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Abstract
Background: This paper addresses the problem of recognising DNA cis-regulatory modules
which are located far from genes. Experimental procedures for this are slow and costly, and
computational methods are hard, because they lack positional information.

Results: We present a novel statistical method, the "fluffy-tail test", to recognise regulatory DNA.
We exploit one of the basic informational properties of regulatory DNA: abundance of over-
represented transcription factor binding site (TFBS) motifs, although we do not look for specific
TFBS motifs, per se . Though overrepresentation of TFBS motifs in regulatory DNA has been
intensively exploited by many algorithms, it is still a difficult problem to distinguish regulatory from
other genomic DNA.

Conclusion: We show that, in the data used, our method is able to distinguish cis-regulatory
modules by exploiting statistical differences between the probability distributions of similar words
in regulatory and other DNA. The potential application of our method includes annotation of new
genomic sequences and motif discovery.

Background
The transcription rate of genes is dictated primarily by
interactions between DNA-binding transcription factors.
Comparatively short sequences (several hundred to sev-
eral thousand base pairs, depending on thespecies)
upstream or downstream of the transcription start site
often play a major role in the regulation of gene expres-
sion. Specific sites within such regions are recognized by
regulatory proteins (transcription factors), which act
upon binding as transcriptional repressors or activators,
controlling the rate of transcription. The identification of

regulatory regions, which are generally composed of
dense clusters of target transcription factor binding sites,
forms an essential step in understanding the regulatory
interactions that govern the spatial and temporal expres-
sion of individual genes (see for example [1,2]) and
genetic regulatory networks, (see for example [3]).

Ultimately, this task is accomplished experimentally using
techniques such as empirical deletion analysis, direct
binding measurements, and co-precipitation of protein-
DNA complexes. However, experimental verification is
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expensive and time consuming. Therefore, to address the
growing volumes of available genomic sequence, a
number of algorithms that identify putative cis-regulatory
modules and transcription factor binding sites using evo-
lutionary comparisons, whole-genome data, and known
descriptions of transcription factor binding sites, have
been successfully developed. Regulatory regions of higher
eukaryotes can be subdivided into proximal regulatory
units – promoters – which are located close to and
upstream of the gene, and distal transcription regulatory
units called enhancers or cis-regulatory modules. These
may be located far upstream or downstream of the target
gene, and are much more difficult to recognise. In our
work we focus on recognition of enhancers.

Methods for recognising regulatory DNA may be divided
into the following approaches:

1. Recognition of regulatory DNA regions based on
description of known transcription factor binding sites
(TFBS). This approach exploits the clustering of known,
cooperatively-acting transcription factors (TFs). Extracting
clustered recognition motifs is one of the most reliable
techniques, but is limited to the recognition of similarly
regulated cis-regulatory regions. Among the most popular
representatives of search by known TFBS are [4-9].

2. Recognition of regulatory DNA based on phylogenetic
foot-printing [10-14]. Methods of this type assume that
regulatory regions are highly conserved in cross-genomic
comparison, and conserved segments can be extracted
from evolutionary related genomes. Performance of phyl-
ogenetic foot-printing depends on the evolutionary dis-
tance between given species and on the conservation level
of individual genes. This is an actively progressing area, as
more and more sequenced genomes appear. However,
such an approach offers little information as to the spe-
cific function of the conserved sequences. Furthermore, it
is still an open question as to how many genomes are suf-
ficient for reliable extraction of regulatory regions.

3. Methods based on the difference of local nucleotide
composition between regulatory and non regulatory DNA
[15-18]. It is assumed that this difference is due to pres-
ence of multiple transcription signals, such as binding
motifs for TFs in regulatory regions. The works [15-17] are
based on constructing a global interpolated Markov
model, applied to promoter recognition only.

In our method, we assume that the abundance of regula-
tory motifs within regulatory regions leaves a distinct "sig-
nature" in nucleotide composition, and that it is possible
to capture this "signature" statistically. More specifically,
we hypothesize that it takes the form of an over-represen-
tation of "similar words" (which are not simple repeats).

