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Abstract

Background: Non-sequence gene data (images, literature, etc.) can be found in many different public
databases. Access to these data is mostly by text based methods using gene names; however, gene
annotation is neither complete, nor fully systematic between organisms, and is also not generally stable
over time. This provides some challenges for text based access, especially for cross-species searches. We
propose a method for non-sequence data retrieval based on sequence similarity, which removes
dependence on annotation and text searches. This work was motivated by the need to provide better
access to large numbers of in situ images, and the observation that such image data were usually associated
with a specific gene sequence. Sequence similarity searches are found in existing gene oriented databases,
but mostly give indirect access to non-sequence data via navigational links.

Results: Three applications were built to explore the proposed method: accessing image data, literature
and gene names. Searches are initiated with the sequence of the user's gene of interest, which is searched
against a database of sequences associated with the target data. The matching (non-sequence) target data
are returned directly to the user's browser, organised by sequence similarity. The method worked well
for the intended application in image data management. Comparison with text based searches of the image
data set showed the accuracy of the method. Applied to literature searches it facilitated retrieval of mostly
high relevance references. Applied to gene name data it provided a useful analysis of name variation of
related genes within and between species.

Conclusion: This method makes a powerful and useful addition to existing methods for searching gene
data based on text retrieval or curated gene lists. In particular the method facilitates cross-species
comparisons, and enables the handling of novel or otherwise un-annotated genes. Applications using the
method are quick and easy to build, and the data require little maintenance. This approach largely
circumvents the need for annotation, which can be a major obstacle to the development of genomic scale
data resources.
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Background

Increasing amounts of gene sequence data are being held
in databases around the world and methods continue to
be developed that allow us to access these data in a con-
venient and informative manner. At the same time, large
amounts of non-sequence gene data are also being col-
lected, and efforts are being made to develop methods to
store, access and retrieve these secondary data. Examples
of this type of data would be in situ expression patterns,
mutant phenotypes, scientific literature and 'gene pages'
in model organism databases.

We were interested in finding a way to improve access to
the large numbers (20,000+) of in situ mRNA localisation
and other images that members of the Xenopus commu-
nity had generated. The goal was to be able to retrieve
images according to gene of interest in a straightforward
and useful manner. A survey of image data retrieval meth-
ods in existing public databases (see Table 1) showed that
the mechanisms for retrieving image data by gene were
almost invariably based on gene names or symbols, or
parts of gene names. We felt that these name based data-
bases probably required a significant annotation or cura-
tion effort to set up, and that, in general, name based
methods suffer from the following drawbacks. First, such
methods rely on the underlying gene annotation (process

http://www.biomedcentral.com/1471-2105/9/442

of associating a gene name with a specific sequence or
genomic locus), and its quality, completeness and stabil-
ity. This will be quite problematic for model organisms,
like Xenopus, where gene annotation is not finished. And
second, they probably require one to go through a process
of associating an application's data-set with the correct
gene name and ensuring that this is kept up to date. The
problem is that gene annotation is a work in progress,
both conceptually and for specific organisms, and
although significant effort has been put into this over
recent years (see [1] for an overview), it is clear that gene
names (a) are potentially unstable, (b) can be inconsist-
ent between organisms and (c) are not available for the
many as yet unknown or novel genes, and that this is
likely to remain so for some time to come. Even for
known genes, extensive lists of aliases can be required to
cope with the naming history of that gene and the variety
of names for the orthologous genes in different species. In
short, it is a relatively labour intensive approach, and will
usually require ongoing maintenance. Given this, and the
incomplete state of gene annotation for Xenopus, we
decided to investigate other approaches.

Making the observation that in situ images are intrinsically
associated with a sequence (the in situ probe), we hypoth-
esised that a method based on sequence similarity search-

Table I: Analysis of access methods used by other image data providers

database function access methods URL
FlyBase ImageBrowse/Fly Express gene name, anatomy, or development stage http://flybase.org/

Allen Brain Atlas
markers

gene name, accession numbers and other IDs, anatomy, or

http://www.brain-map.org/

EMAP EMAGE gene, anatomy or development stage http://genex.hgu.mrc.ac.uk/

MGI gene, anatomical structure, developmental stage, GO http://www.informatics.jax.org/
terms, assay type

4DXpress gene names, pre-computed orthologs, ontologies http://ani.embl.de/4DXpress

Xenbase found on Gene pages http://xenbase.org/

UCSC VisiGene gene name or key word http://genome.ucsc.edu/

NIBB WISH Photo Browser development stage, view or clone name http://xenopus.nibb.ac.jp/

WormBase Expression Pattern Search cell, cell group, or life stage http://www.wormbase.org/

ANISEED Expression Search Tools development stage, or molecule ID http://aniseed-ibdm.univ-mrs.fr/

ZFIN Search for Gene Expression Data gene name, anatomy, or development stage, and other http://zfin.org/

more specific terms, indirect via BLAST

Summary of search methods used by available public image databases for accessing images, found at the time of writing. Data gathered by visiting

each database and reading associated publications.
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ing might provide the power and accuracy needed,
without the overhead of the annotation that would be
required to create a gene name based application. If such
an approach was successful, it would also generalise to
other collections of data where the data are gene based
and an identifiable sequence is associated with each piece
of data. For example, sequence accession numbers are
widely embedded in scientific literature, and to be able
directly to access literature on the basis of sequence simi-
larity would appear to be useful.

The general model of the method would be for the point
of entry into the search process to be the sequence of the
user's gene of interest. This sequence would be used to run
a sequence similarity search (e.g. BLAST [2]), in the back-
ground, against a specifically prepared database of
sequences associated with the target search data (such as
images). The IDs of the matching sequences are linked to
the target data, enabling the target data that matches the
query sequence to be returned to the user. This effectively
uses the query sequence as 'bait' to retrieve the non-
sequence data. The signature of the method is the direct
return of useful target data in response to the query
sequence.

The sequence based search would retrieve data associated
with sequences similar to, as well as identical to, the query
sequence, and thus would enable data retrieval for related
genes as well as the specific user's gene. This would have
useful application in (for example) cross-species searches.
Equally, there is no requirement for these to be gene
sequences, and the method could be used for any type of
biological data with a sequence.

