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We present the kinematic variable, mT2, which is in some
ways similar to the more familiar ‘transverse-mass’, but
which can be used in events where two or more particles
have escaped detection. We define this variable and describe
the event topologies to which it applies, then present some
of its mathematical properties. We then briefly discuss two
case studies which show how mT2 is vital when reconstruct-
ing the masses of supersymmetric particles in mSUGRA-like
and AMSB-like scenarios at the Large Hadron Collider.

1 Introduction

Reconstructing R-parity conserving supersymmetric events will be difficult
at the Large Hadronic Collider (LHC) because of the following factors which
limit our knowledge of the event:

• two massive particles have escaped undetected,

• the masses of these particles are unknown,
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Figure 1: Schematic representation of a simple R-parity conserv-
ing event at the LHC in which supersymmetric particles were pair-
produced. The colliding protons are shown coming in from the
left and right. The collision has pair produced two massive susy
particles, ζ1 and ζ2 (dark blue). Each of these has been shown
decaying to something visible (α or β) and to an undetected neu-
tralino (p or q). The typical event will also contain some initial-
or final-state radiation, or other debris, represented here by g. In
this figure it has been assumed that g consists entirely of visible
particles.

• the masses of their ‘parent’ particles are unknown,

• the center-of-mass energy of the collision is not known, and

• the boost along the beam axis of the collision center-of-mass is not
known either.

An example of such an event is shown schematically in Figure 1, where
a pair of supersymmetric particle have been produced, each of which has
decayed to some visible and some invisible daughters.
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An important question to ask is “What model-independent information
about sparticle masses can be deduced from events of this type?”. The
question can be seen to be a harder version of a number of older problems
with which we are more familiar.

Searches at the Large electron-positron collider (LEP) for pair produced
sparticles have much in common with this problem, although to first order
they did not suffer from the latter two of the above problems. In some ways,
the problem at the LHC is more akin to that faced by the other hadronic
collier experiments, such as UA1, UA2, CDF or DO where the W -mass has
been measured from its decay to a lepton and a neutrino. This has been
achieved using the ‘transverse mass’ event variable, mT , a variable which on
an event-by-event basis generates a lower bound for the W -mass, and the
end-point of whose distribution is the W -mass ([1, 2, 3, 4]). Their case was
easier than that at the LHC, however, as they only had one such decay per
event, and in addition they could assume knowledge of the masses of both of
the particles into which the W decayed.

The approach to the problem first proposed in [5] and subsequently devel-
oped in [6] and [7] proposes the creation of a new kinematic variable, mT2,

1

analogous to the transverse mass, whose kinematic endpoint carries model
independent information about (to first order) the mass difference between
the primary and the secondary supersymmetric particles. Mention is made
in [7] of generalisations to this variable (mT3, mT4, ...) which may be used
when events contain extra missing particles (e.g. neutrinos) as well as the
two neutralinos.

The purpose of this article is not to discuss new physics results which
might be obtained with mT2 (for these the reader is encouraged to read [6]
and [7]) but rather it aims to take a closer look at more technical issues
concerning the use and interpretation of mT2, and its related variables. It is
hoped that by concentrating information on mT2 in this way, this article can
act as a repository of mT2 ‘know-how’ for future investigations.

2 A concrete example

It is perhaps easiest to introduce and motivate the definition of the Cam-
bridge mT2 variable using a concrete example. This allows the ingredients
that make up mT2 to be introduced, one at a time in an almost ‘natural’ way.
Readers who would prefer a ‘top down’ description of mT2, i.e. a description

1Because of its use in supersymmetric events, mT2 has acquired the nickname of the
‘stransverse’ mass.
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which starts with a definition and then works towards its consequences, are
directed to skip to section 3 where this approach is taken.

The concrete example which will be used here is taken from [7]. This pa-
per considered an (anomaly mediated) R-parity conserving supersymmetric
model whose key property was that it predicted a lightest chargino nearly
mass degenerate with the lightest neutralino. With particular choices of
model parameters, the only chargino decay mode available was:

χ+
1 → χ0

1π
+. (1)

Events containing two such decays, i.e. events containing two simultaneous
decays of an unseen particle of unknown mass into another invisible particle
of unknown mass and visible particle, are exactly the sort of events that we
hope to analyse with mT2. This we shall now begin to do.

Considering for the moment just one of the decays of the form (1), one
can write the Lorentz invariant statement

m2
χ+

1
= m2

π + m2
χ0

1
+ 2

[

Eπ
T E

χ0
1

T cosh(∆η) − pπ
T · pχ0

1
T

]

(2)

where pπ
T and p

χ0
1

T indicate pion and neutralino 2-vectors in the transverse
plane, and the transverse energies are defined by

Eπ
T =

√

(pπ
T )2 + m2

π and E
χ0

1
T =

√

(p
χ0

1
T )2 + m2

χ0
1

. (3)

Also

η =
1

2
log
[

E + pz

E − pz

]

(4)

is the true rapidity, so that

tanh η = pz/E , sinh η = pz/ET , cosh η = E/ET . (5)

In a hadron collider, only the transverse components of a missing par-
ticle’s momentum can be inferred, so it is useful to define the transverse
mass,

m2
T (pπ

T ,p
χ0

1
T ; mχ0

1
) ≡ m2

π+ + m2
χ0

1
+ 2(Eπ

T E
χ0

1
T − pπ

T · pχ0
1

T ) (6)

which, because cosh(x) ≥ 1, is less than or equal to the mass of the lightest
chargino, with equality only when the rapidity difference between the neu-
tralino and the pion, ∆ηχ0

1π is zero. All other ∆η lead to mT < mχ+
1
, so if we

knew the neutralino momentum, we could use mT to give an event by event
lower bound on the lightest chargino mass. mT was has been used this way
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in the measurement of the W± mass.
In events considered in this example, however, there are expected to be

two unseen lightest supersymmetric particles (LSPs).2 Since only the sum of
the missing transverse momentum of the two neutralinos is known, the best
that can be done is to evaluate the quantity

min
/q(1)

T
+/q(2)

T
=/p

T

[

max
{

m2
T (pπ(1)

T , /q
(1)
T ; mχ0

1
), m2

T (pπ(2)

T , /q
(2)
T ; mχ0

1
)
}]

