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1. Introduction

One of the most important processes at high-energy hadron-hadron colliders is the pro-

duction of heavy quarks. Bottom and top quark production, for example, provide not only

many tests of perturbative QCD, but also some of the most important backgrounds to

new physics processes. Not surprisingly, therefore, such heavy-quark production has been

extensively studied in the literature (see e.g. Ref. [1] for a review) and the phenomenology

at the Tevatron and the LHC has been evaluated in great detail.

In the kinematic region in which the transverse momentum of the heavy quark Q is

of the same order as its mass mQ, the leading-order contribution to the inclusive heavy-

quark production cross section comes from the partonic subprocesses in which a QQ̄ pair

is produced, gg, qq̄ → QQ̄. The next-to-leading order (NLO) corrections to these processes

have been available for quite some time now [2, 3, 4, 5]. They are numerically important,

particularly for b quarks, where they can result in a K factor as large as two.

At the parton level, these large radiative corrections to the total rates are easily iden-

tified as coming from production near threshold, ŝ ∼ 4m2
Q (ŝ being the partonic centre-

of-mass energy squared). When folding partonic cross sections with parton distribution

functions (pdfs) to get the observable rates, the threshold region is especially relevant in

those cases in which the total hadronic energy
√

S is of the same order as the quark mass,

as for example for top production at the Tevatron, or b production at fixed-target facilities.

Potentially large logarithms appear in the perturbative expansion, and these need to be

resummed to all orders. In practice, however, this resummation only marginally increases

the NLO predictions (see e.g. Ref. [6]).

Total partonic rates can also receive large contributions from the high-energy region

ŝ ≫ 4m2
Q, complementary to the threshold region. As discussed in Ref. [2], this is due to

those partonic subprocesses that feature a gluon exchange in the t-channel; this happens

for gg → QQ̄g and qg → QQ̄q, and it is peculiar to the NLO computations of quark pair

production, as opposed to Born-level predictions, in which only fermions are exchanged in

the t channel. It must be stressed that at the hadron level this enhancement is diluted by

the fall-off of the pdfs at large x values [7, 8].

A gluon exchange in the t-channel is also present at O(α4
S) in the reaction gg → QQ̄QQ̄,

which is the Born-level contribution to this four-quark process. This is interesting, since the

t-channel gluon exchange leads to properties fairly similar to those relevant to the Mueller-

Navelet dijet cross section [9], which is used to study the high-energy limit of QCD in

which the energy dependence of the lowest-order cross section is enhanced by BFKL-type

logarithmic corrections [10, 11, 12].

The dominance of the gluon exchange in the t-channel implies that the 4Q channel

is perturbatively suppressed only by a factor of αS with respect to pair production at

high energies. Although this still prevents us from a straightforward use of 4Q production

to detect BFKL signals, we can, however, observe that in the high-energy regime the

kinematics of the 2Q and 4Q production channels are rather different. The former is

dominated by those configurations in which the QQ̄ pair recoils with large rapidity against a

fast light parton. On the other hand, the 4Q system will predominantly be produced in two
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QQ̄ pairs, rapidly moving away from each other; the relative rapidity of each pair is small

compared to the separation in rapidity of the two pairs. Therefore by selecting particular

kinematic configurations it may be possible to relatively enhance the 4Q contribution and

find signatures of BFKL. This is the main focus of our study.

In order to define a proper set of observables, we require for each event to tag (at least)

two heavy flavours (in any possible combination: QQ̄, QQ, or Q̄Q̄), which we denote by

Q1 and Q2, separated by a large rapidity interval, ∆y = |yQ1
− yQ2

| ≫ 1. In this way, we

should cut off the configurations that dominate pair production in the high-energy regime,

without losing too many events in the 4Q channel. We aim at studying whether this is

the case or not, specifically in the regions accessible to the detectors at present and future

colliders, by comparing the predictions for 2Q and 4Q production processes. We stress

that our set of observables is based on a double Q tagging, which in fact is already used to

study QQ̄ correlations in heavy-quark pair production. In this paper, we shall not correct

our results for tagging efficiency.

The high-energy limit of 4Q production can be considered as a reformulation of the

standard Mueller-Navelet dijet case. What we are doing here, in effect, is replacing each

Mueller-Navelet forward jet (with pT > PTmin) by a QQ̄ pair. In fact, by identifying

the rapidity of each pair with the rapidity of the tagged quark in the pair, we have ŝ =

4m2
Q⊥

cosh2 y∗, where m2
Q⊥

= p2
Q⊥

+ m2
Q is the squared heavy-quark transverse mass, and

y∗ = (∆y)/2. The formula above, relating the large-ŝ to the large-y∗ region, is customary

in Mueller-Navelet arguments. The differences between jet and heavy-quark production are

easy to find: whereas in the dijet case it is PTmin that regulates the infrared singularities

at t̂ = 0, here it is the heavy-quark mass mQ. The analogue of the P 2
Tminσ̂jj → constant

behaviour of the leading-order dijet cross section at large dijet rapidity separation ∆y is

the m2
Qσ̂4Q → constant behaviour of the 4Q heavy-quark cross section. The effect of the

(leading logarithm) BFKL corrections is the same in both cases: the partonic cross sections

increase asymptotically as exp(λ∆y) where λ = 4 log 2NcαS/π and ∆y is either the rapidity

separation of the dijets in the Mueller-Navelet case, or the rapidity separation of the two

QQ̄ systems in the present context.

Another process of potential interest in the high-energy limit is QQ̄+1 jet production.

In this case the partonic subprocesses gg → QQ̄g and qg → QQ̄q, which feature a gluon

exchange in the t-channel, are O(α3
S) at the Born level. This can also be considered as a

reformulation of the standard Mueller-Navelet analysis, where only one of the forward jets

is replaced by a QQ̄ pair.

