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Human brain evolution<p>Human cognitive evolution involved genes implicated in energy metabolism and energy-expensive brain functions that are also altered in schizophrenia, suggesting that human brains may have reached their metabolic limit, with schizophrenia as a costly by-product.</p>

Abstract

Background: Despite decades of research, the molecular changes responsible for the evolution
of human cognitive abilities remain unknown. Comparative evolutionary studies provide detailed
information about DNA sequence and mRNA expression differences between humans and other
primates but, in the absence of other information, it has proved very difficult to identify molecular
pathways relevant to human cognition.

Results: Here, we compare changes in gene expression and metabolite concentrations in the
human brain and compare them to the changes seen in a disorder known to affect human cognitive
abilities, schizophrenia. We find that both genes and metabolites relating to energy metabolism and
energy-expensive brain functions are altered in schizophrenia and, at the same time, appear to have
changed rapidly during recent human evolution, probably as a result of positive selection.

Conclusion: Our findings, along with several previous studies, suggest that the evolution of human
cognitive abilities was accompanied by adaptive changes in brain metabolism, potentially pushing the
human brain to the limit of its metabolic capabilities.

Background
During the last 5-7 million years of human evolution, the
brain has changed dramatically, giving rise to our unique cog-
nitive abilities. The molecular changes responsible for the
evolution of these abilities remain unknown. Comparisons

between humans and one of our closest living relatives, chim-
panzees, conducted at the DNA sequence and gene expression
levels have resulted in a vast catalogue of differences between
the two species [1,2]. Still, as the overwhelming majority of
these differences are likely to play no role in the evolution of
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human cognition, identification of the relevant differences is
a daunting task [3-5].

Another factor impeding identification of the evolutionary
changes related to human cognition is our insufficient knowl-
edge of the molecular mechanisms underlying higher cogni-
tive functions. This lack of knowledge is understandable,
given the difficulty of studying human-specific cognitive
functions in model organisms and, clearly, conducting func-
tional experiments on humans is not possible. An alternative
approach to the study of human brain function is through the
investigation of naturally occurring dysfunctions. Apart from
their direct health applications, studies of human cognitive
dysfunctions represent a window into the molecular mecha-
nisms underlying human brain function. Identification of
such mechanisms using disease data, however, is compli-
cated, as many observed changes are probably only indirectly
associated with the affected functions.

In this study, we attempted to identify molecular mechanisms
involved in the evolution of human-specific cognitive abilities
by combining biological data from two research directions:
evolutionary and medical. Firstly, we identify the molecular
changes that took place on the human evolutionary lineage,
presumably due to positive selection. Secondly, we consider
molecular changes observed in schizophrenia, a psychiatric
disorder believed to affect such human cognitive functions as
the capacity for complex social relations and language [6-12].
Combining the two datasets, we test the following prediction:
if a cognitive disorder, such as schizophrenia, affects recently
evolved biological processes underlying human-specific cog-
nitive abilities, we anticipate finding a significant overlap
between the recent evolutionary and the pathological
changes. Furthermore, if such significant overlap is observed,
the overlapping biological processes may provide insights
into molecular changes important for the evolution and
maintenance of human-specific cognitive abilities.

Results
In order to select human-specific evolutionary changes, we
used the published list of 22 biological processes showing evi-
dence of positive selection in terms of their mRNA expression
levels in brain during recent human evolution [13]. Next, we
tested whether expression of genes contained in these func-
tional categories is altered in schizophrenia to a greater extent
than expected by chance. To do this, we ranked 16,815 genes
expressed in brain in order of probability of differential
expression in schizophrenia, using data from a meta-analysis
of 105 individuals profiled on 4 different microarray plat-
forms in 6 independent studies [14]. We found that 6 of the 22
positively selected biological processes are significantly
enriched in genes differentially expressed in schizophrenia
(Wilcoxon rank sum test, p < 0.03, false discovery rate (FDR)
= 11%), while only 0.7 would be expected to show such an
enrichment by chance (Figure 1; Table S2 in Additional data

file 1; Materials and methods). Strikingly, all six of these bio-
logical processes are related to energy metabolism. This is
highly unexpected, given that there were only 7 biological
processes containing genes involved in energy metabolism
among the 22 positively selected categories (Figure 1; Table
S2 in Additional data file 1). The mRNA expression changes
observed in schizophrenia appear to be distributed approxi-
mately equally in respect to the direction of change, pointing
towards a general dysregulation of these processes in the dis-
ease rather than a coordinated change (Table S3 in Additional
data file 1).