(7)

which is thus a lower bound on the square of the transverse mass, mT , for
events where two decays of the type (1) occur. Note that this minimisation

has forced us to introduce a pair of dummy two-vectors /q
(1)
T and /q

(2)
T which,

constrained by the minimisation condition, parametrise our lack of knowledge
about the two true neutralino momenta. Finally, we must recognise that
under most circumstances, the value of mχ0

1
is unlikely to be known, or may

only be known with limited precision. In order to make our ignorance of mχ0
1

explicit, we thus define a new free parameter, χ, calling it the ‘neutralino
mass parameter’, intending it to denote any guess we might have as to the
true neutralino mass mχ0

1
. Using it in place of mχ, we convert (7) into the

following definition of a new kinematic variable:

m2
T2(χ) ≡ min

/q(1)
T

+/q(2)
T

=/p
T

[

max
{

m2
T (pπ(1)

T , /q
(1)
T ; χ), m2

T (pπ(2)

T , /q
(2)
T ; χ)

}]

. (8)

The quantity defined in (8) is the Cambridge mT2 variable which is the
subject of this document.

Staying within the framework of this example, we can now go on to
describe some of the the desirable model-independent properties which mT2

possesses.

2.1 Properties of mT 2(χ).

Firstly, is worth noting that the mT2 variable is not strictly a ‘variable’, and
would more correctly be termed a ‘function’, as it retains a dependence on
the unknown parameter χ. Ideally, χ would ideally be set equal to the mass
of the missing heavy particle, but in most of the situations in which the
variable is likely to be used, the mass of the invisible object is unlikely to be
known, or may only be known with a large uncertainty. The χ dependence
remains, therefore. A more detailed discussion of how this can affects the
use of mT2 takes place in section 2.2.2.

2Though there may also be other unseen particles – see section 2.2.1.
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Secondly, from its method of construction, it is clear that for any given
event

mπ + mχ0
1

≤ mT2(mχ0
1
) ≤ mχ+

1
, and (9)

mπ + χ ≤ mT2(χ) (10)

It is certainly not immediately clear, however, that events can always exits
for which mT2 is capable of reaching all of these endpoints. In fact it turns
out that such events do always exist, and proof of this is given in section 3.3.
So, having defined the quantity mmax

T2 (χ) by

mmax
T2 (χ) = max

many events
[mT2(χ)] , (11)

the important result to draw from all of this is that the upper kinematic limit
of mT2 satisfies

mmax
T2 (mχ0

1
) = mχ+

1
. (12)

This is the main model-independent statement that mT2 is able to offer.

2.2 Going beyond pairs of two body decays

The scenario in which mT2 has been introduced, thus far, is relatively simple;
each event contains a pair of charginos, and each of these decays via a two
body decay into a charged pion and an unseen neutralino. We will now
consider in more detail what happens when:

• the neutralinos are not the only missing particles,

• the initial (e.g. chargino) decays are not both two body decays, and

• mT2(χ) is evaluated at values of χ 6= mχ0
1
.

2.2.1 Extra missing particles and multi-particle decays

The need for mT2 to be adaptable to situations in which the neutralinos
are not the only unobserved final-state particles may again be demonstrated
using as an example the model of [7]. In this model, there were found to be
some regions of parameter space in which three-body chargino decay,

χ±
1 → l±νχ0

1, (13)
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Figure 2: Schematic representation of a R-parity conserving event
at the LHC in which supersymmetric particles are pair-produced.
The colliding protons are shown coming in from the left and right.
The collision has pair produced two massive susy particles, ζ1

and ζ2 (dark blue). Each of these has been shown decaying to a
collection of visible particles (αi or βi) and to a set of undetected
particles (pi or qi). The purpose of the large spherical blobs is
to hide the details of the decay process(es) involved; in principle
they may contain anything, from one large n-body decay, to n− 1
successive two-body decays. The typical event will also contain
some initial- or final-state radiation, or other debris, represented
here by g (the visible component) and g′ (the invisible component).
Comments in the text apply only principally to events in which g′

is small enough to be neglected.

had a rate comparable to that of the two-body decay (1) which we have
already seen. Here, the presence of the neutrino (or antineutrino) in the final
state means that we have even less information about the event than before.
Nevertheless, one would like to benefit, if possible, from events in which one
or two of these decays occur in place of the usual two-body decays. This
type of event is just one of the general class of events depicted in figure 2.

It is clear that one can immediately generalise the mT2 of (8) to suit
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events like those in figure 2 in the following way. Define the new variable
mTX by:

m2
TX = min

consistent splittings



max







(
∑

i

αi +
∑

j

pj)
2, (
∑

i

βi +
∑

j

qj)
2









 . (14)

The phrase “consistent splittings”, describing the constraint on the overall
minimisation, needs a little explanation. There are two sets of unknown
momenta. The first of these is F = {pi} ∪ {qj}, containing the unknown
momenta of all the unobserved final-state particles. The other set, H = {hi},
contains the momenta of any on-mass-shell particles which were present at
an intermediate stage during the decays of the initial pair of sparticles (ζ1

or ζ2) to their final states. In other words, H contains the momenta of any
intermediate particles hidden within the large blobs in figure 2. Minimisation
over “consistent splittings”, then, means minimisation over all pi, qj ∈ F and
all hi ∈ H subject to:

• all pi, qi and hi being on their respective mass-shells,

• momenta being conserved at all ‘hidden’ vertices in which a short lived
intermediate particle with momentum hi ∈ H decays, and

• the transverse components of B =
∑

i pi +
∑

j qj being consistent with
the measured missing momentum /pT .

It is because the last of these requirements that we need events in which g′,
the momentum carried by any invisible particles which are not descendants
of a supersymmetric particle, (see figure 2) is negligible. Were there to be
a large tail in the distribution of g′, this would degrade the performance of
mTX and mT2.