This paper is organized as follows. In Section 2 we compute analytically the high-

energy limit of the gg → QQ̄QQ̄ cross section. In Section 3, we describe how to include the

resummation of BFKL logarithms, through Monte Carlo methods. In Section 4, results for

2Q and 4Q channels are compared, at the Tevatron and LHC energies. We also consider

the case of QQ̄ + 1 jet production. Finally, in Section 5 we present our conclusions. The

appendices collect some useful formulae.

– 2 –



�Q
Q

(a) �Q
Q

(b) �Q
Q

() �Q
Q

(d)

�Q �QQ
Q

(e) �Q Q�Q
Q

(f) �Q Q
�QQ

(g)
Figure 1: Amplitudes for QQ̄ production in gg fusion. Figure (a) represents the leading-order

term. Figures (b), (c) and (d) are examples of the diagrams that contribute to the NLO term.

Figures (e) and (f) represent the 4 Q contribution to the NNLO term; figure (e) ((f)) is an example

of a diagram with quark (gluon) exchange in the t channel. Figure (f) constitutes also the leading

term of a BFKL gluon ladder, and figure (g) represents the first rung of it.

2. The high-energy limit

In the high-energy limit, the ∆y distribution for QQ̄ production can be written schemati-

cally as

dσQQ̄

∆y
∼ α2

S

∞
∑

j=0

a0jα
j
S + α4

S

∞
∑

j=0

a1j(αSL)j + α4
S

∞
∑

j=0

a2jαS(αSL)j + · · · , (2.1)

where L = log(ŝ/µ2
W

) ≃ ∆y is a large logarithm, and the quantity µ2
W

is a mass scale

squared, typically of the order of the crossed-channel momentum transfer and/or of the

heavy-quark masses. The first sum in Eq. (2.1) is a fixed-order expansion in αS starting at

O(α2
S) (the Born processes qq̄, gg → QQ̄), which collects together the contributions that

do not feature gluon exchange in the crossed channel between the heavy quarks. The a00

coefficient is the leading-order term, which for gg fusion is depicted in Fig. 1(a); the a01

coefficient is the NLO term (specimen diagrams are given in Fig. 1(b-d)). An example of a

4Q contribution to the a02 coefficient is given in Fig. 1(e). The a0j coefficients behave like

1/ŝ, or equivalently exp(−∆y), modulo logarithmic corrections.∗ In Eq. (2.1), the second

∗The a02 coefficient may also contain terms that behave like 1/(
√

ŝµW) and arise from the interference

between diagrams with gluon exchange in the crossed channel and diagrams with quark exchange in the

crossed channel.
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and third sums collect the contributions which feature only gluon exchange in the crossed

channel between heavy quarks, the second (third) sum resumming the BFKL (next-to-

)leading logarithmic corrections. Fig. 1(f) represents the zeroth-order term, and Fig. 1(g)

contributes to the first-order term, of the second sum. The a1j and a2j coefficients behave

like 1/µ2
W, in contrast to the 1/ŝ behaviour of the a0j . The ellipses of Eq. (2.1) refer to

logarithmic corrections beyond the next-to-leading accuracy. Thus, it is clear that the

second and third sums of Eq. (2.1) will eventually dominate over the first sum in the

asymptotic energy region ŝ → ∞. In Sections 2 and 3 we will analyse the second sum of

Eq. (2.1) in the region ŝ ≫ µ2
W, by computing the a1j coefficients in the high-energy limit.†

Details of the calculation for the production of four heavy quarks, via the sub-processes

gg → QQ̄QQ̄ and qq̄ → QQ̄QQ̄, are presented in Appendix A. In the high-energy limit,

we require that any two Q’s (no distinction between Q and Q̄ is necessary) are produced at

large rapidity separation. Then the production process is dominated by the sub-processes

for which the tagged Q’s are separated by gluon exchange in the crossed channel. Of the

above two sub-processes, only gg → QQ̄QQ̄ features gluon exchange in the crossed channel.

With the kinematics of the high-energy limit,

yQ1
≃ yQ̄2

≫ yQ3
≃ yQ̄4

, pQ1⊥
≃ pQ̄2⊥

≃ pQ3⊥
≃ pQ̄4⊥

, (2.2)

the amplitude for gg → QQ̄QQ̄ factorises as

|Mgagb→Q1Q̄2Q3Q̄4
|2 =

4ŝ2

t̂2

[

IQQ̄(pa, pQf
, pQ̄f

; q)IQQ̄(pb, pQb
, pQ̄b

;−q)
]

, (2.3)

where Qf (Q̄f ) and Qb(Q̄b) are the quarks (anti-quarks) produced forward and backward,

respectively. In Eq. (2.3),

t̂ = q2 = (pa − pQf
− pQ̄f

)2 (2.4)

is the momentum transfer. The impact factor IQQ̄ is calculated in Appendix B, starting

from the amplitude for g i → QQ̄i with i = q, g and using high-energy factorisation. The

result is given in Eq. (B.4), summed (averaged) over final (initial) colours and helicities. In

the kinematics of (2.2), the exact parton momentum fractions (A.6) are well approximated

by

x0
a =

mQ1⊥
eyQ1 + mQ̄2⊥

eyQ̄2

√
S

, x0
b =

mQ3⊥
e−yQ3 + mQ̄4⊥

e−yQ̄4

√
S

. (2.5)

Using Eq. (2.3), we can write the cross section for heavy-quark production as

dσ
∏4

i=1 d2pQi⊥
dyQi

= x0
aga/A(x0

a, µ
2
Fa)x0

bgb/B(x0
b , µ

2
Fb)

IQQ̄(qa)I
QQ̄(qb)

