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Abstract
Background: Mathematical modeling of real-life processes often requires the estimation of
unknown parameters. Once the parameters are found by means of optimization, it is important to
assess the quality of the parameter estimates, especially if parameter values are used to draw
biological conclusions from the model.

Results: In this paper we describe how the quality of parameter estimates can be analyzed. We
apply our methodology to assess parameter determinability for gene circuit models of the gap gene
network in early Drosophila embryos.

Conclusion: Our analysis shows that none of the parameters of the considered model can be
determined individually with reasonable accuracy due to correlations between parameters.
Therefore, the model cannot be used as a tool to infer quantitative regulatory weights. On the
other hand, our results show that it is still possible to draw reliable qualitative conclusions on the
regulatory topology of the gene network. Moreover, it improves previous analyses of the same
model by allowing us to identify those interactions for which qualitative conclusions are reliable,
and those for which they are ambiguous.

Background
Many real-life processes can be modeled by non-linear
Ordinary Differential Equations (ODEs) or Partial Differ-
ential Equations (PDEs). In developmental biology, for
instance, systems of reaction-diffusion equations are used
to model spatio-temporal patterns of gene expression [1].
A common difficulty is that the model equations usually
have a large number of unknown parameters, such as
weights for regulatory interactions, diffusion coefficients,
decay and reaction rates, etc. Sometimes, it is feasible to
determine the missing parameters experimentally, but in
most cases this is difficult or even impossible. However,
one can usually measure other quantities involved in the

model. For instance, experimentalists can quantify mRNA
or protein concentrations using microarrays, quantitative
PCR, in situ hybridization or immunofluorescence.
Unknown model parameters can then be found by
parameter estimation techniques based on fitting the
model solution to the measured gene expression data.

Whether the parameters for the mathematical model can
be found assuming that sufficient and error-free data is
available is the subject of a priori or structural identifiability
analysis. Once the parameter estimates have been com-
puted, it is very important to know how reliable they are.
An a posteriori or practical identifiability study can show
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how well the parameters have been determined given a
data set that is possibly sparse and noisy. For the subject
of structural and practical identifiability we refer to [2-4]
and references therein. Ideally, one would wish to deter-
mine all parameters accurately enough. In practice, how-
ever, this is usually not possible and one has to face an
uncertainty in the parameter values. This can be due to
several reasons: First, the model could be 'wrong'. In this
paper, we do not focus on this possibility assuming that
the 'right' model is available (i.e. a model which repre-
sents the underlying mechanism of the modeled process
accurately and correctly). Second, the data used for fitting
could be insufficient or too noisy. Finally, a recent study
by Gutenkunst et al. [5] revealed that even if a correct
model is used with a comprehensive set of data, many
models used in systems biology still exhibit parameter
'sloppiness'. This means that some model parameters can
be determined with great certainty ('stiff' parameters),
while estimates of other ('sloppy') parameters can vary by
orders of magnitude without significantly influencing the
quality of the fit. Parameter sloppiness implies that very
different sets of estimated parameters can lead to accurate
model predictions. Therefore, it is not a serious problem
if the main purpose of a model is to predict the dynamical
behavior of the system, and little significance is attributed
to parameter values. This is the case for all models consid-
ered by Gutenkunst et al. [5].

Parameter sloppiness becomes much more problematic,
however, when models are used explicitly to extract bio-
logical information from estimated parameter values. In
particular, this affects attempts at reverse engineering gene
regulatory networks underlying cellular or developmental
processes, where models are used to infer regulatory inter-
actions – and hence regulatory network topology – from
quantitative gene expression data.

Identifiability is a mathematical notion. For biological
implications the precise values of parameters are not
always important as long as they have certain characteris-
tics, like being (roughly) positive, negative or zero. If a
posteriori analysis results in a parameter uncertainty range
which lies in the characteristic range we call this parameter
determinable. Note that for those parameters which have to
be determined quantitatively, i.e. having no characteris-
tics, determinability refers to a posteriori identifiability.

As a case study, we consider the gap gene system of the
vinegar fly Drosophila melanogaster. Gap genes constitute
the first step in a regulatory cascade that leads to the deter-
mination of body segment positions along the major (or
anterior-posterior, A-P) body axis during early Drosophila
development [6]. The biological function of the gap gene
system is to interpret long-range protein gradients imple-
mented by the products of the maternal co-ordinate genes

(e.g. bicoid (bcd), hunchback (hb) and caudal (cad); see [7-
9] and references therein). Zygotic gap genes, such as hb,
Krüppel (Kr), knirps (kni) and giant (gt), are activated or
repressed by these maternal gradients, which establishes
their expression in broad, overlapping regions of the
embryo. These spatial domains of gap gene expression are
stabilized and refined by gap-gap cross-repression. In
turn, gap genes are involved in regulation of pair-rule and
segment-polarity genes, the latter of which establish a seg-
mental pre-pattern of gene expression by the onset of gas-
trulation.

The gap gene system is one of the best characterized devel-
opmental gene networks available today. It has been stud-
ied extensively using genetic and molecular approaches
(see [7] and references therein). More importantly for our
purposes, quantitative expression data are available for all
relevant maternal co-ordinate and gap genes [10,11], and
those data have been used to infer regulatory interactions
between gap genes using different global and local opti-
mization strategies [7,8,12,13]. In this study, we use
parameter values from these earlier studies as starting
points for local optimization to obtain a large set of
parameter estimates. We then apply a practical identifia-
bility analysis to those parameter sets to establish how
well these estimates can be determined based on the avail-
able experimental data. We discuss the implications our
results have for modeling of the gap gene system and for
the biological interpretation of estimated parameter val-
ues. Finally, we note that the analysis can easily be
adapted to other systems, and we strongly recommend its
use to systems biology models in which large emphasis is
put on the biological interpretation of estimated parame-
ter values.

Methods
We consider a model given by the system of ODEs of the
general form:

Here the m-dimensional vector θ contains all unknown
parameters, y is an n-dimensional state vector, and f is a
given vector function, differentiable with respect to t, y
and θ. When components of the initial state vector y0 are
not known, they are considered as unknown parameters.
Thus, y0 may depend on θ.