Example

We illustrate the remarks of the previous section by returning to the example
of [7] in the case where where charginos could decay either by the two-body
decay of (1) or the three-body decay (13). We can categorise events in
this scenario by the number of missing particles in the event. When both
charginos decay via (1) we only have two missing particles (the neutralinos).
For each three-body decay which takes the place of one of these two-body
decays we gain an extra missing particle in the form of a neutrino (or an-
tineutrino). In short, the three categories of events could be summarised as
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

m[π]

m[χ1
+] - m[χ1

0]

mT4 ee
mT3 eπ
mT2 ππ

mTX(m[χ1
0]) - m[χ1

0] / GeV

Figure 3: Simulations of mTX(mχ0
1
)−mχ0

1
for X = 2, 3, 4 using a

simple phase-space Monte-Carlo generator program for a pair of
decays q̃ → χ+

1 q followed by χ+
1 → χ0

1 π or χ+
1 → χ0

1 e νe. As the
number of invisible particles increases, the proportion of events
near the upper limit decreases. Within the figure, subscripts are
indicated by square brackets.

those containing one of the following:

χ±
1 χ±

1 → {π±χ0
1π

±χ0
1, or e±νχ0

1π
±χ0

1, or e±νχ0
1e

±νχ0
1} .

The events had been produced by a phase-space-only Monte-Carlo generator.
Three distributions of the quantity mTX , defined in (14), were then generated
from each of these sets of events. Using the number of missing particles to
categorise these events, the values of mTX measured in each case are referred
to as mT2, mT3 and mT4. The resulting distributions for mTX(mχ0

1
) − mχ0

1

are shown in figure 3.
It has already been mentioned that a key property of mT2 is that the

kinematic endpoint of its distribution occurs at mmax
T2 (mχ0

1
) = mχ+

1
and so

it is reassuring to see in figure 3 that a large number of events reach this
endpoint. In the vicinity of the endpoint, the edge is seen to be sharp and
near vertical. This shows that at the partonic level a measurement of mmax

T2

would provide an excellent constraint on the masses of the sparticles involved.
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In section 4 plots from [6, 7], which include realistic detector effects, will show
that the subsequent smearing of the mT2 edge, while significant, is still small.

Looking next at the mT3 and mT4 distributions, it is clear that the event
fall-off in the vicinity of their kinematic endpoints is much less steep than
in the case of mT2. This is hardly surprising, given the reduced amount of
information available in these events. Later, in section 3.4, the relative frac-
tion of events in the vicinity of the edge will be seen, more quantitatively,
to be due to the larger number of simultaneous conditions that events near
the edge must satisfy. Although the endpoint, itself, becomes increasingly
harder to detect as the number of missing particles increases, the mTX dis-
tributions are all capable of inferring the mass scale associated with (in this
case) mχ+

1
= mχ0

1
from the overall widths of their distributions, which each

scale with the endpoint position, albeit with some dependence on the decays
themselves, and on factors such as the detector acceptance over the width of
the distribution.

Finally, one notes that the mT3 distribution has sharp peak at mT3 =
mχ0

1
+ mπ, not seen in the mT2 and mT4 distributions. It will be shown

later, in section 3.5, that this is an effect which can occur whenever the
hypothesised decays on each side of the event are different.3

2.2.2 Other values of χ

Now we return to a brief look at the effect of evaluating mTX distributions
at values of χ different to the true neutralino mass.

Figure 4 shows the same data as in figure 3, but in addition it shows
the distributions that would be obtained by evaluating mTX(χ) at values of
χ = mχ0

1
± 10%. In this particular example, where mχ0

1
= 162 GeV, 10%

(16 GeV) errors in χ result in similar fractional errors in ∆Mχ̃1 i.e. of a few
tens of MeV. This shows that mT2 can be sensitive to small mass differences.
In this example, too, we see a positive correlation between the change in
χ and the change in the position of the endpoint. These examples are not
always typical, however. For example, in [5] the authors considered mT2 in
the context of a double slepton decay to lepton a neutralino at SUGRA Point
5, one of the five supergravity points proposed at [8] and described in [9]. In
this model, the difference in mass between the decaying and final sparticles

3‘Different’, in this context, means ‘being such that the minimum total invariant mass
attainable by the particles on one side of the event is not equal to the minimum total
invariant mass attainable by the particles on the other side of the event’. This happens
principally when the particle content of each decay differs. In the case of mT3 in, the
AMSB example scenario, the two dissimilar minima are mπ + mχ0

1
and me + mν + mχ0

1
.
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

m[π]

m[χ1
+] - m[χ1

0]

m[χ1
0] × 1.0

m[χ1
0] × 0.9

m[χ1
0] × 1.1

mTX(χ) - χ / GeV

Figure 4: The distortion of mTX(χ) − χ when the LSP mass
parameter, χ, is varied by ± 10% about the ‘ideal’ value of
mχ0

1
. These curves show that mTX(χ) − χ remains sensitive to

the mass difference ∆Mχ̃1 = mχ+
1
− mχ0

1
. In this simulation

∆Mχ̃1 = 0.845 GeV, mχ0
1

= 161.6 GeV, and the electron and
neutrino mass were neglected. The normalisation is arbitrary.
Within the figure, subscripts are indicated by square brackets.

(157.1 − 121.5 = 35.6 GeV) is approximately 40 times larger than in the
AMSB case, and so at SUGRA Point 5 we see a negative correlation between
changes in χ and mT2(χ) − χ. This is illustrated in figure 5. Differing kinds
of behaviour, such as these, are typical of a variable like mT2 which has input
scales (e.g. mπ, mχ+

1
, χ and mχ+

1
− χ ) which can have a large number of

relative hierarchies associated with them. For example, the AMSB scenario
has mπ ≈ mχ+

1
− χ ≪ χ ≤ mχ+

1
, while SUGRA Point 5 has ml ≪ ml̃ − χ ≈

χ < ml̃.
We now take a final look at how mT2 depends upon χ by looking not just

at events near the kinematic endpoint, but at events in general. To help, we
define y(χ), a rescaling of mT2(χ), as follows:

y(χ) ≡ mT2(χ) − χ − mπ

mχ+
1
− mχ0

1
− mπ

. (15)

By looking back at (9) and (12), this variable can be seen to map mT2(mχ0
1
)
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Figure 5: Variation of mmax
T2 (χ) with χ for a set of l̃+l̃− →

l+χ0
1l

−χ0
1 events generated by a phase-space Monte-Carlo using

ml̃ = 157.1 GeV and mχ0
1

= 121.5 GeV. Note that mmax
T2 (χ) − χ

decreases as χ increases. The asymptote has unit gradient.

into the range [0, 1].4 This makes it easier to compare values of mT2 coming
from events with different sparticle masses. A value of y(mχ0

1
) close to 0

(or 1) indicates an event close to the lower (or upper) kinematic endpoint
of the mT2(mχ0

1
) distribution. Figure 6 shows how y(χ) varies with χ for

ten random events, each generated using a random set of masses satisfying
mπ + mχ0

1
< mχ+

1
as described in the figure caption. The main conclusion

to draw from these plots is that there is no easy way to say, in advance,
how mT2(χ) will vary with χ in a given event, even in the vicinity of mχ0

1
.