2π4(4π)4q2
a⊥

q2
b⊥

δ2(qa⊥
− qb⊥)

2
, (2.6)

†Contributions like the one in Fig. 1(c), which feature gluon exchange in the crossed channel but not

between heavy quarks, are not systematically resummed in Eq. (2.1), and are thus implicitly included in

the first sum. They contribute, however, to the leading order for QQ̄ + 1 jet production, where a gluon

is exchanged in the t-channel between the jet and the QQ̄ pair, and they constitute in that case the Born

term of the BFKL ladder. We will consider QQ̄ + 1 jet production in Section 4.2.
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with momentum transfers qa = pa − pQ1
− pQ̄2

and qb = pQ3
+ pQ̄4

− pb, and where

ga/A(x0
a, µ

2
Fa) is the pdf for the gluon ga, and analogously for gb. We use the notation p⊥

to denote a transverse momentum vector.

However, in Eq. (2.6) energy and longitudinal momentum are not conserved. The par-

ton momentum fractions in the high-energy limit, x0
a and x0

b , underestimate the exact ones,

xa and xb, Eq. (A.6) and accordingly the values of the pdfs are overestimated. Thus for the

numerical applications of Section 4 we will use the factorised form (2.6) of the production

rate, but with x0
a → xa and x0

b → xb. This modification is particularly important when

BFKL evolution is considered.

The above results must be integrated over the phase space of the final-state particles

in order to get physical results. In the high-energy limit, the phase space (A.2) can be

factorised into the phase spaces for the two impact factors,

dP4 =





∏

i=1,2

d3pQi

(2π)32p0
Qi

2π δ(p+
a − p+

Q1
− p+

Q̄2
)









∏

i=3,4

d3pQi

(2π)32p0
Qi

2π δ(p−b − p−Q3
− p−

Q̄4
)





×(2π)2 δ2(pQ1⊥
+ pQ̄2⊥

+ pQ3⊥
+ pQ̄4⊥

) , (2.7)

where we have used light-cone coordinates p± = (p0 ± p3)/
√

2. Fixing

za =
p+

Q1

p+
Q1

+ p+
Q̄2

, zb =
p−Q3

p−Q3
+ p−

Q̄4

, (2.8)

the phase space (2.7) can be rewritten as

dP4 =
1

(4π)2
1

2ŝ

(

dza

za(1 − za)

d2pQ1⊥

(2π)2

)(

dzb

zb(1 − zb)

d2pQ3⊥

(2π)2

)

×d2qa⊥

(2π)2
d2qb⊥

(2π)2
(2π)2 δ2(qa⊥

− qb⊥) , (2.9)

with centre-of-mass energy ŝ = 2p+
a p−b . Note that Eq. (2.9) is written in such a way as to

be immediately generalizible to the emission of a BFKL gluon ladder between the impact

factors.

Using Eqs. (2.3) and (2.9) in the expression for the cross section given in (A.1), we

obtain

dσ̂(papb → pQ1
, pQ̄2

pQ3
pQ̄4

) =
d2qa⊥

(2π)2
d2qb⊥

(2π)2
I(qa⊥

)

q2
a⊥

I(qb⊥)

q2
b⊥

(2π)2 δ2(qa⊥
− qb⊥) , (2.10)

where the integrated impact factor is

I(q⊥) =
1

4π

∫ 1

0

dx

x(1 − x)

d2p⊥

(2π)2
IQQ̄(x,p⊥;q⊥) , (2.11)

with IQQ̄ given in Eq. (B.4). The integral is explicitly performed in Section B.1, where it

is expressed in terms of a function g, Eq. (B.14), of the dimensionless ratio ξ = q2
⊥/m2

Q.

Then using Eqs. (B.10)-(B.14), the total integrated cross section (2.10) becomes

σgg =
α4

S

m2
Q

N2
c − 1

4π

∫ ∞

0

dξa

ξa

dξb

ξb
g(ξa)g(ξb)δ(ξa − ξb) . (2.12)
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Figure 2: Partonic cross section for QQ̄ and QQ̄QQ̄ production. The histograms show the exact

leading-order results, i.e., the exact matrix elements integrated over the exact phase space. The

diamonds are obtained integrating the high-energy limit of the matrix element, Eq. (2.3), with the

exact phase space. The patterned red line is Eq. (2.13), representing the asymptotic limit. For

comparison, the Born gg, qq̄ → QQ̄ contributions are also shown. The coupling αS is set to one.

Note that the kinematic limit for b-quark production at the Tevatron is at Y ≈ 10.6.

Note that even though according to Eq. (B.13) the function g(ξ) grows logarithmically

with ξ as ξ → ∞, the integral in (2.12) is finite and gives [13]

σgg =
α4

S

πm2
Q

1

N2
c − 1

[

23N2
c

81
− 277

486
+

(

175ζ(3)

576
− 19

288

)

1

N2
c

]

≈ α4
S

m2
Q

0.0803 . (2.13)

The results obtained in this section are summarized in Fig. 2. The exact leading-

order results for the gg → QQ̄QQ̄ and qq̄ → QQ̄QQ̄ processes, obtained with MAD-

GRAPH/MADEVENT [14, 15], are shown (histograms) as a function of Y = log(ŝ/4m2
Q).

