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Using mammographic density to predict breast
cancer risk: dense area or percentage dense area
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Abstract

Introduction: Mammographic density (MD) is one of the strongest risk factors for breast cancer. It is not clear
whether this association is best expressed in terms of absolute dense area or percentage dense area (PDA).

Methods: We measured MD, including nondense area (here a surrogate for weight), in the mediolateral oblique
(MLO) mammogram using a computer-assisted thresholding technique for 634 cases and 1,880 age-matched
controls from the Cambridge and Norwich Breast Screening programs. Conditional logistic regression was used to
estimate the risk of breast cancer, and fits of the models were compared using likelihood ratio tests and the
Bayesian information criteria (BIC). All P values were two-sided.

Results: Square-root dense area was the best single predictor (for example, c12 = 53.2 versus 44.4 for PDA).
Addition of PDA and/or square-root nondense area did not improve the fit (both P > 0.3). Addition of nondense
area improved the fit of the model with PDA (c12 = 11.6; P < 0.001). According to the BIC, the PDA and nondense
area model did not provide a better fit than the dense area alone model. The fitted values of the two models
were highly correlated (r = 0.97). When a measure of body size is included with PDA, the predicted risk is almost
identical to that from fitting dense area alone.

Conclusions: As a single parameter, dense area provides more information than PDA on breast cancer risk.

Introduction
A number of prospective, nested case control studies
have shown that, for women of the same age, those with
greater mammographic density are more likely to
develop breast cancer [1]. Mammographic density refers
to the white or opaque area on a mammogram repre-
senting the epithelial and stromal tissue in the breast. It
can be measured many ways and usually is expressed as
the percentage of dense area in the total area of the
breast image. Denoted here as percentage dense area
(PDA), it can be measured reliably within and between
trained observers using a computerized thresholding
technique [2], in part a consequence of PDA’s having a
large variance even after adjusting its mean for age.
Body mass index (BMI) is negatively correlated with

PDA and accounts for almost one third of the variation
in age-adjusted PDA [3]. When assessing PDA as a

predictor of breast cancer risk, the model fit is improved
if adjustment is made for BMI as well as for age [4].
That is, the association between PDA and breast cancer
risk is negatively confounded by age and BMI; PDA
decreases with age and with BMI, whereas breast cancer
risk increases with each of these factors. (The positive
association between breast cancer risk and BMI is in
postmenopausal women. For premenopausal women,
there is weak evidence of a negative association [5,6]).
When mammographic density is assessed using a

computer-assisted thresholding technique, one obtains
measures of the total area of the breast and the absolute
area of density (dense area), and hence PDA (dense area
divided by total area) and nondense area (total area
minus dense area). BMI and weight are highly positively
correlated with nondense area and PDA adjusted for age
and BMI is highly positively correlated with dense area
adjusted for age. This raises the question whether dense
area or PDA is the better predictor of breast cancer risk.
The purpose of this study was to address this question

using data from a large population-based, age-matched,
case control study nested within cohorts of women
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attending mammographic screening programs in the
United Kingdom.

Materials and methods
A description of the study subjects has been reported
previously [7] and is summarized below. Subjects were
women attending mammographic screening at the UK
National Health Service Breast Cancer Screening Pro-
gram in Cambridge between November 1995 and
August 2003 and in Norwich and Norfolk between
March 1998 and March 2004. There was a combined
total of 634 cases, and up to 3 controls (N = 1,880)
were individually selected matched on screening centre,
date of birth (within 6 mo), and date of screening
(within 3 mo). The mean age was 57.4 years (range,
50-75 yr; SD, 4.7), and 67.5% of the cancers were
screen-detected (as opposed to interval cancers).
Mammographic density was measured in the medio-

lateral oblique (MLO) view of the contralateral breast in
cases and in the matching side in controls using a com-
puter-assisted thresholding technique. This technique
involves an observer’s first selecting a gray value as a
threshold to separate the image of the breast from the
background. A second threshold is then selected to
identify the edges of the mammographically dense tis-
sues. The computer then records the number of pixels
in the digitized image that lie within the defined areas.
The result is a measure of the total area of the breast
and a measure of dense area, which, when subtracted,
gives the nondense area. PDA is thus defined as dense
area divided by total breast area and expressed as a per-
centage. This method has been shown to be highly reli-
able, both within and between observers [8]. All of the
mammograms were measured by the same observer
(RMLW). A selection of 150 images was reanalyzed and
used to determine the intraobserver agreement as calcu-
lated by an intraclass correlation coefficient (ICC). The
measurement from the mediolateral oblique view was
used in this analysis where the pectoral muscle was
manually excluded prior to the measurement. Original
mammograms were scanned using the Array 2905
DICOM ScanPro Plus Laser Film Digitizer version 1.3E
software (Array Corp. Hampton, New Hampshire, USA)
at absorbance of 4.7.
Other available mammographic measures were investi-