In general mT2(χ) can rise, fall, or even be stationary w.r.t to χ near mχ0
1
,

depending on the masses of the particles involved in the decays.

4Note that mT2(χ) is in general not constrained to lie in this range.
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Figure 6: These plots show examples of how y(χ), defined in (15),
can depend on χ. The plots were generated using the following
procedure. Ten sets of masses satisfying mπ + mχ0

1
< mχ+

1
were

randomly generated. According to each set of masses, a phase-
space Monte-Carlo generated a single event of the type shown in
figure 1 containing two χ±

1 → π±χ0
1 decays. The plots above show

how, in each event, the value of y(χ) (a dimensionless rescaling
of mT2(χ)) depended upon χ over the range 0 < χ < 2mχ0

1
. The

true value of the neutralino mass (i.e. that used in the Monte-
Carlo for the decay) is marked by the vertical line at the center of
each plot (cyan), while the other vertical line marks the value of
the pion mass (magenta). The short and long vertical ticks (dark
blue) mark mχ+

1
/2 and mχ+

1
respectively.

3 Some mathematical results concerning the

variable mTX

In section 2, mT2 and its friends were defined using lab-frame momenta and
with minimisation conditions (such as /q

(1)
T + /q

(2)
T = /pT ) not specified in

lorentz-invariant forms. The definition of mT2 from section 2 may be sum-
marised as follows:

m2
T2(p

l1
T ,pl2

T , /pT ; χ) ≡ min
/p
1
+/p

2
=/pT

[

max {m2
T (pl1

T , /p1; χ), m2
T (pl2

T , /p2; χ)}
]

, (16)
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where

m2
T (pl

T ,pχ̃
T ; χ) ≡ m2

l + χ2 + 2(El
T Eχ̃

T − pl
T · pχ̃

T ), (17)

in which El
T =

√

∣

∣

∣pl
T

∣

∣

∣

2
+ m2

l , Eχ̃
T =

√

∣

∣

∣pχ̃
T

∣

∣

∣

2
+ χ2. In the following sections we

will replace these definitions by equivalent, but explicitly lorentz-invariant
ones, which are easier to manipulate mathematically.

3.1 Definitions

The natural way to write mT2 in a manifestly (1, 2)-lorentz invariant form is
as follows:

m2
T2(α, β, Σ, Λ; χ) ≡ min

{

p + q =
√

sΛ − Σ
p2 = q2 = χ2

}

[

max {(α + p)2, (β + q)2}
]

. (18)

Here, mT2 has been written as a function of the four 1 + 2-dimensional
lorentz vectors which describe each event (α, β, Σ and Λ) and one real pa-
rameter χ. The transverse lorentz vectors of the two visible particles coming
from each of the hidden decays are represented by α and β, while Σ represents
the total transverse energy-momentum seen in the event. This is consistent
with the notation used in Figure 1. The only new vector, Λ, defines the
laboratory frame by being the (1, 2)-energy-momentum of a particle of unit
mass (Λ2 = 1) at rest in the laboratory. The total transverse momentum
of the event (visible and invisible) can only be assumed to be zero in the
laboratory frame, and so knowledge of how to boost to the laboratory frame
is essential. This is why Λ is needed.

Note that (18) includes a minimisation over
√

s, a parameter which ac-
counts for our lack of knowledge of the center-of-mass energy of the whole
event. The requirement that the hypothesised neutralino momenta are real,
i.e. (

√
sΛ−Σ)2 ≥ (2χ)2, constrains

√
s to be chosen from the region in which

√
s ≥ Λ.Σ +

√

4χ2 + ((Λ.Σ)2 − Σ2). (19)

Similarly, one can also define mTX in a manifestly lorenz-invariant form:

m2
TX(α̂, β̂, Σ, Λ; χ) ≡ min

[

max {(α̂ + p̂)2, (β̂ + q̂)2}
]

over






p̂ + q̂ =
√

sΛ − Σ,
pi, qi and hi all on their mass shells, and

momenta conserved at all internal h decays







, (20)
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in which the same notation has been used as in figure 2 and equation (14),
and in which the ‘hats’ indicate summation over all vectors of a set (e.g.
α̂ =

∑

i αi).
If desired, one may remove the ‘max’ at the expense of moving to lorentz

four-vectors and remembering to minimise over all possible longitudinal boost
of the center of momentum (here denoted by the lotentx boost Lz):

m2
T2(α, β, Σ, Λ; χ) ≡ min







D2 = D2
1 = D2

2
p + q =

√
sLzΛ − Σ

p2 = q2 = χ2







[

D2
]

, where (21)

D2
1 = (α + p)2, and (22)

D2
2 = (β + q)2. (23)

This way of representing mT2 most clearly captures the spirit in which it
provides an event-by-event lower bound on the initial sparticle mass.

3.2 Results concerning mT 2

In the case where both visible particles have the same mass, i.e. in the case
where α2 = β2 = m2

l , (18) may be re-written in the form:

m2
T2

′
(α, β, Σ, Λ; χ) ≡ m2

l + χ2 + min
{

p + q =
√

sΛ − Σ
p2 = q2 = χ2

}

[

2 max {α.p, β.q}
]

.(24)

It was shown in [7] that the solution of (24) must select vectors p and
q for which α.p = β.q. Using this information, one may perform half of
the minimisation in (24) analytically. This allows (24) to be re-written as a
minimisation over a single real variable,

√
s, as follows:

m2
T2

′
(α, β, Σ, Λ; χ) ≡ m2

l + χ2 +
1

2
min√

s

[

(σ.B)Q −
√

σ2Q − 4m2
l

√

B2Q − 4χ2

]

, (25)

where

Q = 1 − (∆.B)2

(σ.B)2 − σ2B2
, (⇒ 0 ≤ Q ≤ 1) (26)

σ = α + β, (27)

∆ = α − β, and (28)

B =
√

sΛ − Σ. (29)
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We should note that the constraint which has just been imposed, namely
α.p = β.q, is more stringent than the

√
s constraint (19) which was only

there to ensure that the hypothesised neutralinos were not tachyonic. As a
consequence, the range over which

√
s may be varied when performing the

minimisation in (25) must be replaced by the stronger condition that each
of the quantities under radicals in (25) be positive.

