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Abstract
Background: In order to use the results of a randomised trial, it is necessary to understand
whether the overall observed benefit or harm applies to all individuals, or whether some subgroups
receive more benefit or harm than others. This decision is commonly guided by a statistical test for
interaction. However, with binary outcomes, different effect measures yield different interaction
tests. For example, the UK Hip trial explored the impact of ultrasound of infants with suspected
hip dysplasia on the occurrence of subsequent hip treatment. Risk ratios were similar between
subgroups defined by level of clinical suspicion (P = 0.14), but odds ratios and risk differences
differed strongly between subgroups (P < 0.001).

Discussion: Interaction tests on different effect measures differ because they test different null
hypotheses. A graphical technique demonstrates that the difference arises when the subgroup risks
differ markedly. We consider that the test of interaction acts as a check on the applicability of the
trial results to all included subgroups. The test of interaction should therefore be applied to the
effect measure which is least likely a priori to exhibit an interaction. We give examples of how this
might be done.

Summary: The choice of interaction test is especially important when the risk of a binary
outcome varies widely between subgroups. The interaction test should be pre-specified and should
be guided by clinical knowledge.

Background
Subgroup analysis
Any randomised controlled trial, however tight its inclu-
sion and exclusion criteria, recruits individuals who differ
in many observed and unobserved ways. Different indi-
viduals are rarely likely to respond to intervention in
exactly the same way, so the intervention effect within
carefully defined subgroups is of interest. Unfortunately,
analysis of a trial within subgroups is usually underpow-
ered: results often have wide confidence intervals and lack

statistical significance, even when the trial intervention is
beneficial. Further, repeating an analysis within several
subgroups greatly increases the risk of false positive find-
ings [1]. Subgroup analysis must therefore be treated cau-
tiously, and "the overall trial result is usually a better
guide to the direction of effect in subgroups than the
apparent effect observed within a subgroup" [2].

When a trial outcome is binary, a number of different
effect measures are available [3]: the risk difference or
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absolute benefit, which is easily translated into the clini-
cally relevant number needed to treat [4]; the risk ratio,
which is widely understood [5]; or the odds ratio, which
has desirable statistical properties [6,7]. Further, the risk
ratio for benefits gained differs from the risk ratio for
harm avoided. Subgroups that are identical on one of
these effect measures are not usually identical on a differ-
ent effect measure. For example, if intervention halves the
risk in each subgroup, and the subgroups themselves have
different risks, then the risk differences differ between
subgroups.

When subgroups have different risks, it is common to esti-
mate an overall risk ratio and then, using the control
group risk in each subgroup, to infer the subgroup-specific
risk difference and number needed to treat [8]. In this
approach, the estimated absolute benefit of intervention
is proportional to the control group risk. However, this
assumes the risk ratio is equal across subgroups. In mak-
ing a treatment decision about a particular patient, there-
fore, the clinician makes best use of the evidence base by
ignoring possible differences in the chosen measure of
treatment effect between subgroups. It is important to
have tools to indicate when this is inappropriate.

Interaction
The statistical test of interaction is a useful tool in this
dilemma. In statistical language, interaction is the differ-
ence between the intervention effects in different sub-
groups, and the null hypothesis is that the intervention
effect is equal across subgroups [9-12]. A statistically sig-
nificant interaction supports placing more weight on sub-
group-specific findings, especially if it arises from one of a
small number of pre-defined subgroup analyses. On the
other hand, a non-significant interaction suggests that the
overall trial findings should inform individual interven-
tion decisions. The clinical plausibility and importance of

the subgroup-specific findings must also be taken into
account [13].

It is useful to distinguish a qualitative interaction, in
which intervention is beneficial in one subgroup but inef-
fective or harmful in another, from a quantitative interac-
tion in which intervention is beneficial in all subgroups
(or harmful in all) but the degree of benefit varies [14]. As
an example of quantitative interaction, a large meta-anal-
ysis showed that tamoxifen has benefit in treating both
oestrogen-receptor-positive and oestrogen-receptor-nega-
tive early breast cancer, but that the benefit is greater in the
first group [15]. Such clear-cut statistically significant
results are rare in single trials.