A search for applications of the proposed method where it
might already be in use drew a blank. Specifically we
failed to find any instances of a sequence similarity search
being used as the entry point for direct retrieval of image
or other non-sequence gene data.

What we did find were (a) enhancement of the output of
standard BLAST sequence searches with clickable links to
other data where available, (b) BLAST searches leading to
lists of sequences (without alignment detail) which acted
as links to other data, and (c) pre-computed sequence
similarity search results being used to link items within
databases. The following are examples of these mecha-
nisms. Probably the most familiar are the 'linkouts' in the
results pages for NCBI BLAST [3]. These linkouts take the
user to various other of the NCBI family of databases, such
as the PubMed literature databases [4] and the Entrez
Gene database [5]. They are undoubtedly useful, but the
links must be followed separately to investigate the sec-
ondary data, and not all reported sequence matches have
linkouts. One of a number of gene expression databases,
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4DXpress [6] has an emphasis on cross-species compari-
son. Primary access to the data is through gene names,
plasmid IDs, and temporal and spatial expression descrip-
tors (stage, anatomy, etc.) via ontologies. A BLAST search
can be performed, taking the user to lists of either system-
atic gene IDs or probe sequences from which further links
lead to expression data. Access to data for orthologous
genes in other species is provided by pre-computed rela-
tionships (from Ensembl [7]), and also for paralogous
genes within species. The zebrafish model organism data-
base, ZFIN [8], provides a facility much like the NCBI
BLAST search, where the target database is the set of gene
sequences which have expression data available, and
image data for each gene is accessed via linkouts. While
these examples demonstrate the usefulness of using
sequence similarity searches and search results to link
resources, they fall short of the type of search mechanism
proposed here by not proceeding directly from the query
sequence to the retrieved target data.

A number of other search methods of obvious utility were
implemented in the databases we looked at, including
development stage and anatomy based searches, and pat-
tern matching methods. Image retrieval was also often
provided based on plasmid ID or accession number,
which is, at one level, a good proxy for the gene. However,
it requires a very specialised knowledge to be familiar with
enough IDs for this to be really useful, and we discount
this as an effective method for gene based searches.

It seems clear that building a system that is based on the
gene sequence, and independent of gene annotation,
should confer a number of advantages:

¢ no additional annotation or curation effort would be
required, making applications easier to build and main-
tain

e the mechanism would work just as well with genes of
unknown function, or genes which are un-annotated for
any other reason

e data retrieval is not limited to the gene of interest but is
extended to similar genes in a controlled fashion

¢ data retrieval would be straightforwardly cross-species,
with no concerns about how gene names varied between
organisms

e data retrieval would also operate across related genes
with different names in the same organism

¢ retrieved data for multiple genes would be intrinsically
self-organising on a basis familiar to molecular biologists,
i.e. evolution
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Data management, search and retrieval methods have
been widely investigated, and are well discussed in the lit-
erature (for examples in biology see [9-16], and also
[17,18] for some of the broader arguments). The topic of
gene specific data retrieval has also received much atten-
tion, particularly in the context of literature searches, and
the recent review by Kersey and Apweiler [19] provides a
general insight into the problem. Possibly the most widely
used literature search engine in biology, PubMed [4], is
based on a text search; use of logical operators and a limits
mechanism allow users to perform complex queries
which can include gene and species names. Methods
focused more specifically on genes, developed for litera-
ture retrieval, generally use data mining techniques to
identify and disambiguate gene names and symbols in
free text (see [20-23]), in order to use the text itself more
effectively. iHOP [24] is another interesting example
using natural language processing to much the same ends.

To test our hypothesis that the use of an indirect sequence
similarity search method to retrieve gene based image data
would prove effective and also generalise to other types of
data, we set out to implement the method in image, liter-
ature and gene name searches.

Results and discussion

As anticipated, building applications to use an indirect
sequence similarity search was straightforward, and
required minimal data preparation. The applications per-
formed as intended, and, with a common methodology,
they shared many of the same software components.

We built three applications: quickimage, an image search
engine, to fulfill our original goal for this project, quickLit,
to retrieve gene-specific literature, and quickGene, a tool
to explore gene names. All applications work cross-spe-
cies, and are available as publicly accessible resources:

quicklmage http://informatics.gurdon.cam.ac.uk/apps/
quicklmage/

quickLit http://informatics.gurdon.cam.ac.uk/apps/
quickLit/

quickGene  http://informatics.gurdon.cam.ac.uk/apps/
quickGene/

Discussion with colleagues in the ascidian research com-
munity provided early evidence of the attractiveness of the
method for accessing large collections of image data, and
we were able to combine a large number of Ciona intesti-
nalis images with those from Xenopus laevis and Xenopus
tropicalis.
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The individual applications are described below, but first
we describe the method generically, to avoid repetition
and to make the underlying processes clear.

generic method for indirect sequence similarity search

(i) data preparation

The first step is to identify the data sources for the project,
download the relevant data files, and extract the required
data into a local managing database. The core part of this
is the pairwise association of each piece of data with the
sequence identifier(s) it is intrinsically related to, plus
whatever other information is available to describe the
data. Generally each source of data requires its own parser
to be written, but these use simple computing tools and
may be written in a few hours by a competent bioinforma-
tician. The second step is to use the sequence identifiers to
download the actual sequences from whichever database
they are most conveniently available, and build a blasta-
ble database from these sequences, indexed on the
sequence identifiers that have been stored in the manag-
ing database. To minimise BLAST search times care should
be taken to ensure that this database only contains
sequences leading to useful target data.

(ii) application logic

Once built, the application then functions in the follow-
ing way. First the user submits the sequence of their gene
of interest to the search engine via a web page. The search
engine then uses this as the query sequence to search the
blastable database. Identifiers for the matching sequences
are returned to the search engine from the BLAST search,
and these are used to identify the correct pieces of associ-
ated data in the managing database. These data are then
returned to the user in a results web page, with whatever
other information is available to make the data most use-
ful. This is illustrated schematically in Figure 1.

