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A main feature of high-energy scattering in QCD is saturation in the number density of gluons.

This phenomenon is described by non-linear evolution equations, JIMWLK and BK, which have

been derived at leading logarithmic accuracy. In this paper we generalize this framework to

include running coupling corrections to the evolution kernel. We develop a dispersive represen-

tation of the dressed gluon propagator in the background of Weiszäcker Williams fields and use

it to compute O(βn−1
0 αn

s ) corrections to the kernel to all orders in perturbation theory. The

resummed kernels present infrared-renormalon ambiguities, which are indicative of the form and

importance of non-perturbative power corrections. We investigate numerically the effect of the

newly computed perturbative corrections as well as the power corrections on the evolution and

find that at present energies they are both significant.

1 Introduction

Modern hadron collider experiments such as HERA, RHIC and especially the forthcoming LHC
operate at high enough energies to observe new phenomenon associated with high gluon density.
The principal characteristics of high–energy QCD scattering are the following: firstly, owing to
Lorentz contraction, the configurations probed appear to be frozen in time compared to the natural
time scales of the interaction. Secondly, the number density of soft gluons gets saturated at densities
of the order of 1/g2. These features, which are usually referred to as the Color Glass Condensate
(CGC), are a consequence of the non-Abelian nature of the interaction and of the fact that gluons
are massless. These features are therefore unique to QCD.
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At sufficiently high energy the dominant interaction between the projectile and the target can
be described by ensembles of boost–enhanced field configurations, the “frozen” modes mentioned
above. This has been extensively explored in the context of the McLerran–Venugopalan model [1–9].
This description is tailored for asymmetric situations in which the field of, say, the target can be
argued to be much stronger than that of the projectile. High–energy scattering of a virtual photon
on a large nucleus is the prototype example of this situation. Nonetheless, at sufficiently high energy
this generic picture is applicable to nucleus–nucleus scattering as well.

Energy dependence can be incorporated into this picture by taking into account fluctuations that
acquire properties of the previously frozen modes as one increases the collision energy. The relevant
contributions are characterized by large logarithms ln(s) in the total invariant energy s in the
collision. At low gluon densities, or weak fields, the resummation of high–energy logarithms has
been formulated long ago as a linear evolution equation for the gluon distribution function, the
BFKL equation [10–14]. However, at high densities the resummation of these logarithms leads
instead to non-linear evolution equations for gauge field correlators. These can be formulated as
a functional evolution equation known as the JIMWLK equation [6, 15–22], or equivalently, as
an infinite coupled hierarchy of evolution equations for field correlators known as the Balitsky
hierarchy [23–25]. A truncation of this hierarchy that retains most of its essential properties is
known as the BK equation [23–27]. This equation describes high–gluon–density dynamics in terms
of dipole degrees of freedom. In Refs. [26, 27] the BK equation has been derived from Mueller’s
dipole model [28–31], using nuclear enhancement as a tool to trace the dominant field configurations.
This extends the ideas of the dipole model beyond the mere onset of saturation effects [32].

The most prominent feature of the solutions of these non-linear evolution equations is the emer-
gence of an energy–dependent transverse correlation length Rs, or saturation scale Qs ∼ 1/Rs,
which, asymptotically, encodes all the energy dependence of the cross section. The saturation scale
characterizes the transverse momentum scales of radiated gluons that contribute to the evolution
at any given energy. Modes much softer than Qs decouple: the number densities of soft gluons are
saturated, so they remain constant as the energy increases. Independently of the initial condition,
at sufficiently high energies the saturation scale increases rapidly with the energy. Therefore, Qs

can be considered a hard scale: Qs ≫ Λ.

The possibility to describe saturation by perturbative evolution equations is a highly non-trivial
result, since the gauge field involved is necessarily strong. The evolution equation is derived per-
turbatively by expanding in small fluctuations on a strong background field. This is justified a
posteriori: having found that soft modes do not contribute to the evolution, the equation is per-
turbatively consistent. This kind of infrared stability is a direct consequence of gluon saturation.
It is therefore not shared by the linear BFKL equation, which is instead afflicted by diffusion into
the infrared. As was beautifully illustrated in Ref. [33] it is the non-linearity of the JIMWLK and
BK equations that makes them infrared stable. The presence of the nonlinearities and hence Qs

will also modify the rôle and influence of power corrections compared to the BFKL case discussed
in Ref. [34].

Despite these strengths, JIMWLK and BK evolution suffer from a serious shortcoming: they are
derived only at leading logarithmic accuracy, i.e. at fixed coupling. To partially compensate for
this, all recent studies of the evolution have included running–coupling effects in some more or less
ad hoc manner. There are several reasons why running–coupling effects are essential:

• Running–coupling effects are known [35–43] to provide a large part of the next–to–leading–
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order (NLO) corrections to the evolution in the low density limit, where the description
matches onto the BFKL equation.

• On the purely phenomenological side, for example in fits to HERA data [44], running coupling
(or more precisely a dependence of the coupling on a scale involved in a single emission step,
see below) is essential to slow down evolution by reducing gluon emission from small objects.

• Conceptually, it is understood that the evolution is dominated by scales of the order of Qs.
The non-linearity of the equation ensures that dipoles much larger than 1/Qs are inherently
suppressed through the evolution (the saturation mechanism). However, with strictly fixed
coupling, dipoles much smaller than 1/Qs still contribute to the evolution. As soon as the
coupling depends on the size of the emitting dipole such contributions are also suppressed
through the evolution [45].

Despite both the practical and conceptual importance of running–coupling effects in the nonlinear
evolution equations, there has been no derivation of how they enter. All simulations done so far
involved ad hoc prescriptions for the scale of the coupling, based on nothing more than educated
guesswork.

In this paper we approach the problem on the more fundamental level. We show that the JIMWLK
and BK equations can indeed be derived beyond the fixed coupling level. We find that the equations
take a similar form to the fixed coupling case, while their kernel changes in a rather drastic way.
For example, it does not naturally appear as a single scale–dependent coupling times the LO scale–
invariant kernel. We explicitly compute running coupling O(βn−1

0 αn
s ) corrections to the kernel

to all orders and resum them by means of Borel summation. We find that the resummed kernel
present infrared-renormalon ambiguities. These are indicative of the form and importance of non-
perturbative power corrections.

In order to perform this calculation we develop a dispersive representation of the dressed gluon
propagator in the background of Weiszäcker–Williams fields. This is a generalization of the well–
known dispersive representation of the free dressed gluon propagator, a technique that has been used
to compute running–coupling corrections and estimate power corrections in a variety of applications,
see e.g. [46–55].

As in the BFKL case, the non-linear evolution equations are expected to receive additional sub-
leading corrections, which are not related to the running of the coupling. In this paper we will not
attempt to include such corrections. Some steps in this direction on the level of the BK equation
have been taken in Ref. [56], or with an entirely different focus in Ref. [57], and can be combined
with our treatment where desired.

The structure of the paper is as follows: in Sec. 2 we give a short introduction to the physics
described by the JIMWLK equation, in order to establish the key ideas and the notation that will
be used in the rest of the paper. For more detailed background we refer the reader to the original
literature [6, 15–27] or review articles [58–61]. In Sec. 2.1 we briefly review the JIMWLK and BK
equations and recall those details of their derivation that are needed in what follows. Sec. 2.2
is devoted to a discussion of running–coupling effects in JIMWLK and BK evolution, contrasting
what has been done previously with what we want to achieve in this paper. This will be important
also to clarify the terminology used in the remainder of the paper. Sec. 3 extends the derivation of
the JIMWLK equation to the running–coupling case. It is divided into four subsections: Sec. 3.1
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collects the tools of the conventional dispersive technique for the calculation of running–coupling
corrections in the free field case. Sec. 3.2 generalizes these tools for use in the presence of the
Weizsäcker-Williams background as needed in the derivation of the JIMWLK equation. Sec. 3.3
presents a re-derivation of the JIMWLK equation with a running coupling. Next, in Sec. 3.4 we
formulate the newly computed corrections to the kernel as an all–order Borel sum. In Sec. 4 we
discuss the convergence of perturbation theory. In Sec. 5 we use the renormalon singularities to
determine the parametric form and the typical magnitude of power corrections affecting the kernel.
Finally, in Sec. 6 we investigate numerically the effect of running coupling and power corrections
on the BK evolution as a function of the saturation scale. In Sec. 7 we summarize our conclusions.

2 The physics of the JIMWLK equation

The key points can be most easily understood in the context of deep inelastic scattering (DIS)
of leptons on protons or nuclei, where q and p are the momenta of the virtual photon and the
target respectively. Here, two kinematic variables play a rôle: (1) the deeply–spacelike momentum
q2 = −Q2 < 0 carried by the exchanged photon. This scale defines the transverse resolution of
the probe and thereby the apparent size of the quarks and gluons encountered; and (2) Bjorken
x := Q2/(2p · q), which is inversely proportional to the total energy s = (p + q)2 in the collision:
x ≈ Q2/s. At high energy, the rapidity Y is directly related to Bjorken x via Y = ln(1/x). The
rapidity is the natural evolution variable since ln(1/x) ≈ ln

(
s/Q2

)
reflects the large hierarchy of

scales in the high–energy limit, which appears with increasing powers in perturbation theory.

At large Q2 with fixed x there are well-established methods to treat such a system based on the
Operator Product Expansion (OPE), a short–distance expansion in powers of 1/Q2. Since Q2 also
controls the apparent size of the particles encountered, the OPE can be viewed as a small density
expansion, despite the fact that particle numbers, driven by large logarithms in Q2, increase in par-
allel with increasing resolution. As a consequence the description at large Q2 can be based entirely
on single–particle properties such as quark and gluon distribution functions: particle correlations
are not important. This restriction is a key ingredient of the derivation of the Dokshitzer–Gribov–
Lipatov–Altarelli–Parisi (DGLAP) equations that describe the increase of particle numbers with
Q2 in this domain.

Going to small x at fixed Q2, no matter how large, one ends up in an entirely different domain,
that of high densities, even if one starts out in a dilute situation. As the energy increases BFKL
evolution keeps generating new particles (mostly gluons) which are all of effective size of O(1/Q2),
and so the density keeps increasing. Eventually the density reaches a level where particle correla-
tions become essential [28–32] and a description in terms of distribution functions alone becomes
untenable. Since the BFKL description is based on gluon distributions, this is also the point where
this evolution equation ceases to be adequate. Appropriate degrees of freedom and more general
evolution equations are needed to describe the system beyond this point. The most general of these
existing to date are the JIMWLK equation, or, the completely equivalent Balitsky hierarchies, with
their factorized truncation, the BK equation.