It is interesting to note that if we define two new transverse lorentz vectors
(σ and B) via a rescaling of existing transverse lorentz vectors according to

σ = σ
√

Q, and (30)

B = B
√

Q, (31)

then we can rewrite (25) in the form

m2
T2

′
(α, β, Σ, Λ; χ) ≡ m2

l + χ2 +
1

2
min√

s

[

(σ.B) −
√

σ2 − 4m2
l

√

B
2 − 4χ2

]

.(32)

This is not much of an improvement in itself, but it motivates the definition
of two new lorentz four-vectors;

σ̃ = (σ,
√

σ2 − 4m2
l ), and (33)

B̃ = (B,
√

B
2 − 4χ2), (34)

which we see, by construction, satisfy the following fixed-mass relations:

mσ̃ =
√

σ̃2 = 2ml, and (35)

mB̃ =

√

B̃2 = 2χ. (36)

In terms of these new lorentz four-vectors, then, we can finally re-write (32)
as

m2
T2

′
(α, β, Σ, Λ; χ) ≡ m2

l + χ2 +
1

2
min√

s

(

σ̃.B̃
)

, or (37)

mT2
′(α, β, Σ, Λ; χ) ≡ 1

2
min√

s

∣

∣

∣σ̃ + B̃
∣

∣

∣. (38)

It is interesting to note that the constant mass relations (35) and (36), taken
together with the definition of mT2

′ shown in (38), make it self evident that
the value of mT2

′ obtained in a given event is bounded below by ml + χ, as
expected.
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Approximations

To get a better idea of the way in which mT2 depends on its inputs, one
might hope to find a concise closed-form analytic definition of the variable.
Thus far, however, mT2 and mT2

′ have resisted all attempts to write them
in forms simpler than (16), (18) and (25), except in a few special cases. For
example, in the special case of events in which the spatial part of the total
visible transverse momentum is seen to be zero in the laboratory frame (i.e.
events for which (Σ.Λ)2 = Σ2) one can show that (25) is equivalent to:

m2
T2

′′
(α, β, Λ; χ) ≡ m2

l + χ2 + χ
√

4(α.Λ)(β.Λ) − (−∆2) (39)

( = m2
l + χ2 + χ

√

2(EαEβ + m2
l + pα

T .pβ
T )

in the laboratory frame ).

The limit of validity of (39) can be explored as follows. The laboratory
frame energy that this special case solution assigns to p and q is given by

p.Λ = q.Λ =
(σ.Λ)χ

√

4(α.Λ)(β.Λ)− (−∆2)
, (40)

and so the velocity of the boost needed to take the laboratory frame to the
one in which the invisible particles are back to back could be written, in this
special case, as:

( 0 = ) |v|2 = p2
Σ/(p.Λ + q.Λ)2 (41)

=
{(Σ.Λ)2 − Σ2} {4(α.Λ)(β.Λ)− (−∆2)}

4(σ.Λ)2χ2
. (42)

( =
p2

Σ(EαEβ + m2
l + pα

T .pβ
T )

2(Eα + Eβ)2χ2
(43)

in the laboratory frame )

In the light of the above, we can interpret (39) as the leading term in an
expansion of m2

T2
′
in powers of |v|2 as defined in (42). Given a particular

event, all the quantities in (42) may be evaluated, so one can safely use (39)
to evaluate m2

T2
′
for events in which |v|2 is observed to satisfy |v|2 ≪ 1.5

5The reader is warned not to mistake |v| for the speed associated with an actual boost
(real or conjectured) connected with the neutralino pair; |v| could, for example, even
exceed the speed of light if χ were made sufficiently small! It should only be assumed
that as |v| → 0, |v| will tend to the speed, in the laboratory frame, associated with the
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Figure 7: A diagram demonstrating that the minimisation over
some parameter of the maximum of two well-behaved functions
may occur either at (a) a minimum value of one of them, or (b)
when they are equal, or (c) at the boundary of the domain.

3.3 Extremal values of mT 2

In this section, we show that the maximum value which mT2(mχ0
1
) can attain,

for a given set of particle masses, is indeed the mass of the initial sparticle.6

We start from definition (8). We also describe the region of decay-phase-
space which contains events which occur close to this kinematic endpoint.

To find the range of values mT2 may take we first let f1 = m2
T (pπ(1)

T , /q
(1)
T ; mχ0

1
),

and f2 = m2
T (pπ(2)

T , /q
(2)
T ; mχ0

1
). We then note that the minimum over a pa-

rameter x of the maximum of f1(x) and f2(x) can occur at a local minimum,
f ′

1(2)(x
∗) = 0, provided f1(2)(x

∗) > f2(1)(x
∗), as shown in figure 3.3a. Alter-

natively the minimum can occur when the functions cross one another when
f1 = f2 (figure 3.3b) or at a boundary (figure 3.3c). The parameter x corre-
sponds to the fraction of the the missing momentum (in one of the transverse
directions) which is assigned to each half of the event. Since f1, f2 → ∞ as
x → ±∞ figure 3.3c is not relevant to our minimisation problem.

To find which of (a) or (b) is pertinent, consider an unconstrained min-

energy-momentum vector B. (This is the B which was originally defined in (29) and whose√
s value was selected by the minimisation process in (25).)
6Up to this point, within the context of the AMSB example, it has only been shown

that mT2(mχ0
1
) is bounded above by m

χ
+

1

. It has not yet been shown that mT2 can attain

this bound. The purpose of this section is to show that it can.
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imisation over /qT , of m2
T (pπ

T , /qT ; mχ0
1
). Using the relationship

∂ /ET

∂q/k
=

q/k

/ET
, (44)

where /E2
T = /q2

T + m2
χ0

1
, it is straightforward to show that,

∂m2
T

∂q/k

= 2

(

Eπ
T

q/k

/ET

− pπ
k

)

k = 1, 2 . (45)

This means that at an unconstrained minimum of m2
T we have

vπ
T = /uT , (46)

where we introduce the notation vT ≡ pT /ET , /uT ≡ /qT / /ET , in which pT

and vT represent the true transverse momentum and velocity of a particle,
while /qT and /uT are assigned by the minimisation.