The search engine applications were built from our stand-
ard programming toolkit, but could easily be written in
any suitable computer programming language. The pri-
mary requirements for such an application are that it can
run a system level command (BLAST), that it can interact
with an SQL database on the local network, and manage
internet connectivity.

Sensitivity can be adjusted, as in any BLAST search, by set-
ting the maximum E-value for reported results, and this is
provided as a control for users.

quickimage

This application uses the query sequence to search for bio-
logical image data where the images originated from
sequences the same as or similar to the query sequence.
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indexed blast database of
sequences associated with
the gene data

managing database
of sequence identifiers
linked to the gene data

BA234876.2 Gastrula, vegetal view

BA234876.2 Neurula, dorsal view

IMAGE:402112 Stage 35, lateral
=
TGas025p12 ? Neurula, dorsal view
BA234876.2 100.0% 23 456
% BA234876.2 [
AY356365.1 95.2% 235 786 IMAGE:554132 Tailbud, lateral view
3 AY356365.1
* search engine 4 I AY356365.1 ':!_ in situ expression, st. 10 I
CGl computer 5
. AZ899898.1 Stage 16, dorsal
2 program

>USER-QUERY
MQSQRSRRRSRAPNTWICF
WINKMHAVASLPASLPLLLLTL
AFANLPNTVRGTDTALVAASC
TSVGCONGGTCY

>USER-QUERY
MQSQRSRRRSRAPNTWICF
WINKMHAVASLPASLPLLLLTL
AFANLPNTVRGTDTALVAASC
1 TSVGCONGGTGY

User searching
for gene data

web browser

generic logicofa --
sequence based
search engine
— responding to a
request for gene
data (images in
this example).

Request

- Returned Data

Figure |

Generic application logic used in indirect sequence similarity search for gene data. (1.) the user pastes a gene
sequence into the browser window and sends it to the search engine; (2.) the gene sequence is blasted against the database of
sequences associated with the gene data; (3.) IDs of matching sequence are returned to the search engine; (4.) the matching
sequence IDs are used to query the local managing database for available gene data; (5.) a list of matching gene data and
descriptive text is returned to the search engine; (6.) an html formatted page containing the retrieved gene data and descriptive

text is returned to the user's browser.

We identified five major collections of Xenopus image data
(see Table 2.) which included all of the large groups of
Xenopus images known to the community. A key person
for each collection agreed to facilitate the transfer and
interpretation of data associated with the images, and to
ensure that the images were available on a local web
server. For the Ciona images, all the relevant data were
transferred from a single source, ANISEED [25], which
made the data collection and preparation steps simpler
than for the Xenopus images.

Each image collection provided a set of image file names
and related data, and the URL of the web folder contain-
ing the images, or the images themselves. The image col-
lections had mostly adopted internally consistent and
straightforward naming convention for the image files
based on plasmid or sequence IDs, and the links between
images and their source sequences were straightforwardly
parsed into the managing database. The Harland image
collection, which had grown over a period of time with a
gene based naming convention and manually edited file
names, was more of a challenge, and gave us an opportu-
nity to develop guidelines for image file naming which
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Table 2: Contributing image collections for quickimage
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image collection coordinator collection location URL

type of collection

Richard Harland University of California, Berkeley

in situ images

http://tropicalis.berkeley.edu/home/gene_expression/in_situ_library/

Nancy Papalopulu University of Manchester, UK

(unpublished images)

in situ images

Nicolas Pollet Universite Paris-Sud, Orsay, France

http://indigene.ibaic.u-psud.fr/axeldb/

in situ images

Jim Smith Gurdon Institute, Cambridge, UK morpholino screen with in situ images
http://www.gurdon.cam.ac.uk/~smithlab/screens/Xenopus-morpholino-
pilot/

Naoto Ueno NIBB, Japan in situ images

http://xenopus.nibb.ac.jp/

Patrick Lemaire IBDML, Marseille

http://aniseed-ibdm.univ-mrs.fr/

in situ images

The images collections and the key individual responsible for coordinating transfer of data to the image search database. A URL is given where the

images are available as an existing public resource.

will help with future submissions to this project. The Har-
land image file names were edited to include an accession
number before being added to the current version of the
search engine.

The file naming guidelines can be summarised as follows.
File names should be built consistently, but most consist-
ent schemes will work; names should not include spaces
or other problem characters (+, =, /, etc.); sequence infor-
mation should be included in the form of the plasmid
name, accession number or local ID; experimental infor-
mation (stage, view, etc.) may be embedded by means of
short codes or integer values; embedded information
within the name should be divided by hyphens, or other
characters (e.g. underscores) so long as the character used
does not otherwise appear in any of the parts of the name;
names should be unique within a collection. Develop-
ment stages should be expressed as precisely as possible.
An example of a conforming name would be BC063191-
IS-12-LAT.gif (in situ made using probe from sequence
BC063191, stage 12 embryo, lateral view).

In this application the sequences identifiers are a mix of
sequence accession numbers and plasmid IDs, although
this did not affect our ability to download the correspond-
ing sequences from the appropriate databases to build the
blastable database. To assist the user in identifying imper-
fect matches to their query sequence, we provide best
BLAST hit descriptions for the originating sequences from
the NCBI protein database, for human, mouse and Xeno-
pus. These data are made available as part of the results.

Images already on a public web server are accessed in their
original locations; otherwise they are placed in a folder on
our local web server. Whichever method is used, the
search engine returns HTML placeholders for the images,
containing the URL of the actual image location, from
which the browser then loads the image itself. This helps
to reduce the load on our web server and can decrease
download time for users.

In practice the search engine works well, and the user is
rewarded in a few seconds with sets of images for their
gene, and/or genes with similar sequences. In general
there is sufficient additional information to organise the
images according to the collection, the type of experi-
ment, and the temporal progression of development
stages. The user can scroll through the sets of images, and
also click on any image to view it full size. The user can
also search for images from any combination of the avail-
able species.