JIMWLK and BK equations are formulated in terms of path–ordered exponentials, as defined in
Eq. (2) below, with paths collinear to the projectile direction, which can be interpreted as quark
and gluon constituents of the projectile. The path–ordered exponentials encode the fact that, owing
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to the high energy in the collision, these constituents penetrate the target without being deflected
from their straight–line trajectories. The γ∗A cross section then reads

σDIS(Y,Q2) = Im =

∫

d2r |ψ|2(r2Q2)

∫

d2b

〈

tr(1− UxU
†
y)

Nc

〉

(Y ) (1)

where r = x − y corresponds to the transverse size of a given qq̄ dipole and b = (x + y)/2
to the impact parameter of this dipole relative to the target. q2 := −Q2 is the large spacelike
momentum carried by the virtual photon. The square of the qq̄ component of the photon wave
function |ψ|2(r2Q2) describes the probability to find a qq̄ pair of size r inside the virtual photon
and can be calculated in QED. It consists of a known combination of Bessel functions together with
an integral over longitudinal momentum fractions already absorbed in the notation. The remaining
factor, the expectation value of U -operators is usually called the dipole cross section σdipole(Y, r) of
the target in question. All the properties of this interaction — details of the target wave function,
gluon exchange between the target and projectile etc. — are encoded in this expectation value.
The leading–logarithmic corrections at small x appear in powers of αs ln(1/x). These corrections
are resummed by the JIMWLK equation.

The dipole operator N̂xy := tr(1− UxU
†
y)/Nc itself is naturally bounded between zero and one.

Typically, gluon densities grow towards large r, such that the expectation value of N̂xy interpo-
lates between 0 for infinitesimally small dipoles, and 1 for very large ones. This encodes the idea
of color transparency at short distances and saturation at large distances where gluon densities
grow up to O(1/g2). The length scale that characterizes the transition between the two domains
can be interpreted as the correlation length Rs of U -operators, or equivalently gluon fields. The
corresponding momentum scale Qs ∝ 1/Rs is usually called the saturation scale. Clearly, as more
gluons are generated in JIMWLK evolution towards small x, the correlation length gets small and
Qs increases.

One key feature that emerges for this evolution is that details about the initial conditions are erased
quickly and a universal scaling form of correlators such as the dipole cross section is reached. From
then on, all x or Y dependence is carried by the saturation scaleQs(Y ). Such behavior has been seen
in HERA data (geometric scaling) [62–64] and has important consequences for RHIC (disappearance
of Cronin enhancement from mid to forward rapidities) [65–69] and the LHC experiments where
the energies are higher.

It had been noted early on in the context of the BK equation that a treatment at the strictly
leading–logarithmic level is insufficient: running–coupling effects have a strong influence on the
speed of evolution; quantities like the evolution rate λ(Y ) := ∂Y lnQ2

s(Y ) are reduced by more than
50% if running–coupling effects are introduced (in some heuristic way). Despite the explicit scale
breaking introduced by the appearance of ΛQCD in the running coupling, scaling of the dipole cross
section with Qs is retained to very good accuracy. In Ref. [45] it was emphasized that running–
coupling effects are also conceptually important: only with running–coupling effects included does
the phase–space region active in the evolution center around the physical scale Qs. At strictly
leading–logarithmic level — in the conformal limit for the evoluton kernel — the evolution involves
short–distance1 contributions from more than 7 orders of magnitude away from the physical scale.

1As explained above, the infrared is not a problem due to the presence of the correlation length Rs, which acts
an an effective infrared cutoff.
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Unlike the other evolution equations in QCD, such as DGLAP and BFKL, the JIMWLK and BK
equations have been derived only at leading logarithmic accuracy. Only partial calculations of
two–loop corrections to the BK equation are available [56] but they do not include any attempt to
determine the running of the coupling. For our purposes, the existing results in the low–density
limit for BFKL evolution are of limited use: they offer no hint as for how to extend or extrapolate
the calculation into the high–density domain where non-linearities appear. A direct calculation in
the context of the JIMWLK and BK equations is therefore necessary.

As announced in the introduction, in this paper we compute running–coupling corrections to the
JIMWLK and BK equations. In Sec. 2.1 we briefly review the fixed–coupling derivation of the
JIMWLK equation, by considering small fluctuations in a strong Weizsäcker-Williams field that is
encoded in the eikonal factors of Eq. (1). This derivation will then be generalized to the running–
coupling case in Sec. 3 using a dispersive representation of the dressed gluon propagator in such a
background field. This will not only enable us to calculate running–coupling corrections, but also
to explore non-perturbative effects in the evolution.

2.1 Evolution equations

The JIMWLK equation and the Balitsky hierarchies

The JIMWLK equation is a functional Fokker-Planck equation for the statistical weight ZY [U ]
defining the Y –dependent averaging procedure 〈. . .〉(Y ) that determines the expectation value of
operators O[U ] made of an arbitrary number of path–ordered exponentials U , where

U−1
x = P exp






ig

∞∫

−∞

dz−δ(z−)β(x)






. (2)

Such an average was already encountered above in Eq. (1) in the case of the dipole operator
tr(1− UxU

†
y)/Nc. To understand why these averages determine virtually all cross sections at

small x, recall the origin of the path–ordered exponentials (2): they encode the interaction of
fast moving quarks and gluons in the projectile wave function with the target field. It is the high
energy of the collision that allows the description of this interaction in terms of the eikonal factors
U , that at leading order follow perfectly straight, lightlike worldlines. We have chosen a frame
where these trajectories extend along the minus light–cone direction at x+ = 0. Each particle is
then characterized by the remaining coordinates, namely its transverse location x. The leading con-
tribution comes from interaction with the non-Abelian Weizsäcker-Williams field of the target, A+.
It takes the form

A+(x) = b+(x−,x) + δA(x), b+(x−,x) = δ(x−)β(x) (3)

where b+, or more specifically β(x), is the single leading degree-of-freedom, a strong field, while
δA is a small fluctuation in which we will expand. The δ(x−) reflects the lack of resolution in
longitudinal direction: no internal details of the field of the target are probed. The independence
on x+ reflects the fact that the target wave function is frozen during the interaction, an extreme
time dilation. At fixed rapidity all dominant contributions are determined by the background field
b+ = δ(x−)β(x). Moreover, they only enter in a very specific form, via the Wilson lines U .
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For some generic operator made of these Wilson–line fields, O[U ], the average of Eq. (1) will be
written as

〈O[U ]〉Y :=

∫

D̂[U ]O[U ]ZY [U ] (4)

where D̂[U ] is a functional Haar-measure and ZY [U ] contains the detailed physics beyond the eikonal
approximation already incorporated by selecting U as the relevant degrees-of-freedom: ZY [U ] is the
statistical weight for all possible field configurations.

Most of our knowledge of ZY [U ] is perturbative: the JIMWLK equation2 determines the Y depen-
dence of this average:

∂Y ẐY [U ] = −H[U ]ZY [U ], (5)

where the JIMWLK Hamiltonian H[U ] is given by

H[U ] = −αs(µ
2)

2π2
Kxzy

[

Uab
z

(
i∇̄a

xi∇b
y + i∇a

xi∇̄b
y

)
+
(
i∇a

xi∇a
y + i∇̄a

xi∇̄a
y

) ]

, (6)

with the LO kernel:

Kxzy =
(x− z) · (z − y)

(x− z)2(z − y)2
= − r1 · r2

r12 r22
, (7)

where x, y and z are transverse coordinates. Here we also introduced a shorthand notation for the
vectors connecting the points in the transverse plain:

r = x− y , r1 = x− z , r2 = y − z , (8)

and their lengths: r1 := |r1|, etc. The notation in (6) assumes an integration convention over
repeated coordinates appearing as an index in Kxzy and in the vector field operators ∇a

x. The
Hamiltonian H[U ] is second order in left– and right–invariant vector fields ∇a

x and ∇̄a
x, which are

Lie derivatives: they act on the Wilson–line variables Ux according to3

i∇a
xUy := −Uxt

aδ(2)xy ; i∇̄a
xUy := taUxδ

(2)
xy . (9)

The terms in the square brackets on the r.h.s of Eq. (6) are grouped according to their origin in
real–emission and virtual corrections, respectively: real–emission contributions involve an additional
Wilson line Uab

z at transverse location z.

The full derivation of Eq. (5) has been presented exhaustively in Refs. [20–23]. We nevertheless
need to recall here how the JIMWLK Hamiltonian relates to Feynman diagrams, in order to prepare
its re-derivation with running–coupling corrections. Rapidity dependence of ZY [U ] at LO is driven
by the lowest–order fluctuations δA around the background δ(x−)β(x) of Eq. (3). In this sense,
the LO JIMWLK Hamiltonian in Eq. (6) is constructed such that it adds the LO “exchange” and
“self-energy” corrections to, say, an interacting qq̄ pair, represented by its Wilson–line bilinear

2For a first derivation of this equation in its most compact form see Ref. [20]. The version presented here is based
on Ref. [60].

3See Ref. [20] for more details.
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Ux ⊗ U †
y:

ln(1/x) H[U ] Ux ⊗ U †
y = + + (10)

The diagrams shown in (10) are Feynman diagrams where the gluon propagator of the fluctuations
〈δAδA〉 is taken in the background of the strong target field δ(x−)β(x).

The correspondence to real and virtual diagrams becomes visible upon resolving the Feynman
diagrams into x− ordered diagrams of light–cone perturbation theory. For instance,

= + + + ,

(11)

where the diagrams on the r.h.s. should be interpreted as diagrams of light–cone perturbation
theory. Light–cone time x− runs from bottom right to top left, the two collinear4 Wilson lines in
this direction represent the dipole (the projectile) and the target is shown as a perpendicular line at
x− = 0, from bottom left to top right. To be precise, the last two diagrams in (11) are a shorthand
notation for a sum of two different x− orderings each:

= + ; = + .

(12)
The factors of U , U † and Uab representing the interactions of a projectile quark, antiquark and
gluon, respectively, are indicated as large dots where these Wilson lines cross the target line. In
a derivation of JIMWLK based on projectile wave functions5, the contribution of the first two
diagrams of (11) are associated with a situation where the interacting gluon reaches the final state
and in this sense they correspond to real–emission diagrams. Correspondingly, as indicated by
the third dot, they contain an additional Wilson line for this produced, eikonally interacting gluon,
which appears in (6) as Uab

z . The remaining diagrams represent purely virtual contributions in which
the number of Wilson lines does not change. Similarly, both real–emission and virtual corrections
are present in the self–energy–like diagrams in (10).

4Note that these two lines are actually separated only in the transverse direction.
5See Refs. [28–31] for a derivation of JIMWLK based on projectile wave functions in the context of the dipole

model, Refs. [26, 27] for the BK case, or Ref. [70] for a re-derivation of JIMWLK via amplitudes.
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Note that in the absence of the target field (3), the eikonal factors become trivial: U → 1, and then
there is strictly no evolution. In this limit each individual diagram on the r.h.s. of (10) vanishes
identically owing to exact real–virtual cancellation: in (11) the first two diagrams, corresponding
to real gluon emission, cancel against the last two diagrams, which represent virtual corrections.
Analogous cancellations occur in this limit in the light–cone perturbation theory decomposition of
the self–energy–like diagrams in (10).