Using the basis (t, x, y) with the metric diag(1,-1,-1), one can write

m2
T = (Etot

T ,ptot
T ) · (Etot

T ,ptot
T ) , (47)

where Etot
T = Eπ

T + /ET and ptot
T = pπ

T + /qT . This 1+2 dimensional Lorentz
invariant can be evaluated in any frame boosted from the lab in the transverse
plane. (46) has told us that at the unconstrained minimum the transverse
velocities vπ

T and /uT are equal; a statement necessarily true in all transverse
frames, including the special one in which both the transverse velocities (and
associated momenta) are zero. Evaluating (47) in this frame, we find that
the unconstrained minimum of (47) then becomes (mπ + mχ0

1
, 0, 0) · (mπ +

mχ0
1
, 0, 0), and we recover the expected result

mmin
T = mπ + mχ0

1
. (48)

We therefore conclude that the function m2
T has only one stationary value

and it is the global minimum, and is common to both sides of the event
provided the same type of particles are emitted. Thus when f1 is minimum
it cannot be greater than f2, and so the minimisation in (8) forces f1 = f2.
This could of course occur when both f1 and f2 are at their global minima,
in which case mT2 takes its minimum value:

mT2
min = mπ + mχ0

1
. (49)

To summarise, when the same particles are emitted from both sides of
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the event, mT2 may be defined as the minimum of m
(1)
T subject to the two

constraints m
(1)
T = m

(2)
T , and /p(1)

T + /p(2)
T = /pT . The condition for the minimi-

sation can be calculated by lagrange-multiplier methods, the result of which
is that the velocity vectors /u(1,2)

T of the assigned neutralino momenta /q
(1,2)
T

must satisfy
(/u(1)

T − vπ(1)

T ) ∝ (/u(2)
T − vπ(2)

T ) . (50)

To find the maximum of mT2 over many events we note that for each
event the minimisation will select hypothesised momenta satisfying (50). We
now note events can occur in which the true transverse velocities of the
neutralinos were exactly those which were assigned by the minimisation, i.e.
they can satisfy

v
χ0

1(1)
T = /u(1)

T , v
χ0

1(2)
T = /u(2)

T . (51)

These events will have both hypothesised transverse masses equal not only
to each other but also to true transverse masses which would have been
calculated if the neutralino momenta had been known:

m
(i)
T

(

pπ(i)

T , /p
χ0

1(i)
T

)

= m
(i)
T

(

pπ(i)

T , /q
(i)
T

)

(52)

If events occur where, in addition to the transverse components of the neu-
tralino momenta satisfying (51), the rapidity differences satisfy ηχ0

1(1)
= ηπ(1)

and ηχ0
1(2) = ηπ(2), then by (2) mT2 will equal the true mass of the chargino.

Combining this with (49) and recalling that mT2 cannot be greater than the
chargino mass by construction, we can see that the event-by event distribu-
tion of mT2 can span the range

mχ0
1
+ mπ ≤ mT2 ≤ mχ+

1
. (53)

3.4 Extremal values of mTX

In the last section we looked at the conditions under which events can gen-
erate mT2 values near the kinematic endpoint. Here we will look at some of
the ways these conditions become modified for mT3 and mT4 events.

Consider once again events from the AMSB scenario in which a chargino
is produced and then decays to χ0

1 e νe. If we expand the Lorentz invariant

(mχ+
1
)2 = (pχ0

1
+ pe + pν)

2 (54)

we obtain three mass-squared terms for each of the decay particles and three
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cross-terms. The cross-terms can each be written in the form

2pa · pb = 2
[

E
(a)
T E

(b)
T cosh(∆ηab) − p

(a)
T · p(b)

T

]

, (55)

like the cross term in (2). If the neutralino and neutrino transverse momenta
were individually known we could evaluate the transverse mass,

m2
T = m2

χ0
1
+m2

e+2
[

(Ee
T Eχ

T −pe
T ·pχ

T )+(Eν
T Eχ

T −pν
T ·pχ

T )+(Ee
T Eν

T −pe
T ·pν

T )
]

,

(56)
where the neutrino mass is assumed to be negligible. mT will be equal to the
χ+

1 mass in events where ∆ηab = 0 for all pairs of e, νe, and χ0
1.

Using, in (8), the three-particle definition of mT from (56) instead of the
two-particle definition (6), one defines mT4, the analogue of mT2 for the case
of four missing particles. The constraint on the unobserved momenta will, of
course, have to be modified to read

q
ν(1)
T + q

χ(1)
T + q

ν(2)
T + q

χ(2)
T = /pT , (57)

where the labels (1) and (2) indicate which chargino the particles were emit-
ted from.

The conditions for the minimisation required to calculate mT4 can be
calculated just as for mT2. The Euler-Lagrange (E-L) equations involving

∂(m
(i)
T )2

∂q
ν(i)
T

and
∂(m

(i)
T )2

∂q
χ0

1(i)
T

(58)

show that the minimisation will select the invisible particles’ momenta such

that u
χ0

1(i)
T = u

ν(i)
T . The other E-L equations reproduce (50) but with elec-

trons replacing pions.
This means that when calculating mT4 one can replace the missing par-

ticles from each chargino decay with a pseudo-particle with mass equal to
the sum of the masses of those invisible particles and proceed as for mT2. In
the case of leptonic chargino decay the mass of the neutrino can be safely
neglected in comparison to that of the χ0

1, and the constraint u
χ(i)
T = u

ν(i)
T is

equivalent to q
ν(i)
T = (0, 0).

The distribution over events of mT4 will have fewer entries near the upper
kinematic limit (mT4 = mχ+

1
) because when more particles go undetected an

event at that limit must satisfy a larger number of constraints. For fully
leptonic chargino-pair decay, there are six constraints of the type ∆η = 0,
two p

ν(i)
T = 0 and finally the modified constraint from (50). This effect can

be seen in figure 3 for events where a total of two, three and four invisible
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particles are produced.