We included the ability to perform key-word searches of
the BLAST identification data, and this combines in a sim-
ple Boolean AND/OR fashion with the sequence based
search (i.e. results are returned from either the sequence
match or the key-word match, but will not be reported
twice). Thus demonstrating that the sequence based
method can easily be combined with more traditional text
based methods, and logical operators.

BLAST performance was very good for this application:
generally < 1 second at current sequence numbers. This is
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primarily because the number of sequences (see below) is
small for a BLAST database.

An example of the output of the image search engine is
shown in Figure 2. The figure shows the first three sets of
images retrieved by a search using X. tropicalis myf5 as the
query sequence, and searching only Xenopus images. We
observe reassuringly similar expression patterns for this
gene at stage 13 in the two model frog species (see images
A and B marked in the figure). The third set of images in
the figure are for the related X. tropicalis gene myod/myf3,
and interestingly we see a strikingly similar expression
pattern at the slightly later development stage 14 (image
Q).

At the time of writing quicklmage provides access to
39,429 images associated with 6,807 source gene
sequences from three species. We invite expressions of
interest from holders of other model organism image col-
lections who feel this approach might suit their data.

quickLit

This application uses the query sequence to search for
published literature containing references to sequences
the same as or similar to the query sequence. The output
is lists of articles with titles, authors, etc. and links to
PubMed. Application data were downloaded in various
formats from NCBI GenBank [26], FlyBase [27], Worm-
Base [28] and SGD [29], which contained links between
accession numbers or other sequence identifiers and data
describing published articles and their related PubMed
IDs. We found a general lack of gene specific literature ref-
erences for some non-vertebrate organisms in the Gen-
Bank sequence entries (which most of the data came
from), hence the inclusion of the model organism data-
bases. In general from GenBank we used the RefSeq [30]
data, except for Xenopus (which we have a particular inter-
est in) where we used the nr database which has better
coverage. We have not attempted to ensure complete cov-
erage of all possible publications from all possible
sources.

Initial analysis of the downloaded data showed that most
of the sequence identifiers were only associated with
genomics papers, which would be uninformative for the
intended use. These were easily identified from the data
by counting sequence identifiers per PubMed ID. A paper
with 100 or more sequences referenced to it was desig-
nated a genomics paper, and such papers were removed
from the database, as were the sequences which were only
referenced by genomics papers. This made the BLAST
searches proportionally, and significantly, quicker. After
these operations the managing database contained
116,188 sequence identifiers, and 175,128 titles or
PubMed IDs.

http://www.biomedcentral.com/1471-2105/9/442

There was clearly an imbalance in the number of citations
per sequence between the model organisms (fly, worm,
yeast) incorporated into the search engine from their own
databases, and the other organisms sourced from Gen-
Bank alone (data not shown). The greater numbers of ref-
erences from the model organisms' databases are
presumably a reflection on the model organisms' specific
literature curation activities, while the literature associ-
ated accession numbers from GenBank are for " [p]ublica-
tions by the authors of the sequence that discuss the data
reported in the record" (GenBank help page text).

BLAST performance was somewhat slower than for the
image search application, but with approximately 20x
more sequences, this was to be expected. By comparison,
it was still much faster than searching one of the complete
protein databases (e.g. RefSeq or nr from NCBI) because
of the exclusion of sequences without references or those
only referenced by genomics papers.

Sample output for a typical cross-species search using the
Xenopus laevis gene brachyury is shown in Figure 3, illus-
trating the high degree of relevance of the retrieved refer-
ences across several common species.

The disparity in numbers of references between the model
organisms' databases and GenBank suggests that there are
many more accession numbers embedded in papers than
currently available in downloadable databases. A project
to systematically mine all biological literature for acces-
sion numbers could generate a very powerful, gene based
literature search tool. This emphasises the importance of
including sequence accession numbers, as well as gene
names, in journal submissions.

quickGene

NCBI's Entrez Gene [5] is a key resource for gene based
data, but occasionally, when searching for named genes,
we feel it would be useful to know if the lists of gene
entries returned were actually related to each other. The
quickGene application was designed to address this. The
application uses the query sequence to search NCBI's Ent-
rez Gene data for entries with sequences the same as or
similar to the query sequence. The output is lists of genes
and links to Entrez Gene. Application data were down-
loaded from Entrez Gene. To reduce the BLAST search
times and concentrate the search on the most likely inter-
esting results, we used only the subset of data correspond-
ing to the better known model organisms. To further
speed up the search we retained only one protein
sequence per gene entry. After loading, the managing
database contained ~652,000 sequence identifiers and
Entrez Gene IDs.
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i 1ts against query sequence

query sequence

255

matching sequences Pl from to
AJ009303 94.12 136 900
gi38462851|gb|AL654739.2|AL654739 99.50 110 709
gi[38222494|gb|AL645144.2|AL645144 59.39 181 669
BJ072030|BJ089099 58.68 183 677
TNeu135i11 42.36 37 705
% 99 98 97 95 92 87 79 66 45  inverted

image source sequence: AJ009303 matched @ 94.12%

69.41 7e-105 myogenic factor 5 [Homo sapiens]

67.84 5e-103 myogenic factor 5 [Mus musculus]
Xenopus laevis 99.61 4e-151 myogenic factor Xmyf-5 [Xenopus laevis]
Xenopus tropicalis 94.12 6e-143 myogenic factor 5 [Xenopus tropicalis]

Source Project: POLLET-AXELDB
Xenopus laevis

Homo sapiens
Mus musculus

neurula, posterior view Tailbud, lateral view

A

1

Gastrula, vegetal view

- -
27A6.1_13_postot

27A6.1_30_lattot

27A6.1_10_vegtot

image source sequence: gi|38462851|gb|AL654739.2|AL654739 matched @ 99.50%
73.23 2e-087 myogenic factor 5 [Homo sapiens]

73.74 2e-088 myogenic factor 5 [Mus musculus]

Xenopus laevis 95.5 1e-113 myogenic factor Xmyf-5 [Xenopus laevis]

Xenopus tropicalis' 99.5 2e-117 myogenic factor 5 [Xenopus tropicalis]