To investigate this further, we directly studied brain metabo-
lism in prefrontal cortex of human schizophrenia patients (N
= 10) and healthy controls (N = 12), as well as in two species
of non-human primates, chimpanzees (N = 5) and rhesus
macaques (N = 6), using 1H NMR spectroscopy (Materials
and methods). This approach allowed the measurement of
the relative concentrations of 21 distinct small metabolites/
metabolite groups in all brain tissue samples studied, 20 of
which could be unambiguously identified using public anno-
tation (Table 1 and Materials and methods). Even with this
relatively small number of metabolites, we clearly observe
systematic differences in metabolite concentrations among
the 4 sample groups (Figure 2), which account for more than
43% of total variation (by analysis of variance (ANOVA)).
Neither differences in age or sex between species (Figure S1 in
Additional data file 1), medication in schizophrenia patients
nor differences in post mortem interval among samples
accounted for these differences (Materials and methods).
Thus, metabolite profiles of the brain appear biochemically
distinct among such closely related primate species as
humans, chimpanzees and rhesus macaques.

Metabolic processes altered in disorders affecting human-
specific cognitive function, such as schizophrenia, may be the
same ones that underwent adaptive evolutionary change to
support these abilities. When comparing metabolite concen-
trations between schizophrenia patients and control individ-
uals, we detected significant differences between the two
groups for 9 out of 21 metabolites (t-test p < 0.05, FDR = 11%;
Table 1). Thus, even though our study is based on a limited
number of metabolites, this result confirms that brain metab-
olism is substantially affected in schizophrenia. The altered
metabolites play key roles in energy metabolism (creatine,
lactate), neurotransmission (choline, glycine) and lipid/cell
membrane metabolism (acetate, choline, phosphocholine,
glycerophosphocholine) (Table 1). All three of these critical
cellular processes have been implicated in schizophrenia, for
example, through the use of in vivo magnetic resonance spec-
troscopy techniques [15-18].

If schizophrenia affects biological process that also changed
during human evolution, our hypothesis predicts that the 9
metabolites with significant concentration differences
between schizophrenia patients and normal controls have
Genome Biology 2008, 9:R124
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evolved rapidly on the human lineage compared to the 12
metabolites not altered in the disease. In order to test this
prediction, we measured changes in concentration on the
human and chimpanzee lineages in the two metabolite groups

using the rhesus macaque as an outgroup. In agreement with
our prediction, we find that the ratio of the human to chim-
panzee branch lengths in neighbor-joining tree reconstruc-
tion (Materials and methods) is more than three times greater
for the 9-metabolite group than for the 12-metabolite group
(2.8 versus 0.8; Figure 3). This difference is stable with
respect to both metabolites and individuals used in the anal-
ysis, and is not due to the effect of any outliers (bootstrap
analysis; Figure S2 in Additional data file 1; Materials and
methods). Further, for eight out of the nine metabolites
affected in schizophrenia, the direction of change in the dis-
ease is opposite to the direction of change in human evolution
(p = 0.04, binomial test; Table 1).

Still, these observations are based on a rather small number
of metabolites in post mortem brain samples and the boot-
strap analysis cannot rule out an effect of an unknown sys-
tematic artifact. Thus, in order to test the result using
independently generated data, we measured the extent of
amino acid and mRNA expression divergence in genes
involved in the biological processes related to the 9 metabo-
lites significantly altered in schizophrenia and the 12 unal-
tered metabolites identified in our study. At the amino acid
sequence level, we find genes contained in the Gene Ontology
(GO) terms associated with the 9-metabolite group (N = 40)
have significantly greater divergence between humans and
chimpanzees than the genes associated with the 12-metabo-
lite group (N = 81; p = 0.025, one-sided Wilcoxon test; Mate-

The proportion of biological processes showing evidence of recent positive selection on the human lineage that is differentially expressed in schizophreniaFigure 1
The proportion of biological processes showing evidence of recent positive selection on the human lineage that is differentially expressed in schizophrenia. 
The height of the bar represents the number of GO groups showing evidence of recent positive selection on the human lineage; (a) all 22 and (b) the 7 
relating to energy metabolism. The darker shade of color represents the number of GO groups differentially expressed in schizophrenia among the 22 or 
the 7 GO groups (Wilcoxon rank sum test, p < 0.03, FDR = 11%). Left bar, expected by chance; right bar, observed.
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Principal component analysis of the metabolite abundance profiles in 33 individualsFigure 2
Principal component analysis of the metabolite abundance profiles in 33 
individuals. The analysis is based on 21 detected metabolites. Each point 
represents an individual. The colors indicate: blue, human controls; black, 
human schizophrenia patients; purple, chimpanzees; red, rhesus macaques.
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rials and methods). Similarly, comparing mRNA expression
levels between brains of five humans and five chimpanzees
(seven of these individuals were also investigated in the
metabolite study), we find significantly higher expression
divergence for genes associated with the 9-metabolite group
than the genes associated with the 12-metabolite group (p =
0.05, one-sided Wilcoxon test; Materials and methods).