gated for their association with breast cancer risk and
were described in detail in a previous report [7] and
thus are only briefly summarized here. Wolfe’s classifica-
tion is a visual assessment of mammographic density
into four parenchymal patterns, N1, P1, P2 and DY, in
increasing order of risk. Standard mammogram form
(SMF) is a volumetric measurement of mammographic
density generated using GenerateSMF version 2.2 b soft-
ware from Siemens Molecular Imaging, Malvern,

Pennsylvania, USA [9]. Finally, a visual assessment of
mammographic density classified into 5% increments
was estimated by a trained radiologist (RMLW).
This study was approved by the Norfolk Local

Research Ethics Committee. This was a medical records
study; therefore, direct consent from the patients was
not required.

Statistical analysis
Conditional logistic regression was used to estimate the
associations between the mammographic measures
(dense area, PDA and nondense area) and breast cancer
risk in terms of odds ratios (ORs). ORs were estimated
for quintiles (on the basis of the distribution of cases
and controls combined) and as one-parameter log-linear
functions of the measures treated as continuously dis-
tributed variables. For the latter, the most suitable scale
was chosen by inspection of the OR estimates from a
fitted one-parameter model plotted on the log scale
against the medians of quintiles. All stated P values are
two-sided. To test the relative goodness of fit, the likeli-
hood ratio criterion was used for nested models and the
Bayesian information criteria (BIC) for unnested models.
BIC provide an asymptotic approximation to the nega-
tive log of the Bayesian marginal distribution under sui-
table regularity conditions, with the approximation
being good for large n values [10]. In contrast to
Akaike’s Information Criterion (AIC), the BIC possess
the advantageous property of asymptotic consistency,
which ensures that as the sample size, n, grows to infi-
nity, the BIC will almost surely select the true model,
assuming it is amongst the set of those models under
consideration. Practically, the larger penalty (as com-
pared to AIC) often leads to better performance in set-
tings where there are a small number of strong effects
[11]. The smaller the BIC, the better the model fit. The
exponential of the negative difference of any two BIC
values can be interpreted as an approximate ratio of
posterior probabilities of the two competing models.
This provides an order of magnitude of how much
more likely one model is the “true” model compared to
the other, given the data.

Results
The ICC estimates used to assess reader repeatability
were 0.94 for dense area, 0.91 for percentage dense area
and 0.96 for nondense area. Table 1 shows that the ORs
increased with increasing dense area and PDA (both
Ptrend < 0.001) and with decreasing nondense area (Ptrend
= 0.02). The absolute mean difference between cases
and controls was about one third of a standard deviation
for both dense area and PDA and one eighth for non-
dense area. Table 1 also shows that when dense area
was included in the model, the associations with PDA
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and nondense area were no longer significant (both
Ptrend = 0.7). When the univariate OR estimates pre-
sented in Table 1 were plotted on the log scale against
the quintile medians, a near-linear association was
observed for dense area when it was square root-trans-
formed and for PDA without being transformed. For
nondense area, a square root transformation gave the
closest to a linear fit (see Figure 1a-c). Therefore, in the
analyses below fitting a one-parameter log-linear func-
tion, we used square root dense and nondense area and
left PDA untransformed.
Table 2 shows the OR associated with an increase of 1

standard deviation (SD) for each of the mammographic
measures for various models as well as the -2 log likeli-
hood (LL) and the BIC. Risk increased by 42% (95%
confidence interval (CI), 29 to 56) per SD of square root
dense area (P < 0.001), by 37% (95% CI, 25 to 50) per
SD of PDA (P < 0.001) and decreased by 11% (95% CI,
2 to 19) per SD of square root nondense area (P =
0.01). The change in -2LL was greater for the dense
area alone model than for the PDA alone model (53.22
versus 44.42).
Given dense area was in the model, addition of non-

dense area made no difference to the model fit (P =
0.9). When dense area and nondense area were fitted
together, the dense area association was unchanged,
whilst the association with nondense area collapsed