Homo sapiens
Mus musculus

Source Project: HARLAND
Xenopus tropicalis

in situ expression,
stage 29

in situ expression,

in situ expression,
stage 13

stage 12

Tailbud, transverse
section

27A6.1_30_trasec

in situ expression,
stage 30

53

Y
-

e

myf5-AL654739-12jpg  myf5-AL654739-13 jpg myf5-AL654739-29.jpg

image source sequence: gi|38222494|gb|AL645144.2|AL645144 matched @ 59.39%
73.33 2e-079 myogenic factor 3 [Homo sapiens]

73.68 8e-080 myogenic differentiation 1 [Mus musculus]

Xenopus laevis 95.03 9e-101 similar to myogenic differentiation 1 [Xenopus laevis]

Xenopus tropicalis 99.45 2e-105 myogenic factor 3 [Xenopus tropicalis]

Source Project: HARLAND
Xenopus tropicalis

Homo sapiens
Mus musculus

in situ expression,

in situ expression,
stage 23

in situ expression,
stage 22

stage 14

=

myod1-AL645144-14.jpg

myod1-AL645144-22.jpg myod1-AL645144-23 jpg

myf5-AL654739-30.jpg

in situ expression,
stage 28

myod1-AL645144-28.jpg

Figure 2

Example output of quicklmage. The query sequence was X. tropicalis myf5, used to retrieve image data for this and related
genes. The upper panel shows alignment and similarity between the query sequence and the matching image source sequences.
The first three sets of retrieved images are shown; for each set, the accession number of the image source sequence and the
best BLAST matches against human, mouse and Xenopus proteins are provided for identification purposes, as well as the origi-
nating image collection and species. Images marked A and B show highly similar expression of myf5 in the two frog species at
the same development stage. The image marked C shows an interestingly similar expression pattern for the related gene

myod/myf3 at a slightly later stage.
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against query (leng! 32)
query sequence
Pl from to

4i|147902820|ref|NP_001084047.1| 100.0 0 1432

gil45384400|ref[NP_990271.1 76.67 0 1433

4i[50978778]ref[NP_001003092.1]  75.41 0 7435

4il6678203]ref|NP_033335.1| 74.88 0 6 436

gil4507339]ref|NP_003172.1| 74.77 0 6435

4i|148226150|ref|NP_001079028.1| 73.66 0 7434

gi|18859141|ref[NP_571237.1] 64.62 5e-158 3 420

gil4827024ref|NP_005140.1| 58.63 4e-135 16 425

4i|14030783]ref|NP_114394.1] 58.57 5e-136 14 423

gil45384418|ref[NP_090281.1] 58.52 1e-125 6 372

4il74096281|ref[NP_001027659.1]  57.55 1e-080 21 293

gil17647223]ref|[NP_524031.1] 45.08 5e-089 128 533

% 95 90 80 70 60 50 40 30 <30  inverted

EEEEEEEEEN
- i gi|147902820|ref|NP_001084047.1| @ 100.00%

Xenopus laevis  brachyury (T) ¥ Expi ofa of Cell 67 (1), 79-87 (1991) Smith,J.C., Price,B.M., Green,J.B., 1

T laevis] ly Weigel,D. and Herrmann,B.G.

Gallus gallus T, brachyury

yury (T) is an i
to m
 Specification of mesodermal pattern
in Xenopus laevis by interactions
between Brachyury, noggin and
Xwnt-8

H Crystallographic structure of the T
domain-DNA complex of the
Brachyury transcription factor

® derriere: a TGF-beta family member

i for posterior in

EMBO J. 13 (2), 349-359
(1994)

Nature 389 (6653), 884-
888 (1997)

Development 126 (7),
1467-1482 (1999)

q
Xenopus

Development 126 (14),

¥ Xenopus nodal-related signaling is
3229-3240 (1999)

essential for mesendodermal
patterning during early
embryogenesis

¥ The initiation of Hox gene expression
in Xenopus laevis is controlled by
Brachyury and BMP-4

F i ificity of the
T-domain protein Brachyury is
conferred by its ability to interact
with Smad1

H Cooperative non-cell and cell
autonomous regulation of Nodal
gene expression and signaling by
Lefty/Antivin and Brachyury in
Xenopus

Dev. Biol. 266 (1), 123-
137 (2004)

Dev. Cell 8 (4), 599-610
(2005)

Dev. Biol. 290 (2), 246-
264 (2006)

- matching sequence gi|45384400|ref|[NP_990271.1| @ 76.67%

Dev. Biol. 168 (2), 406-

¥ The chick Brachyury gene: s
. 5 (1995)

[Gallus
gallus]

Canis familiaris ~ transcription
factor T [Canis
lupus familiaris]

- i gil4507339]

(o] pattern
and response to axial induction by
localized activin

Development 124 (2),

= Two novel chick T-box genes related
411-419 (1997)

to mouse Brachyury are expressed in
different, non-overlapping
mesodermal domains during
gastrulation

- matching sequence gi|50978778|ref|[NP_001003092.1| @ 75.41%

Mamm. Genome
212-218 (2001)

® canine homolog of the T-box 12(3),
transcription factor T; failure of the
protein to bind to its DNA target

leads to a short-tail phenotype

Homo sapiens  transcription
factor T [Homo

sapiens]

INP_003172.1] @ 74.77%

Ciba Found. Symp. 165,

o At :
Action of the Brachyury gene in 7688 (1952)

mouse embryogenesis

Hum. Mol. Genet. 5 (5),

¥ Genetic mapping of the human
669-674 (1996)

homologue (T) of mouse T
(Brachyury) and a search for allele
association between human T and
spina bifida

¥ The human homolog T of the mouse
T(Brachyury) gene; gene structure,
cDNA sequence, and assignment to
chromosome 627

Genome Res. 6 (3), 226-
233 (1996)

Cell Growth Differ. 11

¥ Brach: i h
rachyury is expressed by human 3),157.162 (2000)

ter cells in the
of mesodermal differentiation

J. Med. Genet. 39 (3),
E14 (2002)

™ Human T and risk for neural tube
defects

¥ The T-box repressors TBX2 and TBX3 /. Biol. Chem. 277 (29),
specifically regulate the tumor 26120-26127 (2002)
suppressor gene p14ARF via a
variant T-site in the initiator

Am. J. Hum. Genet. 80
(3), 510517 (2007)

= Human TBX1 missense mutations

Cunliffe,V. and Smith,J.C. 2
Muller,C.W. and Herrmann,B.G. 3
Sun,B.l., Bush,S.M,, Collins-Racie,L.A., 13
LaVallie E R., DiBlasio-SmithE.A.,
Wolfman,N.M., McCoy,J.M. and Sive,H.L.
Osada,S.I. and Wright,C.V. 3
Wacker,S.A., McNulty,C.L. and 2
Durston,A.J.