Greater amino acid or gene expression divergence can, how-
ever, indicate either positive selection or relaxation of selec-
tive constraint. In order to distinguish between these two
possibilities, we used publicly available nucleotide polymor-
phism data to compare the extent of linkage disequilibrium
(LD) - an indirect but unbiased measure of recent positive
selection - between the two sets of genes [19]. LD reflects the
extent of non-random association of alleles along chromo-
somes and positive selection is known to increase LD around
the selected variant [20]. We indeed find that genes associ-
ated with the 9-metabolite group are associated with longer
LD regions than the genes associated with the 12-metabolite
group (p = 0.016, one-sided Wilcoxon test). Furthermore,

Table 1

Detected metabolites and metabolite groups

Effect size‡

Metabolite group Number of peaks* t-test
p-value†

Hsch/Hc Hc/C Hc/R

Creatine 2 0.000 2.3 -2.3 -4.9

Lactate 6 0.005 1.5 -2.7 -0.6

Phosphocholine 1 0.034 1.0 -1.4 -0.3

Glycerophosphocholine 1 0.042 1.0 -1.5 -0.7

N-acetylaspartate 5 0.040 0.9 -2.2 -1.8

Acetate 1 0.025 -1.1 -0.3 0.1

Glycine 1 0.024 -1.1 3.3 4.2

Choline 1 0.010 -1.4 4.0 3.4

Unknown§ 6 0.002 -1.5 2.8 6.2

Taurine 3 0.080

Glutamate/glutamine 1§¶ 4 0.114

Glutamate/glutamine 2¶ 4 0.130

Glutamine§ 4 0.280

Glutamate 1§¶ 3 0.381

Scyllo-inositol 1 0.404

Gamma-aminobutyric acid 5 0.470

Myo-inositol 9 0.630

Glutamate/proline 1 0.710

Myo-inositol/taurine 3 0.797

Glutamate 2¶ 5 0.841

N-acetylaspartylglutamate 1 0.845

*Number of peaks in the NMR spectrum corresponding to the metabolite/metabolite group. †Comparison between metabolite concentrations in 10 
human schizophrenia patients and 12 human control individuals. ‡Effect size was calculated as the difference between means of metabolite 
concentrations between the groups normalized to the average standard deviation within the group. Positive values indicate higher concentration in 
group one, negative values higher concentration in group two. Hc, human controls; Hsch, human schizophrenia patients; C, chimpanzees; R, rhesus 
macaques. §These peaks show a high degree of spectral overlap with other unidentified baseline peaks. ¶Glutamine/glutamate and glutamate peaks 
were separated into two independent groups based on the intensity correlation analysis (see Materials and methods).

Divergence in metabolite abundance on the human and chimpanzee lineagesFigure 3
Divergence in metabolite abundance on the human and chimpanzee 
lineages. The trees are based on the abundance measurements of (a) 9 
metabolites with significant concentration difference between human 
controls and schizophrenia patients and (b) 12 metabolites with no 
difference between these two groups. The trees were built using a 
neighbor-joining algorithm.
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this tendency can be observed in all three human populations
tested: Africans, Chinese and Europeans (p = 0.076, 0.104
and 0.018, respectively; Figure S3 in Additional data file 1;
Materials and methods). By contrast, we find no difference
between the two groups of genes with respect to the local
recombination rate - the main determinant of the LD extent
in the absence of positive selection (p = 0.548, one-sided Wil-
coxon test; Figure S3 in Additional data file 1). Thus, genes
associated with metabolites that are altered in schizophrenia
and fast evolving on the human lineage display greater amino
acid sequence and expression divergence between humans
and chimpanzees that may be due to recent positive selection
in humans.