As mentioned above, we assume that (1) is the 'right'
model for the problem we are interested in, implying that
(1) is a sufficiently accurate mathematical description
approximating reality. This means that all relevant knowl-
edge about the modeled processes is incorporated cor-
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rectly in the vector function f. Thus, the only uncertainty
in (1) is the vector of unknown parameters θ. Further-
more, it means that there exists a 'true' value θ* for the
parameters θ such that (1) represents reality. Therefore, in
principle, all unknown parameters can be determined if
sufficient and accurate enough data are available.

Quantities that can be experimentally measured are called
observables. The theory of identifiability holds in general
for observables being a combination of state variables.
However, for the sake of simplicity we consider here the
particular case when only the components of the state vec-
tor are measured. Let us assume that for fitting (1) there
are N measurements available. Each measurement, which

we denote by , is specified by the time ti when the ci-th

component of the state vector y is measured. The corre-
sponding model value obtained from (1) is denoted by

(ti, θ). The assumptions outlined above imply that the

difference  is solely due to experimental

error. We denote the vector of discrepancies between the

theoretical values and the measured values by Y(θ). Then

the least squares estimate  of the parameters is the value

of θ that minimizes the sum of squares [14,15]

We note that (2) is an appropriate measure under certain
assumptions only, which we will discuss below. Other
measures might be used when these assumptions do not
hold.

Parameter Estimation by the Levenberg-Marquardt 
Method
There exist a number of different optimization techniques
for parameter estimation. The choice of technique usually
depends on the type of model equations (deterministic or
stochastic), on the number of unknown parameters
(moderate or large), as well as on the dependence of
model solutions on parameters (linear or nonlinear, con-
tinuous or discontinuous). For a survey on optimization
methods in biochemical models we refer to [2,16]. In gen-
eral, model (1) – being nonlinear in θ – leads to a least
squares problem (2) that has several minima, first because
the problem has more than one solution, and second
because the fitness function (2) can have several station-
ary points that do not correspond to the lowest value of
the fitness landscape (so-called local minima). Local
search methods, like Levenberg-Marquardt (LM), easily get
trapped in one of the local minima rather than finding the

global minimum. To explore the whole search space one
needs global search methods, like the Evolution Strategy
used in [12]. Unfortunately, these methods converge very
slowly once near a minimum. In contrast, gradient-based
methods are efficient optimizers [17] for nonlinear least-
squares problems once a sufficiently good initial guess for
the parameter values is available. In this paper we use the
solutions from the global search in [12] as initial guesses
for local optimization by the LM method [18]. In this way,
we reduce the chance of missing the global minimum and
the determination of all the minima is precise and fast.

In general, any gradient-based optimization procedure
seeks a correction δθ for the parameter vector, such that
S(θ + δθ) ≤ S(θ) holds. The LM method [18] determines
the correction as the solution of the equations

(JT(θ)J(θ) + λIm) δθ = -JT(θ)Y(θ), (3)

where λ ≥ 0 is a control parameter (see below), Im is the

identity matrix of size m and the Jacobian  is

the so-called 'sensitivity' matrix of size N × m. The entry Ji,

j in J(θ) shows how sensitive the model response is at the

i-th data point for a change in the j-th parameter. The LM
method can be seen as the combination of two gradient-
based approaches: Gauss-Newton and steepest descent

[17]. If λ = 0 in (3), it coincides with the Gauss-Newton

method. However, when the matrix JT(θ)J(θ) is (almost)

singular, to solve (3), λ has to be positive and for large λ
the LM method approaches the steepest descent method.

During the optimization λ is adapted such that the algo-
rithm strives to exploit the fast convergence of the Gauss-
Newton method whenever this is possible [18,19].

In order to solve (3), the singular value decomposition
(SVD) [20] of the matrix J(θ) can be used, i.e.

J(θ) = U(θ) Σ (θ) VT(θ), (4)

where U(θ) is an orthogonal matrix of size N × m, such
that UT(θ)U(θ) = Im, V(θ) is an orthogonal matrix of size
m × m, such that VT(θ)V(θ) = V(θ)VT(θ) = Im, and Σ(θ) is a
diagonal matrix of size m × m which contains all singular
values σi in non-increasing order. Then the correction δθ
can be found as

δθ = -V(θ) (Σ2(θ) + λIm)-1 Σ(θ) UT(θ) Y(θ). (5)

Later, when we study the reliability of the parameters
computed, the SVD will play an important role again.
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In order to execute an LM optimization step, the vector of
discrepancies Y(θ), the matrix J(θ) and its SVD have to be
evaluated for each new estimate of θ. For this purpose, for
Y and the entries of J one needs to resolve (1) and the
additional system of variational equations (i = 1,2,...,m)

respectively. We note that the costs for performing the
SVD and computing the correction (5) are negligible in
comparison with the computational costs for solving (1)
and (6).

Thus, a single LM step requires the numerical solution of
m + 1 coupled systems, each one consisting of n ODEs.
Fortunately, these systems are coupled in a special way,
namely, for each i = 1, 2,...,m, system (6) is a system of lin-

ear ODEs for , coupled only with (1). The system of

equations (6) has the same stiffness as (1), so for numer-
ical stability the same step size can be used for the time
integration of (1) and (6) (note that ODE stiffness is

determined by the eigenvalues of the Jacobian matrix 

and is not related to parameter stiffness as described
above). Therefore, the one-way coupling can be used to
solve (1) and (6) efficiently.

Numerical integration of (1) and (6) requires a fast and
reliable ODE solver. Search in the parameter space may

lead to some values of θ such that the systems of ODEs
become stiff [21]. It is well known that for stiff ODE sys-
tems explicit schemes can give rise to numerical instability
or, alternatively, extremely small time steps. Therefore, an
implicit scheme is the best choice for time integration for
stability reasons. Using an implicit scheme allows us to
exploit the specific coupling between (1) and (6) in an

efficient way. At each time step τ integrating first (1) pro-
vides the solution vector y. This requires the LU decompo-

sition of the Jacobian matrix . Using this LU

decomposition the calculation of  from (6) reduces to

a simple forward substitution and backsubstitution. In
our simulations we use a tailor-made code [22] based on
the implicit multistep Backward Differentiation Formulas
(BDF) [23].

When the unknown parameters have to obey certain con-
straints – linear or non-linear – some additional work is
needed. If the correction δθ found by (5) leads to viola-
tion of some constraints, then by the introduction of
Lagrange multipliers a modified correction can be found,
which fits all constraints. For the constrained minimiza-
tion problem we refer the reader to [22].

For additional modeling and numerical aspects of this
method we refer the reader to Additional file 1 (Section
1).