3.5 Asymmetric decays

In the preceding two sections we have seen that when the decays on each side
of the event are the same (i.e. both initial sparticles decay to the same set
of daughter particles) then the resulting kinematic variables, mT2 and mT4,
have very similar properties. The only significant difference we have seen
is the reduced density of events near the upper kinematic endpoint of mT4

relative to mT2. Why, then, is the mT3 distribution, shown in figure 3, seen
to have a shape significantly different from the mT2 and mT4 distributions?
Specifically, why does it have the strong peak at low values not shared by
the other two?

The difference occurs because the visible particles on each side of an mT3

event are different (on one side χ0
1, e, ν and on the other to χ0

1, π
+) and so

the unconstrained minima of the values of mT on each side of the event are
not equal as they are in the case of mT2 and mT4:

min
/q(1)
T

(

m
(1)
T (pπ

T , /q
(1)
T )

)

= mπ +mχ0
1

6= me +mχ0
1

= min
/q(2)
T

(

m
(2)
T (pe

T , /q
(2)
T )

)

(59)
It is thus possible for some of the events can then fall into the category shown
in figure 3.3a, producing a peak of events with mTX = mχ0

1
+ mπ.

4 LHC case studies using mT2

In this section we highlight some physics studies for the LHC which demon-
strate that the background and the detector effects do not prevent mT2 from
being a useful experimental variable. We investigate points from three dif-
ferent models, under two different classes of mass hierarchy.

4.1 Case 1 – mSUGRA-like points

The first two points discussed are the mSUGRA point 5 (S5) and a point from
the optimised string model (O1) discussed in [6]. The relevant parameters of
these models are

m3/2 = 300 GeV, m0 = 100 GeV, A0 = 300 GeV, tan β = 2.1,

m3/2 = 250 GeV, tanβ = 10, θ = π/4
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Figure 8: ∆M distributions obtained at S5 and O1 after applying
the cuts to a 100 fb−1 sample of ẽR

¯̃eR, µ̃R
¯̃µR, ẽL

¯̃eL and µ̃L
¯̃µL

dislepton events. Events from light right-sleptons (unhatched) are
stacked on top of those from heavier left-sleptons (hatched). Only
events from OSSF leptons combinations are shown. The plots are
generated without OSDF background subtraction, but were it to
be performed, no significant differences would be apparent as only
4 (12) signal events are able to pass OSDF soft cuts at S5 (O1).
Arrows indicate the values of ∆Mmax predicted by theory for the
two types of slepton in each model. A red vertical line is drawn
through each plot at half the W mass.

respectively and µ > 0 in both cases. For these points we are looking at
dislepton production from a hard process which decays as l̃± → χ̃0

1l
±, and so

the mass-hierarchy is ml ≪ ml̃ − χ ≈ χ < ml̃.
For S5 and O1, all events, except the qq → W+W− background processes,

were simulated by HERWIG-6.0 [10]. The W-pair events were generated by
ISAJET-7.42 [11]. The events for these two points were generated at 100
fb−1. This is expected to correspond to running at high luminosity for one
year.

Since there are two different processes being analysed, there are different
cuts to apply. As this is not intended to introduce new physics, here we

23



present only the major cuts used. For more detail about the cuts and the
techniques used, see [6, 7].

The events used for S5 and O1 are required to have one opposite sign
same family (OSSF) pair of isolated leptons with pl1

T > 50 GeV and pl2
T >

30 GeV. These events cannot contain any other isolated leptons. Also, events
containing one ore more jets with pj

T > 40 GeV are vetoed. This helps reduce
the standard model backgrounds.

The variable ∆M is defined as

(∆M) ≡ 1

4

(

M2
T2(ml)

)2 − m2
l . (60)

This variable is what is studied for the points S5 and O1, for reasons given in
[6]. The desired dislepton events have very little jet activity and the dislepton
production cross sections are typically two orders of magnitude smaller than
the squark/gluino production cross sections. There are also irreducible SM
backgrounds (primarily W+W− → l+l−νν̄ and tt̄ → bb̄W+W− → jjl+l−νν̄
in cases where jets are below the reconstruction threshold or are outside
detector acceptance) which have signatures identical to dislepton events. The
smallness of the signal and the presence of these backgrounds would cause
problems for naive straight-line fitting technique. Instead, the technique
described in [6] is used for the estimation of the edge precision.

Figure 8 shows the ∆M distributions obtained at S5 and O1 after ap-
plying the cuts to a 100 fb−1 sample of signal dislepton events. Events from
lighter sleptons (ẽR and µ̃R) occupy the unhatched region in each plot, while
the events from heavier left-sleptons are cross hatched. It will be noted that
events from both light and heavy sleptons succeed in passing the cuts in both
models. In principle, then, there are two edges to be observed in each of the
models: one for the lighter slepton and one for the heavier. We note, however,
that as the slepton masses increase, their production is strongly suppressed,
and so there are very few heavy slepton events at O1 where there are in fact
none within 10 GeV of the kinematic limit. It is readily observed that at
the three remaining edges, where statistics are higher, there is good agree-
ment between the theoretical prediction and the observed endpoint of each
distribution.

Significant numbers of SM background events also pass the cuts. These
can be well modelled by its opposite sign different family (OSDF) coun-
terpart. As the signals from dislepton pair production are expected to be
purely OSSF, we can use OSDF background subtraction. Supersymmetric
backgrounds also have to be considered. Again, in this case the OSSF distri-
butions are well modelled by OSDF events passing the same cuts. So again,
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Figure 9: Flavour-subtracted ∆M distributions for combined sig-
nal and background at S5 and O1 after applying the cuts. A red
vertical line is drawn through each plot at half the W mass. Plots
are shaded to the left of this line in order to draw attention to the
events which reconstruct above this point. Compare these plots
with those of Figure 8 which contain only signal events. The ar-
rows of Figure 8 are provided for comparison.

different-family background subtraction is used.
All events for S5 and O1 (signals and backgrounds) are combined in Fig-

ure 9 after different-family background subtraction. The reader is encouraged
to compare these plots with those from Figure 8 showing the desired signal
shapes. As expected, all signal shape information is lost to the left of mW /2
due to obliteration by the SM backgrounds. To the right of this point, at
least one clear edge is observable in both models (the left-slepton edge at S5,
and the right-slepton edge at O1) and in both sets of cuts. The hard cuts are
able to suppress the supersymmetric backgrounds to such a degree that there
is even compelling evidence at O1 for the existence of two edges, although
the lack of statistics in the higher edge limits the precision with which the
endpoint may be located.
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mχ+
1

∆Mχ̃1Point
(GeV) (MeV)

χ+
1 → χ0

1e
+νe χ+

1 → χ0
1µ

+νµ

SPS-300 165 886 17.0 % 15.9 %
A-250 101 766 15.4 % 13.9 %
SPS-250 159 1798 21.9 % 21.5 %
A-200 97 1603 22.5 % 22.2 %

Table 1: The lightest chargino mass, the mass difference, ∆Mχ̃1 =
mχ+

1
−mχ0

1
, and two chargino branching ratios for the AMSB-like

points discussed in section 4.2. The hadronic branching ratios
can be found in [7].