Discussion
The aim of the present study was to explore the overlap
between molecular changes observed in a disorder affecting
human cognitive abilities and evolutionary changes observed
on the human lineage in order to gain novel insights into the
functional mechanisms underlying human cognition. We
indeed find such an overlap at the mRNA expression level,
and the vast majority of over-lapping changes relate to energy
metabolism. We then measured metabolite concentrations in
post mortem brain tissue from healthy human controls,
human schizophrenia patients, chimpanzees and rhesus
macaques. Again, we find that metabolic processes altered in
the schizophrenia brain evolved rapidly on the human, but
not on the chimpanzee, evolutionary lineage. In contrast, we
find no such difference between the two lineages for the met-
abolic processes not affected by the disease. Further, we
found that genes associated with fast evolving metabolic
processes also show greater divergence between humans and
chimpanzees at both the amino acid sequence and mRNA
expression levels than the genes associated with metabolites
not altered in schizophrenia. Both an excess of adaptive
changes and a relaxation of selective constraint could cause
such an increase in evolutionary divergence. However, the
fact that we find signatures of recent positive selection in the
vicinity of genes associated with fast evolving metabolic proc-
esses indicates that adaptive changes is the more parsimoni-
ous explanation.

Still, alternative explanations for these results need to be con-
sidered. It is possible that pathways relating to energy metab-
olism are altered in schizophrenia and evolutionary studies
simply because mRNAs associated with these biological proc-
esses are more likely to be influenced by post mortem effects.
This logic could also be applied to the metabolite study. Sev-
eral arguments, however, refute this explanation.

First, in the metabolite study, schizophrenia and control sam-
ples were matched for age, brain pH, post mortem interval
(Student's t-test, p = 0.31, p = 0.55, p = 0.15, respectively) and
sex (Fisher's exact test, p = 0.65) (Table S1 in Additional data
file 1). However, we cannot exclude the effect of antipsychotic

medication on the observed metabolic differences in schizo-
phrenia, even though the patient cohort chosen received rela-
tively little medication (Table S1 in Additional data file 1).
Still, both schizophrenia and the medications used to treat it
are expected to target functional processes relevant to
human-specific cognitive abilities.

Second, our main finding - rapid evolution of schizophrenia-
affected metabolic processes on the human lineage - is based
on a comparison of evolutionary rates for two metabolite
groups measured within the same experiment. Thus, if this
result were due to a confounding factor, such an artifact has
to be specific to the particular biological processes, occur in
the control but not in schizophrenia samples, or affect both
mRNA and metabolite expression levels. Further, as there are
no significant sampling differences between schizophrenia
patients and normal controls with regard to parameters such
as age, sex, post mortem interval or brain pH, the artifact has
to be caused by an unknown sampling bias.

Third, we find greater amino acid divergence and an
increased association with genomic signatures of recent pos-
itive selection in these biological processes. Even if post mor-
tem effects or other technical artifacts can cause differences
in mRNA and metabolite expression, they are unlikely to
explain differences at the DNA or amino acid sequence levels.

Taken together, our results indicate that energy metabolism
may play an important role in sustaining the cognitive func-
tions specific to the human brain. This is not inconceivable,
given that humans allocate around 20% of their total energy
to the brain, compared to approximately 13% for non-human
primates and 2-8% for other vertebrates [21]. An important
role for metabolic changes in the establishment of human
brain functionality is further implied by recent observations
that genes related to neuronal function and energy metabo-
lism show increased expression levels in humans compared to
other primates [22,23]. Further, there are indications of pos-
itive selection for genes involved in energy metabolism in
anthropoid primates and humans, in terms of amino acid
composition [24] and elevated expression levels in brain [13],
respectively. Recently, positive selection during human evo-
lution was also shown to target the promoters of genes
involved in glucose metabolism - the main source of energy
for the brain [25].

At the same time, there is growing evidence that brain energy
metabolism is altered in neuropsychiatric disorders, such as
schizophrenia, in which human-specific cognitive abilities are
impaired. Deficits in blood flow in the prefrontal cortex are
consistently reported in schizophrenia patients relative to
controls, particularly when performing complex cognitive
tasks [26,27]. Furthermore, the altered metabolic activity
correlates with the severity of negative symptoms and cogni-
tive deficits [28]. Concordantly, several studies have identi-
Genome Biology 2008, 9:R124
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fied down-regulation of numerous genes involved in energy
metabolism in the schizophrenia post mortem brain [29-32].