Statistical Analysis of Parameter Estimates

Above we used θ* to denote the 'true' parameter vector,
for which (1) describes reality with sufficient accuracy,

and by  we denote the parameter vector which mini-

mizes (2). Even having a 'right' model and an estimate 
for the parameter vector which fits the data well, does not
mean that the whole modeling problem is resolved suc-
cessfully. It is important to know how reliable the
obtained estimate is. This is the subject of a posteriori
identifiability analysis [3,4,24]. One way to look at this is

inspecting the fitness landscape S(θ) in the neighbour-

hood of . Roughly speaking, if it is a sharp trough then

the true parameter vector θ* and the obtained minimum

 are close. If it is flat in one or more directions, like the
surface for a 2-parameter case in Fig. 1(a), then the mini-
mum found can be far apart from the true parameter vec-

tor. Near the minimum, where the gradient of S(θ)
vanishes, this surface is approximated by the second deriv-

ative or Hessian of S(θ). If the model is linear in the
parameters the Hessian is equal to JT J. This linearity
assumption and some statistics underlie the following rig-
orous analysis [14,15,21]. 

We assume that the measurement errors in  are inde-

pendent of each other and normally distributed and that
the error distributions have zero mean and constant

standard deviation σ. Then,  is a maximum likelihood
estimate [14,15]. By assumption the model with the 'true'

solution θ* describes reality, thus

where i are the measurement errors, for which
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holds approximately [14]. Here Nm(·,·) denotes the m-

dimensional multivariate normal distribution. Notice

that (7) holds exactly when y is linear in θ. Next we can

define a region around  in which the 'true' parameter

vector θ* lies with a certain probability 1 - α. This (1 - α)-
confidence region is determined by the inequality

where Fα(m, N - m) is the upper α part of Fisher's distribu-

tion with m and N - m degrees of freedom. Geometrically
these confidence regions are given by the contours of

S( ) (for linear models), cf. Fig. 1(a).

The ellipsoid defined by (8), is centered at  and has its
principal axes directed along the eigenvectors of

JT( )J( ). Using the SVD (4) for J( ), we get

and the eigenvectors of JT( )J( ) are the columns of the

matrix V( ). So, the ellipsoid has its principal axes

directed along the column vectors of the matrix V( ).
Moreover, the radii along these principal axes are

inversely proportional to the corresponding singular val-

ues σi, the diagonal elements of Σ( ). This all can be seen

by using the following transformation (rotation)

yielding

On the other hand, since S( )/(N - m) is an unbiased esti-

mator of σ2, the equation for the ellipsoid can be rewritten
as

where  ≈ mσ2Fα(m, N - m) is proportional to the vari-

ance in the measurement errors. This form is more con-
venient to deal with because z can be considered as a set
of uncorrelated variables, and once the conclusion has
been drawn for the identifiability of z, the problem can be

transformed back, revealing us the quality of .

Now, we assume that the model (1) is properly scaled,
such that all parameter values are of the same order of
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magnitudes, and that we are interested only in the first few
digits of the parameter values. Let us introduce the sphere
given by

where r defines the level of accuracy one desires for the
parameter estimates. For instance, if the parameters are of
order O(1) and one is interested only in the first two digits
to the right of the decimal point, then r = 0.01. In order to
be able to determine zi accurately enough, the radius along
the ellipsoid's i-th principal axis shouldn't exceed the
radius of the sphere, which leads us to the following ine-
quality

A graphical representation of the ellipsoid and the sphere
for the 2-dimensional case is given in Figure 1(b).

If only the first k largest singular values satisfy (12), then
only the first k entries of z are estimated with the required
accuracy and no sufficient information is available for the
remaining components of z. Each of the first k entries of z
defines a parameter or a linear combination of parameters
which is well-determined. If a principal axis of the ellip-
soid makes a significant angle with the axes in parameter
space (i.e., there exists more than one significant entry in
the eigenvector), this implies correlation between param-

eters in .

To summarize, the level of noise in the data in combina-
tion with the accuracy requirement for the parameter esti-
mates, defines the threshold for significant singular values
in the matrix Σ. The number of singular values exceeding
this threshold determines the number of parameter rela-
tions that can be derived from the experiment. How these
relations relate to the individual parameters is described
by the corresponding columns in the matrix V. The largest
entries in these columns indicate the well-determined
parameters. This method is illustrated on the basis of a
simple enzymatic reaction in [2].

Finally, (11) indicates that having, for instance, two times
more accurate data so that the standard deviation σ is
halved, will decrease the radii along the ellipsoid's princi-
pal axis by a factor of 2. Therefore, in case of very small
singular values σi (i.e. strongly elongated ellipsoids) more
accurate data obtained by the experimentalist will not
improve the quality of the corresponding parameter esti-

mates by much. In such a case, one certainly needs addi-
tional measurements of a different type (e.g. different
components, different time points, or in the case of PDEs
different spatial points).

Another way of assessing the information from the confi-
dence region is by looking at confidence intervals of the

parameter estimates  (i = 1, 2,...,m). From (8) one can

derive dependent and independent confidence intervals.
The dependent confidence interval is the intersection of the
ellipsoidal region with the i-th parameter axis

i.e. one assumes that all other parameters are exactly
determined. The independent confidence interval is the pro-
jection of the ellipsoidal region onto the i-th parameter
axis

Clearly, small independent confidence intervals for 

indicate that it is well-determined. However, in some
cases considering only individual confidence intervals can
be misleading. For instance, in the presence of strong cor-
relations between parameters, the dependent confidence
intervals underestimate the confidence region while the
independent confidence intervals overestimate it.

From (7), the covariance matrix of  is given by

Then, by denoting , the correla-

tion coefficient between  and  can be computed by

We note that by computing individual confidence inter-
vals and correlations between parameters, one is not able
to assess the identifiability of linear combinations of
parameters. This can be seen only by using the first
approach, i.e. by inspection of the V and Σ matrix.
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The Biological Test Problem: Gap Gene Circuits
We apply the methodology described above to assess
parameter determinability of gene circuit models for the
gap gene network in early Drosophila development. Here,
we provide a brief outline of gap gene circuit models.
More detailed information can be found in [7,8,25].