The dominance of the t-channel gluon exchange contribution, present only in the case of gg

initial state, is apparent. The diamonds are obtained by integrating the high-energy limit

of the matrix element, Eq. (2.3), with the exact phase space; the difference with the exact

result is fairly small, which implies that, at the dynamical level, the high-energy limit is

a good approximation. The approximation of the phase space is evidently more drastic,

and results in the constant (dashed) red line, whose value is taken from Eq. (2.13). For

comparison we also show the Born gg, qq̄ → QQ̄ processes corresponding to the a00 con-

tribution in Eq. (2.1). As argued above, and in contrast to the gg → QQ̄QQ̄ contribution,

these exhibit a exp(−Y ) behaviour in the high-energy (large Y ) limit.
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3. The BFKL Monte Carlo

As we have seen, in the high-energy limit (2.2) the cross section for the production of four

heavy quarks is dominated by processes with a gluon exchange in the crossed channel. In

that limit, the BFKL formalism resums the universal leading-logarithmic (LL) corrections,

of O(αn
S

logn(ŝ/|t̂|)), with t̂ defined in Eq. (2.4). These are obtained in the limit of strong

rapidity ordering of the emitted gluon radiation,

yQ1
≃ yQ̄2

≫ y1 ≫ y2 ≫ . . . ≫ yn−1 ≫ yn ≫ yQ3
≃ yQ̄4

, (3.1)

where we label by 1, . . . , n the emission of n gluons along the BFKL ladder. Because of the

strong rapidity ordering, the contribution of the gluons to the parton momentum fractions

(2.5) is subleading, and it is therefore neglected to LL accuracy. The BFKL-resummed

cross section for the production of four heavy quarks is then given by Eq. (2.6), where the

δ function, δ2(qa⊥
− qb⊥)/2, is replaced by the solution of the BFKL equation,

f(qa⊥
,qb⊥ ,∆y) =

1

(2π)2
√

q2
a⊥

q2
b⊥

∞
∑

n=−∞

einφ

∫ ∞

−∞

dν eω(ν,n)∆y

(

q2
a⊥

q2
b⊥

)iν

, (3.2)

with φ the azimuthal angle between qa and qb, and ω(ν, n) the eigenvalue of the BFKL

equation with maximum at ω(0, 0) = 4 log 2CAαS/π. Thus the solution of the BFKL

equation resums powers of ∆y, and rises with ∆y as f(qa⊥
,qb⊥ ,∆y) ∼ exp(ω(0, 0)∆y).

However, in a comparison with experimental data, it must be remembered that the LL

BFKL resummation makes some approximations which, even though formally subleading,

can be numerically important: a) the BFKL resummation is performed at fixed coupling

constant, and thus any variation in the scale at which αS is evaluated appears in the next-to-

leading-logarithmic (NLL) terms; b) because of the strong rapidity ordering any two-parton

invariant mass is large. Thus there are no collinear divergences in the LL resummation in

the BFKL ladder; c) finally, energy and longitudinal momentum are not conserved, since

the momentum fractions x of the incoming partons are reconstructed from the kinematic

variables of the four heavy quarks only, without including the radiation from the BFKL

ladder. Therefore, the BFKL theory will severely underestimate the correct value of the

x’s, and thus grossly overestimate the gluon luminosities. In fact, if four heavy quarks + n

gluons are produced, the correct evaluation of the x’s yields

xa =
4
∑

i=1

mQi⊥
eyQi

√
S

+
n
∑

j=1

pj⊥eyi

√
S

xb =
4
∑

i=1

mQi⊥
e−yQi

√
S

+
n
∑

j=1

pj⊥e−yi

√
S

, (3.3)

where pj⊥ are the transverse momenta of the gluons produced along the BFKL ladder.

In the standard (analytic) approach to BFKL, which leads to Eq. (3.2), it is not possible

to take the contribution of the BFKL gluon radiation into account in Eq. (3.3). This is

because in deriving Eq. (3.2) one has already integrated over the full rapidity ordered

phase space for BFKL gluon radiation. To gain information on the BFKL gluon momenta

we need to unfold the gluon integrations. This approach results in an explicit sum over
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the number of emitted BFKL gluons, where each term in the sum is an integral over

the rapidity ordered BFKL gluon phase space. The solution to the BFKL equation can

then be obtained (numerically) while maintaining information about each emitted gluon

by evaluating these integrals in a Monte Carlo approach [16, 17]. Besides allowing energy

and momentum conservation to be observed by including the BFKL gluon contribution

to Eq. (3.3), this approach also allows subleading effects originating from the running of

the coupling to be taken into account. The method has recently been generalised to solve

the BFKL equation at full NLL accuracy [18, 19], although some work remains to be done

before it can be applied in a phenomenological study like the one presented here.

The Monte Carlo formulation of Ref. [17] is, in its simplest form, applicable only when

the transverse momentum of at least one end of the BFKL chain is kept bigger than some

cut-off |qi| > P⊥ ≫ µ with i ∈ {a, b}, and µ the resolution scale of the BFKL Monte

Carlo (see Ref. [17] for further details). It was demonstrated in Ref. [17] that in the case

of hadronic dijet production with a minimum P⊥ = 20 GeV, the residual µ-dependence

is negligible for µ ≤ 6 GeV. Varying µ will shift contributions between different f (n)’s

describing the contribution from different numbers of resolved gluons.

However, in the current process of 4Q production there is no minimum transverse

momentum scale at either end of the BFKL chain. To resolve the problem thus faced

by the BFKL MC formulation we cut out a small region of phase space corresponding to

p⊥ < 0.05 GeV at one end of the chain. The contribution from this very small region of

phase space is negligible, but nevertheless this cut-off is sufficient to permit the use of the

unfolded BFKL formalism. In principle µ could then be chosen arbitrarily small compared

to the cut-off, but this would result in very slow convergence due to the extremely large

number of resolved gluons with a transverse momentum above this scale. Instead, µ is

chosen according to the transverse momentum at one end of the BFKL chain in 5 steps.

This keeps the average number of resolved gluons under control and thus ensures rapid

convergence, while maintaining the very weak µ-dependence of the overall result.