Combining the two research fields, we find further indica-
tions supporting the crucial role of energy metabolism in the
evolution and maintenance of human-specific cognitive abil-
ities. The metabolites that changed their concentrations in
brain during human evolution are involved in the most
energy demanding processes of the human brain - mainte-
nance of the membrane potential and the continual synthesis
of neurotransmitters [33,34]. In human evolution, the dis-
proportional increase in brain size would result in an increase
in both the length and diameter of neuronal connections [35]
and the number of synapses, further elevating energy
demands associated with membrane potential maintenance
and neurotransmitter turnover. Given that the relatively
short time of about 2 million years since the increase in
human brain size does not allow for much optimization, it is
conceivable that the human brain is running very close to the
limit of its metabolic capacities. As a consequence, any per-
turbation of normal energy metabolism levels may be
expected to adversely affect brain function, leading to human
cognitive dysfunctions. It would seem reasonable to suppose
that energetically expensive neurons would be most suscepti-
ble to such changes. Supporting this notion, schizophrenia is
associated with structural and functional deficits in the
fronto-temporal and fronto-parietal circuits [11], which are
connected by long-range projection neurons displaying high-
energy characteristics such as long, highly myelinated axons
and fast firing rates [34].

We must note, however, that both schizophrenia and evolu-
tionary studies conducted so far, including the study
presented here, provide no direct link between metabolic
changes, such as changes in energy metabolism, and cognitive
phenotype. This limitation is inherent to all studies of
human-specific phenotypic features that cannot be
approached experimentally. In addition, cognitive changes
observed in schizophrenia do not affect the full spectrum of
human-specific cognitive traits and certainly do not recapitu-
late the extent of differences between humans and other pri-
mates. Thus, studies involving other human cognitive
disorders are necessary in order to clarify the relationship
between metabolic changes and human cognitive features.

Further, our results do not allow us to distinguish whether the
positive selection on metabolic processes has acted on the
molecular changes underlying increased cognitive abilities of
the human brain or reflects the need for optimizing brain
metabolic activity following an increase in brain size. As the
signatures of positive selection we can detect are restricted to
the last 200,000 years [36], almost 2 million years after the
increase in human brain size, the former explanation may be
more plausible. On the other hand, it is conceivable that opti-
mization of the human brain metabolic activity following an
increase in size is still ongoing.

Lastly, the small number of metabolites identified in this
study also precludes us from distinguishing evolutionary
changes directly related to energy metabolism and the
changes affecting other aspects of brain functionality, such as
signal transduction or neurotransmitter turnover. Still, the
fact that potential human-specific adaptations can already be
seen among 21 metabolites studied here indicates that many
more metabolic changes are likely to be associated with the
rapid brain size increase during human evolution. Thus, fur-
ther work involving greater numbers of samples and metabo-
lites, and the study of other neuropsychiatric disorders is
certainly necessary.

Conclusion
In this study we find a disproportionately large overlap
between processes that have changed during human evolu-
tion and biological processes affected in schizophrenia. Genes
relating to energy metabolism are particularly implicated for
both the evolution and maintenance of human-specific cogni-
tive abilities.

Using 1H NMR spectroscopy, we find evidence that metabo-
lites significantly altered in schizophrenia have changed more
on the human lineage than those that are unaltered. Further-
more, genes related to the significantly altered metabolites
show greater sequence and mRNA expression divergence
between humans and chimpanzees, as well as indications of
positive selection in humans, compared to genes related to
the unaltered metabolites.

Taken together, these findings indicate that changes in
human brain metabolism may have been an important step in
the evolution of human cognitive abilities. Our results are
consistent with the theory that schizophrenia is a costly by-
product of human brain evolution [11,37].

Materials and methods
Samples
All samples used in this study were taken from the middle
third of the middle frontal gyrus and the most rostral portion
of the inferior frontal gyrus of the human prefrontal cortex
approximately corresponding to Brodmann area 46, and from
the equivalent region in the non-human primates. Human
post mortem brain tissue samples from ten schizophrenia
patients and ten normal controls were obtained from the
Stanley Medical Research Institute (Bethesda, USA), com-
prising a subset of the Array Collection that was well-matched
for demographic variables (Table S1 in Additional data file 1).
All schizophrenia patients had been treated to some extent
with antipsychotic medication (typically with two or three dif-
ferent antipsychotics). However, efforts were made to include
individuals that had received relatively little treatment over-
all, as measured by fluphenazine milligram equivalents. In
addition, two normal control brain samples were obtained
Genome Biology 2008, 9:R124
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from the National Disease Research Interchange (Philadel-
phia, USA). Informed consent for use of the human tissues for
research was obtained in writing from all donors or the next
of kin. Chimpanzee samples (N = 5) were obtained from the
Yerkes Primate Center (Atlanta, USA) and from the Biomedi-
cal Primate Research Centre (Rijswijk, Netherlands). All
chimpanzee individuals used in this study belonged to the
Eastern chimpanzee population. Rhesus macaque samples (N
= 6) were obtained from the German Primate Center (Goet-
tingen, Germany). All non-human primates used in this study
suffered sudden deaths for reasons other than their participa-
tion in this study and without any relation to the tissues used.
No samples showed any detectable RNA degradation, as
measured using an Agilent Bioanalyzer (Agilent Technolo-
gies, Palo Alto, CA, USA), indicating good tissue preservation.
Details of all samples, including age, sex, brain pH and post
mortem interval are given in Table S1 in Additional data file 1.

