element), but is not removed from
the document.
• Attribute data types are validated by their con-
straints in the CML schema but further constraints
including e.g. required/forbidden, scoping of unique-
ness and co-occurrence MAY be specified by con-
ventions. These may restrict, but not alter the
schema3 interpretation.

The interpretation of an element should not normally
be affected by a convention. It constrains inputs and
outputs but not the meaning of concepts. For example
the atom/@x3 attribute always defines Cartesian coordi-
nates, and in a right-handed system. A convention can
insist that they do or do not exist, that other nodes
must or must not exist, but it cannot change the pri-
mary semantics.

Methodology of Validation
Validation-driven Development
Our approach to validation is strongly informed by test-
driven development (TDD), a well-used methodology
for building modern software systems [37]. The schema
and the validator have been built by creating tests and
refining the schema and software such that the tests
produce conformant behaviour. To illustrate the philo-
sophy of TDD, we show a typical unit test before
describing the construction of the validator. There are
thousands of unit tests using CML in JUMBO, JUMBO-
Converters [38], Bioclipse [39], CDK, Open Babel, etc.).

A typical example of TDD
The following XML and Java snippets define the seman-
tics of moleculeTool.getAverageBondLength() using the
JUnit [40] framework:

<molecule id = ‘mol5’>

Townsend and Murray-Rust Journal of Cheminformatics 2011, 3:39
http://www.jcheminf.com/content/3/1/39

Page 6 of 22



<atomArray>
<atom id = ‘a1’ elementType = ‘C’ x3 = ‘0.0’
y3 = ‘0.0’ z3 = ‘0.0’/>
<atom id = ‘a2’ elementType = ‘N’ x3 = ‘0.0’
y3 = ‘1.3’ z3 = ‘0.0’/>
<atom id = ‘a3’ elementType = ‘O’ x3 = ‘1.0’
y3 = ‘2.2’ z3 = ‘0.0’/>
<atom id = ‘a4’ elementType = ‘H’ x3 = ‘0.85’
y3 = ‘-0.54’ z3 = ‘0.5’/>
<atom id = ‘a5’ elementType = ‘H’ x3 =
‘-0.85’ y3 = ‘-0.54’ z3 = ‘0.5’/>

</atomArray>
</molecule>

The function is described in words (in this case the
method name is sufficient) and we implement a test
which runs the code against an expected valid output:

@Test
public void testGetAverageBondLength() {

molTool5.calculateBondedAtoms();
Assert.assertEquals("average length”, 1.2235,

molTool5.getAverageBondLength(Coordinate-
Type.CARTESIAN),.0001);

}

This test passes the assertEquals statement if it can
calculate the averageBondLength and also if the result is
equal to the expected values within a given tolerance
(0.0001). The test gives an example of conformant input
and besides being a useful pedagogic and reference
document it also implicitly defines semantics ("an aver-
age bond length calculation requires all atoms to have
3-D coordinates; these can be supplied as x3/y3/z3”).

General aspects of TDD
Test-driven development not only provide a method for
verifying the behaviour of existing software-it also pro-
vides examples of typical use cases for anyone using
CML. Note that unit tests provide implicit rather than
explicit semantics-we can define any number of valid
input and the outputs required for these, but the actual
transformation can be performed by any means.

Schemas and CMLValidator
Schemas and conventions are systems to validate docu-
ments (validators). The basic strategy used throughout
the validator design process is to create documents to
test them (validatorTests). The choice of tests is critical-
ideally the implementer should think of every possible
distinct case, but in practice this is reduced to generic
cases. It is important to generate broken documents as
well as valid ones, and this is often surprisingly difficult.
In practice edge cases crop up unexpectedly in large

corpora and these must then be added to the valida-
torTests. Appendix B shows the effort required to create
tests for even a simple convention.
Once the validatorTests are created the convention or

schema is then coded. In line with test-driven develop-
ment this starts with the tests failing (deliberately) as
there is no code. The validator is then coded until it
passes the tests. Frequently during this process the
author will gain insight and inspiration and refine the
validatorTests.

A schema3 validatorTest
As an example of how to test schema3 we take the defi-
nition of molecule in schema3 (Figure 3).
This is read as:

A molecule can have zero (minOccurs = 0) or many
(maxOccurs = unbounded) child elements in any
order; it has no mixed content. The children can be
any CML elements ("anyCml”), any elements with a
foreign namespace (#other or #local (default name-
space when not CML)). All the elements in the CML
namespace are part of the anyCml substitution
group.

There are currently ca. 300 validatorTests (which test
both schema and conventions) and we show examples
that can validate the schema snippet for molecule. Each
validatorTest is run against the schema, which only
emits messages for invalid constructs.

(i)
<cml:molecule xmlns:cml = “http://www.xml-cml.
org/schema“>

<element-in-default-namespace>
This is fine. The null prefix is not bound
to anything and therefore is associated with
the default namespace

</element-in-default-namespace>
</cml:molecule>

This is valid because the null prefix is not explicitly
bound to anything and therefore associated with the
default namespace and the CML namespace is bound to
the cml prefix. This construct is permitted because of
the xsd:any namespace = ‘##local’ in the schema.

(ii)
<molecule xmlns = “http://www.xml-cml.org/schema
“xmlns:other = “http://www.example.net“>

<other:foreign-element>
This is fine. The null prefix is bound to the
CML namespace and the “other” prefix
is bound to a non-CML namespace

Townsend and Murray-Rust Journal of Cheminformatics 2011, 3:39
http://www.jcheminf.com/content/3/1/39

Page 7 of 22

http://www.xml-cml.org/schema
http://www.xml-cml.org/schema
http://www.xml-cml.org/schema
http://www.example.net


</other:foreign-element>
</molecule>

This document is valid because the null prefix is bound
to the CML namespace and the other prefix is bound to a
non-CML namespace. This construct is permitted because
of the xsd:any namespace = ‘##other’ in the schema.

(iii)
<molecule xmlns = “http://www.xml-cml.org/
schema“>

<non-cml-element>
This is invalid. The null prefix is bound
to the CML namespace and the element
“non-cml-element” is not part of this

</non-cml-element>
</molecule>

This document is not valid because the null prefix is
bound to the CML namespace and the element non-
cml-element does not appear in the schema which
defines CML.