completely (OR, 1.42; 95% CI, 1.28 to 1.57; and OR,
1.00; 95% CI, 0.90 to 1.10 for dense and nondense areas,
respectively). That is, given dense area, knowledge of
nondense area added nothing to the prediction of breast
cancer risk.
When dense area and PDA were fitted together, the

association with dense area was attenuated to 31% but
remained significant (95% CI, 11 to 55), whilst the asso-
ciation with PDA attenuated substantially and was no
longer significant (OR, 1.10; 95% CI, 0.93 to 1.29). That
is, given dense area, knowledge of PDA did not improve
the prediction of breast cancer risk.
When PDA and nondense area were fitted together,

both factors were significant (OR, 1.62; 95% CI, 1.41 to
1.85; and OR, 1.27; 95% CI, 1.11 to 1.46; for percentage
dense area and nondense area, respectively). The asso-
ciations were greater in absolute strength than when
fitted alone, but the estimates were positively correlated
(r = 0.73). According to the BIC, the PDA and nondense
area model did not provide a better fit than the dense
area alone model (1623.41 versus 1618.39).
Figure 2 shows that the fitted values from adjusting

for PDA and nondense area were highly correlated with
the fitted values from adjusting for dense area (r =
0.97). That is, although the absolute values of the asso-
ciations with PDA and nondense area were increased
when they were fitted together, for an individual woman

Table 1 Associations between quintiles (Q1-Q5) of the mammographic measures and breast cancer risk

Adjusted for Dense Area

Measurement Cases (n) Controls (n) ORb 95% CIc P value OR 95% CI P value

Dense area mean (SDa) 46.23 (34.07) 36.50 (29.36)

Q1: 0.00-11.69 cm2 86 416 1.00 - - -

Q2: 11.70-26.24 cm2 114 389 1.41 1.02-1.94 0.04 -

Q3: 26.31-39.95 cm2 117 386 1.50 1.08-2.07 0.014 -

Q4: 39.99-59.87 cm2 142 361 1.94 1.41-2.66 < 0.001 -

Q5: 59.92-201.49 cm2 175 328 2.85 2.09-3.90 < 0.001 -

P for trend < 0.001

Percentage dense area (PDA) Mean (SD) 29.30 (19.24) 23.81 (17.91)

Q1: 0.00-7.01% 85 417 1.00 - - - -

Q2: 7.02-18.08% 126 377 1.62 1.18-2.21 0.003 1.32 0.78-2.21 0.3

Q3: 18.09-28.33% 115 388 1.46 1.06-2.01 0.022 0.96 0.52-1.75 0.9

Q4: 28.37-40.84% 136 367 1.89 1.38-2.60 < 0.001 1.02 0.54-1.91 0.95

Q5: 40.86-84.74% 172 331 2.71 1.98-3.71 < 0.001 1.25 0.65-2.40 0.5

P for trend < 0.001 0.7

Nondense area mean (SD) 123.89 (65.79) 131.66 (64.28)

Q1: 10.11-74.59 144 358 1.00 - - - -

Q2: 74.59-104.07 146 357 0.97 0.74-1.28 0.83 1.02 0.77-1.35 0.9

Q3: 104.14-134.70 116 387 0.73 0.54-0.98 0.04 0.83 0.62-1.13 0.2

Q4: 134.81-180.79 110 393 0.65 0.49-0.87 0.004 0.78 0.58-1.06 0.1

Q5: 181.07-456.33 118 385 0.80 0.60-1.08 0.15 1.08 0.79-1.49 0.6

P for trend 0.02 0.7
aStandard deviation; bOdds ratio; cConfidence interval.
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the fitted model gives a risk prediction very similar to
that from fitting a dense area alone model.
Other available mammographic measures (Wolfe clas-

sification, SMF and a visual assessment) were added
separately to the dense area alone model and the PDA
alone model, and none improved the model fit (data not
shown). Both dense area and PDA remained signifi-
cantly associated with breast cancer risk.