As a functional equation, Eq. (5) is equivalent to an infinite set of equations for n-point correlators
of U and U † fields in any representation of SU(Nc), called the Balitsky hierarchies [23]. In order to
obtain the evolution equation for a correlator of a given composite operator O[U ] made of U -fields,
one first takes the Y derivative of (4) and then uses (5) to replace the ∂Y ẐY [U ] by −H[U ]ZY [U ],
obtaining:

∂Y 〈O[U ]〉 (Y ) = −
∫

D̂[U ]O[U ]H[U ]ZY [U ], (13)

where the Hamiltonian still acts on ZY [U ]. Using the self-adjoint nature of H[U ] with respect to
the Haar measure (as ensured by the Lie derivatives), one can then rewrite (13) as

∂Y 〈O[U ]〉(Y ) = −
〈(
H[U ]O[U ]

)〉
(Y ) . (14)

Here the JIMWLK Hamiltonian acts onO[U ]. Observing thatH[U ] explicitly contains a U -operator,
and that the number of U -operators remains invariant when acted upon by the Lie derivatives ∇a

x

(see Eq. (9)) one understands that the evolution equation for 〈O[U ]〉 must involve operators with
more U fields than the original operator O[U ]. Thus, the nonlinear nature of H[U ] implies that the
r.h.s. of the equation depends on a new type of correlator of U fields. To determine the rapidity
dependence of 〈O[U ]〉(Y ) one will therefore need also the evolution equation of this new correlator,
which in turn will couple to yet higher composite operators containing more U fields. Continuing
the process one ends up with an infinite hierarchy of equations, defined by the operator O[U ] used
to start the process. The derivation of the BK equation shown below provides a simple example
for such a hierarchy.

Truncation and the BK equation

As the simplest correlator with immediate phenomenological relevance we consider the two–point
function of the dipole operator6:

NY,x y := 〈N̂xy〉(Y ) N̂x y :=
tr(1 − U †

xUy)

Nc
. (15)

Using Eq. (14) in the case of N̂xy with the explicit expressions corresponding to the diagrams in
Eq. (10), one immediately obtains:

∂Y

〈
N̂xy

〉
(Y ) =

αsNc

2π2

∫

d2z
(
2Kxzy −Kxzx −Kyzy

)〈
N̂xz + N̂zy − N̂xy − N̂xz N̂zy

〉
(Y ). (16)

The linear combination of JIMWLK kernels K that appear in this expression are in one-to-one
correspondence with the three diagrams in (10). They combine into the very compact form of the

6Below we will often use a shorthand notation where the Y dependence is not explicitly indicated.
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BK kernel K̃xzy:

K̃xzy := 2Kxzy −Kxzx −Kyzy =
(x− y)2

(x− z)2(z − y)2
. (17)

Clearly the r.h.s. of Eq. (16) depends on a 3-point function containing operators with up to four
U (†) factors, that in general does not factorize into a product of two 2-point correlators:

〈
N̂xz N̂zy

〉
(Y ) =

〈
N̂xz

〉
(Y ) ×

〈
N̂zy

〉
(Y ) + corrections . (18)

To completely specify the evolution of 〈N̂xy〉(Y ) one therefore need to know
〈
N̂xz N̂zy

〉
(Y ). The

latter, in its evolution equation, will couple to yet higher n-point functions and thus one is faced
with an infinite hierarchy of evolution equations, as anticipated above. The entire hierarchy (as
well as others, corresponding to other composite operators O[U ]) is encoded in the single functional
equation (5). If one drops the corrections in (16) and factorizes the correlators in the spirit of a large–
Nc approximation, the hierarchy is truncated and reduces to a single equation. This truncation can
be interpreted as an independent scattering approximation and it leads to the Balitsky-Kovchegov
(BK) equation [24, 27]:

∂Y NY,xy =
αs(µ

2)Nc

2π2

∫

d2z K̃xzy

(

NY,xz +NY,zy −NY,xy −NY,xz NY,zy

)

. (19)

Generic features and infrared stability

Despite the complex nature of the evolution equation, it is possible to gain insight into some generic
features. It can be proven [20] that the evolution equation possesses an attractive fixed point at
Y → ∞ at which the system has vanishing correlation length. For the evolution of a physical
correlator, such as NY, xy, this implies a generic trend as shown in Fig. 1 (a): with increasing Y
saturation (NY, xy → 1) is reached at ever shorter distances. This leads to a further important
property of the evolution equation, namely its infrared stability: the evolution is not affected
by long–wavelength fluctuations beyond the characteristic correlation length (the inverse of the
saturation scale Qs) where NY, xy = 1. In this way the saturation scale acts as an effective infrared
cutoff. Fig. 1 (b) demonstrates that the modes that contribute to the evolution have momenta of
order of Qs(Y ). With increasing Y , the active region moves towards the ultraviolet.

2.2 What we mean by running coupling

Similarly to other evolution equations in QCD [71], the LO JIMWLK kernel is conformally invari-
ant7. As usual, breaking of this symmetry is expected to appear through radiative corrections at
O(β0α

2
s) where β0 is the leading coefficient of the β function,

dαs(µ
2)/π

d lnµ2
= −β0

(
αs(µ

2)/π
)2 − β1

(
αs(µ

2)/π
)3

+ · · · ; β0 =
11

12
CA −

1

6
Nf . (20)

7Note that while the LO kernel is conformally invariant, the solution of the equation is not: it is characterized
by a correlation length. This scale originates in the initial condition, and it is preserved owing to the non-linearity
of the equation.
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1:21:82:43 Qs(Y ) 0 2 4 6rQs(Y0)=200:20:40:60:81N(Y; r) Rs(Y )
(a)

1:21:82:43 Qs(Y ) 0 2 4 6rQs(Y0)=200:029430:058860:088290:11770:1472�N(Y;r)�Y Rs(Y )

(b)

Figure 1: Generic evolution trend for a single–scale dipole correlator. (a) shows N(Y, r) as a function of
the dipole size r = |x− y| for several values of the saturation scale Qs(Y ). Qs increases with Y ; saturation
then sets in at smaller distances. (b) shows ∂Y N and thus the activity in a given evolution step as a function
of the same variables. With increasing Qs(Y ) contributions are centered at ever shorter distances.

At higher orders one expects corrections O(βn−1
0 αn

s ), as well as ones associated with subleading
coefficients of the β function, e.g. O(β1β

n−3
0 αn

s ). In Sec. 3 we compute these running–coupling
corrections using a dispersive representation of the dressed gluon propagator in a background field.
We will show that while the general structure of the evolution equation, namely Eq. (5), holds
as at LO, the kernel itself changes drastically with respect to Eq. (7) — see Eq. (62) or (77)
below. A similar generalization holds in the BK case, see Eqs. (91) and (92). JIMWLK and BK
evolution with running–coupling is therefore qualitatively different from the fixed–coupling case in
that at each step in the evolution the coupling depends on the details of the evolving configuration;
moreover, different final states, that are characterized by different “daughter dipole” sizes, are
weighted differently in the r.h.s. of the evolution equation.

Although all previous derivations of JIMWLK and BK evolution equations were restricted to the
leading logarithmic approximation, it has been clear for quite a while that running–coupling correc-
tions will be necessary to get quantitative results8. By making physically–motivated scale choices
for the renormalization scale of the coupling, several authors found that the evolution rate λ(Y )
reduces by a factor of two or more compared to the fixed–coupling case.

It is important to make a clear distinction between the actual higher–order contributions to the
kernel, which we compute in the following, and ad hoc choices of scale for the coupling, which
have been often referred to as “running coupling”. Such prescriptions have been assumed in all
numerical simulation of the BK equation [33, 45, 72–77]. Similar assumptions were used in the
analytical estimates of Ref. [78], which agree well with numerical simulations [45]. To put the
results of the present paper in context of previous work, we find it useful to further distinguish

8In Ref. [45] it has been further emphasized that running–coupling corrections, where the scale of the coupling
depends on the scales involved in a single evolution step, are needed to reduce active phase space in the ultraviolet
from about 6 orders of magnitude to about one. Despite this dramatic reduction of phase space, other qualitative
features of the solution of JIMWLK or BK equations were found to be the same: for any set of initial conditions that
interpolate between color transparency at short distance and saturation at large distance (as shown schematically in
Fig. 1) the system approaches an asymptotic line where the dipole correlator reaches a near–scaling form.
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between different categories of scale choices that were made in the literature:

1. Fixed or essentially fixed coupling: αs(µ
2) is treated as a constant or as a function of Y .

Within this class, simulation results, starting from the same initial condition, can be related
by re-scaling the evolution variable. For example, the scenario where the coupling depends on
Qs(Y ) can be related to the one where the scale of the coupling is fixed as some Q0 through
the change of variables (see also [79]):

Y ′ =
αs

(
Q2

s(Y )
)

αs (Q2
0)

Y.

Obviously, any ansatz of this sort would fail to capture the essential physics of running
coupling, and would inherit the ultraviolate phase–space problem discussed in Ref. [45].

A non-trivial change in the shape of the solutions with respect to the fixed–coupling case occurs
if the scale of the coupling is determined by the size of the “dipoles” involved in the evolution.
In such cases the ultraviolate phase–space problem is generally removed, since emission from very
small objects is suppressed by small coupling constants. The remaining two cases fall into this
category.

2. “Parent–dipole” running: where the scale of the coupling on r.h.s. of the BK equation (19)
is assumed to depend on the initial dipole size r = |x− y|, namely

αs (µ2)K̃xzy → αs(c
2/r2) K̃xzy, (21)

where c is a dimensionless “scale factor” of order one9. This has been the most common
ansatz in numerical simulations of the BK equation.

While this appears to be a natural ansatz in the context of the BK equation, it can not
be easily reconciled with the JIMWLK equation. To see this, recall that (5) is a functional
equation. Therefore, the Hamiltonian in Eq. (6) cannot depend on any scales characterizing
a particular operator O[U ]; all three transverse coordinates appearing in (6) are integrated
over internally. When deriving the BK equation from JIMWLK as in (16) one obtains the
BK kernel as a specific combination of the original JIMWLK kernel:

αsK̃xzy → 2αs(µ
2
xzy)Kxzy − αs(µ

2
xzx)Kxzx − αs(µ

2
yzy)Kyzy , (22)

where each term corresponds to one of the diagrams in (10). Whatever one assumes of the
functional dependence of µ2

xzy on the coordinates, since the self–energy–like diagrams are
independent of the parent dipole size |x− y|, Eq. (22) does not lead to Eq. (21).

Even considering the BK case on its own, “parent–dipole” running may appear artificial: there is
no reason why the sizes of the dipoles produced in the same step in the evolution, which can of
course be quite different from the parent size, should not play an important rôle [77]. This leads us
to the final category:

9It was often taken as c ≈ 4, motivated by direct Fourier transform in the double logarithmic limit.
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3. Final–state–dependent evolution: where the scale of the coupling on r.h.s. of the BK
(19) or JIMWLK (6) equations is assumed to depend on all three distance scales present in
a single evolution step, namely the “parent dipole” r = |x− y| and the two newly produced
“daughter dipoles”, r1 = |x− z| and r2 = |y−z|. Obviously, in this case the coupling affects
the weight of different final states, depending on the transverse location of the emitted gluon
(the coordinate z) that is integrated over.

