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Abstract
Background: Analysis of variance (ANOVA) is a common statistical technique in physiological
research, and often one or more of the independent/predictor variables such as dose, time, or age,
can be treated as a continuous, rather than a categorical variable during analysis – even if subjects
were randomly assigned to treatment groups. While this is not common, there are a number of
advantages of such an approach, including greater statistical power due to increased precision, a
simpler and more informative interpretation of the results, greater parsimony, and transformation
of the predictor variable is possible.

Results: An example is given from an experiment where rats were randomly assigned to receive
either 0, 60, 180, or 240 mg/L of fluoxetine in their drinking water, with performance on the forced
swim test as the outcome measure. Dose was treated as either a categorical or continuous variable
during analysis, with the latter analysis leading to a more powerful test (p = 0.021 vs. p = 0.159).
This will be true in general, and the reasons for this are discussed.

Conclusion: There are many advantages to treating variables as continuous numeric variables if
the data allow this, and this should be employed more often in experimental biology. Failure to use
the optimal analysis runs the risk of missing significant effects or relationships.

Background
Analysis of variance (ANOVA) is a commonly used statis-
tical technique in experimental biology. Often one or
more of the independent/predictor variables such as dose,
time, or age, can be treated as a continuous numeric vari-
able rather than a categorical variable during analysis,
even if experimentally it is treated as a category. For exam-
ple, animals may be randomly assigned to one of several
different groups, each of which receives a different dose of
a drug (including a control group which receives no drug).
This would commonly be analysed with a one-way
ANOVA, with one control group and several experimental
groups. Dose would be treated as a categorical variable

when testing whether the drug had any effect on the
response variable, such as performance on a behavioural
test. Another example is killing animals at different ages in
order to assess how age affects anatomical or physiologi-
cal variables of interest. Animals could be killed at per-
haps three different ages (young, middle, and old), and
again this would be traditionally analysed with a one-way
ANOVA. Alternatively, dose or age could be treated as a
continuous variable and these analyses would proceed as
a simple regression analysis, with both the response and
predictor variables being numeric. Pharmacologists and
toxicologists routinely treat dose as a numeric variable
and fit nonlinear dose-response curves to the data, but
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apart from these specific disciplines, this method of anal-
ysis is not common in experimental biology (but would
be the method of choice for a statistician). There are a
number of advantages of such an approach when used
appropriately, such as greater statistical power due to
more precise estimates, a simpler and more informative
interpretation of the results, a more parsimonious expla-
nation of the data with fewer parameters, and transforma-
tions of the predictor variable are possible. To simplify the
discussion, the first type of analysis will be referred to as
the ANOVA analysis and the second as the regression anal-
ysis (which is understood to be a linear regression unless
otherwise indicated), as most readers will be familiar with
these terms. However, the only difference between them is
whether the predictor variable is treated as a categorical
factor or a continuous numeric variable, and both are spe-
cific cases of a linear model [1].

This paper will discuss the advantages of using a regres-
sion analysis instead of the more common ANOVA anal-
ysis, why these advantages occur, and when this analysis
is, and is not, appropriate. In addition, an example is pro-
vided illustrating how the incorrect conclusion can be
reached using the standard ANOVA analysis.

Results and Discussion
Increased power when treating dose as a continuous 
variable
Twenty rats were randomly assigned to four groups and
given either 0, 60, 180, or 240 mg/L of fluoxetine in their
drinking water. After four weeks, performance on the
forced swim test (FST) was assessed, and the amount of
time spent immobile was the main response variable of
interest (data are presented in Table 1. The data were ana-
lysed twice, once treating dose as a categorical factor
(ANOVA analysis) and once as a continuous numeric var-
iable (regression analysis).

It is evident that there is a dose-dependent relationship
between fluoxetine and immobility time (Fig 1), with
decreased immobility associated with higher doses of
fluoxetine. A standard method of analysing this data is
with a one-way ANOVA, with one control and three treat-