(iv)
<cml:molecule xmlns:cml = “http://www.xml-cml.
org/schema“>

<cml:non-cml-element>
This is invalid. The cml prefix is bound
to the CML namespace and the element
“non-cml-element” does not form part of this

</cml:non-cml-element>
</cml:molecule>

This document is not valid because the cml prefix is
bound to the CML namespace and the element non-
cml-element does not appear in the schema which
defines CML.

CMLValidator report language
Because we have taken a unit-test-based approach the
initial design of our convention verification software used

Schematron, an ISO Standard for testing assertions about
the structure of XML documents. After initial testing we
found that Schematron scaled poorly with the complexity
of the rules and was difficult to debug. We also desired a
report language that could better support partial valida-
tion required to reflect the MUST, SHOULD, MAY
approach to defining rules adopted by CMLLite.
The validating rules are now expressed directly as

XSLT which gives greater flexibility and control struc-
ture. To support the MUST, SHOULD, MAY style of
rules we have developed a small report language (Figure
4) to indicate the different levels of severity.
Figure 5 shows how we use XSLT to encode a typical

rule in the molecular convention:

• An atom must have an id attribute.
• The value of the id of an atom must be unique
within the eldest containing molecule.

The XPath expression

count(ancestor::cml:molecule//cml:atom[@id = cur-
rent()/@id] > 1)

can be decomposed into a set of steps which define a
set of elements to query over and the query itself:

• ancestor::cml:molecule selects any molecule ele-
ment of which the current atom is a descendent
(child, grandchild etc.).
•//cml:atom then selects every single atom element
that is a descendent of any of the set of molecules.
Note that this must by definition include the original
atom.
• [@id = current()/@id] restricts the set of atoms to
only include those that have an id that is identical to
the original atom (matched in the template).
• The count(...) > 1 expression forms the query and
evaluates the number of atoms left in the set. If this
is greater than 1 then multiple atoms in the same
ancestor molecule have the same id.

Figure 3 A snippet from schema3 showing the typical relaxed content model of the molecule element container.

Townsend and Murray-Rust Journal of Cheminformatics 2011, 3:39
http://www.jcheminf.com/content/3/1/39

Page 8 of 22

http://www.xml-cml.org/schema
http://www.xml-cml.org/schema
http://www.xml-cml.org/schema
http://www.xml-cml.org/schema


Figure 4 An outline of the CML report language. If a test (e.g. well-formed-test or URIs-reachable-test) contains a valid element child then it
MUST NOT contain any warning or error element children. There is no such restriction on info elements and these may occur for input
documents that otherwise conform completely to the convention.

Figure 5 Example rules expressed in XSLT: an atom must have an id attribute and the value of the id must be unique among the ids
of all the atoms in the eldest containing parent molecule. The cml prefix is bound to http://www.xml-cml.org/schema and the report prefix
is bound to http://www.xml-cml.org/report/. The error reporting has been simplified for clarity (the location attribute is omitted).

Townsend and Murray-Rust Journal of Cheminformatics 2011, 3:39
http://www.jcheminf.com/content/3/1/39

Page 9 of 22

http://www.xml-cml.org/schema
http://www.xml-cml.org/report/


The conventions in CMLLite have built-in rules which
are generally not explicitly stated in the specification of
conventions:

• A convention is applied through an element carry-
ing the convention attribute. The convention applies
to that element and all its descendants.
• The value of the convention attribute MUST be a
QName that expands to the URI identifying the con-
vention to be applied.
• A convention can require other conventions which
must be explicitly specified on appropriate elements.
• If no conventions are declared a warning is issued.

We do not intend conventions to replace the CML
schema and they are not a general schema language.
CMLValidator uses normal XSLT processing rules but

makes special use of the mode attribute to allow valida-
tion of different conventions within the same document.
< apply-templates mode = “mode-name“ > limits subse-
quent validation to templates with mode = “mode-
name”. An apply-templates call without a mode will
only call those templates without a mode (i.e. not gov-
erned by a convention in the document).

An example-simpleUnit
The current conventions contain many hundreds of vali-
datorTest and to illustrate them we create a very simple
sub-convention: simpleUnit. There is already a mature
convention for units using the schema3 elements unit-
List and unit. (Schema3 also defines a variety of attri-
butes on unit which are still relevant but as they have
default schema3 semantics they do not need explicit
redefinition.) simpleUnit explores a small portion of this.

The ruleset
1 The simpleUnit convention is specified with the
http://www.xml-cml.org/convention/simpleUnit
namespace.
2 The simpleUnit convention MUST be specified on
a cml:unitList element using the convention
attribute.
3 A cml:unitList element MUST contain at least one
cml:unit child element.
4 A cml:unitList element MAY contain other child
elements from the CML namespace or from foreign
namespaces.

There are no constraints on where in a document the
unitList element may appear.

ValidatorTest
We start by creating an exhaustive set of tests against
which the validator will be developed. These tests

(Appendix B) are independent of the actual implementa-
tion of the validator. We can be confident that any vali-
dator that passes all these tests is likely to be useful in
determining whether any of a wide range of documents
is valid or invalid against the simpleUnit convention.

Validator
Figure 6 shows the XSLT required to encode the ruleset
of the simpleUnit convention.
We now address the purpose of each of the templates

in the validator in detail.
Template 1: creates the root report:result element
Template 2: match = “*|@*|text()” matches any ele-

ment, attribute or text node when not in simpleUnit
mode. The match expressions for the three node types
are the most general possible and will therefore be over-
ridden by any more specific matches. This template
takes no action but allows recursive traversal to find ele-
ments covered by the simpleUnit conventions arbitrarily
deep in the input document.
Template 3: carries out the same operations as tem-

plate 2 but only when in simpleUnit mode. Non-CML
elements may be interspersed with CML in the text
document and will not cause the validator to emit
warnings.
Template 4: Only elements from the cml namespace

will be matched; the element MUST have a convention
attribute, with namespace http://www.xml-cml.org/con-
vention/ and the local name simpleUnit. The schema
enforces that the value of the convention attribute must
be a namespaceRefType.
If the element matched is cml:unitList this triggers

mode = “simpleUnit” which remains in scope for all
descendants.
If the element matched is not cml:unitList the valida-

tor informs the users that it is an error to specify the
simpleUnit convention and apply-templates is called but
not in simpleUnit mode.
Template 5: matches any cml:unitList element. If this

does not have at least one cml:unit child element then
an error is reported. Any child nodes are then processed
in simpleUnit mode.
Template 6: matches any cml:unit element in sim-

pleUnit mode. XSLT rules dictate that it has higher
priority than template 7.
Template 7: matches any element from the CML

namespace in simpleUnit mode. The match is more
specific than template 3 but less specific than tem-
plates 4, 5 and 6. This will therefore catch any CML
namespaced elements other than unitList and unit.
The elements matched by this template are covered by
rule 4-they are allowed but they are not really part of
the convention, hence the output contains information
to this effect.