4.2 Case 2 – AMSB-like scenarios

The characteristic signature for anomaly-mediated supersymmetry break-
ing is the near mass-degeneracy of the lightest chargino and the lightest
neutralino. The χ+

1 therefore decays to a neutralino plus (relatively) light
standard-model particles. For a small mass difference, ∆Mχ̃1 = mχ+

1
− mχ0

1
,

the largest χ+
1 branching ratios are to χ0

1π
+ and to χ0

1l
+νl, where l ∈ e, µ.

The mass hierarchy,

mπ or (ml + mν) ≈ mχ+
1
− χ ≪ χ ≤ mχ+

1
,

is therefore very different to the previous case study.
HERWIG-6.3 was used to generate 30 fb−1 of unweighted inclusive super-

symmetry events. HERWIG was also used to generate the background. For all
the points, the results were passed through the ATLAS fast detector simu-
lator, ATLFAST[12]. The signal-enhancing cuts require missing transverse en-
ergy, /Emin

T = 500 GeV, leading jet transverse momentum, pmin
T (J1)

= 400 GeV

and transverse sphericity, Smin
T = 0.05. There are also cuts on the tracks,

these are described in more detail in [7].
We consider AMSB-like points, which have the following parameters:

m0 = 450 GeV, m3/2 = 60 TeV, tanβ = 10, µ > 0,

m0 = 500 GeV, m3/2 = 36 TeV, tanβ = 10, µ > 0.

and for which the µ parameter has been adjusted at the electroweak scale
in order to investigate different values of ∆Mχ̃1 , as discussed in [7]. Some
masses and branching ratios can be found in table 1.
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Figure 10: The mT2 − mχ̃0
1

distribution for (a) the point SPS-
300, and (b) the point A-250. The signal consists of the two
solid regions labelled χx + χx in the legend. The upper kinematic
limit of mT2 −mχ0

1
for signal events is marked with a dotted line.

Note the sharp fall-off in the distribution near the kinematic edge
at mT2 − mχ0

1
= ∆Mχ̃1.

The first two points have large branching ratios for the decay χ̃±
1 → π±χ̃0

1.
This means that chargino-pair decay can easily generate the topology shown
in section 1. We therefore plot distributions of mT2 − mχ̃0

1
, for which signal

events in a perfect detector would lie in the range [mπ, ∆Mχ̃1 ]. The results
(see figure 10) show that mT2 could be used to measure the small mass
difference between the χ̃+

1 and the χ̃0
1 in this model, provided the signal

cross-section is sufficiently large.
The second pair of points each have a larger leptonic branching ratio, and

so for these points the fully leptonic channel was investigated. Since there
are now four missing particles in the final state, (two neutralinos, and two
neutrinos), distributions of mT4 − mχ0

1
were plotted. For a perfect detector,

these are restricted to lie in the range [me/µ, ∆Mχ̃1 ].
The signal events are again indicated by the solid shades in the histograms

in figure 11. Again, it can be observed that the distribution lies within the
expected range. The distribution is skewed to lower values because more
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Figure 11: The mT2 − mχ̃0
1

distribution for (a) the point SPS-
250, and (b) the point A-200. The signal consists of the two
solid regions labelled χx + χx in the legend. The upper kinematic
limit of mT2 −mχ0

1
for signal events is marked with a dotted line.

Note the fall-off in the distribution near the kinematic edge at
mT2 − mχ0

1
= ∆Mχ̃1.

particles are missing, and so more constraints must be satisfied for an event
to approach the upper limit (as was seen in figure 3).

The sensitivity of mTX to the estimated mass of the neutralino was shown
in figure 4. It has been found that mTX shows similar insensitivity to mea-
surement uncertainties in the missing transverse momentum vector. This
behaviour can be (at least partially) understood from the non-relativistic
limit of mT2, when the proportionality in (50) becomes an equality and

m2
T2−(mπ+mχ0

1
)2 =

1

4mπmχ0
1

(

mπ/pT − mχ0
1
pπ1

T − mχ0
1
pπ2

T

)2
+O

(

(vT · vT )2
)

.

(61)
The low sensitivity to the (possibly poorly-measured) quantities mχ0

1
and /pT

comes from the fact that in (61) they are multiplied by the quantities pπ
t and

mπ respectively, which are both small in this mass regime.
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5 Conclusion

This paper has attempted to achieve three objectives. Firstly it seeks to
introduce a new set of kinematic variables {mT2, mT3, ...}, which are specially
designed to extract information from a particular class of troublesome events
that we are likely to see at next generation hadron and lepton colliders. These
events are those containing a pair of particles of identical (but unknown) mass
which subsequently decay into groups of particles, each containing one or
more invisible (possibly massive) particles. An example of this kind of event
might be pair production of sleptons at the LHC, followed by subsequent
sleptonic decay to leptons and neutralinos. Secondly this paper attempts
to get to the bottom of these new variables; it describes the regimes with
in which they can or cannot be trusted, develops useful approximations to
them, and shows generally how one could go about calculating this variable
for real. The approximations to the variables are not only useful in their own
right, but are even more useful as guides which illustrate the dependence of
the variables upon its inputs. Finally, this article seeks to show with a couple
of examples, real use of these variables in physics analyses. These hopefully
show that mT2 and its chums are able to provide vital and new information
about particle masses from events that would at first glance appear to contain
so many unknown quantities as to be useless.

In conclusion, we believe that mT2 is invaluable tool for physicists working
at the LHC, and other future colliders, and we hope that this document will
encourage its use.
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