Several such models were proposed, e.g.
√

αs(c2/r21)
√

αs(c2/r22) or αs

(
max

{
c2/r21 , c

2/r22
})

,
and found to be in fair agreement with “parent–dipole” running, see e.g. [77]. As already
mentioned, no deep justification of any of these models has been provided.

In the next section we compute running–coupling corrections to the JIMWLK equation. In Sec. 6
shall use this result to derive the corrections for the BK case and study the consequences numerically.
As we will see, these corrections do depend on the details of the final state at each evolution step
and involve all three scales. Moreover, in neither of the two equations do these corrections naturally
reduce to a single scale–dependent coupling times the LO kernel.

3 Derivation of JIMWLK evolution with running coupling

3.1 Running coupling, Borel transform and the dispersive approach

We are interested in improving the leading–logarithmic result of the JIMWLK and BK equations by
including running–coupling effects, namely corrections associated with the renormalization–group
equation (20). In general, running–coupling corrections are important in QCD, for two reasons:

• They usually constitute a large part of the higher–order (notably NLO) corrections [48, 49,
52, 80–84]. The main reasons for this are: (1) the average virtuality of gluons is usually
different (typically much lower) than the principal hard scale, which is often used as the
default renormalization point; and (2) β0 is sizeable. These effects are especially important
when the hard scale is low, since then the coupling is large and its evolution (20) is fast.

• They dictate the large–order asymptotic behavior of the perturbative series, which is domi-
nated by factorially increasing contributions, O

(
n!βn−1

0 (αs/π)n
)
, the renormalons [85,86]. In

this way the resummation provides some insight into the non-perturbative side of the prob-
lem: the ambiguity in summing the perturbative expansion, which is expected to cancel in
the full theory, indicates the parametric dependence of non–perturbative corrections on the
hard scales (power–suppressed corrections) and provides some clue on the potential size of
these corrections [87–90]; for a review see Refs. [91, 92].

Both these aspects are relevant in non-linear evolution. As demonstrated in Sec. 2.2, the multi-scale
nature of the problem calls for a systematic study.

In this section we wish to briefly recall some basic ideas and techniques for resummation of running–
coupling corrections that will be generalized and applied to the JIMWLK case in what follows. To
this end, consider some perturbatively calculable (infrared and collinear safe) quantity, R(Q2/Λ2),
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depending, for simplicity, on a single external scale Q2 and having an expansion starting at order
αs(µ

2)/π with the LO coefficient normalized10 to c00 ≡ 1:

R(Q2/Λ2) =
αs(µ

2)

π
+

[(

c11 + ln
µ2

Q2

)

β0 + c10

](
αs(µ

2)

π

)2

+ . . . , (23)

where β0 is defined in (20) and the c10 term is a conformal coefficient, not associated with the
running coupling. We will work in the large–β0 limit, where the c10 term is formally subleading.
The well–known BLM prescription [80] absorbs the NLO contribution that is leading in β0 into the
LO by a scale choice: µ2

BLM
= Q2 exp {−c11}. In this way also higher–order corrections often become

smaller. This becomes intuitive upon looking at the momentum integral that is approximated by
αs(µ

2
BLM)/π, where µ2

BLM acquires the interpretation of the average gluon virtuality. The all–order
resummation of running–coupling effects in the single dressed gluon approximation,

R(Q2/Λ2)
∣
∣
large β0

=

(
αs(Q

2)

π

)[

1 +

∞∑

n=1

cnn ×
(

β0
αs(Q

2)

π

)n
]

, (24)

can be viewed as a generalization of this procedure, where instead of a single optimal scale choice, the
proper (observable–dependent) weight is given to any specific gluon virtuality. In the context of the
dispersive approach presented below (see Eq. (36)), this weight function is called the “characteristic
function” [50].

Technically, the resummation of all O(βn−1
0 αn

s ) higher–order corrections becomes feasible in QCD,
owing to its simple relation with the resummation of diagrams with an arbitrary number of fermion–
loop insertions. Because β0 is linear inNf , one can simply compute the fermion–loop chain diagrams
and then replaceNf by the non–Abelian value of−6β0, according to (20). In more formal terms, one
begins by considering the large–Nf limit with fixed Nfαs, the leading term in the flavor expansion.
Clearly this limit itself is not physically interesting, it just provides a tool to identify running–
coupling contributions in the approximation where the non-Abelian β function (20) is one loop, the
so–called large–β0 limit.

The calculation of a gluon propagator, dressed by fermion–loop insertions is simplified by the fact
that the fermion loop itself is transverse,

Πµν(k2) =

(

gµν −
kµkν

k2

)

k2 Π(k2),

and therefore, in any gauge such insertions affects only the propagating particle pole 1/k2. The
all–order sum builds up a geometric series giving rise to a factor 1/(1 + Π(k2)). The resummed
propagator takes the form11:

covariant gauges:
1

k2

1

1 + Π(k2)

(

gµν −
kµkν

k2

)

+ ξ
1

k2

kµkν

k2
(25a)

strict axial gauge:
1

k2

1

1 + Π(k2)

(

gµν −
kµnν + nµkν

k · n +
kµkνn

2

(k · n)2

)

, (25b)

10Using this normalization R(Q2/Λ2) can also be interpreted as an “effective charge” [93].
11Note that the ξ term in (25a) is not affected as it does not describe a physical mode. ξ is the width of a

Gaussian approximation to a functional δ-function that is meant to implement the covariant gauge ∂µAµ = 0. Only
for vanishing width, ξ = 0, do all gauge fields obey the gauge condition strictly. The axial propagator is written for
vanishing width, i.e. the strict gauge condition. That is why the resummed terms multiply the whole structure.
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with

Π(k2)
∣
∣
one−loop

=
αs(µ

2)β0

π
ln
(

−k2 e−
5
3 /µ2

)

, (26)

where the renormalization of the fermion–loop Π(k2) was done in the MS scheme12 and where we
already made the replacement: Nf → −6β0.

The next step would be to insert the dressed propagator into the relevant Feynman diagrams and
perform the momentum integration, d4k. Since the sum over any number of Π(k2) insertions has
already been done, by performing the k-integration one would hope to get directly the resummed
physical quantity R(Q2/Λ2) in (24). Observing that the resummed propagator with (26) has a
Landau singularity, one realizes that this direct all–order calculation cannot be done. As we explain
below, a regularization of the sum is required even if the coefficients cnn are all finite13. The simplest
and most familiar way to see this is to represent the effective running coupling14 that includes the
dressing, as a Borel sum:

αV
s (−k2 − i0)

π
:=

αs(µ
2)

π

1

1 + Π(k2)
=

1

β0

∫ ∞

0

du T (u)
(

−k2 e−
5
3 /Λ2

)−u

, (27)

where for one–loop running coupling15, namely upon using (26), one simply gets

αV
s (−k2 − i0)

π

∣
∣
∣
∣
one−loop

=
1

β0

1

ln
(

−k2 e−
5
3 /Λ2

) ,

and therefore T (u) ≡ 1. It is now possible to proceed with the calculation of the Feynman diagrams
where the only change is that the particle pole is modified into a cut:

1

−k2 − i0 →
1

(−k2 − i0)1+u
, (28)

This modification of the propagator is known as Borel or analytic regularization.

The all–order resummation of a given quantity R in the large–β0 limit can therefore be done
using (27) by first performing the momentum integration with the modified propagator (28), which
directly yields the Borel representation of the sum in the single dressed gluon approximation,
namely:

R(Q2/Λ2)
∣
∣
large β0

=
1

β0

∞∫

0

du T (u)
(
Q2/Λ2

)−u
B(u). (29)

Upon performing the momentum integration for a typical observable in QCD one would find that
B(u) has singularities along the positive real axis, which is the integration axis. This obviously

12We denote the MS coupling αMS
s (µ2) by αs(µ2).

13This is indeed the case if R is an observable, i.e. it requires no additional renormalization and has no infrared
divergencies.

14It is convenient to absorb the factor e−
5
3 from the renormalization of the fermion loop in (26) into the definition

of the coupling. We follow this convention and define αV
s as the coupling in the V scheme, which is related to the

MS scheme by Λ2
V = e

5
3 Λ2.

15Although we restrict the calculation to one–loop coupling where T (u) ≡ 1, we will keep writing T (u) in any
Borel representation: this allows for a straightforward generalization to two–loop running coupling following [94,95].
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means that Eq. (29) is ill-defined as it stands. The obstructing singularities are called infrared
renormalons, and they merely reflect the fact that the series for R in (24) and thus also in (23), is
non summable. The problem only becomes manifest if one attempts to sum the series: any finite
order expansion — here all the coefficients cnn in (24) — are well–defined and finite. They can be
obtained by expanding B(u) under the integral,

B(u) =

∞∑

n=0

cnn

n!
un. (30)

The Borel function typically has a finite radius of convergence u0, so cnn grow as n!/un
0 at high

orders16 ; in the case of infrared renormalons in QCD, the singularity is at u = u0 > 0, so the
coefficients all have the same sign17. In terms of the momentum integration these large perturbative
coefficients are associated with extremely small virtualities k2 → 0, namely soft modes whose
dynamics is non-perturbative. Thus, the non-existence of the sum is a reflection of the fact that
perturbation theory does not fully describe the dynamics, and the observable is sensitive to some
extent to non-perturbative contributions. The ambiguity can therefore be resolved by a proper
separation prescription between perturbative and non-perturbative corrections, either by an infrared
curoff, or by other means, for example by modifying the integration contour of the Borel integral (29)
in a particular way or by taking its principal value. The same prescription must then be applied to
regularize the non-perturbative contribution.

An additional, general property is that the singularities in B(u) occur at integer — and sometimes
half integer — values of u. This corresponds to the fact that alternative definitions of the sum
of the series (that arise e.g. by modifying the integration contour in (29)) differ by integer —
or half integer — powers of Λ2/Q2. These ambiguities must be cancelled by non-perturbative
power corrections, and they can therefore serve as a perturbative probe of such effects. In cases
where an operator product expansion applies, one can get a direct interpretation of the source
of each ambiguity in terms of local operators of higher dimension (or twist) [87, 89]. In such
cases it is also possible to trace the cancellation of ambiguities [91, 96, 97]. In the absence of an
operator product expansion, the renormalon technique often provides a unique window into the
non-perturbative regime: by identifying the ambiguities in summing the perturbative series one
learns about the parametric dependence of power corrections on the hard scales and about their
potential size [46–55,87–91,96–99].

Computing directly the Borel function B(u) using (28) may sometimes present technical difficulties.
One of the most effective techniques to deal with this problem is the dispersive technique, which
has been used in a variety of applications, see e.g. [46–55, 98, 99]. In the next sections we shall
generalize this technique to the case of Weizsäcker-Williams background fields, in order to use it in
the re-derivation of the JIMWLK equation. Let us therefore review here the basic idea, and collect
the necessary formulae.