Messenger,N.J., Kabitschke,C., 2
Andrews,R., Grimmer.D., Nunez

Miguel,R., Blundell,T.L., Smith,J.C. and
Wardle F.C.

Cha,Y.R., Takahashi,S. and Wright C.V. 4
Kispert,A., Ortner,H., Cooke,J. and 1
Herrmann,B.G.

Knezevic,V., De Santo,R. and Mackem,S. 3
Haworth K., Putt,W., Cattanach,B., 1
Breen,M., Binns, M., Lingaas F. and
Edwards,Y.H.

Herrmann,B.G. 1

Morrison K., Papapetrou,C., Attwood J., 1
Hol,F., Lynch,S.A., Sampath A.,

Hamel,B., Burn,J., Sowden,J., Stott,D.,
Mariman,E. and Edwards,Y.H.

Edwards,Y H., PuttW., Lekoape KM., 1
Stott,D., Fox,M., Hopkinson,D.A. and
Sowden,J

Gokhale,P..., Giesberts,AM. and 1
Andrews,P.W.

Richter B., Schultealbert, A H. and 1
Koch,M.

Lingbeek,M.E., Jacobs,J.J. and van 2
Lohuizen,M.

Zweier,C., Sticht H., Aydin-Yaylagull, 9

Campbell,C.E. and Rauch,A,

Figure 3

Example output of quickLit. The query sequence was X. tropicalis brachyury, used to retrieve literature references for this
and related genes. The retrieved references are shown for the first few matching sequences. The retrieved data shows a high
degree of apparent relevance as indicated by the title of each paper, and clear organisation of reference by species. Reference
summaries and associated sequence data were downloaded from NCBI GenBank and various model organism databases.
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BLAST performance was again commensurate with the
numbers of sequences to be searched, and was still less
than 10 seconds for a ~400 residue protein. This was a lit-
tle slower than for the other two applications because of
the larger numbers of sequences.

Gene names can be searched across all major model
organisms, or more deeply within a single species. Sample
output for a typical cross-species search using the Xenopus
laevis gene brachyury is shown in Figure 4, and illustrates
well some of the problems of gene name based systems
discussed above, with four different gene names being
used (plus some un-annotated 'names') in the first twelve
matches.

application performance and validation

To show that our method performs as intended we
needed to demonstrate that, for a given gene of interest,
an application would retrieve all the data for that gene
that were available. We chose to do this with the image
data, implementing a text search mechanism in quicklm-
age to perform an internal comparison between the
sequences based method and a text based method. We
selected a test set of arbitrary, but developmentally inter-
esting, Xenopus genes, and investigated the performance of
each one individually, comparing the images returned by
the two methods. This approach was necessary because,
although some of the images in the database were already
annotated, most of them were not, and so the 'correct’
total number of image sets for each gene was not known
in advance.

It was not feasible to make meaningful, large-scale, sys-
tematic comparisons with other databases providing
access to similar collections of data. Other expression
image databases generally had quite different collections
of images from ours, although there was overlap in some
cases. For the literature and gene name applications the
relationship between our data sets and the databases we
downloaded the data from were much clearer, but there
was no practical way of generating and assessing large-
scale test data in the other databases.

Images in quicklmage are grouped into image sets accord-
ing to which image associated sequence they were derived
from, and our comparison between the two retrieval
methods was based on image sets. Text data to search
against was provided by the BLAST hit descriptions from
the best match between the image associated sequences
and NCBI protein sequences for mouse, human, Xenopus
laevis and Xenopus tropicalis. Data to search with, for each
test gene, was collected from the NCBI Entrez Gene data-
base [5], and consisted of the current gene symbol and the
full gene name (as well as older aliases), and, retrieved via
the indicated link, the longest reference mRNA sequence.

http://www.biomedcentral.com/1471-2105/9/442

Comparison between the two retrieval methods was made
as follows. First the mRNA was used to retrieve images by
the sequence method, and the number of image sets
retrieved for each gene was noted. Then an exhaustive text
search was performed for each gene, variously using the
current gene symbol, the whole and parts of the full gene
name, older aliases and other commonly used names. For
many of these searches, whether sequence or text based,
images for other genes were retrieved along with the target
gene images, and care was taken to disambiguate search
results by inspection. In no cases did the text searches turn
up any additional images for the target gene that the
sequence based search had missed.

The results are summarised in Table 3, and several things
are clear from this comparison. First, for all genes tested,
the sequenced based retrieval using the full-length mRNA
found all the images in our database that could be found
by trial and error combinations of text search terms. For
bmp4 the reference mRNA from GenBank (via Entrez
Gene) was truncated, and the full-length sequence was
sourced from our own (public) Xenopus EST database
[31]. Second, the current gene symbol failed in the major-
ity of cases (7/12) to retrieve images for our test set with
the text search, although using older aliases tended to give
better results (e.g. p53 rather than tp53). Third, the text
search could eventually be made to work for most genes
(11/12) if sufficient alternatives were tried. This some-
times required the complete exact text of the full gene
name (data not shown). Fourth, the text search (as set up
here) would clearly fail for genes where the image associ-
ated sequence was not in the coding region of the gene
(smarcd1), as there would be no text in the database to
search against for those image sets.

The relatively poor performance of the gene symbol in the
text based search is attributable to the use of the BLAST hit
descriptions as the text data to search against. These are
generally close to the full name for the gene/protein, and
may only contain the gene symbol by chance. Whilst this
does mean that the full name may often work with text
based retrieval, the full name for many genes may be dif-
ficult to recall exactly (e.g. "SRY (sex determining region
Y)-box 2" for Xenopus tropicalis sox2), and even small dif-
ferences may make the search fail.