Townsend and Murray-Rust Journal of Cheminformatics 2011, 3:39
http://www.jcheminf.com/content/3/1/39

Page 10 of 22

http://www.xml-cml.org/convention/simpleUnit
http://www.xml-cml.org/convention/
http://www.xml-cml.org/convention/


This template is primarily for information, not errors-
it is therefore appropriate to warn when CML elements
might be ignored. Note that the presence of report:info
elements in the report document does not mean that
the input document is invalid.

Interaction and extension of conventions
Conventions are generally designed so that they can be
mixed in a document, typically as discrete sections of a
document (i.e. they do not overlap (instance 2 in Figure
7)). Thus the CMLSpect convention does not involve

Figure 6 the XSLT for the simpleUnit convention-the error reporting has been simplified for clarity.

Townsend and Murray-Rust Journal of Cheminformatics 2011, 3:39
http://www.jcheminf.com/content/3/1/39

Page 11 of 22



molecular, and molecular does not involve CMLSpect.
The CMLValidator will engage the appropriate modes
when processing each convention.
It is sometimes desirable to nest conventions (a sub-

tree with one convention being found completely within
a larger tree with a different convention-e.g. instances 3
and 4 in Figure 7). We use this approach in the current
CMLLite conventions (Table 1) which may (recursively)
validate subtrees labelled as having known conventions.
The rules for nesting are under community review and
Figure 7 shows the currently allowed interaction of

conventions. The scope of a convention is thus similar
to that of a namespace in that it “extends from the
beginning of the start-tag in which it appears to the end
of the corresponding end-tag” [41].
Some of the specifications from the molecular conven-

tion http://www.xml-cml.org/convention/molecular are
given below;

• A molecule MUST contain at least one of the fol-
lowing elements: molecule, atomArray, name, label,
formula.

Figure 7 Documents with multiple conventions. The black lines represents the XML tree (DOM) and are shadowed by constraints imposed by
conventions A (blue) and B (red).

Townsend and Murray-Rust Journal of Cheminformatics 2011, 3:39
http://www.jcheminf.com/content/3/1/39

Page 12 of 22

http://www.xml-cml.org/convention/molecular


• A molecule MUST NOT contain both a child
molecule and a child atomArray.
• An atomArray MUST contain at least one atom.
• A molecule MAY contain zero or one bondArray
children and a bondArray MUST contain at least
one bond.
• Every atom MUST have an id which is unique
within the eldest containing parent molecule.
• If an atom has an x3 coordinate it MUST also have
y3 and z3 (and similarly if y3 or z3 are present).

The compchem convention http://www.xml-cml.org/
convention/compchem has been developed as part of
the Quixote project. It requires that the initialization
module contains exactly one molecule and that all the
atoms in this molecule MUST have three dimensional
coordinates. Rather than create a new convention for
molecules it was decided that these requirements were
compatible with the molecular convention but required
a tightening of some constraints.
Some of the rules from the compchem convention are

shown below:

• There MUST be an initialization module which is
a module element with a specific value of its dictRef
attribute (cml:module/@dictRef = ‘compchem:initia-
lization’ where the compchem prefix is bound to
http://xml-cml.org/dictionary/compchem/).
• The initialization module MUST contain exactly
one molecule.
• molecules MUST declare that they conform to the
molecular convention by declaring this in the con-
vention attribute (cml:molecule/@convention = ‘con-
ventions:molecular’ where the conventions prefix is
bound to http://www.xml-cml.org/convention/).
• The molecule in the initialization module is
REQUIRED to have an atomArray child.
• All the atoms in the molecule in the initialization
module MUST have three dimensional coordinates.

Figure 8 shows the part of the XSLT that will
enforce the requirements on the molecule in the initia-
lization module described above. The first template
tests that there is only a single molecule child of the
initialization module and that the molecule must spe-
cify the molecular convention. The existence of this
convention statement will trigger the CMLValidator to
apply the relevant rules to the molecule and its des-
cendant nodes.
The second template is in a separate mode (test-

atoms-have-3d-coordinates) and tests that an atomArray
is present and that all the child atoms of this have 3D
coordinates. Note that we do not need to check whether
or not the molecule has child molecules or other

atomArray children because this will be done by the
molecular convention.

Validation Service
Following the W3C validation tools [42] (specifically
Unicorn [43]), we have created the CML validation ser-
vice [44]. The validator is available in the following
forms: an interactive form-based [45] webpage, a REST-
ful [46] web service and as a Java library.
The Java library is the same as the backend engine for

the web-based services. The program consists of valida-
tor classes, an overall workflow control class and a Vali-
dationReport class. The validation report class
encapsulates both an XML document containing infor-
mation about which tests have passed, failed or caused
warnings and a ValidationResult property. The Valida-
tionResult can be VALID, VALID_WITH_WARNINGS
or INVALID.
The checks performed by the validator are shown

below in order of application. If a particular check
results in an INVALID ValidationResult no further pro-
cessing is performed and the ValidationReport is created
and returned.