Discussion
We found that both PDA and dense area were strongly
associated with breast cancer risk; however, inclusion of
dense area in a PDA-adjusted model improved the pre-
diction of breast cancer risk, but not vice versa. This
suggests that, in terms of a single parameter, dense area
provides more information than PDA on breast cancer
risk. PDA and nondense area also appeared to be strong
predictors of breast cancer risk, but only in combination
was the prediction as good as for dense area. Dense area
and PDA adjusted for nondense area appear to be
equivalent predictors of breast cancer risk. However,
using only one predictor (dense area) provides a more
parsimonious fit. Given that for the computer-assisted
measurement used in this study the intraobserver relia-
bility is the same for both dense area and PDA, dense
area is arguably a better, simpler and more easily inter-
preted predictor of breast cancer risk.
Cases and controls were matched for age, so that all

statements about risk estimates pertain to women of the
same age. This was a large population-based study in
which all of the mammograms were scanned and mea-
sured using the same machinery and by the same opera-
tor. The MLO view of the breast was measured as this
view was the minimum recommended requirement for
screening services in the UK and therefore the most
readily available for all subjects. We have recently
shown, using data from this same study sample, that
there was no difference in the ORs or the fit of the
models using the contralateral MLO or craniocaudal
(CC) mammogram for dense area or percentage dense
area [12]. This finding is consistent with that found by
Vachon and colleagues [13], who showed no significant
differences in the magnitude of associations of dense
area or percentage dense area with breast cancer risk by
side of cancer (ipsilateral versus contralateral) and mam-
mogram view (MLO and CC), and there were essentially
no differences in C-statistics between these models,
indicating that the strength of the case control predic-
tion for all of the models was the same. Therefore, we
do not think that the results of this study or the gener-
alizability of these findings are a function of the view
that was measured.
Other breast cancer risk factor data were not available

in this study, which is usually the situation for mammo-
graphic screening services. Outside of age and BMI,
other known measured breast cancer risk factors
account for very little of the variation in dense area or
PDA [14] or breast cancer risk [3,15]. We used non-
dense area as a surrogate measure for weight or BMI.
Nondense area represents the amount of fatty tissue in
the breast, and it is highly correlated with BMI and
weight and has been shown that 40% of the variation in
nondense area can be explained by BMI [16]. Since

Figure 1 Associations between each mammographic measure
and breast cancer risk. Odds ratios of the associations of quintiles
of (a) dense area, (b) percentage dense area and (c) nondense area
with breast cancer risk versus the medians of the quintiles of the
corresponding mammographic measure.
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there is a strong correlation (r = 0.97) between the esti-
mates of association for PDA and for nondense area
(that is, strong collinearity), the use of both terms in the
same model calls for cautious interpretation; see 3rd
paragraph below.
The risk of breast cancer in terms of a one-parameter

model is well represented by both a log-linear function
of square root dense area and a log-linear function of
PDA. However, the former representation gave a better
fit, and according to the BIC (which has the property
that as the sample size increases, it will almost surely
select the true model), the difference between the two
one-parameter models is substantial enough to conclude

that the dense area model is a better one-parameter
representation. Furthermore, given the one-parameter
dense area model, the addition of neither PDA nor non-
dense area produced a better fit, suggesting that these
mammographic measures give little or no extra informa-
tion on risk other than that which is contained in the
dense area.
Adjusting for both PDA and nondense area simulta-

neously gave a better fit than PDA or nondense area
alone, but according to the BIC, the one-parameter
dense area model was still the better representation of
the underlying true model. This information, combined
with Figure 2 suggests that age-specific risk prediction

Table 2 Associations between each continuously distributed mammographic measure and breast cancer

ORa Estimates (95% Confidence Interval)

Measurement DAb PDAc NDAd ΔΧ2 e P value BICf

Base model (no predictors) - - - - 1663.78

Dense area (DA) 1.42 (1.29-1.56) - - 53.22 < 0.001 1618.39

Percent dense area (PDA) - 1.37 (1.25-1.50) - 44.42 < 0.001 1627.19

Nondense area (NDA) - - 0.89 (0.81-0.98) 5.96 0.01 1665.65

DA + NDA 1.42 (1.28-1.57) - 1.00 (0.90-1.10) 0.01g 0.9g 1626.22

DA + PDA 1.31 (1.11-1.55) 1.10 (0.93-1.29) - 1.18g 0.3g 1625.04

PDA + NDA - 1.62 (1.41-1.85) 1.27 (1.11-1.46) 11.61h < 0.001h 1623.41
aOdds ratio; bOR per standard deviation (2.49); cOR per standard deviation (17.91); dper standard deviation (2.80); e Change in -2log likelihood (relative to base
model and P values for model comparisons; fBayesian Information Criteria; gCompared to dense area only model; hCompared to percentage dense area only
model.