The approach of looking for over-occurrence of words has
also been widely used in motif discovery, but this is not
our aim here. This over-representation of similar words
should appear as outliers in the right tail of the distribu-
tion of similar word lists of variable length. The "fluffy tail
test", proposed in this paper, is designed to identify such
outliers and is a useful technique when data from multi-
ple genes and genomes are lacking. It may also be used as
a complementary tool when such data are available.

Results
In this section, we first present our new statistical 'fluffy
tail' test for measuring the overrepresentation of similar
words, and then show its performance on experimentally
verified sequence data.

Test bed
To demonstrate the power of our test, we need a positive,
experimentally verified, training set of regulatory
sequence data, and also negative training sets of non- reg-
ulatory sequence data. We use three test beds. The positive
training set is a collection of 60 experimentally verified
functional Drosophila melanogaster regulatory regions [18].
This set consists of cis-regulatory modules located far
from gene coding sequences and transcription start sites.
It contains many binding sites (and site clusters), best
known of which are bicoid, hunchback, Kruppel, knirps
and caudal, – the sites involved in the regulation of devel-
opmental genes. The total size of the positive training set
comprises about 68 Kb of sequence data, and contains 58
clusters of the same type of TFBS (homotypic). The two
negative training sets are: (i) 60 randomly picked Dro-
sophila exons, and (ii) 60 randomly picked Drosophila
non-coding, non-regulatory DNA sequences: we excluded
exons and regions of length 1 KB upstream and down-
stream of genes, using the Ensembl Genome Browser [19].
Each training set contains 68 Kb of sequences in total.

Estimation of distributions of similar words
To construct the distribution of similar words, we first
need to specify the length of words under consideration.
We try to mimic the TF core, which is the less variable part
of a binding motif. Because the core of TFBSs is relatively
short (around 3–5 bp) we considered 5-mer words, allow-
ing for 1 mismatch. However, our results also hold for
words of length 4 through 12, allowing for 1 through 4
mismatches (see Supplementary Materials [see Additional
files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]). Thus, for each 5-
mer word in each of the 180 sequences (60 sequences in
each training set) we computed the number n of similar
words of the same length. Thus, each word is the "seed" of
a list of similar words. Next, the number of (non-disjoint)
lists containing n words is counted, where n = 1,2,3....
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(See Methods section for further details). As an example,
thehistogram of the distribution of similar 5-mer words is
plotted in Figure 1. In this histogram, the Y axis represents
the number of lists containing 1,2, ..., n words and the X
axis shows the number n of similar words in the list.

From this plot it can be seen that most lists contain 10 to
40 words, but there are outliers: some very large lists form
a long, "fluffy" tail. We call a list having the largest size the
maximal similar word list (MSWL). If the original
sequence is characterized by the presence of an unusually
high number of over-represented words, we expect it to
contain more long lists in comparison to a random
sequence.

To sample such a random distribution we shuffled the
given sequence of original data 50 times. For each ran-
domisation we assessed the frequency distribution of sim-
ilar words. Figure 2 shows a typical example of the
distribution of similar words for one of the randomly
shuffled sequences of the same (knirps) cis-regulatory
module as in Figure 1. Compared with the distribution of
the original data (Figure1), the randomised sequence in
Figure 2 lacks a heavy, "fluffy" right tail. Figure 3 shows
the difference between original and randomised similar
word distributions in cumulative form. The difference
between the two curves reflects the fluffy right tail of the
original data.

Histogram of similar words for the knirps cis-regulatory moduleFigure 1
Histogram of similar words for the knirps cis-regula-
tory module. An example of a distribution of similar 5-mer 
words for the knirps cis-regulatory module Drosophila mela-
nogaster . Note that the sequence contains an exceptionally 
large number (37) of lists with an exceptionally large number 
(137) of similar words. The Y axis shows the number of lists, 
the X axis is for list size.