In order to demonstrate the behaviour of the BFKL ladder, we consider the production

of four heavy quarks assuming that all of them are detected. We study the production rate

as a function of the transverse momentum qa⊥
= −pQ1⊥

− pQ̄2⊥
exiting from the impact

factor IQQ̄(qa). At leading order, the transverse momenta of the two pairs are equal,

qa⊥
= qb⊥ = q

⊥
. Since we know from Eqs. (B.13) and (B.14) that the scaling of the

integrated impact factor is g(ξ) ∼ O(ξ), with ξ = q2
⊥/m2

Q, power counting from Eq. (2.12)

shows that at leading order dσ/dq
⊥
∼ O(q

⊥
) as q

⊥
→ 0. When the BFKL gluon radiation

is included, the production rate is hardened in the infrared and we obtain

dσ

dqa⊥
dqb⊥

∼ const. as qa⊥
→ 0 , qb⊥ → 0 . (3.4)

In Fig. 3 we plot the transverse momentum distribution dσ/dqa⊥
dqb⊥ evaluated at qa⊥

=

qb⊥ = p⊥. The solid red curve is the four-quark production (2.6), but with the high-energy

parton momentum fractions replaced by the exact ones, x0
a → xa and x0

b → xb; in this case,

the two impact factors have equal transverse momenta qa⊥
= qb⊥ . The dashed blue curve

corresponds to the high-energy limit of leading-order four-quark production (2.6) with the
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Figure 3: The transverse momentum distribution dσ/dqa⊥dqb⊥ evaluated at dqb⊥ = dqb⊥ = p⊥.

The solid red curve corresponds to the high-energy limit of leading-order four b-quark production,

with mb = 5 GeV. The dashed blue curve corresponds to adding BFKL evolution to the gluon

exchanged in the t-channel.

BFKL ladder included. In this case qa⊥
is no longer restricted to be equal to qb⊥ , which

explains why the BFKL curve is lower than the leading-order one. However, we see that

the spectrum is relatively harder for p⊥ → 0 in the BFKL case.

4. BFKL signals at the Tevatron and LHC

4.1 Inclusive heavy-quark production

In this section we compare the results for the 4Q channel, obtained with the BFKL MC

described in the previous section, with those relevant to QQ̄ production, obtained with the

NLO code of Ref. [5] and MC@NLO [20, 21]. We consider bottom quark production, with

mb = 5 GeV, since b-quarks are readily identifiable at the Tevatron and LHC. In the case

of pair production, we need to use a NLO computation in order to explicitly verify that,

with our chosen set of cuts, large non-BFKL logarithms do not appear in the cross section,

which is a necessary condition in order to study BFKL signals with the 4Q channel.

Figure 4 shows the integrated cross section

σ(∆y) =

∫ ∞

∆y
d∆y′

dσ

d∆y
(∆y′) (4.1)

as a function of ∆y, the rapidity distance between the two tagged quarks (which, for this

process, are b and b̄), at Tevatron and at LHC energies. In order to simulate a realistic

detector coverage, the rapidity of both quarks is required to be less than 2.5, and therefore

∆y = 5 is the largest accessible rapidity separation. We also consider additional cuts on the

transverse momenta of the tagged quarks, imposing pTb,b̄ > 5 and 10 GeV. The two-loop

running of the strong coupling αS, and the MRST99 package [22] of pdfs has been used, with
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Figure 4: Integrated cross sections as a function of ∆y, at LO (dashed histograms) and NLO

(solid histograms), with no cut on the transverse momentum pT, and with pT > 5 and 10 GeV, at

the Tevatron (left panel) and LHC (right panel) energies. The code of Ref. [5] has been used.

factorisation scale set to µ2
F = (m2

b⊥
+ m2

b̄⊥
)/2. ¿From the figure we can see that the cuts

on the transverse momenta largely reduce the impact of radiative corrections. However,

this information alone is not sufficient to guarantee that non-BFKL logs do not spoil the

perturbative expansion. In order to investigate this issue, we thus recomputed the cross

section with MC@NLO [20, 21], which, by matching the NLO results with the HERWIG [23]

parton shower, improves the fixed-order result by effectively resumming various classes of

large logs. In the case in which no pT cuts are applied, the MC@NLO results are basically

coincident with the NLO ones. However, by imposing pTb,b̄ > 5 GeV, the MC@NLO cross

section is roughly a factor 1.7 larger than the NLO, in the whole ∆y range considered. This

is due to the fact that the pT cuts render the cross section sensitive to Sudakov effects.

Although these could be reduced by imposing different pT cuts on the two tagged b’s, it

is quite problematic to eliminate them completely. Thus, the pure NLO result must be

regarded, at least for the pT cuts considered here, as a lower bound on the bb̄ inclusive

cross section.

In order to be definite, we require pTb,b̄ > 5 GeV in what follows. In Fig. 5, we

plot the integrated cross section for bb̄ production as a function of ∆y, at Tevatron and

at LHC energies. For the sake of comparison, we display again here the middle NLO

curves of Fig. 4. In addition, the dot-dashed red curve displays the high-energy limit

contribution of the 4Q channel to inclusive 2Q production, where Q = b or b̄. The fac-

torisation and renormalisation scales have been set to µ2
Fa = µ2

Ra = (m2
b1⊥

+ m2
b̄2⊥

)/2 and

µ2
Fb = µ2

Rb = (m2
b3⊥

+ m2
b̄4⊥

)/2. Thus, the strong coupling α4
S

must be understood here as

α2
S(µ2

Ra)α2
S(µ2

Rb), with αS evolved at two loops, in accordance with the NLO calculation.‡

The dashed blue curve is the same as the red curve but with the addition of BFKL gluon

‡We justify the scale choices as follows: in the high-energy limit the impact factors for bb̄ production on

either side can be viewed as two almost independent scattering centres linked by a gluon exchanged in the

crossed channel. It therefore makes sense to run the pdfs and αS according to the scales set by each impact

factor.
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Figure 5: Integrated cross sections as a function of ∆y, with pT > 5 GeV, at Tevatron (left panel)

and LHC (right panel) energies. The NLO curves are the same as the middle NLO curves of Fig. 4,

and are displayed here for the sake of comparison. The dot-dashed red curves are the high-energy

limit contributions of the 4Q channel to inclusive 2Q production; the dashed blue curves are the

same as the red curves with the addition of BFKL gluon radiation.

radiation. In the BFKL gluon emission chain, the value of αS is taken at the b mass.