Segment determination occurs during the blastoderm
stage of Drosophila development, between 1.5 and 3 hours
after egg laying [26]. During this stage, the embryo con-
sists of a syncytium; there are no cell membranes between
nuclei. These nuclei constitute the basic objects of the
model. They are arranged in a row along the A-P axis.
Nuclei divide rapidly and synchronously [27]. Periods
between mitotic divisions are called cleavage cycles, where
cycle n occurs between mitoses n - 1 and n. The models
considered here run from early cycle 13 (t = 0.0 min) to
the onset of gastrulation at the end of cycle 14A (t = 71.1
min). Mitosis occurs at the end of cycle 13, between t =
16.0 min and t = 21.1 min [27].

Gene circuit models describe the change in concentrations
of each gap gene product in each nucleus over time by the
following system of ODEs

a and b denote regulated genes and regulators respectively.
a and b are integer indices representing cad, hb, Kr, kni, gt

as well as the terminal gap gene tailless (tll).  denotes

the concentration of the product of gene a in nucleus i.
The Bcd gradient remains constant over time, and is not

regulated by the other genes in the model.  denotes

the concentration of Bcd protein in nucleus i. Ng = 6 is the

number of genes in the model (excluding Bcd), and the
function

is a sigmoid regulation-expression function.

During mitosis, protein production is shut down. Nuclei
divide instantaneously at the end of mitosis and the dis-
tance between them is halved. Gap gene circuits cover the
region from 35% to 92% A-P position, which includes 30
(cycle 13) and 58 (14A) nuclei. Therefore, system (17)
consists of 180 and 348 ODEs during cycles 13 and 14A,

respectively. Initial conditions are prescribed by maternal
gradients of Bcd, Cad and Hb, and zero levels for all other
gene products. We use no-flux boundary conditions at i =
0 and i = imax.

In system (17) there are m = 66 unknown parameters.
These include the genetic interconnection or regulatory
weight matrix W of size Ng × Ng where the matrix elements

 represent the regulation of gene a by gene b, while

maternal coefficients ma represent the regulatory effect of

Bcd on gene a. Regulatory parameters represent repression

(if < 0), activation (if > 0) or no interaction (if ≈ 0). Other
parameters include promoter thresholds ha, promoter

strengths Ra, diffusion coefficients Da, and decay rates λa.

Estimates for these parameters have been obtained in pre-
vious studies by fits to quantitative expression data [11]
using global search methods such as parallelized Lam
Simulated Annealing [7,8] or the Stochastic Ranking Evo-
lution Strategy (followed by downhill simplex direct
search) [12] and using a first-improvement local search
method with randomized order of examination [13]. In
the latter the initial parameter estimates are obtained by

using a splitting strategy: parameters λa and Da are esti-

mated by assuming that the protein production is con-
stant within certain spatio-temporal domains which
reduces (17) to a system of linear equations uncoupled for
each gene (the boundaries of production domains are
obtained from data); parameters in the nonlinear part of
the model are estimated by fitting the production term in
(17) with the data given as input, as closely as possible, to
the quadrilateral production regions.

The data set used for model fitting consists of N = 2702
measurements of protein concentrations at nuclear resolu-
tion (using multi-channel immunofluorescent antibody
assays; available online [11]). Measurements were taken at
one time point during cycle 13 (T0), and eight time points
Ti (1 ≤ i ≤ 8) during cycle 14A (Figure 2a). Measurements
for the concentrations of all gene products represented in
the model at all time points are available, except for Cad at
T7 and T8, and Tll before T3. The level of measurement error
in the data is less than 5%, see [28]. Each data point repre-
sents concentration values which have been averaged
across 9–62 embryos. Therefore, from the Central Limit
Theorem (CLT) we assume that the experimental errors are
approximately normally distributed.

The quality of the parameter estimates is measured by the
root mean square (RMS) of the discrepancy vector
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where Nt = 8 is the number of time classes, Nc is the

number of nuclei and  is equal to zero for Tll at j = 0,1,

2 and for Cad at j = 7, 8, and is equal to one otherwise. A
solution is considered to be 'good' if RMS < 12.0 and if

RMS
N

g T g Tj
a

i
a

j model i
a

j data

j

N

i

N

a

N
tcg

( ) ( ( , ) ( ) )q a q= −
===
∑∑1 2

011
∑∑ ,

(19)

a j
a

DataFigure 2
Data. a) Time axis and the points when measurements were taken: one in cycle 13 and eight in cycle 14A; the duration of 
mitosis is also indicated. b) Quantitative gene expression data at different time points. Graphs show relative protein concentra-
tion (with a range from 0 to 255 fluorescence units) plotted against position on the A-P axis (the trunk region of the embryo, 
from 35% to 92% A-P position is scaled to relative co-ordinates [0,1]).
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there are no visible pattern defects in the model response
[7,8,12,13]. It is important to note that the RMS only
shows the quality of the fit of the model to the data but
does not give any information about the quality of the
parameter estimates. Our aim is to find the parameter esti-
mates that give a good fit and to apply statistical analysis
in order to investigate how reliable these estimates are. 

The search space for parameters is defined by the linear
constraints

and by the nonlinear constraints

where  and  are the maximum values in the data

set for proteins b and Bcd, respectively. Note that in
[7,8,13] threshold parameters ha for genes Kr, Kni, gt, and

hb are fixed to negative values representing a constitutively
repressed state for the corresponding genes [7,8]. Fixing
some parameters to specific values may severely restrict
the search space leaving some solutions out of considera-
tion. Contrary to their approach, we include threshold
parameters for these genes in the search by putting the

constraints -10.0 ≤ ha ≤ 0.0.

In order to make the analysis of parameter estimation easier,
we scale all parameters used in (17) in the following way:

for all genes a and b. Note that the choice of the scaling fac-

tors for Ra, Da, and λa is based on the search ranges of the

corresponding parameters. The choice of the scaling factors

for regulatory weights  and maternal coefficients ma is

based on the fact that the maximum level of protein con-
centration for all genes in the data set is of order O(102).
Thus, all scaled parameters are of order O(1).

Results and Discussion
We use 80 different parameter sets, obtained by global
search [12], as initial guess for the parameter values
and apply the LM method to estimate all 66 unknown
parameters of the gap gene circuit model (17), such
that the state variables fit the given data (see Figure
2b), subject to (non)linear constraints (20)–(21).
Once the parameters are estimated we apply our statis-
tical analysis to assess the quality of the parameter
estimates.