When the trial outcome is binary, discussion of interac-
tions is further complicated by the variety of possible
effect measures. Significance tests on the overall interven-
tion effect are unaffected by the choice of measure, but the
existence and strength of interactions depend on the effect
measure used [16]. Quantitative interactions can usually
be removed by changing the effect measure, but qualita-
tive interactions cannot be removed in this way.

UK Hip trial
We explore these issues in the context of the UK Hip trial
[17]. This trial aimed to show that diagnostic ultrasound
in the management of infants with suspected develop-
mental hip dysplasia reduced overall treatment (mainly
splinting) without doubling the risk of operative treat-
ment. Note that treatment is an outcome in this trial.
Results were reported as risk ratios for operative treatment
comparing ultrasound with no ultrasound. The observed
risks were 21/314 (7%) and 25/315 (8%) respectively, so
the overall risk ratio was 0.84 with a 95% confidence
interval from 0.48 to 1.47, suggesting that risk of opera-
tive treatment was not doubled. In Table 1 this risk ratio
for operative treatment is termed "risk ratio for harm".

Table 1: Operative treatment in the UK Hip trial

Level of clinical 
suspicion

Ultrasound No 
Ultrasound

Risk ratio for 
harm (95% CI)

Risk ratio for 
benefit (95% CI)

Odds ratio (95% CI) Risk difference (95% CI)

All 21/314 (7%) 25/315 (8%) 0.84 (0.48 to 1.47) 1.01 (0.97 to 1.06) 0.83 (0.46 to 1.52) -0.01 (-0.05 to 0.03)

Strong 7/95 (7%) 11/89 (12%) 0.60 (0.24 to 1.47) 1.06 (0.96 to 1.16) 0.56 (0.21 to 1.53) -0.05 (-0.14 to 0.04)
Moderate 14/219 (6%) 14/226 (6%) 1.03 (0.50 to 2.11) 1.00 (0.95 to 1.05) 1.03 (0.48 to 2.22) 0.00 (-0.04 to 0.05)

Test of 
interaction1

P = 0.35 P = 0.29 P = 0.34 P = 0.30

1 Mantel-Haenszel test.
Page 2 of 6
(page number not for citation purposes)



BMC Medical Research Methodology 2005, 5:15 http://www.biomedcentral.com/1471-2288/5/15
Infants fell into two subgroups defined by level of clinical
suspicion prior to randomisation: strong suspicion,
defined as "sufficient to warrant early prophylactic
splinting", or moderate suspicion, defined as "sufficient
to warrant further specialist examination". The risk ratio
for the moderate-suspicion subgroup (Table 1) has a 95%
confidence interval that includes a doubling of the risk of
operative treatment. However, the risk ratios are not sig-
nificantly different on an interaction test (P = 0.35). This
suggests using the overall relative risk of 0.84, with its
upper confidence limit of 1.47, as applying to both
groups.

Alternative analyses based on the other effect measures are
shown in the last three columns of Table 1. The risk ratios
for benefit (the risk ratios for avoiding operative treat-
ment) are all near 1, because the outcome event is rare.
For the same reason, the odds ratio is numerically similar
to the risk ratio. The risk difference is numerically very dif-
ferent. However, all four effect measures give very similar
significance levels on the interaction test.

A second outcome measure in the UK Hip trial was the
occurrence of any hip treatment (Table 2). Clinical suspi-
cion is a strong prognostic factor for this outcome: in the
no-ultrasound arm, 97% of the strong-suspicion group
but only 32% of the moderate-suspicion group received
hip treatment. The risk ratios, risk differences and odds
ratios all show a larger effect in the strong-suspicion sub-
group. However, the risk ratios for harm do not differ sig-
nificantly between subgroups, yet the risk ratios for
benefit, the risk differences and the odds ratios all have
highly statistically significant differences between
subgroups.