Gene expression data analysis
Data were obtained from the Stanley Medical Research Insti-
tute's online genomics database [14], which represents the
most comprehensive repository of transcriptomics data for
neuropsychiatric disorders, including schizophrenia. This
database was derived from two sets of brain samples: the
Stanley Array collection and the Stanley Consortium collec-
tion. For this study data were selected from the Stanley Array
collection only, since the tissue homogenate samples in this
set were taken from the same brain region (prefrontal cortex,
brain region corresponding to Brodmann area 46) that was
analyzed in the comparative transcriptomics study [13]. The
Stanley Array collection comprises samples from a
population of 105 individuals, profiled on 4 different microar-
ray platforms, in 6 independent studies. This dataset has been
summarized in a meta-analysis in which the effects of con-
founding demographic variables (for example, age, post mor-
tem interval, tissue pH, and so on) were controlled using a
linear regression method [14]. For each of the 16,815 genes
(as defined by EntrezGene), the meta-analysis yielded a prob-
ability of differential expression in schizophrenia.

The aim of our analysis was to determine whether or not the
22 GO groups showing evidence of recent positive selection
on the human lineage previously identified [13] are differen-
tially expressed in schizophrenia. All of the assayed genes
were ranked in order of increasing p-value for the probability
of differential expression and any GO category containing
more highly ranked genes than would be expected by chance
was considered to be differentially expressed. Specifically, for
each of the 22 GO categories showing evidence of positive
selection, the ranks of the genes in the GO category were com-
pared to the ranks of all other assayed genes using a one-sided
Wilcoxon Rank Sum test. The false discovery rate was calcu-
lated by randomly permuting gene rank assignments 10,000
times. This permutation analysis also provided an estimate of
the probability of finding an equal or greater number of dif-
ferentially expressed GO categories than was observed in the

real data. Full details of the results of this analysis are given
in Table S2 in Additional data file 1.

NMR spectroscopic analysis
Preparation of tissue extracts from brain samples
For each individual used in this study, approximately 60-80
mg prefrontal cortex tissue (Brodmann area 46) was dis-
sected from a frozen brain sample on dry ice without thawing.
Special care was taken to avoid differences in the gray matter
to white matter ratio between samples and processed ran-
domly with respect to species or disease. Aqueous compo-
nents were extracted from brain tissue samples using
previously described techniques [38,39]. Frozen tissue sam-
ples were individually homogenized in 1 ml of acetonitrile/de-
ionized water mix (1:1) and then centrifuged at 4,800 g for 10
minutes. The supernatants were transferred to separate
eppendorf tubes to allow full evaporation of the acetonitrile
over 24 h before being lyophilized. For 1H NMR spectroscopic
analysis, samples were reconstituted in 600 μl deuterated
water (95% D2O:5% H2O).

1H NMR spectroscopic acquisition of aqueous brain extracts
Supernatant (600 μl) was placed in a 5 mm outer diameter
NMR tube. 1H NMR spectra were acquired on each sample at
600.13 MHz on a Bruker AMV600 spectrometer (Rheinstet-
ten, Germany), equipped with a TXI (triple channel inverse)
probe, at ambient probe temperature (300 K). A standard
one-dimensional (1D) pulse sequence was used (recycle
delay-90°-t1-90°-tm-90°-acquire free induction decay). The
water signal was suppressed by irradiation during a recycle
delay of 2 s, and mixing time (tm) of 150 ms. t1 was set to 3 μs
and the 90° pulse length was adjusted to approximately 10 μs.
For each sample, 64 transients were accumulated into 32K
data point using a spectral width of 20 ppm. Prior to Fourier
transformation, all free induction decays were multiplied by
an exponential function equivalent to a line broadening of 0.3
Hz.