The dispersive method, see e.g. [49, 84, 98], recasts the dressed gluon propagator, and thus the
running coupling of (27) as a dispersive integral. As we shall see, this allows one to compute a
generic quantity R(Q2/Λ2) to all orders in the large–β0 limit, by simply replacing the massless

16This asymptotic behavior can be modified by additional factors of the form nγ/β0 , depending on the structure
of the Borel singularity. For simplicity we assume here simple poles.

17In contrast, for ultraviolate renormalons in QCD u0 < 0, so there is sign oscillation at high order.

16



gluon pole by a massive one, namely:

1

−k2 − i0 →
1

m2 − k2 − i0 , (31)

instead of (28).

The dispersive representation takes the form

αV
s (−k2 − i0)

π
=

αs(µ
2)

π

1

1 + Π(k2)
=

1

β0

∞∫

0

dm2 ρV (m2)

m2 − k2 − i0 , (32)

where ρV is the discontinuity of the coupling on the time-like axis,

ρV (m2) := −β0

π
Im
{
αV

s (−m2 − i0)/π
}

=
1

π

β0αs(µ
2)

π

Im
{
Π(m2)

}

|1 + Π(m2)|2 . (33)

Alternatively, it is convenient to express Eq. (32) in terms of the “effective18 time–like coupling”,

αV
s (−k2 − i0)

π
=

1

β0

∞∫

0

dm2 ρV (m2)

m2 − k2 − i0 =
1

β0

∫ ∞

0

dm2

m2
AV

eff(m2)

[

−m2 d

dm2

1

k2 −m2

]

, (34)

where AV
eff(m2) is defined by

ρV (m2) =: m2 d

dm2
AV

eff(m2). (35)

The explicit expression for AV
eff(m2) in the case of a one–loop running–coupling (namely (32)

with (26)) takes the form:

AV
eff(m2)

∣
∣
one−loop

=
1

2
− 1

π
arctan

(
1

π
ln
m2

Λ2
V

)

.

A two-loop expression for AV
eff(m2) can be found in Ref. [99].

The all–order resummation of R in the large–β0 limit can now be done using (34) by first performing
the momentum integration with a massive gluon (i.e. with the replacement of Eq. (31)) leaving the
dispersive integral over the mass undone. This leads to19

R(Q2/Λ2)
∣
∣
large β0

=
1

β0

∫ ∞

0

dm2

m2
AV

eff(m2)

[

−m2 d

dm2
F(m2/Q2)

]

=
1

β0

∫ ∞

0

dm2

m2
ρV (m2)

[
F(m2/Q2)−F(0)

]
, (36)

18Let us emphasize that we do not make any use of the dispersive representation to impose analyticity and regularize
the Landau singularity, as done for example in Ref. [100]. We merely use the dispersive method to compute the
Borel function, which serves as a generating function for the perturbative coefficients according to (30) and as a tool
to analyze infrared renormalon ambiguities.

19Note that we ignore pure power correction terms (Λ2/Q2) which distinguish this integral from the Borel sum we
eventually compute. These will be totally irrelevant here. The interested reader is referred to [49, 51, 52].

17



where in the m2 → 0 limit F(m2/Q2) yields the LO coefficient, F(0) = c00 = 1. By definition,
F(m2/Q2) depends on the specific quantity computed and it encodes perturbative as well as power–
correction information (see e.g. [49,84]). F(m2/Q2) is therefore called the “characteristic function”
of the quantity or process under consideration. Upon expanding the effective coupling AV

eff(m2)
in (36) in powers of ln(m2/Λ2) and integrating term by term (log moments) one obtains the per-
turbative coefficients cnn. On the other hand, expanding F(m2/Q2) at small m2 and extracting
the non–analytic terms [84] one obtains information on renormalon ambiguities and thus on power
corrections in Λ2/Q2.

As explained above, the perturbative and power–correction information encoded in the characteris-
tic function can be conveniently extracted from the Borel representation (29). The Borel formulation
also offers a natural definition of the sum, using the principal value (PV) prescription. The PV Borel
sum can be related to a Euclidian–cutoff regularization [52], and it has good analytic properties
as a function of the hard scales [54, 101], e.g. it has no Landau singularities and it is real–valued.
In order to relate the dispersive and the Borel formulations, (36) and (29), respectively, one first
computes the Borel representation of the discontinuity of the coupling by using (27) in (33); a
straightforward calculation yields:

ρV (m2) = −
∫ ∞

0

du T (u)
sinπu

π
e

5
3u
(
m2/Λ2

)−u
. (37)

Next, by substituting (37) in (36) and changing the order of integration one recovers the Borel
representation (29) with

B(u) = −e 5
3
u sinπu

π

∞∫

0

dζ ζ−1−u [F(ζ) −F(0)] = −e 5
3

u sinπu

πu

∞∫

0

dζ ζ−u dF(ζ)

dζ
. (38)

In the following we will use this formula to compute the Borel function B(u) from F(ζ).

Finally, it should be emphasized that the resummed result for R(Q2/Λ2), computed with a single
dressed gluon, is exactly renormalization–scale invariant, despite using just a subset of all pertur-
bative corrections. At power level, we shall define the sum using the principal value prescription
of (29) and use the renormalon poles to analyze non-perturbative power corrections.

3.2 The dressed propagator in the background field

At this point, we have described the method used to derive the JIMWLK equation at fixed coupling
(Sec. 2.1) and the generic tools used to promote a one–loop calculation to one with a dressed gluon
(Sec. 3.1). These need now to be combined. Since all the diagrams in (10) involve a single gluon,
the dispersive technique should be applicable. The crucial step is to construct a propagator that is
both in the background of Weizsäcker-Williams field and is dressed by running–coupling corrections.
This is the main goal of this section.

Independently of the particular technique adopted, the calculation of running–coupling corrections
to the kernel involves a subtlety which is associated with the presence of new production channels,
namely the production of a well separated qq̄ pair or a pair of gluons, starting at NLO. These
processes involve two additional Wilson lines — not one — on the r.h.s of the evolution equation,
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namely an entirely new contribution to the JIMWLK Hamiltonian (6). Obviously, these contribu-
tions should not be considered a running–coupling correction, and we do not aim to compute them
here. As explained in Sec. 3.1 running–coupling corrections are usually identified by considering di-
agrams with fermion–loop insertions, namely considering the formal large–Nf limit with fixed Nfαs

(the flavor expansion), and then making the substitution Nf → −6β0. However, in the present case
this criterion is insufficient: similarly to running–coupling corrections, qq̄ pair production appears
at LO in the flavor expansion, as can be seen in Fig. 2. Moreover, the running–coupling correc-

Uxta 
 taUyy Uabz taUx 
 tbU yy 2tr(taUz1tbUyz2)�taUx 
 tbUyy
(a) (b)

() (d) (e)
Figure 2: Virtual and real contributions at LO (a), (b) and NLO (c), (d) and (e). Vertically (as delineated
by the background shading) they are grouped by the Wilson line structure induced by the target interaction.
The latter are indicated on the diagrams via large solid dots, their analytical form is listed at the bottom.
Diagram (e) induces a new structure via a qq̄ loop that interacts with the target.

tions and qq̄ pair production are physically distinct only if the transverse separation of the pair is
non-vanishing. Therefore, the identification of running–coupling corrections to the kernel requires a
separation prescription. As we shall see below, the use of the dressed propagator in the background
field automatically implements such a prescription.

A related complication arises in the derivation of the JIMWLK Hamiltonian with running coupling
because of the possibility of interaction between the background field and a produced qq̄ pair.
Dressing the virtual diagram, shown in Fig. 2 (a), poses no problems, since the gluon itself does not
interact with the target20. For each LO virtual contribution in (11), as well as their self–energy–
like analogues, there is just one type of dressed virtual counterpart; e.g. in Fig. 2, diagram (c)
corresponds to dressing of diagram (a). The eikonal interactions with the target field remain

20At this point one might be worried that some of intermediate quark–gluon vertices (whose location is to be
integrated over) might lie on different sides of the target line – this is precluded by causality since the interaction is
restricted to the light-like support of the target field b+ = δ(x−)β(x). Even the dressed gluon line cannot propagate
back and forth across this hyperplane. This will be borne out by the explicit calculation.

19



unaffected by the dressing. The dressed propagator in (c) reduces to the dressed propagator in the
absence of the target field, and the running–coupling corrections may be directly obtained using
the tools of Sec. 3.1.

On the other hand, real–emission diagrams, such as the diagram in Fig. 2 (b), lead to two physically
different generalizations upon inserting fermion loops; these are shown in diagrams (d) and (e),
respectively. Diagram (d) contains the same eikonal factors as the LO diagram, while diagram (e)
contains a new channel: the production of a well separated qq̄–pair, which interacts with the target
field at two distinct points on the transverse plain z1 and z2. Instead of the single gluonic eikonal
factor Uz as in diagrams (b) and (d), in diagram (e) one encounters a factor 2 tr(taUz1t

bU †
z2

).
The distinction between the two, however, is lost if the transverse separation of the qq̄–pair (or
the invariant mass of the pair) becomes small: in this limit the qq̄–pair in the final state becomes
indistinguishable from a gluon. This (by necessity) is mirrored in the eikonal structure associated
with the diagrams:

lim
z1,z2→z

2tr(taUz1t
bU †

z2
) = Uab

z . (39)

Therefore, while in the virtual diagrams running–coupling corrections can be reconstructed solely
from bubble sums as in Fig. 2 (c), in the real–emission diagrams these corrections are associated
with both Fig. 2 (d) and the local limit of (e). However, real and virtual contributions are related
by the requirement of probability conservation: in the absence of interactions the dressed virtual
terms must cancel the dressed real contributions exactly. In the following we show that it is
possible to generalize the LO calculation of Sec. 2.1 in a way that manifestly implements all these
requirements. Specifically, the separation prescription between the running–coupling corrections
that we compute and the qq̄ production channel that we neglect, simply amounts to the replacement
of 2 tr(taUz1t

bU †
z2

) of diagram (e) by its local limit of (39), namely Uab
z . As announced, this is

automatically realized upon using the dressed propagator in the background field to compute the
diagrams of Eq. (10).

The main ingredient in the LO calculation in [20] is the propagator of the fluctuation δA in the
presence of the background field b+. The calculation sketched in Sec. 2.1 was performed in the
A− = 0 axial gauge in order to reduce the number of diagrams that contribute. These diagrams are
shown in Eq. (10). The eikonal nature of the interaction in these diagrams implies that one only
needs the “++” component of the fluctuation propagator, 〈δA+

x δA
+
y 〉ab. This remains true for the

dressed propagator.

At LO, the gluon propagator can be expressed (see Eq. (45) below) in terms of an external ten-
sor structure and the propagator i Gab

0 (x′, y′) of a massless scalar field in the adjoint color rep-
resentation, propagating through the target field [3]. Our generalization will involve its massive
counterpart i Gab

m (x′, y′). Since the structure of the propagator has been discussed extensively in
the literature [3, 102], we only describe here the key ingredients that will be needed to apply the
dispersive method and re-derive the JIMWLK equation with running coupling.