Discussion
Why do interaction tests differ?
Interaction tests on different scales differ because they are
testing different null hypotheses. In the UK Hip trial,
ultrasound reduced the risk of any hip treatment from
97% to 68% in the strong-suspicion group. Under the null
hypothesis of a common risk ratio for hip treatment, the
32% risk in the moderate-suspicion group would be
reduced to 23%, but the null hypothesis of a common risk
difference implies a reduction to 4.1%, and the null
hypothesis of a common odds ratio implies a reduction to
3.5%. The observed reduction to 28% is consistent only
with the null hypothesis of a common risk ratio. A com-
mon risk ratio for avoiding hip treatment is not possible,
since the risk ratio is over 9 in the strong-suspicion group,
and multiplying the 68% risk of avoiding hip treatment in
the strong-suspicion group by 9 would result in a risk over
100%.

When do interaction tests differ markedly?
A graph of the event fraction in the ultrasound group
against the event fraction in the no-ultrasound group is
helpful (Figure 1) [18]. Points below the diagonal line
indicate a lower event fraction in the ultrasound group.
The large dots represent the results for the two subgroups.
The curved line shows results that have the same odds
ratio as the strong-suspicion subgroup, while other lines
show results that have the same risk difference or risk
ratio. The moderate-suspicion subgroup lies closest to the
line of a common risk ratio for harm. It is clear from Fig-
ure 1 that the choice of effect measure matters most when
the subgroup risks differ markedly.

Which interaction test is best?
Since the four interaction tests may differ markedly, it is
important to make a careful choice. An intuitive approach
is to perform the interaction analysis on the same scale on

Table 2: Any hip treatment in the UK Hip trial

Level of clinical 
suspicion

Ultrasound No Ultrasound Risk ratio for harm 
(95% CI)

Risk ratio for 
benefit (95% CI)

Odds ratio (95% 
CI)

Risk difference 
(95% CI)

All 126/314 (40%) 159/315 (50%) 0.79 (0.67 to 0.95) 1.21 (1.05 to 1.40) 0.66 (0.48 to 0.90) -0.10 (-0.18 to -
0.03)

Strong 65/95 (68%) 86/89 (97%) 0.71 (0.61 to 0.82) 9.37 (2.96 to 
29.62)

0.08 (0.02 to 0.24) -0.28 (-0.38 to -
0.18)

Moderate 61/219 (28%) 73/226 (32%) 0.86 (0.65 to 1.15) 1.07 (0.94 to 1.20) 0.81 (0.54 to 1.21) -0.04 (-0.13 to 
0.04)

Test of 
interaction1

P = 0.14 P < 0.001 P < 0.001 P < 0.001

1 Mantel-Haenszel test.
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which the results are to be presented [19]. For example,
clinical trial results are often presented on the risk ratio for
harm scale, so the interaction analysis would test equality
of these risk ratios. However, there are other
considerations.

Deeks discussed selection of an effect measure or sum-
mary statistic in meta-analysis [16]. His aim was to find a
summary statistic that is most plausibly equal in all trials,
including those with different control group risks, in order
to best predict the treatment benefit for various patient
types. One way is to select an effect measure for which the
subgroup-specific results are comparable, as judged by the
interaction test. In meta-analysis, the effect measure min-

imising the Q (heterogeneity) statistic could be used.
Using this approach in the UK Hip trial, the results for any
hip treatment would have been reported on the risk ratio
for harm scale, regardless of what had been planned.
However, Deeks argues that this is problematic with the
typically small number of trials in a meta-analysis.
Instead, the choice of effect measure should use both clin-
ical knowledge and empirical evidence. For example,
given the clinical view that absolute benefit is likely to be
greatest in those with greatest risk, the risk ratio for harm
would appear the best effect measure. Empirically, Deeks
shows that the risk ratio for harm and the odds ratio are
more frequently homogeneous between trials than the

UK Hip trial: results for any treatment in strong-suspicion and moderate-suspicion subgroupsFigure 1
UK Hip trial: results for any treatment in strong-suspicion and moderate-suspicion subgroups. Points on the red diagonal line 
indicate lack of effect; points on the other lines indicate the same risk difference (RD), risk ratio for harm (RR(H)), risk ratio 
for benefit (RR(B)) or odds ratio (OR) as in the strong-suspicion subgroup.
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risk ratio for benefit and the risk difference, supporting
their wider use.