ment groups. This analysis leads to the conclusion that
there is no significant effect of fluoxetine (p = 0.157; Table
2). However, when dose is treated as a continuous varia-
ble, the effect of fluoxetine becomes significant (p =
0.020). To understand why this occurred, it is necessary to
understand how the two analyses are implemented. The
difference between them is that the ANOVA analysis esti-
mates four parameters from the data (one mean, and 3
differences between means), while the regression analysis
only estimates two parameters (one intercept, and one
slope). Since one degree of freedom (df) is lost every time
a parameter is estimated, the ANOVA analysis has lost two
more dfs compared to the regression analysis. The
ANOVA tables of both analyses are presented in Table 2.
The sum of squares (SS) for dose is slightly greater with
the ANOVA than the regression method (10,420 versus
10,161), indicating that the ANOVA analysis accounted
for slightly more variation in immobility times. This is
also reflected in the residual SS, with the regression anal-
ysis having a slightly larger SSResidual, indicating a greater
amount of unexplained variation. It would appear there-
fore that the ANOVA analysis is preferable because it
accounts for slightly more of the variation. However, the
ANOVA method is evaluated on 3 and 16 df, while the
regression method is evaluated on 1 and 18 df, and this
makes all the difference. The mean square (MS) for dose
is calculated as MSDose = SSDose/dfDose and having 3 df in the
ANOVA analysis reduces SSDose by a third, whereas in the
regression analysis MSDose = SSDose (dividing by one df).
The opposite occurs with the residuals: because SSResidual is
divided by a bigger number in the regression analysis (df
= 18) than the ANOVA analysis (df = 16), MSResidual will be
smaller with the regression analysis. This is important
because the F-value is calculated as F = MSDose/MSResidual,
and therefore the higher MSDose and the lower MSResidual,
the higher the F-value. As can be seen, the F-value is 6.46/
1.98 = 3.26 times bigger using the regression analysis. The
critical value of F (F-crit) is the number that the calculated
F-value has to exceed in order to be significant at the 0.05
level, and it is different for each method because it is
based on the degrees of freedom. F-crit for the regression
analysis is 4.41/3.24 = 1.36 times bigger, but is still less
than the change in F-value, and explains why the regres-
sion method is more powerful. This will be true in gen-
eral, and more formally, the linear regression model

yi = α + βxi + εi (1)

where α is the y-intercept and β the slope of the regression
line, is a special case of the ordinary 'factor' model

yij = μ + θi + εij (2)

where μ is the grand mean and θi is the treatment effect of
the i th group (the difference between the grand mean and

Table 1: Raw immobility scores (seconds) for twenty rats at 
different doses of fluoxetine.

Dose 0 80 160 240

182 158 140 163
112 165 135 183
206 168 110 25
170 182 128 100
164 97 155 61

Mean 166.8 154.0 133.6 106.4
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the mean of each group). In each case, the residuals (ε) are
normally distributed with a mean of zero. We would
always choose (1) in preference to (2) if the data allow
this (see below), as this allows the parameters to be esti-
mated more accurately (see reference [2] for a formal
proof).

The FST is a standard behavioural screen for antidepres-
sant drugs [3,4], and the effects of fluoxetine on this test
are well documented [5,6]. Kulkarni and Dhir estimated
18 mg/kg of fluoxetine as the dose that produces a
response in 50% of rodents (ED50), when given intraperi-
toneally [6]. This corresponds to the 160 mg/L group in
the present experiment. The lack of statistical significance
therefore reflects the reduced power of the ANOVA analy-

sis compared to the regression analysis; using the ANOVA
analysis, we would falsely retain the null hypothesis that
fluoxetine has no effect on this behavioural test (Type II
error).

Readers might wonder if the regression method will
increase the chance of false-positives (Type I errors), since
it can have greater power and therefore provides lower p-
values than the ANOVA method. The answer is no,
because the Type I error rate is set by the researcher before
looking at the data (traditionally α = 0.05). The preference
for the regression method (when appropriate) is in line
with the 'classical' Neyman-Pearson method of analysis
commonly used in experimental biology: set the probabil-
ity of falsely rejecting the null hypothesis when it is true

Effect of fluoxetine on the forced swim testFigure 1
Effect of fluoxetine on the forced swim test. Data of this type are typically plotted as means ± the standard error of the mean 
and analysed with an one-way ANOVA (A). The data are also plotted as individual points with a regression line (B). In both 
cases, it is evident that the time spent immobile decreases with increasing fluoxetine.
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Table 2: ANOVA tables for the two analyses. 

df SS MS F value F-crit P value

ANOVA Dose 3 10 420 3 473 1.98 3.24 0.157
Residuals 16 28 043 1 753
Total 19 38 463

Regression Dose 1 10 161 10 161 6.46 4.41 0.020
Residuals 18 28 303 1 572
Total 19 38 464

The difference in the last digit of Total SS between the ANOVA and regression analysis is due to rounding error.
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(α = 0.05), and then use the test with the highest proba-
bility of rejecting the null hypothesis when the alternative
hypothesis is true (i.e. the test with the highest power) [7].
The aim is to minimise Type II errors (failing to detect a
significant difference when one exists), subject to the con-
straint on Type I errors [8]. The problem with the ANOVA
analysis is that it has reduced power to detect linear rela-
tionships (and hence larger p-values), which can lead to
increased Type II errors.