Data processing
Using an in-house developed MATLAB [40] routine, NMR
spectra were digitized into 29,999 data points over the range
of δ 0.5-9.0 excluding the water region (δ 4.5-6.4) (Table S4
in Additional data file 1). The resulting NMR spectra were
normalized to the same average intensity. Because aqueous
brain extracts were used for the NMR measurements, only the
part of the spectrum containing signals of soluble metabolites
was analyzed in the subsequent steps. This resulted in the
reduction of each spectrum to 16,000 data points. Next, in
order to prevent measurement artifacts caused by slight shifts
in the metabolite peak positions among spectra, peaks in all
33 spectra were aligned with the 'beam search' algorithm with
default parameters [41,42], using one randomly chosen typi-
cal individual spectrum as a standard.

Following peak alignment, the area under each peak was cal-
culated using the 'interp1' function from the MATLAB soft-
Genome Biology 2008, 9:R124
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ware package. In this function, a curve is first fitted to the
peak outline and the area is integrated by dividing it into
small rectangles. Fitting the curve first allows better area inte-
gration by dividing it into smaller intervals. In our calcula-
tion, we allowed five times greater data point density in the
peak area than contained in the original spectra. In the area
integration step, the problem of calculating areas of overlap-
ping peaks is encountered. This was resolved by fitting a line
to the linear part of the slope of the overlapping peak in order
to extrapolate the peak shape in the region of overlap. In each
case, the line fitting was performed using ten or more data
points to ensure reliable extrapolation.

Next, metabolite peaks detectable above the background in all
33 spectra were determined. The background value was cal-
culated as an average intensity of the hydrophobic area of the
NMR spectra. Following this approach, 67 distinct peaks
could be identified, including virtually all peaks discernable
in the spectra as confirmed by the manual data inspection.
Still, this approach excluded metabolite peaks not present in
all species or all groups of individuals, making our estimates
of between group differences more conservative. Most nota-
bly, this approach excluded a strong peak of unknown metab-
olite detectable in rhesus macaques, but not in the other
species analyzed. The resulting peak areas were base-two-log-
arithm transformed and the sum of all peak areas for each
individual was scaled to one.

After peak detection, the 67 peaks were assigned to their
metabolites using published annotation [43-45]. Following
this procedure, 61 peaks could be assigned to 20 metabolites
or metabolite groups. Of these, twelve were represented by
more than one peak. Since peaks corresponding to the same
metabolite are expected to change concordantly among the 33
spectra analyzed, we calculated the correlation between all
peak pairs to confirm the existing annotation and to group the
remaining 6 peaks. For all but two metabolite groups, (gluta-
mate/glutamine and glutamate), the abundance measure-
ments from all peaks assigned to the same metabolite
correlated significantly with one another (p < 0.05, Spearman
correlation test) in agreement with the existing annotation.
Peaks assigned to glutamate/glutamine and glutamate sepa-
rated into two groups, likely due to the high degree of spectral
overlap with resonances of other compounds observed for
these peaks. Because the influence of other compounds
resulted in two clearly distinctive patterns of intensity change
among the samples (p < 0.05, Spearman correlation test), we
considered them as two independent metabolic groups in the
subsequent analysis.

Further, the six unannotated peaks were all significantly cor-
related with each other (p < 0.05, Spearman correlation test)
and were thus grouped as one additional metabolite group.
The positions of the unannotated peaks fall within the spec-
tral region that has been previously assigned to myo-inositol.
In our analysis, however, the six unannotated peaks and the

nine peaks that can be confidently assigned to myo-inositol
form two distinct correlation patterns based on the peak
intensity changes among samples and show very different
behavior in terms of differences between schizophrenia
patients and the normal control group. Thus, these were also
considered as two independent metabolic groups in the sub-
sequent analysis. Full details of spectra peak positions and
metabolite assignments are given in Table S5 in Additional
data file 1.

Principal components analysis of metabonomic data
Principal components analysis (PCA) was performed using
the MATLAB software package. All metabolite peaks were
scaled to mean equal zero and standard deviation equal one
among all samples to ensure the same contribution to the sep-
aration for all peaks. Intensities of peaks corresponding to the
same metabolite were averaged prior to PCA. The PCA result
was the same using individual peak data (data not shown).
The influence of age, medication, post mortem interval and
sex on the species separation was tested by redrawing PCA
plots using data residuals after linear regression analysis with
age, amount of medication or post mortem interval as a con-
tinuous variable or after ANOVA with factor 'sex'. The exact
post mortem interval for non-human primate samples was
not known precisely; a value of two hours was used for all
non-human samples in this analysis, based on the average
time taken for the autopsy procedure. None of these factors
were found to affect the distinct species separation. The pro-
portion of total variation explained by the species and the dis-
ease was estimated using data residuals after ANOVA with
four sample groups as a factor.