Histogram of similar words for the knirps cis-regulatory module, after shufflingFigure 2
Histogram of similar words for the knirps cis-regula-
tory module, after shuffling. The frequency distribution 
of similar words for one randomly shuffled version of the 
knirps cis-regulatory region, Drosophila melanogaster . 
The Y axis shows the number of lists, the X axis is for list 
size.

Cumulative histogramsFigure 3
Cumulative histograms. Cumulative histograms for the 
data in Figures 1 and 2: solid line: original data from Figure 1, 
dotted line: randomised data from Figure 2. The X axis 
shows the size of lists of similar words, the Y axis is the 
number of lists.
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In Figure 4, ten randomised sequences are plotted as dot-
ted contours together with the histogram of the original
regulatory knirps data (solid). The cumulative histogram
for original (solid) and randomised (dotted) sequences is
shown in Figure 4 (right). All dotted tails are shorter than
the solid one, indicating the statistical significance of the
solid tail.

Definition of the fluffiness coefficient F
To measure how strong the distribution of similar words
of regulatory regions deviate from randomness, we intro-
duce a "fluffiness" coefficient F:

)

w here L max,original is the number of words in the maximal

similar word list (MSWL) in the original sequence,  and
σr are the mean and standard deviation of the MSWL size
in each of r shuffled sequences. Here we call the sequence
"random" if it is obtained from original sequence by shuf-
fling it, preserving its single nucleotide composition. We
will omit the subscript r for Fr later in the paper for
simplicity.

One can regard F as measuring the difference between sig-
nal and noise, where the signal is taken from the original
sequence, and the noise from the randomised sequences
with the same composition and length. Thus, the fluffi-

ness coefficient is normalised for the length and base
composition of the sequence, because we compare each
original sequence only with respect to shuffled sequences
of the same length and composition. Thus one can com-
pare the fluffiness F for sequences of different base com-
position and length.

Results for regulatory regions
Figure 5 shows the distribution of fluffiness coefficient F
for regulatory, coding and non-coding non-regulatory
(NCNR) DNA. In each sequence we generated r = 50 shuf-
fled versions, in calculating F. One can see that F = 2 dis-
tinguishes regulatory DNA from other types of DNA.
Thus, we use the value F = 2 as a threshold. A sequence
with F>2 we declare to have a "fluffy" tail. Moreover, we
found that for each regulatory region having F>2, all the
randomised sequences had a shorter tail. This value F = 2
is sufficiently robust: if we vary our threshold a little
around F = 2, we still get a fair separation.

Our choice of r = 50 shuffled versions for each sequence
allows us to obtain reliable estimates for the fluffiness
coefficient F and make the computational time
reasonable. Table 1 shows that F is somewhat unstable for
smaller r for the knirps regulatory region. However, for
each choice of r, F clearly exceeds the threshold value 2, in
this example. See Supplementary Materials for more
detailed descriptions [see Additional files 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12].

Fluffy-tailed knirps distributionFigure 4
Fluffy-tailed knirps distribution. (Left) The distribution of the original regulatory knirps sequence: (solid line); the distribu-
tion of 10 randomised sequences (dotted lines). (Right) The same distributions in cumulative form. The X axis shows the size 
of lists of similar words, the Y axis is the number of lists.

F L Lr original r r= −( )max, /σ

Lr
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Using the methodology described above, we found that
51 out of 60 regulatory regions (85%) analysed in our
positive training set exhibit the significant "fluffy-tail" pat-
tern (see Table 2). The non-detection of the remaining
"non-fluffy" regulatory regions could perhaps be partly
due to the limited power of experimental deletion
analyses to correctly distinguish the boundaries of the cis-
regulatory modules.

We calculated the distribution of F for our two negative
and one positive training sets. The separation of regula-
tory DNA from coding and non-coding, non-regulatory
DNA on the basis of fluffiness was quantified by
estimating the distribution of the F coefficients. A Kruskal-
Wallis test showed that these regions differ significantly in
the magnitude of the fluffiness coefficient (H = 132.81, N
= 180, df = 2, p = 0.00001), with exons and non-coding
non-regulatory DNA having much lower F-values than
regulatory regions (See Fig. 6).