1. It is well-formed XML. The control class can
takes as input either an InputStream or a nu.xom.
Document (xomDoc) and produces a ValidationRe-
port. If input is an InputStream the program checks
that it is well-formed XML (this is not necessary for
a xomDoc as it is necessarily well-formed). A xom-
Doc is built from the InputStream and further pro-
cessing is identical regardless of input format.
2. The xomDoc conforms to the CML schema3.
3. Deprecated constructs are not used. The use of
deprecated constructs will give a VALID_-
WITH_WARNINGS result.
4. Any conventions specified in the document are
obeyed.
5. All the prefixes used in namespaceRefTypes
(effectively QNames) have been bound to name-
spaces and are resolvable URLs.

The final check has been put in place as a reminder to
users that sharing information is preferable and they can
only “code to the green bar” [37] by making their dic-
tionaries and conventions etc. publicly available. The
workflow is shown in Figure 9 and 10.
The RESTful webservice implementation is accessed

by POSTing the XML/CML document to http://valida-
tor.xml-cml.org/validate which returns a ValidationRe-
port. This must then be queried by the user to
determine whether the overall validation resulted in
VALID, VALID_WITH_WARNINGS or INVALID.
Informal feedback from users indicated that it was more

Townsend and Murray-Rust Journal of Cheminformatics 2011, 3:39
http://www.jcheminf.com/content/3/1/39

Page 13 of 22

http://www.xml-cml.org/convention/compchem
http://www.xml-cml.org/convention/compchem
http://xml-cml.org/dictionary/compchem/
http://www.xml-cml.org/convention/
http://validator.xml-cml.org/validate
http://validator.xml-cml.org/validate


useful to send the complete ValidationReport rather
than just a ValidationResult as feedback as this would
allow the calling tool to do more.
The website is effectively an instance of a tool that

uses the RESTful implementation to do the actual vali-
dation but then interprets the results and displays them
in the most human-user friendly fashion. Figures 11, 12
and 13 show the interactive form-based service in use.

Conclusions
We have developed an approach to extensible semantics
for Chemical Markup Language, where we assume that
the current schema (schema3) is stable and expressive.
There is enough software and data that this approach
has been widely deployed and tested, even if it is not yet
mainstream. Semantics are defined in the XSD schema,
with additional natural language and validated using a

Figure 8 A snippet showing how the compchem convention can rely on the molecular convention and add further restrictions.

Townsend and Murray-Rust Journal of Cheminformatics 2011, 3:39
http://www.jcheminf.com/content/3/1/39

Page 14 of 22



unit test approach (Java and .NET). It works in the main
fields of chemistry for which CML has been developed
(molecules, reactions/syntheses, crystallography/solid-
state, spectroscopy and computational chemistry). The
approach encourages sub-communities in chemistry to
create conventions which can be as rigid or fluid as they
wish. The conventions can be rigorously unit tested
using CMLValidator.
The convention-based approach is intermediate

between natural language and formal systems. It relies,
in part, on the wider community agreeing the semantics
in schema3 (in several years deployment we have not
yet had any disagreement with the basic elements and
attributes and unit-tested examples). Sub-communities
are starting to build their extensions of which the comp-
chem convention being developed by the Quixote pro-
ject is a prime example.
We believe the convention-based approach will help

developers to create better software quicker. The tests/
conventions define clear, testable APIs and these are
essential for any distributed development.
The system interoperates fully with RDF-based sys-

tems. Many elements (especially value containers) can
be algorithmically translated to RDF. A few core ele-
ments (primarily molecule, spectra, crystal) can be held
in a more atomic form with bespoke semantics and soft-
ware (it is, however, always possible to map into the
details of these using URIs and to provide fine-grained
links). By using this mixture of approaches we believe

this is a cost-effective approach to interoperability
within chemistry for those who wish to interoperate.

Availability of Code
The CMLValidator and associated tests are available at
http://bitbucket.org/cml/cmllite-validator-code and the
web-based implementation is available at http://bit-
bucket.org/cml/cmllite-validator-ws both under an
Apache 2.0 licence.

Appendix A
The attributes in CML are defined in attributeGroups
which must have unique names allowing them to be dis-
ambiguated within the schema. The attributeGroup
defines an attribute, its datatype/allowed values, and the
name of the attribute in the document (these do not
have to be unique).
Element declarations in the schema specify which

attributeGroups are allowed on them (which in this case
caused polymorphism).
Table 2 shows all the attributes in CML schema3 that

appear in the document as type. Values in “quotes” are
enumerated allowed values, xsd:string means that any
string content is permitted.

Appendix B
The documents below are a subset of the documents
used to test the behaviour of the simpleUnit convention
validator. After every alteration (new test, bug fix etc.) of

Figure 9 Workflow of validation in the CMLValidator.

Townsend and Murray-Rust Journal of Cheminformatics 2011, 3:39
http://www.jcheminf.com/content/3/1/39

Page 15 of 22

http://bitbucket.org/cml/cmllite-validator-code
http://bitbucket.org/cml/cmllite-validator-ws
http://bitbucket.org/cml/cmllite-validator-ws


Figure 10 The CMLValidator webform interface. The input claims that it should conform to the unit-dictionary convention but unit 1 does
not have an id attribute.

Figure 11 Part of the CMLValidator results page showing that the input (in Figure 10) was invalid. The report contains a human-
understandable message and an XPath (machine-understandable) expression giving the location of the error.

Townsend and Murray-Rust Journal of Cheminformatics 2011, 3:39
http://www.jcheminf.com/content/3/1/39

Page 16 of 22



the convention, the validator is run against this test set
to verify that its behaviour still conforms to
expectations.
In all the examples below the cml prefix is bound to

http://www.xml-cml.org/schema and the conventions
prefix is bound to http://www.xml-cml.org/convention/.