Massive scalar propagator in the background field

The starting point is a spectral representation of the massive scalar propagator

Gab
m (x, y) :=

∫
d4k

(2π)2
1

k2 −m2 + i0
[φk(x)φ†k(y)]ab , (40)
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where we have combined a spectral integral over the virtuality
∫
dk2, and the sum over all states

at fixed virtuality,
∫
d2k⊥ dk

−/(2k+), into one 4-dimensional integral
∫
d4k.

Here φac
k (x) are the solutions of the Klein-Gordon equation at virtuality k2 = 2k+k− − k2 in the

background field b+ of Eq. (3):

(−D[b]2 − k2)abφbc
k (x) = 0 , (41)

where a and b are color indices and c is a basis label. Dµ[b] = ∂µ − igbµ is the (adjoint) covariant
derivative in the background field (3). Explicitly,

φab
k (x) =

1

(2π)2

∫

d4p e−ip·x δ
(
p2 − k2

)
δ

(

1− p−

k−

) ∫

d2z e−i(p−k)z[U−1
x−,−∞(z)]ab , (42)

reflecting the fact that the interaction with the background field can transfer transverse momentum
from the target, while it cannot modify the conserved k− component nor the virtuality k2. The
color structure in (42) is carried by the adjoint eikonal factor [U−1

x−,y−
(z)]ab defined by

[U−1
x−,y−

(z)]ab :=




P exp







ig

x−

∫

y−

dz−δ(z−)β(z)












ab

. (43)

A straightforward calculation using (42) in (40) yields:

Gab
m (x, y) =

∫
dk−

2k−(2π)3
[
θ(x− − y−)θ(k−)− θ(y− − x−)θ(−k−)

]
∫

d2p⊥d
2q⊥

×
[

e−ip·x

∫
d2z⊥
(2π)2

e−i(p−q)z[U−1
x−,y−

(z)]abeiq·y

]

, (44)

where the 4-momenta p and q obey the constraints

p+ =
p2 +m2

2k−
; q+ =

q2 +m2

2k−
; p− = q− = k−.

Eq. (44) differs from the free massive propagator by the Wilson line (43) that represents the inter-
action with the target field. Since the interaction in (43) is localized at z− = 0, this Wilson line
reduces to Uz (defined in (2)) if x− > 0 > y−, to U †

z if x− < 0 < y− and to 1 otherwise. This
implies [3,102] free propagation21 when the endpoints x− and y− are both on the same side of the
z− = 0 hyperplane, while if they lie on opposite sides one encounters a three–step process: free
propagation from the initial point onto the hyperplane, a current interaction with the background
field, and free propagation again from there to the endpoint. Only in the latter case does the back-
ground field induce a change of the transverse momentum in the propagator. It is important to
note that these features carry over to the fluctuations propagator 〈δA+

x δA
+
y 〉ab in both the massless

and the massive case.

21With U = 1 there is no obstacle to performing the z integration in (44).
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Massive gauge–field propagator in the background field

The relevant, “++” component of the fluctuation propagator at LO is expressed in terms of the
scalar–field propagator i Gab

0 (x′, y′) as

〈δA+
x δA

+
y 〉ab = −

[
1

∂−

]

xx′

{

−D2[B]x′ i Gab
0 (x′, y′) +

−→
∂j

x′i G
ab
0 (x′, y′)

←−
∂j

y′

}[
1

∂−

]

y′y

. (45)

Here an integration convention over 4-vector coordinates x′ and y′ is implied. Note that one may
simplify the first term in this expression using the defining equation for G0, namely

D2[b]x′ Gab
0 (x′, y′) = δ(4)(x′ − y′).

We have chosen not to do this since Gab
0 (x′, y′) represents the propagating particle pole that will

be affected by the dressing, while the remainder of the expression will not change. To illustrate
that this is indeed the right procedure let us connect back to the free case, or alternatively restrict
ourselves to virtual diagrams such as Fig. 2 (c), by replacing

D2[b]ab −→ 2x′ iGab
0 (x, y) −→ i

2
(x, y) δab (46)

to obtain

〈δA+
x δA

+
y 〉ab

∣
∣
free

= −
[

1

∂−

]

xx′

{

−2x′

[ i

2

]

x′y′

+
−→
∂j

x′

[ i

2

]

x′y′

←−
∂j

y′

}[
1

∂−

]

y′y

δab. (47)

This coordinate–space expression may be readily Fourier–transformed and shown to coincide with
the “++” component of the free axial–gauge propagator22 of (25b), which is (1/k2) 2k+/k−. One
can in fact relate the two terms in (47) respectively, to the contributions of longitudinal and trans-
verse polarizations in the conventions of light–cone perturbation theory. To this end let us define
transverse polarizations by

ǫT
µ λ :=

(
k · ǫλ

T

k−
, ǫλ

T , 0

)

based on ǫλ
T :=

(
1, i(−1)λ+1

)
/
√

2 with λ = 1, 2 .

Here we used the notation (+,⊥,−)µ for the components of a four–vector. We may then recast
Eq. (25b) (before dressing the propagator), for our light–cone gauge (where n2 = 0), as

1

k2

(

gµν −
nµkν + kµnν

k · n

)

= − nµnν

(k · n)2
k2 1

k2
−
∑

λ=1,2

ǫ∗T
µ λǫT

ν λ

k2
. (48)

This uniquely identifies the second term in (47) with transverse polarizations while the first term
is related to longitudinal contributions.

In (47) the factors i
2

(x, y) correspond to the propagating particle pole 1/k2 in (25b), which get
multiplied by 1/(1 + Π(k2)) upon dressing the gluon. The point of separating the simple tensor
structure of (1/k2) 2k+/k− by polarizations into two terms as in (45) and (47) is that the separation

22For our purposes the gauge vector n projects out the minus component of a vector: n · a = a−.
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helps to extract the leading small–x contribution: when used in the diagrams of Eq. (10), only the
second term contributes a logarithm in 1/x, while the first term is subleading.

Eq. (47) offers a straightforward route to apply the dispersive method for virtual diagrams such as
Fig. 2 (c). As explained above, in this case the dressed propagator does not interact with the target
field, so the standard dispersive method described in Sec. 3.1 directly applies. Following Eq. (31)
one replaces 1/k2 by 1/(k2 −m2) or, in coordinate language

[ i

2

]

x′y′

→
[ i

2 +m2

]

x′y′

.

After making this replacement in (47) the first term may be further split according to

−2x′

[ i

2 +m2

]

x′y′

= − iδ(4)x′y′ + m2
[ i

2 +m2

]

x′y′

, (49)

so the massive propagator finally takes the form

〈δA+
x δA

+
y 〉ab

m

∣
∣
free

= −
[

1

∂−

]

xx′

{

− iδ(4)x′y′ + m2
[ i

2 +m2

]

x′y′

+
−→
∂j

x′

[ i

2 +m2

]

x′y′

←−
∂j

y′

}[
1

∂−

]

y′y

δab.

(50)
As we shall see below, the δ-function term does not generate a logarithm in 1/x, while the other
two terms do, and will therefore be relevant for the JIMWLK equation.

The dispersive representation of the dressing was derived in the free case and it therefore directly
applies only to (50) and thus to the resummation of running–coupling corrections in the virtual
diagrams in the JIMWLK Hamiltonian. Nevertheless, a similar procedure can be applied to real–
emission diagrams, where it provides a natural definition of the running–coupling contribution,
whose separation from the qq̄-pair production channel is a priori ambiguous. To this end we
construct the massive propagator in the background field by reversing the replacements (46) in (50):

〈δA+
x δA

+
y 〉ab

m = −
[

1

∂−

]

xx′

{

− iδ(4)x′y′ + m2 i Gab
m (x′, y′) +

−→
∂j

x′i G
ab
m (x′, y′)

←−
∂j

y′

}[
1

∂−

]

y′y

. (51)

By using this propagator in both real and virtual diagrams, the real–virtual cancellation mechanism
is in place, just as at LO. Thus, probability conservation is guaranteed. It is by this fundamental
principal that the dressing of the virtual diagrams by fermion–loop insertions, which is uniquely
determined by (50) using the dispersive method, essentially dictates the structure of running–
coupling corrections in the JIMWLK kernel as a whole.

Generalization of the dispersive approach

To incorporate running–coupling corrections in the derivation of the JIMWLK equation, we will
modify the fluctuation propagator in analogy with Eq. (36), namely

αs

π
〈δA+

x δA
+
y 〉ab → 1

β0

∞∫

0

dm2

m2
ρV (m2)

[

〈δA+
x δA

+
y 〉ab

m − 〈δA+
x δA

+
y 〉ab

0

]

, (52)
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where 〈δA+
x δA

+
y 〉ab

m is given in (51). Note this modification can be traced back to a substitution in
the scalar propagator

αs

π
Gab

0 (x, y) =
αs

π

∫
d4k

(2π)4
[φk(x)φ†k(y)]ab

k2 + i0
→

∫
d4k

(2π)4
αV

s (−k2 − i0)

π

[φk(x)φ†k(y)]ab

k2 + i0
(53)

=
1

β0

∞∫

0

dm2

m2
ρV (m2)

[

Gab
m (x, y)−Gab

0 (x, y)
]

,

where in the final expression we used the dispersive representation of the running coupling (34).
Restoring the tensor structure then yields (52).

As explained above, our procedure, which uses the propagator (51) for both virtual and real–
emission diagrams guarantees probability conservation. Its diagrammatic interpretation at the level
of fermion loops can be read off Fig. 2: in the absence of interaction, (the limit U → 1), the sum of
diagrams (d) and (e) reduces to diagram (c) and their cancellation is complete; as the interaction
is turned on they become distinct and evolution takes place. At the same time a new channel, the
production of a qq̄ pair in diagram (e), opens up. Our procedure uses the leading–Nf corrections in
the virtual diagrams to identify (define) running–coupling corrections. This amounts to a specific
separation of the leading–Nf corrections in the real–emission diagrams into ones that are part of
the running coupling and ones that constitute the new production channel of diagram (e). By
virtue of Eq. (39) the local limit of diagram (e) is included in the running–coupling contribution.
As a consequence, real–virtual cancellation holds separately for the running–coupling corrections,
and the remainder, namely the new qq̄ production channel can be computed separately: it is a
well–defined NLO contribution to the kernel that is not associated with the running coupling. This
is confirmed by an explicit calculation of the diagrams using light–cone perturbation theory [103].

Finally, let us briefly comment on the separate terms in Eq. (51). We begin by observing that,

as in the LO case, the first term in (51), − iδ(4)x′y′ , is suppressed at large p− and will therefore not

contribute to the evolution equations. The two terms containing Gm, however, will generate ∂−

contributions in the numerator, and will therefore contribute to logarithmically–enhanced terms
at small x through

∫
dp−/p− = ln(1/x). Next, we note that the two surviving terms are very

different in nature: the last term is already present in the LO fixed–coupling calculation, while the
middle term does not contribute there, as it vanishes in the m→ 0 limit. It starts contributing at
NLO. This is in keeping with the different origin of the terms: the transverse partial derivatives
in the last term reflect the Weizsäcker-Williams field structure of the LO emission kernel (55)
that is entirely driven by transverse polarizations. The middle term, in contrast, arises entirely
from longitudinal polarizations that are absent at leading order. As such it has an entirely new
dependence on the transverse coordinates not present at LO. The corresponding diagrammatic
calculation in [103] confirms this structure and the association of the terms with transverse and
longitudinal polarizations; the latter enter there (starting at NLO) via instantaneous contributions.