We now turn to examine the location of similar words in
the MSWL for a given sequence.

When the start positions of each of the words in the
MSWL are plotted, they tend to be fairly uniformly scat-
tered along the length of the sequence, as illustrated in
Figure 7.

We now examine the relationship between the MSWL and
predicted TFBS sites. We found significant enrichment of
most MSWLs with the occurrences of TFBS in databases:
when submitted to the Transfac and Jaspar TFBS data-
bases, the "seed" words for MSWLs exhibited 10–20 fold
enrichment with putative TFBS in comparison with all 5-
mer words within the given regulatory region: thus, for the
most part, these "seed" words turned out to be instances
of known TFBS (results not shown here).

Histograms for regulatory (green), coding (cyan) and NCNR (magenta) sequencesFigure 5
Histograms for regulatory (green), coding (cyan) and 
NCNR (magenta) sequences. The word length is 5, mis-
match is 1, r is 50. The X axis shows the fluffiness coefficient 
F, the Y axis is the number of sequences in the set with this 
F.

Table 1: Sensitivity of F to choice of r, the number of 
randomisations, for the knirps regulatory region.

r F σr 

25 14.7 5.39
50 8.65 8.77
100 10.22 7.56

Table 2: "Fluffiness" predictions for three types of functional region, showing the number of fluffy (F>2) sequences, the number of non-
fluffy (F<2) sequences and corresponding positive and negative prediction rates, for each type of the region.

Functional type Fluffy tails (F>2) No fluffy tails (F<2) Positive rate Negative rate

Regulatory regions 51 9 85 % 15 %
Exons 1 59 1.6 % 98.4 %
Non-coding presumed non- regulatory 10 50 16 % 84 %
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Non-coding presumed non-regulatory sequence before and after repeat-maskingFigure 11
Non-coding presumed non-regulatory sequence before and after repeat-masking. For a non-coding, non-regula-
tory sequence, randomly picked from chromosome 3L. Panels (a,b,c) show results before repeat-masking; panels (d,e,f) show 
results after repeat-masking. Panels (a,d) show histograms of similar words (solid: original data; dotted: after random shuffling) 
as in Figure 1; panels (b,e) show the same data in cumulative form as in Figure 3; panels (c,f) show start locations of similar 
words as in Figure 7.

(a) (d)

(b) (e)

(c) (f)
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Results for exons
We repeated the fluffy tail test for randomly picked Dro-
sophila exons, and found that the distribution of over-rep-
resented words of the original sequences did not differ
statistically from those of their randomised versions (See
Table 2). Note the absence of a "fluffy tail" in Figure 8
(left) and the lack of distinction in the cumulative distri-
bution (Figure 8 right).

Thus we have established a statistical difference between
exons and regulatory DNA. Next we compare regulatory
DNA with non-coding non-regulatory DNA.

Results for non-coding, presumed non-regulatory DNA
The similar words distribution for non-coding non-regu-
latory DNA typically shows two patterns: (1) without
significant tails, as for exons and (2) with significant tails
(Figure 9) but in this case – and in contrast to the regula-
tory sequences – the spatial locations of over-represented
words are typically clustered (Figure 11c).

To deal with this, we developed a measure of spatial clus-
tering of similar words. We say that two words w 1 and w 2
belong to the same cluster, if their genomic start positions
s 1 and s 2 satisfy |s 1 - s 2| ≤ m·k , where m is the word
length, and k is a constant. We examined the following
choices for k: 1; 1.5; 2; 2.5; 3.

Spatial distribution of similar words in MSW LFigure 7
Spatial distribution of similar words in MSW L. Fairly 
uniform spatial distribution of start locations for words in the 
MSWL (n = 137, see Fig.1) of the knirps cis- regulatory 
region of Drosophila melanogaster . The X axis shows the 
positions of each word start in the sequence, the Y axis is the 
rank of this position in the list.