Optimization Results
Least squares estimation of the 66 parameters of the gap
gene circuit model (full search case) using the LM method
yields a significant decrease of the RMS (19) in all simula-
tions (see Table 1). There are only 5 (out of 80) initial
parameter sets with RMS < 10.0 (best fit: RMS = 9.56).
After using the LM method there are 71 final parameter
sets with RMS < 10.0, among which there are 64 with their
RMS evenly distributed between 8.37 and 9.43. None of
these low-scoring parameter sets show any visible pattern-
ing defects (see Figure 2.1 in Additional file 1), while most
solutions with larger RMS do. As it is difficult to make a
distinction between these 64 parameter sets based on
RMS values and expression patterns only, we take all of
them into account for our analysis. We note that there is
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2

20 0 1. . , . . , .
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. , , ..., ,≤ ≤ < ≤ ≤ ≤ =R D
ln

a
a Na a gl
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Table 1: RMS distribution for parameter estimates.

RMS < 10.0 10.0 ≤ RMS < 12.0 12.0 ≤ RMS < 14.0 RMS ≥ 14.0

in
5 36 21 18

71 3 1 5

63 7 2 8

Entries in the table show the number of parameter estimates with corresponding ranges for RMS, where θ in correspond to initial parameter 

estimate;  and  correspond to the parameter estimates after using the LM method in the full search case and the case of fixed 

promoter thresholds, respectively.

q̂

q̂ full

q̂ fixed

q̂ full q̂ fixed
Page 9 of 19
(page number not for citation purposes)



BMC Systems Biology 2008, 2:83 http://www.biomedcentral.com/1752-0509/2/83
no guarantee that a better solution might have been
missed by our parameter estimation procedure. However,
since the initial points for the LM search were found by a
global search method [12], it is likely that the search space
for unknown parameters is explored sufficiently enough.

Parameter estimates found by the LM method signifi-
cantly improve solution fits found in previous studies (see
Figure 3) [7,8,12,13]. However, there are two problems,
mentioned in [7,8], that remain unsolved with the new
parameter estimates. The first one concerns the artificially
high level of gap gene expression during early cycle 13.
The model responses are much larger than the data values
yielding large positive discrepancies. This is probably due
to the lack of protein production delays in the model [7].
The second one concerns the incorrect shift of the poste-
rior Hb domain, which is due to the absence of the termi-

nal gap gene huckebein (hkb) from our current models
[7,8].

Many parameters have a broad range of possible values,
meaning that they are not uniquely determined (see Fig-
ures 2.2-2.3 in Additional file 1). Classification of all
parameter estimates for regulatory weights into 'activat-
ing', 'repressing' or 'no interaction' categories is shown in
Figure 4(a). The resulting network topology is in very
good agreement with the results obtained in [7,8,12,13].
Specifically,

(A1) Cad and Bcd activate gap genes hb, Kr, kni, and gt;

(A2) gap genes hb, Kr, kni, and gt show auto-activation;

(A3) Tll represses gap genes Kr, kni, and gt;

Model responses vs DataFigure 3
Model responses vs Data. Comparison between data (red lines), patterns obtained by a parameter set from [7] (blue lines) 
and patterns with a parameter set yielded from the LM search (green lines) for the expression of gap genes Kr, Kni, gt, and hb at 
early (t = 24.225 min, T1, first row) mid- (t = 42.975 min, T4, second row) and late (t = 67.975 min, T8, last row) cycle 14A. Axes 
are as in Figure 2.
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(A4) gap genes with mutually exclusive expression
domains strongly repress each other; these correspond to

weights , , , and .

Previous results also suggested that pairs of overlapping
gap genes (hb and gt, gt and kni, kni and Kr, as well as Kr
and hb) either show no or weak repressive interactions
among each other. Note that some of these weights differ
slightly from earlier analyses [7,12]. In all of these cases
the difference is extremely slight and depends on the
threshold chosen to categorize an interaction as 'very

weak repression' or 'no interaction' (for example  or

 in Figure 4(a); see also scatter plots in Figure 2.2 in

Additional file 1). It is therefore unlikely that such differ-
ences are biologically significant. The only activation
between overlapping gap genes is predicted for the effect
of Gt on hb. In addition, we find that Kni activates gt in a
majority of solutions. In both of these cases, the signifi-
cance of the interactions does not lie in their weak activat-
ing effect (which has no discernible biological function),
but rather in the absence of repression [7,8].

Wgt
Kr WKr

gt Whb
kni Wkni

hb

Wkni
Kr

WKr
kni

Regulatory topology of the gap gene networkFigure 4
Regulatory topology of the gap gene network. Maternal coefficients and regulatory weight matrix for the gap gene sys-
tem based on parameter sets found by the LM method: a) 64 solutions in the full search case; b) 60 sets in the case of fixed 
promoter thresholds. Triplets show the number of parameter sets in which a regulatory weight falls into one of the following 
categories: repression (values ≤ -0.005)/no interaction (values between -0.005 and 0.005)/activation (values ≥ 0.005). Based on 
the highest value in the triplets, the table is coloured such that the background colours represent activation (green), no inter-
action (light-blue), or repression (pink).
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Parameter Determinability
We applied the statistical analysis introduced in the Meth-
ods section to the 64 parameter sets obtained by the LM
method to assess the quality of our estimates. Ellipsoidal
confidence regions corresponding to parameter estimates
are given by (10). None of the parameter estimates lies in
the ellipsoidal confidence regions of all other parameter
sets. Note that this does not necessarily imply that there is
no unique 'true' solution for the parameter vector, since
the ellipsoidal confidence regions – or at least some of
them – may still have a non-empty intersection.

For each parameter set , the SVD (4) of the Jacobian

J( ) yields the matrices V( ) and Σ( ). In order to find

the number of singular values in Σ( ) satisfying the accu-
racy inequality (12), i.e. to determine how many (combi-
nations of) parameters can be determined, we need to
quantify r and rσ. We are interested only in the first deci-

mal digit of the scaled parameters, and therefore we take r

= 0.1. For α = 0.05 we obtain rσ ≈ 9.4 RMS( ) (the choice

of α does not make much difference here due to the large
value of N).

Investigation of all parameter sets shows that on average,
15 singular values satisfy (12) meaning that at most 15
parameters or linear combinations of them can be deter-
mined with one digit accuracy. There is a set of parameters
which have significant entries in the first 15 columns of all

V matrices. It includes regulatory weights , ,

, , , promoter thresholds hKr, hgt, htll, decay

rate λcad, and promoter strength RKr. However, inspection

of the first 15 columns of the V matrices shows that there
is not a single parameter which can be determined indi-
vidually with the chosen accuracy. Thus, each column has
a number of significant entries implying that the principal
axis of the confidence ellipsoid is at an angle with the cor-
responding axes in parameter space. This indicates the
presence of correlations between parameters.