Documents Valid Against the simpleUnit Convention
The input documents below should all result in a Vali-
dationResult of VALID and the ValidationReport
MUST NOT contain info elements. The tests in this
section are primarily concerned with ensuring that the
convention is recognised wherever it appears in a
document and that non-CML elements do not give
rise to info reports.
(i)

<cml:unitList convention = “conventions:
simpleUnit">

<cml:unit/>
</cml:unitList>

This produces the following ValidationReport:

<report xmlns = “http://www.xml-cml.org/report/“>
<well-formed-test>

<valid >xml is well formed</valid>
</well-formed-test>

<schema-validation-test>
<valid>document conforms to the schema</
valid>

</schema-validation-test>
<convention-validation-test>

<valid>document conforms to all the conven-
tions specified</valid>

</convention-validation-test>
<uris-reachable-test>

<valid>All appropriate URIs were reachable</
valid>

<valid>all dictRefs are resolvable </valid>
</uris-reachable-test>

</report>

The subsequent inputs produce exactly the same
report and we therefore choose to explain what the
document is testing for rather than show the output.
(ii)

<x:p xmlns:x = “http://www.w3.org/1999/xhtml“>
<cml:unitList convention = “conventions:
simpleUnit">

<cml:unit/>
</cml:unitList>

</x:p>

Tests that simpleUnit convention can be declared on a

Figure 12 Part of the CMLValidator results page showing that the input is valid but has warnings i.e. the convention states that the
dictionary element SHOULD have a title but none was found in the document. The warning gives a human-understandable message and an
XPath (machine-understandable) expression giving the location of the warning.

Figure 13 Part of the CMLValidator results page showing that the document is valid and which checks have been performed. Further
information is also given because the input document contained a molecule element (which is not part of the unit-dictionary convention).

Townsend and Murray-Rust Journal of Cheminformatics 2011, 3:39
http://www.jcheminf.com/content/3/1/39

Page 17 of 22

http://www.xml-cml.org/schema
http://www.xml-cml.org/convention/.
http://www.xml-cml.org/report/
http://www.w3.org/1999/xhtml


unitList that is not the root element of the document
and is a child of a foreign namespaced element.
(iii)

<cml:module>
<cml:unitList convention = “conventions:
simpleUnit">

<cml:unit/>
</cml:unitList>

</cml:module>

The simpleUnit convention can be declared on a unit-
List that is not the root element of the document and is
a child of a CML element (module).
(iv)

<element-in-default-namespace>
<cml:unitList convention = “conventions:
simpleUnit">

<cml:unit/>
</cml:unitList>

</element-in-default-namespace>

Tests that simpleUnit convention can be declared on a
unitList that is not the root element of the document
and is a child of an element from the default-
namespace.
(v)

<x:p xmlns:x = “http://www.w3.org/1999/xhtml“>
the unitList need not be the root element
<cml:unitList convention = “conventions:
simpleUnit">

<cml:unit/>
</cml:unitList>

</x:p>

Test that although CML does not have a mixed con-
tent model the unitList can occur within non-CML
mixed content.

(vi)

<x:p xmlns:x = “http://www.w3.org/1999/xhtml“>
there are multiple instances of the simpleUnit
convention in this document
<cml:unitList convention = “conventions:
simpleUnit">

<cml:unit/>
</cml:unitList>
<cml:unitList convention = “conventions:
simpleUnit">

<cml:unit/>
</cml:unitList>

</x:p>

Test that there can be multiple disjoint simpleUnit
convention declarations in the same document.
(vii)

<cml:unitList convention = “conventions:
simpleUnit">

<cml:unit/>
<x:p xmlns:x = “http://www.w3.org/1999/xhtml“>

non cml child-this is fine
</x:p>

</cml:unitList>

Tests that the unitList element can contain foreign
namespaced elements without giving rise to info reports.
(viii)

<cml:unitList convention = “conventions:
simpleUnit">

<element-in-default-namespace/>
<cml:unit/>

</cml:unitList>

Tests that the unitList element can contain elements
from the default namespace without giving rise to info
reports.

Table 2 All the attributes in CML schema3 that appear in the document as type.

Attribute Group
name

On element Allowed values

cellParameterType cellParameter “length” “angle”

peakStructureType peakStructure “coupling” “splitting” “other”

reactionStepList reactionStepList “unknown” “consecutive” “choice” “simultaneous” “other”

reactionType reaction, reactionScheme “chainReaction” “initiation” “termination” “reversible”
“other”

spectrumType spectrum “infrared” “massSpectrum” “NMR” “UV/VIS” “other”

substanceListType substanceList “solution” “mixture” “other”

Type action, actionList, eigen, list, object, observation, particle,
substance

xsd:string

Townsend and Murray-Rust Journal of Cheminformatics 2011, 3:39
http://www.jcheminf.com/content/3/1/39

Page 18 of 22

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml


(ix)

<cml:unitList convention = “conventions:
simpleUnit">

<cml:unit>
<x:p xmlns:x = “http://www.w3.org/1999/
xhtml“>
non cml child-this is fine
</x:p>

</cml:unit>
</cml:unitList>

Tests that the unit element can contain foreign name-
spaced elements without giving rise to info reports.
(x)

<cml:unitList convention = “conventions:
simpleUnit">

<cml:unit>
<element-in-default-namespace/>

</cml:unit>
</cml:unitList>

Tests that the unit element can contain elements from
the default namespace without giving rise to info
reports.
(xi)

<cml:unitList convention = “conventions:
simpleUnit">

<cml:unit/>
<cml:unit>

<x:p xmlns:x = “http://www.w3.org/1999/
xhtml“>
multiple cml:unit elements are allowed
</x:p>

</cml:unit>
</cml:unitList>

Tests that a unitList may contain more than one unit
child.

Documents Valid (with info reports) Against the
simpleUnit Convention
The input documents below should all result in a Vali-
dationResult of VALID and the ValidationReport
should contain a single info element and MUST NOT
contain either error or warning elements. info elements
are used to give information about rules in a conven-
tion involving the MAY clause. Note that the complete
ValidationReport is given for the first example but sub-
sequent examples only contain the error message for
brevity.