������������������������������

Histogram for exon cg3201 3Figure 8
Histogram for exon cg3201 3. Distribution of similar words for the exon cg3201 3 of Drosophil a (solid line) compared to 
the histograms of the randomly shuffled versions (dotted lines) in direct (left) and cumulative (right) forms. The X axis shows 
the size of lists of similar words, the Y axis is the number of lists.
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The size of a cluster is defined as the number of words in
the cluster. For each MSWL we computed the coefficient
of variation (CV) in cluster sizes, where CV is the standard
deviation divided by the mean cluster size. We used anal-
ysis of variance to test for difference in coefficients of var-
iance among four types of functional DNA: exons, non-
fluffy NCNR, fluffy NCNR and regulatory regions. The
assumptions for ANOVA (homogeneity of variance (CV),
no correlation between means and standard deviations of
the samples) were satisfied. The results show a strongly
significant difference between the four types: see Figure
10. Thus we can use the cluster size CV to distinguish
fluffy NCNR from regulatory DNA. CVs for fluffy NCNR
are almost always more than 1, for k from 1 to 3; and sig-
nificantly different from CVs for regulatory DNA.

We found that large clusters of adjacent over-represented
words in fluffy NCNR DNA disappear after repeat-mask-
ing [20], thus revealing their identity as non-perfect sim-
ple repeats (Figure 11: compare panels a,b,c with d,e,f).

For details about spatial clustering and illustration of coef-
ficient of variation robustness to choice of k and m, see
Supplementary Materials [see Additional files 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12].

Discussion
Our method allows us to distinguish regulatory DNA
from other non-regulatory DNA. In effect, our method
aggregates many small signals contained in the region,
and makes an internal comparison with background, rep-
resented by shuffled sequences.

We would like to extend the application of our method to
larger sets of experimentally verified regulatory regions,
from Drosophila or any other species. Unfortunately, few
experimentally (not computationally!) verified sets are
available. We managed to extended our positive training
set a little, including a few experimentally verified
regulatory regions from human, chicken, sea urchin, fruit
fly and yeast (see Supplementary Materials [see Addi-
tional files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), but it is still
not a lot.

We would also like to explore the correlation between the
genomic positions of words in MSWL (most abundant
words), and positions of known regulatory elements. This
may allow us to utilise our method as a kind of motif
discovery algorithm. Unfortunately, again, the lack of reli-
ably annotated regulatory regions with regulatory ele-
ments makes this step difficult.

Phylogenetic foot-printing is an important and rapidly
developing branch of motif discovery methodology. It

would be very interesting to compare genomic positions
of words in MSWL with conserved sequences from
phylogenetic foot-printing analyses. This would reveal
whether such words are conserved, and therefore of func-
tional significance.

In a similar vein, we would like to compare the results of
fluffiness analysis results across multiple species. We
could then answer the question whether cross-species
conserved regions have "fluffy" regulatory region proper-
ties, and thus infer their putative function.

We are keen to compare results of our fluffy-tail-analysis
with the results of recognition methods based on descrip-
tion of known TFBS, such as in the works [6] and [4].
These authors [4] also analysed developmental genes of
Drosophila melanogaster containing approximately the
same clusters of transcription factors.

The work [18] is closely related to our study. However, it
is likely that their method is unable to distinguish non-
perfect simple tandem repeat sequences from truly regula-
tory DNA. We have implemented their method as far as
we can understand it, and found out that their separation
of positive (cis-regulatory modules) and negative (coding
and non-coding non-regulatory DNA) training sets due to

Histogram for non-coding presumed non-regulatory sequenceFigure 9
Histogram for non-coding presumed non-regulatory 
sequence. Distribution of similar words for a non-coding, 
non-regulatory sequence, randomly picked from chromo-
some 3L has significant tail because of simple repeats. The X 
axis shows the size of lists of similar words, the Y axis is the 
number of lists.
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local words frequency seems to be less clear than our sep-
aration due to "fluffiness" coefficient F (see Figure 6).