A simpler and more informative interpretation
The regression analysis also lends itself to a simpler inter-
pretation. The effect of fluoxetine on immobility time on
the FST can be stated thus: for every 100 mg/L increase in
fluoxetine, immobility time decreases by 25 seconds
(CI95% = 4 to 46 seconds; p = 0.021). This is true for doses
between zero and 240 mg/L, and extrapolating to higher
doses should be done with caution. This states the rela-
tionship between the two variables, and the confidence
interval provides an estimate of uncertainty. Contrast this
with interpreting the ANOVA analysis; one can only
describe qualitatively that there was a decrease in immo-
bility time with higher doses of fluoxetine (and provide
the p-value), but this is much less informative than quan-
tifying this relationship as in the regression analysis. The
amount of variation in the response variable accounted
for by the predictor variable could also be mentioned (R2

= 0.271), but this is still not as informative. Post hoc tests
are routinely applied in such situations, whether the over-
all ANOVA was significant or not. These are problematic
(in this case and arguably many others) because they
reflect lack of power rather than a lack of effect, particu-
larly if corrections for multiple comparisons are used. For
example, the only significant difference was between the
control and 240 mg/L group when uncorrected pairwise
comparisons are used (p = 0.037). This is no longer signif-
icant when correcting for multiple tests.  Comparing the
control group to all the fluoxetine groups gives p = 0.090
for this comparison (Dunnett's test) or blindly doing all
pairwise comparisons gives p = 0.221 (Bonferroni correc-
tion). Each pairwise comparison uses half the total sample
size (comparing two groups of n = 5) and correcting for
multiple comparisons raises the bar for significance, mak-
ing the power of such tests greatly reduced. All of this can
be avoided with the regression analysis; not only is the
interpretation simpler, but more informative.

Another drawback of the ANOVA analysis is that the
results are invariant to the ordering of the groups. For
example, the above ANOVA result would be identical if
the data from the 80 and 240 mg/L groups were swapped,
such that the 80 mg/L group now has the lowest immobil-
ity time. There is now no consistent decrease in immobil-
ity time with increasing dose (i.e. no dose-response) and
therefore less evidence for an effect of fluoxetine, yet the

p-value remains the same (p = 0.157). This is because '0',
'80', '160' and '240' are just labels in the ANOVA analysis,
which could just as easily have been the labels A to D. The
regression analysis has the advantage of respecting the
order of the data, where zero means no drug, and 160 mg/
L is twice 80 mg/L.

Greater parsimony
Other things being equal, it is generally accepted that a
simpler explanation is preferable to a more complex one
[9]. The regression analysis describes the data with just
two parameters: the slope and intercept of the regression
line. In contrast, the ANOVA analysis requires four param-
eters: the mean of the control group (0 mg/L), and the dif-
ference between the control and each of the fluoxetine
groups (using treatment contrasts). The ANOVA analysis
therefore uses twice as many parameters to describe the
data, and therefore other things being equal, the regres-
sion analysis is preferred because it is simpler.

Transformations of the predictor are possible
Since the predictor in the regression analysis is treated as
a number and not a category, it is possible to transform it.
For example, a toxicology study may use doses that span
several orders of magnitude (e.g. 0.01, 0.1, 1, 10, 100 mg/
kg), but it is not predicted that the response will have such
a wide range (e.g. the proportion of animals surviving is
bounded by zero and one), and therefore it is unlikely
that the relationship between the two will be linear. How-
ever, taking the log10 of the above doses gives values of -2,
-1, 1, 2, and 3, which are more likely to be related linearly
to the response variable. Treating the predictor as a con-
tinuous variable therefore provides added flexibility by
allowing transformations that the ANOVA analysis does
not.

When not to use the regression analysis
The first requirement is that the predictor variable must in
fact be continuous, and a true categorical variable such as
different types of drug, arbitrarily labelled from 1 to 4,
cannot be treated as a continuous variable. Second, the
regression analysis requires the relationship between the
response and predictor variables to be linear. Nonlinearity
could be handled by transforming one or more of the var-
iables (see above), but it may be preferable to use the
ANOVA analysis in this case if it makes the interpretation
simpler. Alternatively, the relationship between the
response and predictor might be 'U'- or inverted 'U'-
shaped, in which case the ANOVA analysis would be pref-
erable (of course, a quadratic term could be added to the
regression analysis or a nonlinear regression could be
used, but these will not be considered further here). The
greater the extent of nonlinearity, the less power (and
greater lack of fit) the regression analysis will have com-
pared to the ANOVA analysis, and the optimal fit for the
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regression line would occur when it passes through the
mean of each group.