Dependent and independent confidence intervals for each
parameter set can be computed by (13) and (14), respec-
tively. We check if the corresponding confidence intervals
for regulatory weights fall entirely into the 'repression',
'no interaction', or 'activation' categories. Results in Figure
4(a) do not change when only dependent confidence
intervals are taken into account. However, including inde-
pendent confidence intervals one can no longer make cor-
rect qualitative conclusions about many of the entries in
the regulatory weight matrix.

The sizes of the independent confidence intervals give an
indication about the determinability of the corresponding
regulatory weights. There is a set of eight regulatory
weights which have relatively small confidence intervals
for all 64 parameter sets (see Figure 2.4 in Additional file

1). It includes , , , , , ,

, and . For instance, Figure 5(a) shows the con-

fidence intervals for . This regulatory weight is well

determined qualitatively, i.e. the independent confidence
intervals fall entirely into one category and therefore the
type of the regulation can be concluded. The model pre-
dicts that Kr does not regulate hb. Note that the confidence
intervals for these eight parameters in the scaled case are
of order O(10-1) and therefore they are not determinable
with the chosen accuracy level r = 0.1. In fact, they are

determinable only if we choose r = 1.0.

The remaining regulatory weights have larger independ-
ent confidence intervals (see Figure 2.4 in Additional file
1) and therefore they are not determined quantitatively.
Among them are some regulatory weights for which qual-
itative conclusions can be deduced from the results. For
example, panels (d) and (e) of Figure 5 show the confi-

dence intervals for regulatory weights  and ,

respectively. Although these two regulatory weights can
not be determined quantitatively, there is a qualitative dif-
ference between them. The independent confidence inter-

vals for  do not extend significantly into the positive

part of the plane. Therefore, one can make a qualitative
conclusion for this weight: the model predicts that Kr does
not activate gt. Note that this is a weaker conclusion than
predicting repression for this weight from Figure 4(a). In
contrast, we cannot draw any qualitative conclusions

about . Thus, our analysis does not confirm the

repression of kni by Hb inferred from Figure 4(a) (but
does not contradict it either). To demonstrate that repres-
sion of kni by Hb is not strictly necessary to fit the data
correctly, we fix this weight to zero while performing
parameter estimation. The obtained parameter set has a
RMS = 9.24 and produces patterns with no visible defects
(see Figure 2.7 in Additional file 1).

Based on the confidence intervals, we summarize the
qualitative conclusions for the most important regulatory
weights in the gap gene system:
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(B1) Cad and Bcd do not repress gap genes hb, Kr, and gt;
no conclusions can he made for regulation of kni by Cad
and Bcd;

(B2) gap genes hb, Kr, kni, and gt do not show auto-repres-
sion;

(B3) Tll does not activate gap gene gt; no conclusions can
be made for regulation of Kr and kni by Tll;

(B4) gap genes with mutually exclusive expression
domains gt and Kr do not activate each other; no conclu-
sions can be made for regulatory interactions between hb
and kni.

Interactions between overlapping gap genes are mostly
weakly repressive or absent, and are largely consistent

with Figure 4(a): confidence intervals for , ,

, , and  indicate no interaction, while

confidence intervals for , and  suggest the

absence of activation. Finally, confidence intervals for

 indicate the absence of repression.

Obviously, our qualitative conclusions (B1)–(B4) are
weaker than the conclusions (Al)–(A4) made from Figure
4(a) by considering only the values of parameter esti-
mates. Note that for all genes, promoter thresholds h, pro-
moter strengths R, diffusion coefficients D, and decay
rates λ have extremely large independent confidence
intervals (see Figure 2.5 in Additional file 1) meaning that
all these parameters are not determinable.

The large difference between dependent and independent
confidence intervals indicates the presence of correlations
between parameters. Individual confidence intervals are
not informative for understanding the reason of poor
determinability of parameters when their estimates are
correlated. Using (16), we find the correlation matrix for
each parameter set. To detect the most significant correla-
tions between parameters present in all correlation matri-
ces, we calculate an averaged matrix – which we call the
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Confidence intervals for parameter estimatesFigure 5
Confidence intervals for parameter estimates. Dependent (green lines) and independent (red lines) confidence intervals 

for regulatory weights  (a),  (b),  (d), and  (e) in the full search case and for regulatory weights  (c) 

and  (f) in the case of fixed promoter thresholds. Confidence intervals are plotted along the vertical axis for all 64 param-

eter sets in the full search case and 60 parameter sets in the case of fixed promoter thresholds.
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Correlations between parametersFigure 6
Correlations between parameters. Diagonal blocks corresponding to gap genes hb (a, e), Kr (b, f), gt (c, g), and kni (d, h) 
from the mean correlation matrix in the full search case (a, b, c, d) and the mean correlation matrix in the case of fixed pro-
moter thresholds (e, f, g, h).
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mean correlation matrix – whose entries are the mean val-
ues of the corresponding correlation coefficients in the
individual correlation matrices. The obtained mean corre-
lation matrix has a block diagonal structure such that each
block corresponds to a given gene and contains the corre-
lation coefficients between parameters for the same gene
(see Figure 2.6 in Additional file 1). Panels (a),(b),(c),
and (d) of Figure 6 show the blocks corresponding to gap
genes hb, Kr, gt, and kni, respectively. Note that the corre-
lations corresponding to the most significant entries in
the mean correlation matrix (with absolute values greater
than 0.5) are statistically present in all individual correla-
tion matrices because corresponding standard deviations
are relatively small (less than 0.2).