There might be possible other regulatory mechanisms
apart from TFBS binding. It may be in some specific cases
that the 3D local structure of DNA in the nucleus
(chromatin) is the principal factor of gene expression and
modulating regulatory modules play little or no role [21].
Thus one of the next steps in our work will be the incor-
poration of nucleosome position information.

Conclusion
We present a novel statistical approach that allows regula-
tory DNA to be distinguished from coding and non-cod-
ing non-regulatory regions according to its "fluffiness"
values. This method is based on the presence of unusually
high number of short runs of over-represented scattered
words in the given DNA sequence.

The performance of the method on experimentally veri-
fied sequence data shows that the method allows us to
predict whether a sequence may be regulatory.

Methods
Description of fluffy tail test
The fluffy tail test essentially consists of the comparison of
similar word distributions for the original sequence and
for a number of shuffled versions of the original
sequences. These shuffled sequences clearly have the same

length and single nucleotide composition as the original
one.

To construct a similar words distribution one can perform
the following two steps:

(1). First, obtain the distribution of similar words for a
given DNA stretch (as described in detail below under
"Distribution of similar words"). Then randomise the
original sequence many times, and obtain a distribution
of similar words for each shuffled sequence. These ran-
domised sequences represent the null model (or the back-
ground model). The distributions of similar words
obtained for the randomised sequences are compared
with the corresponding distribution for the original
sequence. If there are no statistical differences, we con-
clude that the sequence probably is an exon (related
results are in [22]) or a homogeneous non-coding non-
regulatory region.

However, if the given sequence does contain many similar
words, these will show up in its distribution as a longer
right tail that may even have a second mode. Such "fluffy"
tails are seldom found in the distributions of the shuffled
sequences, therefore suggesting the sequence is not exonic
or homogeneous non-coding, non-regulatory DNA.

(2). To rule out "fluffy" tails due to non perfect simple
tandem repeats, we check whether a) the similar words are
spatially clustered and b) if the tails disappear after repeat-
masking the sequence (using the on-line tool available at
[20]) then repeating procedure (1).

Distribution of similar words
We considered 5-mer words, allowing for 1 mismatch.
However, our results also hold for words of length 4
through 12, allowing for 1 through 4 mismatches (see
Supplementary materials [see Additional files 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12]). Thus, for each 5-mer word in each
of the 180 sequences (60 sequences in each training set)
we computed the number n of similar words of the same
length. Each word is the "seed" for a list of similar words.

As an example, consider a stretch of DNA :

accgggtgtaaaccgacctgatacccggtcgcccggttttaac...

The first "seed" 5-word 'accgg' forms the following list of
similar words:

accgg, accga, acctg, acccg, cccgg,

which we have underscored in the above sequence.

Separation of regulatory DNAFigure 6
Separation of regulatory DNA. Separation of regulatory 
DNA (column 2) from coding (column 1) and non-coding, 
non-regulatory (column 3) due to the fluffiness coefficient F 
(Y-axis). Box-plot of the Fluffiness (Y-axis) index for the 
three functional regions.
Page 9 of 12
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The second 5-word 'ccggg' forms another list of similar
words:

ccggg, ccggt, ccggt

etc. The first 5-word has the longest list of similar words
here. The lists may intersect: e.g. the list for the 'accga'-
seed word contains some words from the 'accgg'-seed
word list.
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Coefficient of variation in spatial cluster size for four types of DNAFigure 10
Coefficient of variation in spatial cluster size for four types of DNA: exons (1), non-fluffy NCNR (2), fluffy NCNR (3), 
regulatory regions (4); Vertical bars denote 95% confidence intervals. The Y axis shows coefficient of variation, the X axis is for 
four DNA type. We calculated CV based on spatial clustering coefficient k = 1.
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