(i)

<cml:unitList convention = “conventions:
simpleUnit">

<cml:unit/>
<cml:molecule/>

</cml:unitList>

Produces:

<report xmlns = “http://www.xml-cml.org/report/“>
<well-formed-test>

<valid > xml is well formed </valid>
</well-formed-test>
<schema-validation-test>

<valid > document conforms to the schema
</valid>

</schema-validation-test>
<convention-validation-test>

<info location = “/*[local-name() = ‘unitList’
and namespace-uri() = ‘http://www.xml-cml.
org/schema’] [1]/*[local-name() = ‘molecule’
and namespace-uri() = ‘http://www.xml-cml.
org/schema’] [1]“>
molecule is not a part of the http://www.xml-
cml.org/convention/simpleUnit convention
and may be ignored by some processors.
</info>
<valid>
document conforms to all the conventions
specified
</valid>

</convention-validation-test>
<uris-reachable-test>

<valid > All appropriate URIs were reachable
</valid>
<valid > all dictRefs are resolvable </valid>

</uris-reachable-test>
</report>

(ii)

<cml:unitList convention = “conventions:
simpleUnit">

<cml:unit>
<cml:atom/>

</cml:unit>
</cml:unitList>

Produces: “atom is not a part of the http://www.xml-
cml.org/convention/simpleUnit convention and may be
ignored by some processors”
(iii)

Townsend and Murray-Rust Journal of Cheminformatics 2011, 3:39
http://www.jcheminf.com/content/3/1/39

Page 19 of 22

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.xml-cml.org/report/
http://www.xml-cml.org/schema�
http://www.xml-cml.org/schema�
http://www.xml-cml.org/schema
http://www.xml-cml.org/schema
http://www.xml-cml.org/convention/simpleUnit
http://www.xml-cml.org/convention/simpleUnit
http://www.xml-cml.org/convention/simpleUnit
http://www.xml-cml.org/convention/simpleUnit


<cml:unitList convention = “conventions:
simpleUnit">

<cml:unit/>
<cml:unit>

<cml:bond/>
</cml:unit>

</cml:unitList>

Produces: “bond is not a part of the http://www.xml-
cml.org/convention/simpleUnit convention and may be
ignored by some processors”
Note that if the bond specified a numeric bond order

(e.g. order = ‘1’) the test result would be VALID_-
WITH_WARNINGS because numeric bond orders are
deprecated.
(iv)

<cml:unitList convention = “conventions:
simpleUnit">

<cml:unit>
<x:p xmlns:x = “http://www.w3.org/1999/
xhtml“>
this is still going to be processed in
unitList mode.
<cml:bond/>
</x:p>

</cml:unit>
</cml:unitList>

Produces: “bond is not a part of the http://www.xml-
cml.org/convention/simpleUnit convention and may be
ignored by some processors”
(v)

<x:p xmlns:x = “http://www.w3.org/1999/xhtml“>
the unitList need not be the root element
<cml:unitList convention = “conventions:
simpleUnit">

<cml:molecule/>
<cml:unit/>

</cml:unitList>
</x:p>

Produces: “molecule is not a part of the http://www.
xml-cml.org/convention/simpleUnit convention and may
be ignored by some processors”.

Documents Invalid Against the simpleUnit Convention
The documents below should all result in a Validation-
Result of INVALID. The ValidationReport should con-
tain a single error element and should not contain
either info or warning elements.
(i)

<cml:molecule convention = “conventions:
simpleUnit">

<cml:unitList>
<cml:unit/>

</cml:unitList>
</cml:molecule>

Produces the following ValidationReport:

<report xmlns = “http://www.xml-cml.org/report/“>
<well-formed-test>

<valid > xml is well formed </valid>
</well-formed-test>
<schema-validation-test>

<valid > document conforms to the schema
</valid>

</schema-validation-test>
<convention-validation-test>

<error location = “/*[local-name() = ‘mole-
cule’ and namespace-uri() = ‘http://www.xml-
cml.org/schema’] [1]@*[local-name() = ‘con-
vention’ and namespace-uri() = ‘’]">
the only valid cml element that can specify
the simpleUnit convention is “unitList”
</error>

</convention-validation-test>
<uris-reachable-test>

<valid > All appropriate URIs were reachable
</valid>
<valid > all dictRefs are resolvable </valid>

</uris-reachable-test>
</report>

(ii)

<x:p xmlns:x = “http://www.w3.org/1999/xhtml“>
<cml:molecule convention = “conventions:
simpleUnit">

<cml:unitList>
<cml:unit/>
</cml:unitList>

</cml:molecule>
</x:p>

Produces: “the only valid cml element that can specify
the simpleUnit convention is ‘unitList’”. (Illustrating that
the document is still being correctly traversed.)
(iii)

<cml:unitList convention = “conventions:simpleU-
nit"/>

Produces: “A unit list MUST contain child cml:unit
elements”.

Townsend and Murray-Rust Journal of Cheminformatics 2011, 3:39
http://www.jcheminf.com/content/3/1/39

Page 20 of 22

http://www.xml-cml.org/convention/simpleUnit
http://www.xml-cml.org/convention/simpleUnit
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.xml-cml.org/convention/simpleUnit
http://www.xml-cml.org/convention/simpleUnit
http://www.w3.org/1999/xhtml
http://www.xml-cml.org/convention/simpleUnit
http://www.xml-cml.org/convention/simpleUnit
http://www.xml-cml.org/report/
http://www.xml-cml.org/schema�
http://www.xml-cml.org/schema�
http://www.w3.org/1999/xhtml


(iv)

<cml:unitList convention = “conventions:
simpleUnit">

<!– not valid, a unitList must have at least one
unit child –>

</cml:unitList>

Produces: “A unit list MUST contain child cml:unit
elements”.
(v)

<cml:unitList convention = “conventions:
simpleUnit">

<x:p xmlns:x = “http://www.w3.org/1999/xhtml“>
no unit child of unitList
</x:p>

</cml:unitList>

Produces: “A unit list MUST contain child cml:unit
elements”.
(vi)

<cml:unitList convention = “conventions:
simpleUnit">

<x:p xmlns:x = “http://www.w3.org/1999/xhtml“>
<cml:unit/>
This unit is not a direct child of unitList
and therefore should cause an error.

</x:p>
</cml:unitList>

Produces: “A unit list MUST contain child cml:unit
elements”.
(vii)

<cml:unitList convention = “conventions:
simpleUnit">

<cml:unitList>
<cml:unit>
<x:p xmlns:x = “http://www.w3.org/1999/
xhtml“>
the outer unitList does not have at least
one unit child
</x:p>
</cml:unit>

</cml:unitList>
</cml:unitList>

Produces: “A unit list MUST contain child cml:unit
elements”.

Acknowledgements
We thank Microsoft Research for a grant for Chem4Word and EPSRC
(Pathways to Impact) for dissemination. We also heartily thank Charlotte
Bolton for all her help in preparing this manuscript.