Parameter Estimation with Fixed Promoter Thresholds

The main insight from the mean correlation matrix is that
we observe strong correlations of regulatory parameters
with promoter thresholds. For instance, regulation of hb,
Kr, gt, and kni by Bcd and Cad, and auto-regulation are all
strongly correlated with their corresponding ha (see panels

(a),(b),(c), and (d) of Figure 6). This may explain the poor
determinability for these interactions. We checked this
hypothesis by fixing promoter thresholds ha for gap genes

hb, Kr, gt, and kni in (17) to a value of -3.5, similar to the
approach used in [7,8,12]. We find that also in this case,
least squares estimation using the LM method yields a sig-
nificant decrease of the RMS (see Table 1). There are 63
parameter sets with RMS < 10.0 (best fit: RMS = 8.66).
Among these, there are 60 parameter sets which have no
visible patterning defects (see Figure 3.1 in Additional file
1) and these were taken into account in the following anal-
ysis. The resulting regulatory network topology (see Figure
4(b)) largely corresponds to that obtained without fixing
threshold parameters (full search case) with a few minor

exceptions. , , and  now all fall into the 'no

interaction' category while the full search found mutual
repression between Kr and kni, and activation of gt by Kni
(compare panels (a) and (b) of Figure 4). As discussed
above, these changes represent very small quantitative
changes in the parameter values and depend on the (some-
what arbitrary) choice of cut-off between regulatory catego-
ries (compare scatter plots in Figures 2.2 and 3.2 in
Additional file 1). Therefore, they are unlikely to be biolog-
ically significant, while all our main qualitative conclusions
(Al)–(A4) on gap gene network topology are fully consist-
ent with our results using fixed threshold parameters.

On the other hand, we observe significant improvement
in determinability of some regulatory weights when we
compute dependent and independent confidence inter-

vals for each parameter set by (13) and (14), respectively
(see Figure 3.4 in Additional file 1). As an example, Figure
5(c) shows the confidence intervals for the regulatory

weight  with fixed promoter thresholds. There is a

quantitative improvement in the determinability of this
parameter indicated by smaller independent confidence
intervals in the case of fixed threshold parameters (com-
pare panels (b) and (c) of Figure 5). But there are also
qualitative changes. The model now predicts the activa-
tion of hb by Cad. Similarly, Figure 5(f) shows the confi-

dence intervals for the regulatory weight  with fixed

promoter thresholds. Comparison of the panels (e) and
(f) of Figure 5 shows that there is no quantitative differ-
ence between the two approaches for this weight.

However, we see a qualitative improvement for the case of
fixed threshold parameters. The independent confidence
intervals in Figure 5(f) lie in the negative part of the plane
for almost all parameter estimates and therefore, repres-
sion is now predicted for this weight while the plot in Fig-
ure 5(e) corresponding to full search case predicts only the
absence of activation.

Based on the confidence intervals, we summarize the
qualitative conclusions for the essential regulatory
weights in the gap gene model in the case of fixed pro-
moter thresholds:

(C1) Cad activates gap genes hb, Kr, kni, and gt;

(C2) Bcd does not repress gap genes hb, Kr, and gt; no con-
clusions can be made for regulation of kni by Bcd;

(C3) gap genes hb, Kr, and gt have auto-activation; gap
gene kni does not have auto-repression;

(C4) Tll does not activate gap gene gt; no conclusions can
be made for the regulation of Kr and kni by Tll;

(C5) mutually exclusive gap genes gt and Kr repress each
other; no conclusions can be made for regulations
between hb and kni.

For interaction among overlapping gap genes, the confi-
dence intervals in the case of fixed promoter thresholds
are fully consistent with those for the full search case, even
though three of these interactions fall into different cate-
gories in the analysis based on parameter values only
(compare panels (a) and (b) of Figure 4). This shows that
confidence intervals can be used to check the significance
of ambiguities in predicted interactions based on parame-
ter classification alone. However, although conclusions
(C1)–(C5) show qualitative improvement for some regu-
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lations in comparison with (B1)–(B4), they are still
weaker than those drawn from classifying parameter val-
ues only (A1)–(A4).

Similar to the full search case, we compute the mean cor-
relation matrix to detect the significant correlations
between parameters (see Figure 3.6 in Additional file 1).
The obtained mean correlation matrix also has a block
diagonal structure. However, there is a number of signifi-
cant entries in off-diagonal blocks. Panels (e),(f),(g), and
(h) of Figure 6 show the diagonal blocks corresponding to
gap genes hb, Kr, gt, and kni, respectively. In the absence of
dominating correlations between regulatory parameters
and thresholds ha we can now identify biologically signif-
icant parameter correlations. Here we restrict ourselves to
describe some correlations which can be interpreted in
biological terms with the emphasis on those for which at
least one parameter is 'sloppy':

• Strong negative correlation is present between  and

mkni. That is, strong repression of kni by Hb needs to be

overcome through increased activation by Bcd. Note that
both parameters are poorly determined. In the circuit with

 set to zero, Bcd actually represses kni (see Table 2.1

in Additional file 1). This contradicts genetic and molecu-
lar evidence indicating that both repression of kni by Hb
and its activation by Bcd are present in the embryo
[29,30].

• There are complex correlations between the (very small,
or absent) repressive effects of Hb on Kr and gt, and the
activation of those two genes by Bcd. This confirms earlier
results indicating that the balance between activation and
repression from maternal genes is crucial for correct gap
gene expression [31].

• The importance of the balance between activation and
repression is highlighted by the following: repression of
kni and gt by Tll can be compensated through increased
activation by Cad, repression of kni by Kr can be compen-
sated through increased activation by Bcd, while repres-
sion of kni by Gt can be overcome by increased kni auto-
activation in the posterior of the embryo.

• Increased hb auto-activation is compensated through
decreased activation of hb by Bcd indicating that broad
maternal activation and auto-regulation are somewhat
redundant.

• There is a strong positive correlation present between
mKr and mgt. This correlation is most likely indirect, due to
repressive interaction between gt and Kr. Increased activa-
tion of Kr by Bcd must be balanced by increased activation

of gt by Bcd to maintain balance of mutual repression
between Kr and gt.

• There are correlations between activation of Kr and gt by
Bcd and their respective promoter strengths and decay
rates. Such correlations are to be expected as stronger
expression or increased protein stability can compensate
for weaker activation by Bcd.

We note that some of the 'sloppy' parameters, such as

, , , and  are not (strongly) correlated

to any of other parameters and their sloppiness remains
unclear. The last is completely uncorrelated parameter.
Posteriorly Kr is strongly repressed by Gt and somewhat
weaker by Hb and Kni. Apparently, due to these interac-
tions repression of Kr by Tll is somewhat redundant in the
model.

In summary, the above suggests that complex correlations
between regulatory weights as well as correlations
between those weights and promoter strength or protein
decay rates are an unavoidable property of complex bio-
logical networks, as some interactions or changes in
expression rate can always compensate for changes in oth-
ers.