3.3 Application to JIMWLK

The dispersive method introduces running–coupling corrections by performing a direct replacement
of the gluon propagator in the leading–order calculation according to (52). Therefore, the gener-
alization of the JIMWLK equation to running coupling essentially constitutes of recalculating the
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LO diagrams of (10) with the massive propagator of (51) instead of that of (45). In the following
we first present an explicit calculation of one of the diagrams, and then generalize and derive the
running–coupling corrections to the Hamiltonian H[U ] in (6) .

Let us first recapitulate the ingredients: in (10) we consider the calculation of the leading logarithmic
correction to the propagation of a fast moving dipole, a qq̄-pair. As explained in Sec. 2, this object
can be represented as a product of two Wilson lines along the classical trajectories of the quarks.
We take the trajectories to lie along the minus light–cone direction at x+ = 0. The pair is then
characterized by the transverse locations x and y of the quark and antiquark, respectively.

The first diagram23 in (10) contains all the information we need: the other two can be deduced
from it. It describes the leading ln(1/x) contribution to the exchange of a gluon between the two
quarks in the presence of Weizsäcker-Williams background field. The result (see [20, 23]) involves
the fluctuation propagator and the Wilson lines that represent the external quark and antiquark:

= g2

∫

dx− dy−
〈
δA+

x δA
+
y

〉ab

0

×
(

θ(−x−)Uxt
a + θ(x−)taUx

)

⊗
(

θ(y−)U †
yt

b + θ(−y−)tbU †
y

)

,

which, after some algebra involving the fluctuation propagator (45) (see below) may be recast as

=− αs

π2
ln(1/x)

∫

d2zKxzy

(

[U ]ab
z taUx ⊗ tbU †

y + [U †]ab
z Uxt

a ⊗ U †
yt

b

− δab
[
Uxt

a ⊗ tbU †
y + taUx ⊗ U †

yt
b
])

. (54)

The four terms on the r.h.s are in one–to–one correspondence with the four diagrams in Eq. (11),
and K is a purely two–dimensional scale–invariant kernel, given by

Kxzy = −∂j
x∂

j
y

∫
d2p d2q

(2π)2
eip(x−z)

p2

eiq(z−y)

q2
=

(x− z) · (z − y)

(x− z)2(z − y)2
= − r1 · r2

r12 r22
=

1

2

r2 − (r21 + r22)

r12 r22
,

(55)

where we used the notation for “parent–” and “daughter–dipoles” introduced in (8). The last
formula shows explicitly that this leading order kernel changes sign at a circle whose diameter is
defined by the “parent.” To arrive at the final expression in (54) with the kernel of (55) we have
performed the x− and y− integrals, using (45) with the explicit formula for Gab

0 (x, y), given by (44)
with m = 0. These integrations give rise to factors 2p−/p2 and 2q−/q2, respectively. The minus
momentum components in the numerator compensate the explicit ∂− in the denominator in (45),
while the additional

∫∞

0 dk−/k− in Gab
0 (x, y) leads to the factor ln(1/x) upon imposing cutoffs in x.

Note that the first term in the curly brackets in (45) reduces to − iδ(4)x′y′ and it does not contribute

to the equation since it is suppressed at large p−.

Eqs. (54) and (55) summarize the result for one of the diagrams in (10) used in deriving the
JIMWLK equation [20]. As announced we will now use this diagram to demonstrate how the

23This quantity was called χ̄qq̄
xy in [20].
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JIMWLK equation can be promoted to running coupling by means of the dispersive method. To
this end we use the substitution (52) obtaining

αs

π
→ 1

β0

∫ ∞

0

dm2

m2
ρV (m2)








(m)− (m = 0)







. (56)

Recall that ρV (m2) is a universal object, the discontinuity of the coupling on the time–like axis,
defined in (33). To compute running–coupling corrections using (56) we need to repeat the calcula-
tion of the diagram, but now with the massive propagator of (51) instead of the massless one (45).
Doing this we find that Eq. (54) is unmodified while Kxzy is replaced by its massive counterpart:

Kxzy → Km
xzy = −

(
∂j

x∂
j
y +m2

)
∫
d2p d2q

(2π)2
eip(x−z)

p2 +m2

eiq(z−y)

q2 +m2
, (57)

where the two terms ∂j
x∂

j
y andm2 originate in the last and the middle terms in Eq. (51), respectively.

As in the LO case, the − iδ(4)x′y′ term in Eq. (51) does not contribute in the small–x limit.

Let us now compute the integrals in (57) explicitly. Denoting the “daughter dipoles” respective
lengths by ri := |ri| (i = 1, 2) we obtain:

Km
xzy =Kxzy r1mK1(r1m) r2mK1(r2m) − m2K0(r1m)K0(r2m) (58)

where Kxzy is the LO kernel of (55) and K0(x) and K1(x) = −dK0(x)/dx are K-Bessel functions.
These functions depend only on the lengths of the vectors ri, not on the angles — a direct con-
sequence of the angular integration in (57). Angular dependence appears here only through the
derivative ∂j

x∂
j
y, giving rise to the factor Kxzy in the first term in (58), just as at LO.

The next observation is that upon applying the dispersive method to the self–energy diagrams in
Eq. (10), in analogy with (56), one recovers again the LO result with the kernel of (57). Thus,
all the diagrams share the same massive kernel Km

xzy of Eq. (58). Since also the dispersive inte-
gral of Eq. (56) is common to all three diagrams, running–coupling corrections to the JIMWLK
Hamiltonian H[U ] of (6) appear through the replacement:

αs

π
Kxzy → Kxzy

1

β0

∫ ∞

0

dm2

m2
ρV (m2)

[

F(r1m, r2m)− 1
]

, (59)

where we defined the “characteristic function” F(r1m, r2m), following the general discussion in
Sec. 3.1, by extracting the LO kernel:

Km
xzy =:Kxzy F(r1m, r2m) = Kxzy

[

FT (r1m, r2m) + FL(r1m, r2m)
]

,

FT (r1m, r2m) = r1mK1(r1m) r2mK1(r2m) ,

FL(r1m, r2m) = m2 r1
2 r2

2

r1 · r2
K0(r1m)K0(r2m) ,

(60)

and used the fact that lim
m→0

F(r1m, r2m) = 1. Here FT and FL correspond to the first and second

terms in (58), which in turn originate in the ∂j
x∂

j
y and m2 terms is (57), respectively. As mentioned
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in Sec. 3.2 (see Eq. (51) there) these terms are associated with transverse (T ) and longitudinal (L)
gluons, respectively, which explains the notation in (60). As we see, these two contributions to Km

xzy

are rather different in nature: the first can be naturally written as a product of the scale–invariant
kernel Kxzy times a function of the lengths of the “daughter dipoles”, while the second brings in
an entirely new structure that does not share the angular dependence of the LO kernel.

We also introduce a notation for the “effective charge”

R(r1Λ, r2Λ) :=
1

β0

∫ ∞

0

dm2

m2
ρV (m2)

[

F(r1m, r2m)− 1
]

, (61)

which plays the rôle of a scale–dependent αs/π in all our calculations: the substitution of

αs

π
Kxzy →Mxzy := R(r1Λ, r2Λ) Kxzy (62)

in (6) promotes all the fixed coupling diagrams entering the JIMWLK equation to running coupling.
The running coupling corrected JIMWLK Hamiltonian then reads

H[U ] = − 1

2π
Mxzy

[

Uab
z

(
i∇̄a

xi∇b
y + i∇a

xi∇̄b
y

)
+
(
i∇a

xi∇a
y + i∇̄a

xi∇̄a
y

) ]

. (63)

All other ingredients in the JIMWLK equation (5) and the definition of correlator averages (4)
remain unchanged. Eq. (62), and with it (63), is our key result that fully implements running
coupling in the JIMWLK equation.

3.4 Borel representation of the resummed kernel

To systematically define the perturbative sum and analyze power corrections in the JIMWLK kernel
Mxzy, it is convenient to write a Borel representation of the “effective charge” R, in the form of
Eq. (29):

Mxzy = Kxzy R(r1Λ, r2Λ, ) =
1

β0

∫ ∞

0

du T (u)

(
µ2

Λ2

)−u

Kxzy B(u, r1µ, r2µ), (64)

where the Borel function is related to the characteristic function F (see Eq. (38)) by

B(u, r1µ, r2µ) = − e
5
3 u sinπu

π

∫ ∞

0

dm2

m2

(
m2

µ2

)−u[

F(r1m, r2m)− 1
]

. (65)

Owing to the different nature of the transverse and longitudinal contributions to F , it is convenient
to deal with them separately also on the level of the Borel function. To this end we write

B(u, r1µ, r2µ) = BT (u, r1µ, r2µ) +BL(u, r1µ, r2µ), (66)

corresponding to the two terms in (60). Below we present explicit expressions for these functions
in both momentum and coordinate space. Using (57) and (65) we obtain the following expressions
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as Fourier transformations from momentum space:

Kxzy B
T (u, r1µ, r2µ) = − e 5

3u sinπu

π

∫
d2p d2q

(2π)2
eip·r1e−iq·r2

×
∞∫

0

dm2

m2

(
m2

µ2

)−u

(−1)

[
p · q

(p2 +m2)(q2 +m2)
− p · q

p2 q2

]

= − e 5
3u

∫
d2p d2q

(2π)2
eip·r1 e−iq·r2

p · q
p2 q2

q2
(

p2

µ2

)−u

− p2
(

q2

µ2

)−u

q2 − p2
, (67a)

Kxzy B
L(u, r1µ, r2µ) = − e 5

3u sinπu

π

∫
d2p d2q

(2π)2
eip·r1 e−iq·r2

×
∞∫

0

dm2

m2

(
m2

µ2

)−u −m2

(p2 +m2)(q2 +m2)

=− e 5
3u

∫
d2p d2q

(2π)2
eip·r1eiq·r2

(
p2

µ2

)−u

−
(

q2

µ2

)−u

p2 − q2
. (67b)

These expression assume a perhaps more familiar form if we restrict ourselves to one–loop running,
where, with T (u) = 1, expanding under the Borel integral amounts to replacing the powers of the

momenta k = p, q, i.e.
(
k2/µ2

)−u
by the corresponding geometric series according to

(
k2

µ2

)−u

→ αs(µ
2)

π

1

1 + β0αs(µ2)
π ln (k2/µ2)

. (68)

In fact, using (64) and (68), the expressions in (67) can be directly mapped onto the expressions
derived diagrammatically in [103].