Our test showed that the sequence based retrieval method
works very well, and, although this is a relatively small
number of genes, we have no reason to believe that the
results are not broadly representative. The method is
clearly not infallible. Searches will fail if there is no (or
minimal) sequence overlap between the user's query
sequence and the data-associated sequence for a given
gene. Chances of this can be minimised by use of the long-
est appropriate sequences, both by the user as the query
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Matching alignments against query sequence (length=432)

Xenopus laevis

96.06% M MGC81453 hypothetical protein -

transcription factor

query sequence

matching sequences Pl E-value from to

gi|147902820|ref|[NP_001084047.1] 100.0 0 1432

gi|56118388|ref[NP_001008139.1| 96.53 0 3 434

gi|147906899|ref|[NP_001085165.1| 96.06 0 1432

gi|45384400|ref|[NP_990271.1] 76.67 0 1433

gi|157819007|ref|[NP_001099679.1| 75.58 0 6 436

gi|50978778|ref[NP_001003092.1|  75.41 0 7 435

gil47575806|ref[NP_001001247.1|  75.06 0 7 434

gi|6678203|ref|[NP_033335.1| 74.88 0 6 436

gi|4507339]ref[NP_003172.1| 74.77 0 6 435

gi|148226150|ref|[NP_001079028.1| 73.66 0 7 434

gi|18859141|ref[NP_571237.1| 64.62 8e-158 3 420

gi|157278054|ref|[NP_001098127.1| 63.27 1e-152 3 416

% 95 90 80 70 60 50 40 30 <30 inverted

EEEEEEEEERN
Xenopus laevis  100.0% B Xpra brachyury (T) ntl gi[147902820|ref[NP_001084047.1|
Xenopus 96.53% W ¢t T, brachyury homolog MGC89607 X-bra Xbra  gi|56118388|ref[NP_001008139.1|
tropicalis Xbrachyury bra

brachyury ntl

MGC81453

Gallus gallus ~ 76.67% M T T, brachyury homolog ~ CH-T 4i[45384400|ref[NP_990271.1|
(mouse)

Xenopus 75.06% B MGC76084 Brachyury-like T-box - gil47575806]ref|NP_001001247.1|

tropicalis transcription factor

Canis familiaris  75.41% W T T, brachyury homolog - gi|50978778|ref|NP_001003092.1|
(mouse)

Rattus 75.58% ® T_predicted T, brachyury homolog - gi|157819007|ref[NP_001099679.1|

norvegicus (mouse) (predicted)

Homo sapiens ~ 74.77% M T T, brachyury homolog ~ MGC104817 TFT 4i|4507339]ref|NP_003172.1|
(mouse)

Xenopus laevis 73.66% M pra3-a Brachyury-like T-box Xbra3 gi[148226150|ref[NP_001079028.1|

gi|147906899]ref|NP_001085165.1|

gi|6678203|ref|NP_033335.1|

gi|18859141|ref|[NP_571237.1|

Mus musculus  74.88% B T brachyury Bra D17Mit170 Low Lr
T1 TI2 TI3 cou me75
Danio rerio 64.62% M ntl no tail T ZF-NTL ZF-T cb240
fc80a01 id:ibd5074
wu:fc80a01 zft
Oryzias latipes  63.27% M me-t Me-Tam T

gi|157278054|ref|NP_001098127.1|

Figure 4

Example output of quickGene. The query sequence was X. tropicalis brachyury, used to search gene name data from Entrez
Gene. Note the variable nature of the retrieved gene names for this set of related genes.

sequence, and by the application builder in the BLAST
database of data associated sequences.

One of the great strengths of the method is the ability to
search across different species for data from orthologous
genes, without being affected by inconsistent gene nam-

ing schemes. This is also true for related genes within a
species (for example, the Sox, HMG-Box and other fami-
lies of transcriptions factors in human share sequence
similarity). Furthermore, the retrieved data can be usefully
ordered according to the approximate evolutionary rela-
tionship of the genes involved. The choice of mRNA or
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Table 3: Comparison of text based and sequence based retrieval methods for image data for an arbitrary set of genes

numbers of image sets retrieved for target gene
using different methods

test gene sequence text
frog species current current full name mRNA with full- with current with trial and notes
symbol accession or length mRNA gene symbol error text terms
other identifier
X. laevis chrd chordin NM_001088309 3 0 3
hes| hairy and enhancer of split | NM_001085917 | | |
nog-A noggin NM_001085644 | 0 |
Six| homeobox protein SIXI NM_001088558 | | |
X. tropicalis bambi BMP and activin membrane- NM_001008193 2 2 2
bound inhibitor
bmp4 bone morphogenetic protein 4  Xt7.1- 3 | 3 mRNA from Entrez Gene
XZT65619.5.5 appears to be truncated, used
EST-based contig sequence
instead
fgf8 fibroblast growth factor 8 NM_001008162 | 0 |
lhx1 LIM homeobox | NM_001100228 2 0 2
smarcdl SWI/SNF related, matrix NM_001004862 | 0 0 probe design sequences were
associated, actin dependent in 3'UTR so there were no
regulator of chromatin, BLAST hits for text
subfamily d, member | identification
sox2 SRY (sex determining region NM_213704 4 0 4 alias gene symbol 'sox-2'
Y)-box 2 worked better than 'sox2'
t T, brachyury homolog NM_001008138 6 " 6 a large number of protein
descriptions contain the
letter 't'
tp53 tumor protein p53 NM_001001903 2 0 2 older alias gene symbol 'p53'

retrieved both image sets

Image sets are defined by their associated sequence and source collection. Each associated sequence has been blasted against the NCBI protein databases, retaining the best
match for human, mouse and the two frog species. Text based retrieval used simple text matching (allowing wild cards) against the protein description returned by BLAST.
Sequence based retrieval used BLASTn against a database of the image associated sequences. For each gene the number of images sets retrieved by the sequence method, using
the full-length mRNA, was noted. Text searches with various combinations of the gene symbol, exact full name, and more commonly used names, confirmed that the sequence
method appeared to have retrieved all image sets for the target gene in each case. Care was taken to disambiguate search results on percent identity or protein description (as
appropriate) by inspection, where images for other genes were retrieved along with the target gene images.

protein sequences to search with will affect the depth of
detectable homology, as expected in a BLAST search, and
may affect the range of genes that data is returned for. The
retrieval and organisation of data for related genes can be
seen quite clearly in Figures 2, 3, and 4.