Fig. 5 is the central result of this study. It shows that within the rapidity range for

heavy-quark production accessible to LHC (assumed here to correspond to ∆y < 5) the

4Q channel, even augmented by the BFKL gluon radiation, can never overcome the 2Q

channel. Thus, it cannot readily be used as a footprint of BFKL radiation.

The situation could be improved either by imposing the additional requirement that

the two tagged b-quarks have the same sign, i.e. bb or b̄b̄, or by requiring three or more

b-quarks to be identified. In the former case, this would reduce the “4Q” curves in Fig. 5

by a (combinatoric) factor of two, while almost completely removing the 2b contribution.

A realistic assessment of how much of the BFKL signal would remain in these cases would

depend on the efficiencies of multi-b-quark tagging and charge identification (via the sign

of the lepton in semi-leptonic B-meson decay, for example), which goes beyond the scope

of the present study. Another issue that needs to be addressed by a more realistic study is

the contamination from overlapping events, see for example Ref. [24].

4.2 Inclusive heavy-quark + 1 jet production

As mentioned in the Introduction and in Section 2, inclusive QQ̄+1 jet production is also of

interest in the high-energy limit, and is in a sense a hybrid of the original Mueller-Navelet

2 jet and our 4Q processes. In this process, a gluon is exchanged in the t-channel between

the jet and the QQ̄ pair already at leading-order, which in this case is O(α3
S
). In fact, as

in Eq. (2.1), the ∆y distribution for QQ̄+ 1 jet production in the high-energy limit can be

written schematically as

dσQQ̄jet

∆y
∼ α3

S

∞
∑

j=0

b0jα
j
S + α3

S

∞
∑

j=0

b1j(αSL)j + α3
S

∞
∑

j=0

b2jαS(αSL)j + · · · , (4.2)
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Figure 6: Inclusive heavy two-quark +1 jet production as a function of the rapidity separation of

the jet from the average position of the heavy two-quark pair, ∆y = |yj − (yb + yb̄)/2|. The solid

and red dot-dashed curves correspond to leading-order production, exactly and in the high-energy

limit respectively. The dashed blue curve is the leading order plus BFKL resummation.

where L = log(ŝ/µ2
W

) ≃ ∆y is a large logarithm, and the quantity µ2
W

is a mass scale

squared. The first sum in Eq. (4.2) is a fixed-order expansion in αS starting at O(α3
S), and

collects the contributions which do not feature gluon exchange between the jet and the

QQ̄ pair. The b00 coefficient is the leading-order term (a specimen diagram is depicted in

Fig. 1(b)). The second and third sums of Eq. (4.2) collect the contributions which feature

only gluon exchange in the crossed channel between the jet and the QQ̄ pair, the second

(third) sum resumming the BFKL (next-to-) leading logarithmic corrections. Fig. 1(c)

represents the zeroth-order term of the second sum. The b1j and b2j coefficients behave

like 1/µ2
W

. We note, however, that in contrast to Eq. (2.1), the second and third sums

of Eq. (4.2) start at the same order in αS as the first sum. Thus one would expect that

the onset of the dominance of the asymptotic energy region ŝ → ∞ occurs more quickly

in this case than in heavy two-quark production. We analyse this issue by computing the

coefficients b00 and b1j .

We consider inclusive heavy two-quark + 1 jet production in the high-energy limit.

The heavy quarks are b quarks for which, following the analysis of Section 4.1, we require

that |yb,b̄| < 2.5 and pTb,b̄ > 5 GeV. For the jet, we require the set of cuts |yj | < 5 and

pTj > 30 GeV. The factorisation and renormalisation scales are taken as µ2
Fa = µ2

Ra =

(m2
b1⊥

+ m2
b̄2⊥

)/2 and µ2
Fb = µ2

Rb = p2
Tj, since the impact factors for bb̄ production on one

side and for jet production on the other can be viewed as two almost independent scattering

centres linked by a gluon exchanged in the crossed channel. Thus the strong coupling α3
S

must be understood here as α2
S
(µ2

Ra)αS(µ2
Rb). In Fig. 6, we show the distributions for
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heavy two-quark + 1 jet as a function of the rapidity separation of the jet from the average

position of the heavy two-quark pair, ∆y = |yj−(yb+yb̄)/2|. The solid curve corresponds to

leading-order production (exact matrix element); the dot-dashed red curve is the leading-

order production in the high-energy limit approximation and the dashed blue curve is the

leading order plus BFKL resummation, as given by the Monte Carlo generation of the

ladder gluons (i.e. with energy-momentum conservation).