The relationship between the response and predictor var-
iables can be established by plotting the data as in Figure
1B. However, plotting the fitted values against the residu-
als will also provide information on the lack of fit of the
regression model. Crawley [[10], p. 415–417] suggests
that the lack of fit of the regression model can be tested by
using both the continuous and categorical variables in the
same analysis; entering the continuous variable first, and
then the categorical factor. If p < 0.05 for the categorical
factor, then the ANOVA model is preferred to the regres-
sion model. Note that this is a sequential (Type I SS),
where the continuous variable is entered into the model
first, and the categorical variable accounts for any addi-
tional variation not accounted for by the continuous vari-
able. For some statistical software, the default SS will have
to be changed to 'Type I' before the analysis is carried out.
It is also possible to compare the two models directly with
an F-ratio using the following equation

where SSreg and SSANOVA are the residual sums of squares
from the regression and ANOVA analyses, and dfreg and
dfANOVA are the residual degrees of freedom. This follows
an F-distribution with dfreg - dfANOVA degrees of freedom in
the numerator and dfANOVA degrees of freedom in the
denominator. With the present data, the results are F2,16 =
0.074, p = 0.929, indicating that the ANOVA model does
not provide a significantly better fit than the regression
model.

In addition, the two models can be compared using
Akaike's information criterion (AIC) [11], and a discus-
sion of this approach can be found in Motulsky and Chris-
topoulos [12] (which can also be obtained at
http:www.graphpad.com/manuals/prism4/Regression
Book.pdf). Briefly, AIC is a measure of how well a model
fits the data. The more parameters a model has, the better
the fit; however, AIC penalises superfluous parameters
and thus represents a trade-off between goodness-of-fit
and the number of parameters. The model with the lowest
AIC value is preferred, and AIC for the ANOVA method
was 211.7, while for the regression method it was 207.9,
indicating that the regression method is preferred. A
related approach is the Bayesian information criterion
(BIC, [13]), which tends to penalise complex models
more heavily than the AIC, and therefore gives greater
preference to models with fewer parameters [14]. The BIC
value is interpreted in a similar manner to the AIC (the
model with the lower value is preferred), and BIC for the
ANOVA method was 216.7, while for the regression

method it was 210.8. Therefore, using the F-ratio, AIC,
and BIC, it is possible to compare both the ANOVA and
regression models directly to see which is preferable.

The final requirement is that the groups must be inde-
pendent, with different animals (or subjects, samples,
etc.) in each group (i.e. dose is a 'between-subjects' fac-
tor). Neither the one-way ANOVA nor the regression anal-
ysis are appropriate if the same subjects give values at
more than one level of the factor; for example, if a
response was measured at more than one time point. In
this case, a repeated-measures ANOVA or a mixed-effects
model [15,16] should be used.

Extensions and further applications
The example provided had only a single predictor varia-
ble, but the results and the general approach also apply to
higher order designs where one or more variables could
be treated as continuous rather than categorical, leading
to analysis of covariance (ANCOVA) or multiple regres-
sion-type analyses. For example, if the present data con-
tained both males and females, separate regression lines
could be fit for each sex, each with its own slope and inter-
cept. It is important to note that if there is no significant
interaction between the continuous variable (dose) and
the groups (sex), then the interaction term should be
removed from the model, which constrains the regression
lines to have equal slopes. If this is not done, the interpre-
tation of differences between sexes becomes difficult, and
can lead to erroneous conclusions [17,18]. In addition,
the response variable may be counts, proportions, per-
centages, or other types of data that would normally be
analysed with a generalised linear model, and the advan-
tages of treating the predictor variable as continuous
rather than categorical are similar for these analyses [19].
A related issue is that of 'data carving' [20], where a con-
tinuous numeric (often non-experimental) variable such
as age is binned into a few categories; for example, age
may be dichotomised into young and old groups based
on a median-split, or perhaps a middle group would be
included as well, and the data would then be analysed
with an ANOVA. There is little to be gained from such an
approach and it is not recommended [20].

In general, the greater the number of groups, the greater
the usefulness of using the regression analysis; for exam-
ple, if there were eight groups SSDose would be divided by
8 - 1 = 7 df for the ANOVA analysis, but MSDose would still
equal SSDose (dividing by one df) for the regression analy-
sis. At the other extreme, the two analyses would always
produce identical results if there are only two groups (an
independent samples T-test would normally be used in
such a case, and would also give identical results).