Authors’ contributions
JAT developed the CMLLite approach, created the CMLValidator and the test
corpus, and wrote the manuscript. PMR is the original author of CML,
created the test corpus and wrote the manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 29 June 2011 Accepted: 14 October 2011
Published: 14 October 2011

References
1. Bauerschmidt S, Gasteiger J: Overcoming the Limitations of a Connection

Table Description: A Universal Representation of Chemical Species. J
Chem Inf Comput Sci 1997, 37:705-714.

2. Hughes G, Mills H, De Roure D, Frey JG, Moreau L, Schraefel MC, Smith G,
Zaluska E: The semantic smart laboratory: a system for supporting the
chemical eScientist. Org Biomol Chem 2004, 2:3284-3293.

3. Chepelev LL, Dumontier M: Chemical Entity Semantic Specification:
Knowledge representation for efficient semantic cheminformatics and
facile data integration. J Cheminf 2011, 3:20.

4. Murray-Rust P, Rzepa HS: CML: Evolution and Design. J Cheminf 2011, 3:44.
5. Chemistry Add-in for Word. [http://chem4word.codeplex.com/], Accessed

2011-06-28.
6. Chemical Markup Language. [http://sourceforge.net/projects/cml/],

Accessed 2011-06-28.
7. Sankar P, Alain K, Aghila G: Model Tool to Describe Chemical Structures in

XML Format Utilizing Structural Fragments and Chemical Ontology. J
Chem Inf Model 2010, 50:755-770.

8. Sankar P, Aghila G: Design and Development of Chemical Ontologies for
Reaction Representation. J Chem Inf Model 2006, 46:2355-2368.

9. Resource Description Framework, RDF. [http://www.w3.org/RDF/],
Accessed 2011-06-28.

10. RDF Vocabulary Description Language 1.0: RDF Schema. [http://www.w3.
org/TR/rdf-schema/], Accessed 2011-06-28.

11. Web Ontology Language (OWL). [http://www.w3.org/2004/OWL/],
Accessed 2011-06-28.

12. Belleau F, Nolin M-A, Tourigny N, Rigault P, Morissette J: Bio2RDF: Towards
a mashup to build bioinformatics knowledge systems. J Biomed Inf 2008,
41(5):706-716.

13. Adams SE, de Castro P, Echenique P, Estrada J, Hanwell MD, Murray-Rust P,
Sherwood P, Thomas J, Townsend J: The Quixote project: Collaborative
and Open Quantum Chemistry data management in the Internet age. J
Cheminf 2011, 3:38.

14. Quixote project on QC databases. [http://quixote.wikispot.org/], Accessed
2011-06-28.

15. Adams N, Cannon E, Murray-Rust P: ChemAxiom-An Ontological
Framework for Chemistry in Science. Nature Precedings 2009.

16. Jones R, MacGillivray M, Murray-Rust P, Pitman J, Sefton P, O’Steen B,
Waites W: Open Bibliography for Science, Technology, and Medicine. J
Cheminf 2011, 3:47.

17. The Chemistry Development Kit, CDK. [http://sourceforge.net/projects/
cdk/], Accessed 2011-06-28.

18. Open Babel: The Open Source Chemistry Toolbox. [http://openbabel.org/
], Accessed 2011-06-28.

19. Davis FD: Perceived usefulness, perceived ease of use, and user
acceptance of information technology. MIS Quarterly 1989, 13:319-340.

20. Postel J: Postel’s Law [http://en.wikipedia.org/wiki/
Jon_Postel#Postel.27s_Law], Accessed on 2011-06-28.

21. IUPAC International Chemical Identifier, InChI. [http://www.iupac.org/
inchi/], Accessed 2011-06-28.

22. XHTML specification. [http://www.w3.org/TR/xhtml11/], Accessed 2011-06-
28.

23. Mathematical Markup Language (MathML) specification. [http://www.w3.
org/TR/MathML2/], Accessed 2011-06-28.

Townsend and Murray-Rust Journal of Cheminformatics 2011, 3:39
http://www.jcheminf.com/content/3/1/39

Page 21 of 22

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.ncbi.nlm.nih.gov/pubmed/15534706?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15534706?dopt=Abstract
http://chem4word.codeplex.com/
http://sourceforge.net/projects/cml/
http://www.ncbi.nlm.nih.gov/pubmed/20429589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20429589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17125179?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17125179?dopt=Abstract
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/2004/OWL/
http://quixote.wikispot.org/
http://sourceforge.net/projects/cdk/
http://sourceforge.net/projects/cdk/
http://openbabel.org/
http://en.wikipedia.org/wiki/Jon_Postel#Postel.27s_Law
http://en.wikipedia.org/wiki/Jon_Postel#Postel.27s_Law
http://www.iupac.org/inchi/
http://www.iupac.org/inchi/
http://www.w3.org/TR/xhtml11/
http://www.w3.org/TR/MathML2/
http://www.w3.org/TR/MathML2/


24. W3C Scalable Vector Graphics (SVG) Working Group. [http://www.w3.org/
Graphics/SVG/], Accessed 2011-06-28.

25. Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G,
D’Eustachio P, Schaefer C, Luciano J, Schacherer F, Martinez-Flores I, Hu Z,
Jimenez-Jacinto V, Joshi-Tope G, Kandasamy K, Lopez-Fuentes A, Mi H,
Pichler E, Rodchenko I, Splendiani A, Tkachev S, Zucker J, Gopinath G,
Rajashima H, Ramakrishnan R, Shah I, Syed M, Anwar N, Babur O, Blinov M,
Brauner E, Corwin D, Donaldson S, Gibbons F, Goldberg R, Hornbeck R,
Luna A, Murray-Rust P, Neumann E, Reubenacker O, Samwald M, van
Iersel M, Wimalaratne S, Allen K, Braun B, Whirl-Carrillo M, Cheung K-H,
Dahlquist K, Finney A, Gillespie M, Glass E, Gong L, Haw R, Honig M,
Hubaut O, Kane D, Krupa S, Kutmon M, Leonard J, Marks D, Merberg D,
Petri V, Pico A, Ravenscroft D, Ren L, Shah N, Sunshine M, Tang R, Whaley R,
Letovsky S, Buetow KH, Rzhetsky A, Schachter V, Sobral BS, Dogrusoz U,
McWeeney S, Aladjem M, Birney E, Collado-Vides J, Goto S, Hucka M, Le
Novère N, Maltsev N, Pandey A, Thomas P, Wingender E, Karp PD, Sander C,
Bader GD: The BioPAX community standard for pathway data sharing.
Nature Biotechnology 2010, 28:935-942.