Unknown or novel genes with typically uninformative
database descriptions like ‘'hypothetical protein
LOC23277" or 'novel zinc finger protein' are unlikely to be
found usefully with a text search, unless these highly spe-
cific terms are known or very broad definitions needed. By
contrast, the sequence based retrieval method works
equally well with novel genes as with known genes. Of the

2,618 sequences underlying the Xenopus image data, 128
(5%) had only uninformative identifying best hit BLAST
descriptions (in human, mouse, X. laevis and X. tropicalis),
and are likely novel genes.

limitations of this approach

The main limitations of this approach are the requirement
for the user to acquire a sequence for the gene of interest
before they can do the search, the need to interpret the
results sufficiently to distinguish between the gene of
interest and related genes (and between actual orthologs
and other homologs, across species), and the inability to
search with standard gene symbols.
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In addition, something that would need careful consider-
ation for any implementation of our method is the impact
on the overall search time of the BLAST search. BLAST
search times are dependent on the size of the BLAST data-
base, and for larger databases may eventually go beyond
that which most users will cheerfully wait for. Depending
on the importance of the data being sought, and the appli-
cation strategies adopted to mitigate search times, this
may become an issue. Application developers will need to
evaluate typical BLAST search times for proposed data-
bases, and ensure that the anticipated number of concur-
rent users does not overload the available hardware and
create unacceptable delays in running searches.

Conclusion

Motivated by the need to provide access to large numbers
of images accumulated by the Xenopus community, we
have developed a novel approach to the problem of bio-
logical image data management. In the process we discov-
ered that applying the same methodology to other sets of
data can lead to effective search applications in different
fields, particularly in literature searches where retrieved
references show a high degree of relevance and are intrin-
sically well organised. We believe the method will have
application to almost any collection of sequence based
data, and will usefully extend the available repertoire of
search tools and methods.

The advantages of this method of indirect sequence based
retrieval are its independence of gene annotation, the ease
of making cross-species comparisons, the elimination of
the trial and error associated with gene name based sys-
tems, the accessibility of novel or otherwise un-annotated
genes, the organisation of retrieved data in an intuitively
obvious way, and the ability to build applications simply
and quickly, with low maintenance overheads.

We suggest some other potential applications of the
method. Firstly, it may be useful as an alternative way to
access gene lists in (say) model organism databases, espe-
cially for researchers unfamiliar with a species and its gene
naming conventions. Second, accession numbers provide
the link between the gene data and the sequence, and
many of these have associated Gene Ontology (GO) terms
[9] available in public databases. This presents an oppor-
tunity to combine the power of ontology based queries
with the simplicity of the sequence retrieval method.
Third, the relatively future-proof mechanism of sequence
based searching may appeal to community based projects
like the proposed Gene Wiki [32] that rely on "small con-
tributions from a large population of contributors" and
may not have the resources to establish an ongoing main-
tenance programme. In a more general sense there are no
obvious technical obstacles to incorporating the method

http://www.biomedcentral.com/1471-2105/9/442

into existing search interfaces for use where gene data is
being sought.

Methods

acquiring and storing data

For quickImage, image related data were acquired directly
from the image collections, usually in the form of a
spreadsheet. This was parsed into a uniform SQL database
format using simple computing tools (grep, SQL, etc.) as
appropriate. One of the projects was already managed
locally (Smith morpholino screen) and the data were sim-
ply transferred from one part of our database to another.
For the other two applications, data files were down-
loaded by ftp from the various source databases and
parsed in much the same manner as the image data.

downloading source sequences

For quickImage, lists of sequence accession numbers were
uploaded to Entrez using the Entrez batch tool [33], and
the returned sequences were downloaded directly into a
fasta file. Other sequences were available internally from
our EST database [31]. cDNA sequences were used in pref-
erence to pairs of 5'/3' EST sequences from the same
clone. Where a pair of ESTs was used the two sequences
were merged if there was a detectable overlap, otherwise
they were simply joined end to end with a poly-n linker
between them. For the other two applications, it was gen-
erally more effective to download and manage a local
copy of the NCBI 'nr' protein database, and then use the
NCBI utility 'fastacmd' to extract unique sequence entries
with lists of 'gi' numbers and the -t option from a blasta-
ble database of the nr sequences. Some work had to be
done to remove duplicate entries, particularly from the lit-
erature data sets which were downloaded from several
sources.

BLAST

A blastable database of the sequences associated with the
data to be retrieved was made for each application. Multi-
ple databases (for example in quicklmage, where there
was a database per image collection) were joined using a
.nal file to create a single effective database.

The user BLAST searches are run using blastn, tblastn,
blastp or blastx as appropriate, allowing the user to set the
maximum E-value and limit the number of returned hits,
and using low-complexity filtering "for look-up table
only". Tabular output is requested.

CGl program

Details of the design and function of the computer pro-
gram are not presented here, as they contain nothing par-
ticularly novel or unusual; the underlying ideas are not
dependent on implementation detail, and the primary
functional requirements (see above) are available in most
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web programming environments. Interested readers may
view or download the source code from the project home
page (see Availability and requirements, below). A zipped
archive of the code at the time of writing is available as
Additional file 1.

Availability and requirements
Project name: quickApps

Project home page: http://informatics.gurdon.cam.ac.uk/

apps/quickApps/

Operating system(s): Windows 2000 and XP
Programming languages: C++, SQL

Other requirements: Apache, NCBI BLAST, SQL-Server,
DOS

Source code: can be viewed and downloaded at the project
home page

License: code is freely available under a BSD style license
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