Figure 2 Comparing breast cancer prediction models: percent dense area and nondense area versus dense area. Fitted values from
adjusting for percentage dense area and square root nondense area versus fitted values from adjusting for square root dense area.

Stone et al. Breast Cancer Research 2010, 12:R97
http://breast-cancer-research.com/content/12/6/R97

Page 5 of 7



associated with PDA after adjusting for nondense area is
no better than fitting dense area alone.
As mentioned above, one has to be cautious when

interpreting the simultaneous fit of PDA and nondense
area. This study showed that nondense area (fatty tissue)
acts very similar to that of BMI or weight in other
reports [4]. We found that, like BMI and weight, non-
dense area was negatively correlated with PDA and
negatively associated with breast cancer risk on its own.
When fitted with PDA, in absolute terms, the regression
coefficients for nondense area and PDA both became
greater. But these estimates were correlated, so one can-
not interpret them naively as if they were ‘independent’
and assume that their ‘effects’ were greater when fitted
together. To derive the predicted risk for individual
women from this two-parameter model fit, one needs to
take into account that, on average, women with greater
PDA will have lower nondense area. Hence, compared
with when the covariates are fitted alone, what appears
to be a greater risk gradient for a variable is offset by
the apparently greater risk gradient for the other vari-
able acting in the opposite direction. In any case, as
shown by Figure 2 the predicted value for an individual
woman from the two-parameter model is very close to
those values from the one-parameter dense area alone
model. In the context of the two-parameter model,
interpreting the two risk estimates separately without
understanding that they must be interpreted as a com-
posite can lead to exaggerated claims about the strength
of association of the individual components [4]. The
estimates of association for PDA and dense area are also
highly correlated when fitted together, and despite this
the effect of dense area cancelled the other out.
Several other studies have found evidence of an asso-

ciation between dense area and breast cancer risk and
have been summarized previously [14]. Overall, all of
the previous studies have reported risk estimates similar
in magnitude to that of percentage dense area. Maskari-
nec et al. [17] compared differences in percentage dense
area and dense area to breast cancer risk incidence in
populations at different risks of the disease and found
that age-adjusted dense area may reflect breast cancer
incidence better than percentage dense area. None of
the studies provided risk estimates for nondense area.
In terms of applying the findings of this paper to a

screening or research setting, there are issues about the
measurement of dense area that need to be considered.
Measurement of PDA has the advantage that it can be
assessed reasonably well by eye by trained radiologists
and has a natural scale (0% to 100%). This information
could be used in a clinical setting much like Breast Ima-
ging-Reporting and Data System assessment is used to
alert the referring clinician that the ability to detect
small cancers in the dense breast is reduced.

Measurement of dense area involves measurement units
that may differ according to a number of factors, includ-
ing measurement technique and device. However, these
issues are no different from the determination of, for
example, bone mineral density (BMD) that has been
standardized on the basis of age and sex, among other
aspects, and used extensively for clinical and research
purposes for many years. Similarly, dense area measures
could be standardized for the population, and a woman’s
measure expressed in terms of number of standard
deviations above or below the mean could be derived, as
well as her predicted future breast cancer risk. Measure-
ment of dense area is currently restricted to certain soft-
ware packages as it cannot be assessed visually as PDA
can. If it were automated, mammographic density could
become a potentially useful adjunct to screening services
and might lead to more cost-effective operation. The
development of automated measures of mammographic
density is currently ongoing, and the transition from
film to digital mammography may aid this process.
There is also current activity dedicated to developing a

volumetric measurement of mammographic density
which would take into account the thickness of the
dense tissue. In theory, measuring a three-dimensional
risk factor from a three-dimensional rather than a two-
dimensional image has the potential for obtaining more
information on risk, but in this study the volumetric
measurement method (SMF) was not found to be a bet-
ter predictor than dense area or PDA of breast cancer
risk [7].

Conclusions
In summary, we found that dense area alone provides
more information than PDA alone regarding age-specific
breast cancer risk. When a measure of body size (or
even a surrogate measure such as the area of nondense
tissue in the breast) is included with PDA, the estimates
are not independent and the predicted risk is almost
identical to that from fitting dense area alone. Dense
area is a simpler predictor of breast cancer risk which
could help simplify breast cancer risk prediction models,
which in turn could be used to optimize breast screen-
ing intervals. It could also help focus the search for
environmental and genetic causes of mammographic
density which will help us better understand the aetiol-
ogy of breast cancer.
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