Parameter Correlations: Data vs Model
Poor determinability of most of the parameters in the gap
gene model is due to correlations between parameters.
Here we investigate whether these correlations are caused
by shortcomings of the data or the model.

At first glance, it seems that insufficient accuracy of the
data cannot be the reason for correlations. More accurate
data would simply make the ellipsoid confidence region
shrink but not rotate. Therefore, it cannot significantly
improve the determinability of the parameters (see also
[5]). We checked this by assuming that a larger data set
was available: Say we had measurements for all gene prod-
ucts, in all nuclei, at 71 uniformly distributed time points
(instead of 9). With these choices the total number of
measurements would be N = 21180. Suppose that we

have found that one of our parameter estimates  mini-
mizes the sum of squares (2). Since the Jacobian depends
only on the model responses and not on the values of the

data, we can generate a new Jacobian  including all

'ghost' data points. From the SVD of the corresponding

 we get the matrices  and  which define

new ellipsoidal regions. The ellipsoids are slightly rotated
in comparison with the initial ones but not enough to
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make the principal axes of the ellipsoid get closer to the
parameter axes, i.e. the correlations between parameters
are not removed.

Each data point is actually a sample mean, obtained by
averaging gene concentrations from individual embryos.
Therefore, measurement errors most likely have a normal
distribution with zero mean. However, their standard
deviations may vary for different data points. Assume that
for the i-th data point Ki measurements from individual

embryos are used and assume that the standard deviation
of this sample si is known. Then the normal distribution

of the sample mean has a standard deviation which can be

estimated by . For the dataset we used, both si

and Ki are available from the FlyEx database [11]. Once all

σi are found, we can use a weighted least squares estima-

tion such that θ minimizes the sum

instead of (2). We take the weights wi inversely propor-
tional to σi such that the weighted least squares yields the
maximum likelihood estimate. Also in this case, we find
that the obtained parameter estimates have the same type
of correlations as those obtained with an ordinary least
squares fit (data not shown).

Correlations between parameters can be due to hidden
dependencies in the data set. To investigate whether this is
the case, we conduct an inverse experiment. We choose
one of the parameter sets obtained by the LM search, with
an RMS = 8.38, and we denote it by θ*. By integrating the
model equations with θ* we generate an exact data set at
the same data points as the initial data set. To the exact
data values we add errors drawn from the normal distribu-
tion with zero mean and standard deviation equal to 8.5.
From the exact and the perturbed data set, we compute
RMS(θ*) = 8.17. The perturbed dataset is used for the
parameter estimation by means of the LM search. By con-
structing this inverse problem, we make sure that the
assumption about the independence of the measurement
errors is correct. With 40 different initial values of θ from
[12] we obtain 34 parameter estimates having RMS
between 7.95 and 8.25. Inspection of the corresponding V
matrices shows that parameters are not determinable due
to the correlations, similar to the original problem.

We conclude that the observed correlations between
parameters are a property of the model, not of the data.
Since an explicit form of the dependence of the state vec-

tor on the parameters is not known, the use of repara-
metrization techniques is not feasible. Note that the
majority of parameters in (17) appear in the argument of
the sigmoid regulation-expression function Φ. If the
model (17) is used to obtain only qualitative informa-
tion, such as the signs of regulatory weights, then the
particular mathematical form of this function is of no
importance [25]. However, it has to be studied if the
choice of the sigmoid function affects the determinabil-
ity of parameters.

Conclusion
In this paper we have applied the Levenberg-Marquardt
(LM) optimization method to obtain a set of parameter
estimates for gap gene circuit models. We then used statis-
tical analysis to study the quality of these estimates, i.e.
how well the parameters are determined with the availa-
ble experimental data. Our analysis shows that none of
the model parameters can be determined individually
with reasonable accuracy due to correlations between
parameters. Therefore, current gene circuit models cannot
be used as a tool to infer quantitative regulatory weights
for the gap gene network.

With this caveat in mind, however, it is still possible to
draw qualitative conclusions on the regulatory topology
of the gap gene network. These conclusions are weaker
than, but entirely consistent with those made by only
considering the values of parameter estimates
[7,8,12,13]. Therefore, they are also fully consistent with
genetic and molecular evidence on gap gene regulation
(see [7], and references therein). Our analysis allows us
to determine exactly which interactions predicted by
gene circuit analysis remain ambiguous. If considered in
isolation, this ambiguity poses a serious problem for
inferring regulatory interactions from expression data as
it leaves important aspects of gap gene regulation unre-
solved. We show that more and better data will not nec-
essarily improve parameter estimates. On the other
hand, our results using fixed threshold parameters indi-
cate that at least some of these ambiguous aspects can be
resolved by reducing parameter correlations through fix-
ing some parameters in the optimization. Others may
disappear if more realistic models are used: for instance,
models incorporating protein production delays, or
reduced models incorporating cad and tll as time-varia-
ble external inputs as these genes are not regulated by
gap genes themselves. Further research into parameter
correlations within complex network models will be
required to explore what kind of improved models or
optimization constraints lead to better parameter deter-
minability.

Still it remains doubtful whether an approach can be
found which leads to complete parameter determinabil-
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ity. The study by Gutenkunst et al. [5] indicates that
parameter sloppiness is a very common phenomenon
among models used in systems biology. Our results cor-
roborate this as it is difficult to see how, for example, cor-
relations between regulatory weights could be eliminated
from a network model. The situation is not hopeless,
however, as genetic evidence can help us clarify these
remaining ambiguous interactions. Such evidence is itself
ambiguous in many cases, as it is often difficult to inter-
pret mutant phenotypes. But it is also complementary to
and completely independent of the evidence gained by
reverse engineering approaches such as the one used here
[7]. This means that its ambiguities are often complemen-
tary to the ones described in this study. For instance, while
cross-repressive feedback between hb and kni is not sup-
ported (but also not contradicted) by our current models,
it is very strongly supported by genetic evidence [30].
Based on this, we conclude that systems biology
approaches are most successful if they combine experi-
mental and theoretical insights in a consistent and power-
ful manner.

Other biological interpretations of parameter sloppiness
are possible. Our results on the interactions between hb
and kni indicate that although present in the Drosophila
embryo, they are not strictly necessary to maintain correct
gap gene expression, and may be at least partially redun-
dant with or replaceable by other regulatory interactions
in the system. It is interesting to think about this from an
evolutionary point of view, as such redundancy or
replaceability allows the network to be re-wired while
maintaining correct gap gene expression.
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