Deeks' arguments apply to meta-analysis, and we would
not apply them to subgroup analysis within clinical trials.
Instead, we view interaction tests as a check on the
applicability of the trial results to all included subgroups.
Investigators start with the belief that all subgroups
recruited to the trial have qualitatively similar responses
to intervention. It is reasonable to maintain that belief if
it can be shown to be consistent with the data. We there-
fore propose that investigators should identify the effect
measure that is most likely to be similar between sub-
groups. By carefully specifying this measure in advance,
they ensure that the interaction test has maximum scien-
tific validity.

For example, suppose that the investigators designing the
UK Hip trial had predicted that 95% and 30% of the two
subgroups would receive treatment in the absence of
ultrasound. They could then have asked: if ultrasound
reduced the proportion in the first subgroup from 95% to
70%, what effect is likely in the second subgroup? A
reduction from 95% to 70% represents a risk ratio for
harm of 0.74, which would reduce 30% to 22% in the sec-
ond subgroup. A reduction from 95% to 70% also repre-
sents an odds ratio of 0.12 and a risk difference of 25
percentage points, both of which (by coincidence) would
reduce 30% to 5% in the second subgroup. A common
risk ratio for benefit is impossible with these numbers, as
noted above. The choice among these possibilities will
draw on investigators' knowledge and experience. If the
investigators believed that all infants are equally able to be
saved from treatment, then a common risk ratio for harm
would be plausible. If on the other hand the lower treat-
ment rate in the second subgroup implies less pathology
and hence greater potential for avoiding treatment, then a
common odds ratio might be more plausible.

As another example, consider a trial of a community inter-
vention to promote vaccination. Suppose that the
expected unvaccinated fractions in two subgroups are
20% and 80% without the intervention, and that the
intervention is expected to halve the unvaccinated fraction
in the first subgroup. If the difference between subgroups
stems from a lack of previous vaccination campaigns, then
all unvaccinated individuals would be equally likely to be
vaccinated under the intervention, so the second sub-
group would see a reduction to 40% – a common risk
ratio of 0.5. But if the difference between subgroups stems
from the second subgroup's greater suspicion of vaccina-
tion, then their likely reduction would be smaller – per-
haps to the figure of 64% which represents a common
odds ratio of 0.44.

We would usually prefer primary results to be presented
on the scale selected for interaction testing. While it may
be appropriate to present subgroup-specific results on a
different scale, it would not be correct to use that scale for
a single summary measure over the whole trial. For exam-
ple, subgroups with equal odds ratios usually have une-
qual risk ratios, so a single summary risk ratio as proposed
by Zheng and Yu [20] would generally be inappropriate.
Just as a single risk ratio may be used to compute separate
risk differences or numbers needed to treat, so a common
odds ratio could be used to compute fitted risks in all sub-
groups and hence to compute appropriate risk ratios, risk
differences or numbers needed to treat.

Finally, the choice of effect measure for the interaction test
is important because it may affect conclusions about the
applicability of the overall results of a clinical trial to all
subgroups. This choice should therefore be specified in
advance of data analysis. The best place to do this is in a
trial protocol or statistical analysis plan.

Conclusion
A statistical test of interaction is important in deciding
whether the overall results of a randomised trial apply to
all subgroups. When the outcome is binary, different
effect measures may lead to very different results on the
test of interaction. The choice of effect measure for the test
of interaction should therefore be specified before analy-
sis of the data. The best choice of effect measure for the
test of interaction is that which the investigators believe is
most likely to be similar between subgroups.
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