26. García A, Murray-Rust P, Wakelin J: The use of XML and CML in
computational chemistry and physics programs. Proceedings of the UK e-
Science All Hands Meeting Engineering and Physical Sciences Research
Council; 2004, 1111-1114.

27. Kuhn S, Helmus T, Lancashire RJ, Murray-Rust P, Rzepa HS, Steinbeck C,
Willighagen EL: Chemical Markup, XML, and the World Wide Web. 7.
CMLSpect, an XML Vocabulary for Spectral Data. J Chem Inf Model 2007,
47:2015-2034.

28. Lancashire RJ: The JSpecView Project: an Open Source Java viewer and
converter for JCAMP-DX, and XML spectral data files. Chem Cent J 2007,
1:31.

29. Bradner S: IETF RFC 2119: Key words for use in RFCs to Indicate
Requirement Levels.[http://www.ietf.org/rfc/rfc2119.txt], Accessed 2011-06-
28.

30. Murray-Rust P, Townsend J, Adams SE, Phadungsukanan W, Thomas J: The
semantics of Chemical Markup Language (CML): dictionaries and
conventions. J Cheminf 2011, 3:43.

31. XML Schema Definition Language (XSD) 1.1 Part 1: Structures. [http://
www.w3.org/TR/xmlschema11-1/], Accessed 2011-06-28.

32. XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. [http://
www.w3.org/TR/xmlschema11-2/], Accessed 2011-06-28.

33. XSL Transformations (XSLT). [http://www.w3.org/TR/xslt20/], Accessed
2011-06-28.

34. XML Path Language. [http://www.w3.org/TR/xpath/], Accessed 2011-06-28.
35. Schematron, a language for making assertions about patterns found in

XML documents. [http://www.schematron.com/], Accessed 2011-06-28.
36. Tennison J: XSLT UK 2001 Report.[http://www.xml.com/pub/a/2001/04/25/

xsltuk.html?page=2], Accessed 2011-06-28.
37. Kent B: Test Driven Development: By Example Boston, Massachusetts:

Addison-Wesley Professional; 2002.
38. JUMBO-Converters. [https://bitbucket.org/wwmm/jumbo-converters],

Accessed 2011-06-28.
39. Bioclipse. [http://www.bioclipse.net/], Accessed 2011-06-28.
40. Hunt A, Thomas D: Pragmatic Unit Testing in Java with JUnit Raleigh, NC:

Pragmatic Bookshelf; 2003.
41. Namespaces in XML. [http://www.w3.org/TR/xml-names/], Accessed 2011-

06-28.
42. W3C Quality Assurance Tools. [http://www.w3.org/QA/Tools/], Accessed

2011-06-28.
43. Unicorn-W3C’s Unified Validator. [http://validator.w3.org/unicorn/],

Accessed 2011-06-28.
44. CMLValidator service. [http://validator.xml-cml.org/], Accessed 2011-06-28.
45. HTML4 Recommendation-Forms. [http://www.w3.org/TR/html4/interact/

forms.html], Accessed 2011-06-28.
46. Fielding RT: Architectural Styles and the Design of Network-based

Software Architectures. PhD thesis University of California, Irvine; 2000.
47. Chempound repository. [http://quixote.ch.cam.ac.uk/], Accessed 2011-06-

28.

doi:10.1186/1758-2946-3-39
Cite this article as: Townsend and Murray-Rust: CMLLite: a design
philosophy for CML. Journal of Cheminformatics 2011 3:39.

Open access provides opportunities to our 
colleagues in other parts of the globe, by allowing 

anyone to view the content free of charge.

Publish with ChemistryCentral and every
scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community
peer reviewed and published immediately upon acceptance
cited in PubMed and archived on PubMed Central
yours     you keep the copyright

Submit your manuscript here:
http://www.chemistrycentral.com/manuscript/

Townsend and Murray-Rust Journal of Cheminformatics 2011, 3:39
http://www.jcheminf.com/content/3/1/39

Page 22 of 22

http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/
http://www.ncbi.nlm.nih.gov/pubmed/20829833?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17887743?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17887743?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18067663?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18067663?dopt=Abstract
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/xmlschema11-1/
http://www.w3.org/TR/xmlschema11-1/
http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xpath/
http://www.schematron.com/
http://www.xml.com/pub/a/2001/04/25/xsltuk.html?page=2
http://www.xml.com/pub/a/2001/04/25/xsltuk.html?page=2
https://bitbucket.org/wwmm/jumbo-converters
http://www.bioclipse.net/
http://www.w3.org/TR/xml-names/
http://www.w3.org/QA/Tools/
http://validator.w3.org/unicorn/
http://validator.xml-cml.org/
http://www.w3.org/TR/html4/interact/forms.html
http://www.w3.org/TR/html4/interact/forms.html
http://quixote.ch.cam.ac.uk/

	Abstract
	Introduction
	Semantics in CML
	Implicit semantics
	Choice of semantic system
	Community requirements and CMLLite conventions
	The Need for Validation
	CML Schemas-Evolution to schema3
	Content Models
	Attributes

	Conventions

	Methodology of Validation
	Validation-driven Development
	A typical example of TDD
	General aspects of TDD
	Schemas and CMLValidator
	A schema3 validatorTest
	CMLValidator report language
	An example-simpleUnit
	The ruleset
	ValidatorTest
	Validator

	Interaction and extension of conventions
	Validation Service

	Conclusions
	Availability of Code
	Appendix A
	Appendix B
	Documents Valid Against the simpleUnit Convention
	Documents Valid (with info reports) Against the simpleUnit Convention
	Documents Invalid Against the simpleUnit Convention

	Acknowledgements
	Authors' contributions
	Competing interests
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