There is evidently a sizeable suppression from the resummation when the BFKL glu-

ons are radiated off the ladder while conserving energy-momentum, reminiscent of what

happens in the case of dijet production in the high-energy limit [25]. This is at first sight

puzzling, because the kinematics of two-quark + 1 jet production in the high-energy limit

resemble more closely the ones of W+ 2 jet production rather than those of dijet production,

and in W + 2 jet production in the high-energy limit there is no such strong suppression

when enforcing energy-momentum conservation on the BFKL ladder [26]. However, that

is where the similarity ends: in W + 2 jet production, the impact factor for W + 1 jet

production is generated by a quark, while in the present case the impact factor for bb̄ pro-

duction is generated by a gluon, and therefore the dependence on the pdfs in the two cases

is completely different.§

5. Conclusions

A definitive test of BFKL physics at hadron colliders is still lacking. A number of processes

have been suggested, including the standard Mueller-Navelet dijet production, and in this

paper we have studied a new possibility: four heavy-quark production with a large rapidity

separation between two of the heavy quarks. The common feature of all these ‘BFKL’

processes is the presence of a t-channel gluon in the scattering amplitude, which gives the

dominant contribution in the high-energy limit.

In this work we have focused on the production of b quarks at Tevatron and LHC

energies. The simplest quantity to measure is the 2b inclusive cross section as a function

of the rapidity separation ∆y. However in this case the 4b process has to compete with

leading- and next-to-leading-order bb̄ production. Using a set of representative cuts on

rapidities and transverse momenta, we have shown that in practice the NLO bb̄ contribution

is dominant over the measurable ∆y range, although at the very highest ∆y values (∼ 5)

at the LHC energy the bb̄ and 4b contributions are of comparable magnitude.

We can conclude, therefore, that it will be very difficult to detect any BFKL signal in

the 2b inclusive distribution. However, a characteristic feature of the 4Q contribution in

the high-energy limit is that the two heavy quarks separated by a large rapidity distance

are as likely to have the same as opposite sign. The ability to tag the sign of the b quarks

could therefore be used eliminate the NLO bb̄ contribution. We note also that in the case

§In order to rule out other possible explanations, we tried to mimic as much as possible the set-up of

W + 2 jet in two-quark + 1 jet production, namely we eliminated the gluon-gluon sub-process, so as to

make two-quark + 1 jet production by quark-gluon scattering the dominant process, and we set the b-quark

mass equal to the W mass. Even with these modifications, we still obtain a BFKL distribution with same

qualitative features as in Fig. 6.
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of the 4b process, the bottom quantum number is conserved locally in rapidity, i.e. many

of the events with two detected b quarks with a large rapidity separation could have one

or two additional b quarks in the detector. To study these possibilities in detail would

however require detailed knowledge of the detector capability, and is therefore beyond the

scope of the present work.

Finally, we also considered the case of QQ̄ + 1 jet production, which is an extension

of the original dijet case in which one of the far forward/backward jets is replaced by an

heavy-quark pair. Here there is a t-channel gluon already at leading order and so one

might expect an earlier onset of the high-energy asymptotic regime. However, because

the dominant contribution involves gluons in the initial state, there is a severe suppression

from the pdfs when the additional energy radiated in the BFKL ladder is properly taken

into account. This means that for this process, the fixed-order perturbative contribution

(i.e. LO or NLO) is likely to be a good approximation to the full cross section over the

accessible kinematic range.
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A. Four heavy-quark production

The partonic cross section for four heavy-quark production is

dσ̂(papb → pQ1
pQ̄2

pQ3
pQ̄4

) =
1

2ŝ
dP4|Mpa pb→Q1Q̄2Q3Q̄4

|2 , (A.1)

with ŝ = (pa + pb)
2 = xaxbS and S the squared partonic and hadronic centre-of-mass

energies respectively, and with four heavy-quark phase space

dP4 =

4
∏

i=1

d3pQi

(2π)32p0
Qi

(2π)4 δ4(pa + pb − pQ1
− pQ̄2

− pQ3
− pQ̄4

) , (A.2)

with p0
Qi

=
√

p2
Qi

+ m2
Q. The factorisation formula is

dσ =
∑

ab

dxadxb fa/A(xa, µ
2
F ) fb/B(xb, µ

2
F ) dσ̂ , (A.3)

where the sum is over the parton species, and fa/A(xa, µ
2
F ) is the pdf of the parton a of

momentum fraction xa within hadron A, and similarly for parton b. Parametrizing the

heavy-quark momenta in terms of the rapidities,

pQi
= (mQi⊥

cosh yQi
,pQi⊥

,mQi⊥
sinh yQi

) , (A.4)
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we can write the cross section for heavy-quark production as

dσ
∏4

i=1 d2pQi⊥
dyQi

(A.5)

=
∑

ab

fa/A(xa, µ
2
F ) fb/B(xb, µ

2
F )

xaxb

|Mij |2
(2π)4(4π)4S2

δ2(pQ1⊥
+ pQ̄2⊥

+ pQ3⊥
+ pQ̄4⊥

) ,

with momentum fractions of the incoming partons given by

xa =

4
∑

i=1

mQi⊥
eyQi

√
S

, xb =

4
∑

i=1

mQi⊥
e−yQi

√
S

. (A.6)

B. Impact factor for gg∗ → QQ̄

The impact factor, IQQ̄, for QQ̄ production can be obtained by using the squared amplitude

for g i → QQ̄i with i = q, g from Refs. [13, 5]. The momenta of the incoming and outgoing

partons are g(pa)+ i(pb) = Q(pQ) + Q̄(pQ̄) + i(pb′). In the high-energy limit, the rapidities

are strongly ordered while the transverse momenta are of similar size,

yQ ≃ yQ̄ ≫ yi , pQ⊥ ≃ pQ̄⊥ ≃ pi⊥ . (B.1)

The squared amplitude for g i → QQ̄i, summed (averaged) over final (initial) colours and

helicities, then reduces to

|Mg i→QQ̄ i|2 =
4ŝ2

t̂2
IQQ̄(pa, pQ, pQ̄; q)Ii(pb, pb′) , i = q, g , (B.2)

with ŝ = (pa + pb)
2 the squared centre-of-mass energy, and t̂ = (pb − pb′)