F
SSreg SSANOVA dfreg dfANOVA

SSANOVA dfANOVA
=

− −( ) /( )

/
(3)
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The analysis of datasets such as the one presented in this
paper are not limited to ANOVA and regression analyses,
computationally intensive methods (e.g. permutation
tests, bootstrapping, etc.), non-parametric tests (e.g.
Kruskal-Wallis test) and tests for trend (e.g. Pitman test)
are also available, and each have their associated advan-
tages, disadvantages, and caveats. The advantages of the
regression analysis are well known to statisticians, but rel-
atively unknown to experimental laboratory-based biolo-
gists. This is likely due to regression and ANOVA being
treated as separate topics in undergraduate statistics
courses aimed at natural scientists (and the reason why
these terms were used to describe the different analyses in
this paper). In addition, many modern point-and-click
statistics packages maintain this distinction, with the tests
located under different sub-menus. However, regression
and ANOVA are not two fundamentally different analyses;
they both fit (different) linear models to the data, and it is
up to the analyst to decide which model is preferable in
each case.

Conclusion
As demonstrated above, treating an experimental variable
as continuous rather than categorical during analysis has
a number of advantages. First, it will generally have greater
statistical power. Second, because fewer parameters are
used to describe the data, it is more parsimonious. Third,
it often provides a simpler interpretation (e.g. a change in
the predictor variable by x units leads to a change in the
response variable of y units), and this is usually more
informative as well. Finally, there is the added flexibility
of allowing transformations of the predictor variable.
Because of these advantages, treating independent varia-
bles as continuous should be the method of choice in the
first instance, with ANOVA being used if regression analy-
sis is not appropriate (e.g. if the relationship between the
variables is not in fact linear).

Failing to use the optimal analysis runs the risk of missing
significant effects; in the example provided, the ANOVA
analysis did not reject the null hypothesis while the regres-
sion analysis did. It is not known how many published
studies failed to find significant effects, or how many stud-
ies have not been published due to lack of significant
results (file-drawer problem) because an ANOVA analysis
was used when a regression analysis would have been
more powerful. But given the ubiquity of ANOVA in
experimental biology, it is likely a non-trivial number. It
is hoped that, when feasible, readers will employ this
approach in their own research to improve the power of
their analyses and arrive at a better understanding of their
data.

Methods
Animals
Twenty male Sprague-Dawley rats (age = 8 weeks) were
obtained from Harlan Ltd., UK. Upon arrival at the ani-
mal facility, rats were individually housed and allowed to
acclimatise for one week. Rats were then randomly
divided into four groups (n = 5 per group) and given 0, 80,
160, or 240 mg/L of fluoxetine in their drinking water,
along with saccharine. This corresponds to approximate
doses of 0, 10, 18, and 25 mg/kg of body weight [21].
Ambient temperature was maintained at 21°C and
humidity at 55%. Rats had ad libitum access to food and
water and were kept on a reversed 12-hour light/dark cycle
(lights off at 10:00 AM). After four weeks of fluoxetine
treatment, behavioural testing on the forced swim test was
conducted and rats were killed the following day. Animal
work conformed to the UK Animals (Scientific Proce-
dures) Act 1986 and was performed under appropriate
Home Offce project and personal licenses.

Forced swim test
Rats were placed into a clear perspex swim tank (height =
40 cm, inner diameter = 19 cm) filled with warm water to
20 cm for 5 min. The latency to immobility and time
spent immobile were measured. Immobility time is taken
to be a measure of behavioural 'despair', and antidepres-
sants typically decrease the amount of time rodents spend
immobile.

Statistical analysis
Analysis was conducted with R (version 2.6.0) [22,23].
The relationship between fluoxetine and performance on
the FST was analysed with a linear model (using the 'lm'
function with the default treatment contrasts). A p-value
of less than 0.05 was considered statistically significant.
Data are provided in Table 1 and R code is available so
that readers may reproduce the analysis [see Additional
file 1]. Note that the results have been rounded to sensible
values for presentation in the text and in Table 2.

Abbreviations
ANCOVA: analysis of covariance; ANOVA: analysis of var-
iance; df: degrees of freedom; ED50: effective dose 50%;
FST: forced swim test; MS: mean square; SS: sum of
squares

Additional material

Additional file 1
Code for analysis. R code is provided as a plain text file.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6793-8-16-S1.txt]
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