Disease analysis of metabonomic data
Metabolite concentrations in the human control subjects (N =
12) and schizophrenia patients (N = 10) were compared using
Student's t-test on scaled intensities of 21 metabolites. The
FDR was determined by randomly permuting individual
assignments to the two tested groups 5,000 times. At the
nominal t-test p-value of 0.05, the FDR equaled 10.8%.

Phylogenetic analysis of metabonomic data
The trees were built and drawn with the PHYLIP software
package [46] using a neighbor-joining algorithm and based
on the pairwise Euclidian distances between average metabo-
lite abundance measurements in each species. Prior to the
distance calculation, all metabolite peaks were scaled to mean
equal zero and standard deviation equal one among all sam-
ples to ensure the same contribution to the separation for all
peaks.

Genome and mRNA data analysis
To further test the finding that metabolites significantly
altered in schizophrenia patients compared to controls have
changed more on the human lineage than unaltered metabo-
lites, the corresponding genes were also investigated. The
assignment of genes to metabolites was performed using bio-
Genome Biology 2008, 9:R124
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logical process annotation provided by the GO consortium
[47]. First, the GO terms associated with each metabolite
were identified using a key word search in the GO database
[48]. The following keywords were used for the significantly
altered metabolites in schizophrenia: 'choline', 'creatine',
'acetate', 'glycerophosphocholine', 'lactate', 'glycine', 'NAA',
'N-acetyl-aspartate', 'phosphocholine'. The keywords for
unaltered metabolites in schizophrenia were: 'gamma-ami-
nobutyric acid', 'glutamate', 'glutamine', 'proline', 'myo-inosi-
tol', 'taurine', 'scyllo-inositol'. Then, genes associated with
these GO terms were identified using Ensembl Biomart [49].
This resulted in the identification of 48 genes associated with
the 9 metabolites that significantly differed in concentration
in schizophrenia patients compared to normal controls
(group 1) and 96 genes associated with the remaining 12
(group 2) (Table S6 in Additional data file 1).

In order to test whether genes associated with the two metab-
olite groups differ in their mRNA expression divergence
between humans and chimpanzees, we measured gene
expression profiles in five human and five chimpanzee sam-
ples derived from the same brain region as used for the
metabolite concentration measurements (corresponding to
the Brodmann area 46) using Affymetrix Human Exon
arrays. All chimpanzee individuals and two out of five human
individuals were shared between the mRNA and metabolite
measurements. Prior to analysis, all array probes that did not
match both the chimpanzee and the human genomes were
masked and the microarray intensity signals were normalized
and processed as described elsewhere [2]. The resulting
expression intensities for genes associated with group 1 and
group 2 metabolites are listed in Tables S7 and S8 in Addi-
tional data file 1.

Positive selection acting on protein sequence evolution may
be recognized from measurements of amino acid divergence,
such as Ka/Ki, and from signatures of nucleotide polymor-
phism reflecting non-neutral evolution, such as extent of LD.
Amino acid divergence tables (Ka/Ki) were obtained from The
Chimpanzee Sequencing and Analysis Consortium [50]. Of
the 13,454 genes contained in this dataset, 40 genes are asso-
ciated with the group 1 metabolites, and 81 genes with the
group 2 metabolites. The discrepancy with the total number
of genes identified by the keyword search of the GO database
described above is due to differential data availability from
the different public sources. LD and recombination rate
tables were downloaded from Perlegen [51] and UCSC
Human Genome Browser [52], respectively. The recombina-
tion rate data represents calculated sex-averaged rate values
based on the deCODE genetic map obtained using microsat-
ellite markers mapping [53]. LD and recombination rate
measurements for each gene were calculated as described
elsewhere [13] with no modifications. Both LD and recombi-
nation group measurements were available for the 40 genes
associated with group 1 metabolites and for the 81 genes asso-
ciated with group 2 metabolites.

Abbreviations
ANOVA, analysis of variance; FDR, false discovery rate; GO,
Gene Ontology; LD, linkage disequilibrium; NAA, N-acetyl-
aspartate; PCA, principal components analysis.
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representation of schizophrenia-related expression changes
in GO categories positively selected during human evolution.
Table S3 lists GO groups showing excess of expression
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assignments of NMR spectra peaks to metabolites and metab-
olite groups. Table S6 lists genes associated with fast-evolving
and slow-evolving metabolite groups. Table S7 lists mRNA
expression of genes associated with metabolites significantly
altered in schizophrenia. Table S8 lists mRNA expression of
genes associated with metabolites not altered in
schizophrenia.
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