2 the momentum

transfer. The impact factor Ii(pb, pb′) for quark/gluon production, summed (averaged) over

final (initial) helicities and colours, can be written as [26]

Ig = g2 CA

N2
c − 1

δcc′ , Iq =
g2

2Nc
δcc′ , (B.3)

where CA = Nc = 3, the index c runs over the colours of the gluon exchanged in the

crossed channel, and we have used the standard normalization of the SU(Nc) matrices,

tr(λcλc′) = δcc′/2. The impact factor for gg∗ → QQ̄, summed (averaged) over final (initial)

colours and helicities, is then

IQQ̄(pa, pQ, pQ̄; q) =
g4

S
δcc′

4Nc(N2
c − 1) t′

aQ̄
t′aQ

[

t̂

(

1 + 2N2
c

t′
aQ̄

sQQ̄

x

)

(

x2 + x̃2
)

+
4m2

Q

t′
aQ̄

(

N2
c

t′aQ

s2
QQ̄

(

t′aQ̄ + xsQQ̄

)2
+ x

(

x̃t′aQ̄ − xt′aQ

)

)]

+(Q ↔ Q̄, x ↔ x̃) , (B.4)

where we have defined the momentum fraction

x =
p+

Q

p+
Q + p+

Q̄

= 1 − x̃ , (B.5)
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and the invariants

sQQ̄ = (pQ + pQ̄)2
h.e.
= t̂ +

m2
Q⊥

x
+

m2
Q̄⊥

x̃
,

t′aQ = (pa − pQ)2 − m2
Q

h.e.
= −

m2
Q⊥

x
, (B.6)

t′aQ̄ = (pa − pQ̄)2 − m2
Q

h.e.
= −

m2
Q̄⊥

x̃
.

In the small q⊥ limit, the jet opposite to the impact factor for QQ̄ production becomes

collinear, and the cross section obtained from the squared amplitude (B.2) yields an infrared

singular real correction. Since the latter may have at most a logarithmic enhancement as

q⊥ → 0, the squared amplitude (B.2) cannot diverge more rapidly than 1/q2
⊥. This means

that in the small q⊥ limit, the impact factor must be at least quadratic in q⊥, IQQ̄ ∼ O(q2
⊥).

Using q⊥ = −(pQ⊥+pQ̄⊥
), we see immediately that this is the case. In addition, as q⊥ → 0

we have an almost on-shell gluon scattering with a gluon, then pQ⊥ → −pQ̄⊥ and averaging

over the azimuthal angle of q⊥, Eq. (B.4) becomes

lim
q⊥→0

IQQ̄ = δcc′ g4
S

Nc(N2
c − 1)

q2
⊥ xx̃

m4
Q⊥

(N2
c − 1) − 2N2

c xx̃

2

[

1 − 2xx̃

(

1 − 2m2
Q

p2
Q⊥

m4
Q⊥

)]

= δcc′

(

q⊥ xx̃

m2
Q⊥

)2

|Mg g→QQ̄|2 , (B.7)

where for the invariants in the g g → QQ̄ Born amplitude we have used

s =
m2

Q + p2
Q⊥

x x̃
,

t = −
xm2

Q + p2
Q⊥

x̃
, (B.8)

u = 2m2
Q − t − s .

Equation (B.7) explicitly shows that in this limit the impact factor is positive definite, and

that it factorises into the squared amplitude for g g → QQ̄ scattering.

B.1 The integrated impact factor for gg∗ → QQ̄

Using Eq. (B.4) and the invariants (B.6), the integrated impact factor (2.11) becomes

I(ξ) =
α2

Sδcc′

2Nc(N2
c − 1)

∫ 1

0
dx

∫

d2p

π
(B.9)

[

(x2 + x̃2) k2

(

− 1

D1D2
+

N2
c x2

D1D3
+

N2
c x̃2

D2D3

)

+4x x̃m2
Q

(

1

D1D2
− N2

c

D1D3
− N2

c

D2D3
+

N2
c − 1

2D2
1

+
N2

c − 1

2D2
2

+
N2

c

D2
3

)]

, (B.10)
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where on the left-hand side we have made explicit that the impact factor depends only on

the dimensionless ratio ξ = q2
⊥/m2

Q. In Eq. (B.10) the propagators

D1 = m2
Q + p2

⊥

D2 = m2
Q + (p⊥ + k⊥)2 (B.11)

D3 = m2
Q + (p⊥ + xk⊥)2 ,

have been used. Introducing the Feynman parameter λ and performing the integration

over the transverse momentum gives

I(ξ) = α2
S
δcc′g(ξ) (B.12)

with

g(ξ) =
1

2Nc(N2
c − 1)

∫ 1

0
dx

∫ 1

0
dλ

×
[

4(2N2
c − 1) x̃ x +

−ξ + 2 x̃ x (2 + ξ)

1 + (1 − λ)λ ξ
+

2N2
c x

[

−4x̃ + x
(

x̃2 + x2
)

ξ
]

1 + (1 − λ)x2 λ ξ

]

. (B.13)

Note that as ξ → 0, g(ξ) ∼ O(ξ), in accordance with Eq. (B.7). As ξ → ∞, it grows

logarithmically, g(ξ) ∼ log(ξ). The integrals of Eq. (B.13) can be performed analytically,

and we obtain

g(ξ) =
1

9Nc(N2
c − 1)ξ

(B.14)

×
{

−4N2
c (5ξ − 12) − 3ξ +

12
[

2N2
c (ξ − 2)(ξ + 4) − ξ(ξ − 1)

]

√

ξ(ξ + 4)
tanh−1

√

ξ

ξ + 4

}

.
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