We note that in the purely virtual case of Fig. 2 (c) the result simplifies in the expected manner:
there the z integral may be performed and, in the absence of interaction with the target, it sets
q = p. Then the sum of the integrands of transverse and longitudinal contributions (67) yields

1

p2

(
p2

µ2

)−u

(1 + u)

︸ ︷︷ ︸

from KBT

− 1

p2

(
p2

µ2

)−u

u

︸ ︷︷ ︸

from KBL

=
1

p2

(
p2

µ2

)−u

. (69)

Via (68), this corresponds to (1/p2)αs(p
2 e−

5
3 )/π, which is the expected contribution of a gluon

of transverse momentum p2 that does not interact with the background field. Note that there is
an important cancellation at NLO (and beyond) between the separate contributions of transverse
and longitudinal gluons. On the level of the dispersive integrals used to define BT and BL this
cancellation is even more obvious: for Km

xzy (c.f. Eq. (57)) it takes the form

p · q +m2

(p2 +m2)(q2 +m2)

q →p−−−→ 1

p2 +m2
, (70)

which has exactly the same interpretation.
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Direct Fourier integration of the perturbative sum obtained through (68) is not well defined owing to
the Landau pole. In this respect these all–order expressions are largely symbolic. Correspondingly,
the Borel integrals of both (67a) and (67b) converge for u→∞ only when the momenta are larger
than the QCD scale Λ. Thus, when we exchange the order of integrations and perform the Borel
integration after the Fourier transforms, the Borel integral will no longer be unambiguous for any
value of the coordinates. As we shall see explicitly below, the coordinate–space Borel function
exhibits poles along the integration path, at positive integer values of u. This reflects ambiguities
in summing the series, which are indicative of power corrections (see the general discussion in
Sec. 3.1). Knowing the location of the poles and the parametric dependence of their residues on the
hard scales involved, one can estimate the effect of non-perturbative power corrections. It is the
advantage of the Borel method to expose these power corrections in such a clear and concise way.

With this in mind we now perform the Fourier transformation of the Borel functions. The all–order
expressions lead to infinite sums that can be recast in terms of hypergeometric functions. The
calculation is done using integral representations of the Bessel functions. The integrals over the
dispersive mass intertwine the parameter integrations so that it becomes necessary to use Mellin-
Barnes representations to decouple them. The Mellin-Barnes integrals are done last and lead to
infinite sums of residues. Details of the rather involved algebra are given separately for BT and BL

in Appendix A and B, respectively.

To express the results in a compact manner we define

r> := max {r1, r2} ; r< := min {r1, r2} ; ξ :=
r<
r>
. (71)

We present two versions for each of the results for BT and BL, as a series in ξ2 and in 1 − ξ2,
respectively. This is important for numerical implementations near ξ = 0 and ξ = 1, respectively,
and will be used in Sec. 6.1 below. In addition, the first form conveniently displays the singularity
structure and the functional form of the residues, while the second form is convenient for performing
an expansion in u, in order to extract the perturbative coefficients.

The coordinate–space result for BT is:

Kxzy B
T (u, r1µ, r2µ) =

r1 · r2

r21r
2
2

(

4 e−
5
3

r2>µ
2

)−u
sin(πu)

π

{

Γ(1− u)Γ(−u)

+

∞∑

k=0

(ξ2)1+k Γ(2− u+ k)Γ(1− u+ k)

Γ(1 + k)Γ(2 + k)

×
(

Ψ(2− u+ k) + Ψ(1− u+ k)−Ψ(2 + k)−Ψ(1 + k) + ln ξ2
)}

,

(72a)

which can be recast in terms of a hypergeometric series 2F1 using 15.3.11 of [104]

=− r1 · r2

r21r
2
2

(

4 e−
5
3

r2>µ
2

)−u
sin(πu)

π

u(1− u)Γ2(−u)Γ2(1− u)
Γ(2 − 2u)

× 2F1

(
1− u,−u
2− 2u

∣
∣
∣
∣
1− ξ2

)

.

(72b)
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A useful alternative expression to (72b) can be obtained using the identity:

2F1

(
1− u,−u
2− 2u

∣
∣
∣
∣
1− ξ2

)

= ξ2
[

1 − 1− ξ2
1− u

d

dξ2

]

2F1

(
1− u, 1− u

2− 2u

∣
∣
∣
∣
1− ξ2

)

. (73)

The result for BL is:

Kxzy B
L(u, r1µ, r2µ) =− sin(πu)

π

1

r2
>

(

4 e−
5
3

r2
>µ

2

)−u ∞∑

k=0

(
Γ(k + 1− u)

Γ(k + 1)

)2
(
ξ2
)k

×
(

ln(ξ2)− 2Ψ(k + 1) + 2Ψ(k + 1− u)
)

, (74a)

which again can be expressed in terms of a hypergeometric function, this time using 15.3.10 of [104],

= +
sin(πu)

π

1

r2
>

(

4 e−
5
3

r2
>µ

2

)−u
Γ4(1− u)
Γ(2 − 2u)

2F1

(
1− u, 1− u

2− 2u

∣
∣
∣
∣
1− ξ2

)

.

(74b)

The result is fully symmetric in r1 and r2, in particular all coefficients in an expansion in powers
of u (or αs) have this property.

Our expressions for BT and BL can be put to use in several ways. The first two pertain to obtaining
information on the perturbation theory:

• A generating function for the perturbative expansion in powers of αs(µ
2) (at a fixed scale).

To this end one expands the results for the Borel function around u = 0 and then integrates
over u in (64) term by term. Assuming one-loop coupling (T (u) = 1) this amounts to the
replacement:

un −→ n!

(

β0
αs(µ

2)

π

)n+1

. (75)

• Knowing the analytic structure of the Borel function, which has a leading renormalon sin-
gularity at u = 1, it is clear that the expansion: (1) does not converge, and (2) it is not
Borel summable; A definition of the sum in (64) is required. Starting from the expansion, a
natural prescription is to truncate the sum at the minimal term. A more systematic regular-
ization, which has been found useful in several applications in QCD, see e.g. [52, 54, 101], is
the Principal Value (PV) of the Borel integral in (64).

In the next section (Sec. 4) we will perform the perturbative expansion of the JIMWLK kernel,
study numerically its apparent convergence in the first few orders, and compare it to the PV Borel
sum. We also examine the approximation of the sum by scale setting. These issues are revisited in
Sec. 6 where we examine the effect of the newly computed higher–order corrections on the evolution
in the case of the BK equation.

The third application goes beyond perturbation theory; we can extract information on the power
corrections from the integrand: in (64):
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• The renormalon poles at positive integer u in BT and BL can be used to infer the parametric
form and significance of non-perturbative power corrections that are expected to affect the
evolution kernel.

This is discussed in Sec. 5 for a single evolution step and re-visited in Sec. 6 when solving the
evolution equations numerically.

4 Perturbation theory

Having computed the Borel function B(u) entering Eq. (64), we have essentially determined the
expansion coefficients for R(r1Λ, r2Λ), and thus for the JIMWLK evolution kernel, to all orders
in the large–β0 limit. To get the coefficients one expands the expressions for BT (u, r1µ, r2µ) and
BL(u, r1µ, r2µ) in Sec. 3.4 under the integral in (64),

BT (u, r1µ, r2µ) = 1 +
∞∑

n=1

bTn (r1µ, r2µ)un; BL(u, r1µ, r2µ) =
∞∑

n=1

bLn(r1µ, r2µ)un (76)

and integrates over the Borel variable term by term24, to obtain:

Mxzy = R(r1Λ, r2Λ)Kxzy =Kxzy

αs(µ
2)

π

(

1 +

∞∑

n=1

n!

(

β0
αs(µ

2)

π

)n

bn(r1µ, r2µ)

)

, (77)

with

bn(r1µ, r2µ) := bTn (r1µ, r2µ) + bLn(r1µ, r2µ) . (78)

The purpose of this section is to study the effect of these perturbative corrections to the JIMWLK
evolution kernel.

Explicit expressions for the expansion coefficients will be presented in Eqs. (80) and (82) below.
Before looking into the details, let us briefly recall what one expects on general grounds following
the discussion in Sec. 3.1:

• The all–order sum is renormalization scale invariant: Eq. (64) is renormalization–scale
inavriant. This means that also (77) shares this property, if it is formally considered to all
orders. However, the choice of the expansion parameter would make any finite–order partial
sum scale dependent.

• The series in non-summble owing to infrared renormalons, which amount to

power–suppressed ambiguities: Going beyond the level of a finite–order partial sum,
in an attempt to compute R(r1Λ, r2Λ) to all orders, one finds infrared renormalon ambigui-
ties. Let us explain how they arise here: since B(u) in (64) has a finite radius of convergence
(u = 1), bn in (77) are characterized at high orders by geometrical progression with no sign
oscillation. With the explicit n! growth in (77), it is obvious that the series would not con-
verge, but instead reach a minimal term, and then start diverging. An optimal perturbative

24Since we are using one–loop running coupling, this amounts to making the replacement of Eq. (75).
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approximation may be defined by truncation at the minimal term. This, however, is incon-
venient since the truncation order may (and in our case does) depend on all the scales in the
problem (in our case r2, r21 and r22). A more systematic definition of the sum can be made
using the Borel sum (80). This integral does not exist as it stands, since the poles appear
at real positive values of u, on the integration path. One can define the sum by shifting the
contour above or below the real axis, or by choosing the Principal Value (PV) prescription.
The differences between these choices are power–suppressed in the hard scales: they scale as
integer powers of Λ2r2, Λ2r21 and Λ2r22 (up to logarithms, see Sec. 5). The size of this ambi-
guity is obviously controlled by the residues of B(u) in (80) and can therefore be explicitly
computed. It is also similar to the magnitude of the minimal term in the series. Since these
ambiguities are expected to cancel against non-perturbative power corrections, they provide
important information on such corrections to the kernel, that are otherwise unknown. We
will return to discuss these corrections in detail in Sec. 5.

Our default choice for defining the all–order sum of the series is the PV prescription. Having made
this choice, we will examine the convergence of the perturbative expansion in the first few orders,
and demonstrate (Fig. 3) the dependence of this (apparent) convergence on the region of phase
space as well as on the choice of the expansion parameter.

Technically, the implementation of the PV regularization in the present case is complicated by the
fact that Eqs. (72) and (74) contain terms with double poles25 in u. We cope with this in the
standard technique by isolating the double pole contributions and using integration by parts. The
explicit expressions used in defining R are given in Appendix E; they are in turn based on the
explicit expression for the first– and second–order poles extracted in Appendices C and D.

The numerical result for the PV Borel sum is shown in Fig. 3. To appreciate the qualities of this
prescription as means of defining the all–order sum, it is useful to compare it with increasing–
order partial sums. The expansion of the Borel functions can be conveniently obtained starting

with expressions (74b) for BL and (72b) with (73) for BT , which involve 2F1

(
1−u,1−u

2−2u

∣
∣
∣ 1− ξ2

)

,

a special case of the type E function expanded in [107] (see Eq. (4.29) there). It is convenient to
define the dimensionless variable

Ω :=
4 e−

5
3−2γE

r2>µ
2

, (79)

which appears as the argument of the logarithms in the coefficients. The expansion for BT takes
the form

Kxzy B
T (u, r1µ, r2µ) =

1

2

r2 − (r21 + r22)

r21r
2
2

[

1 +
∞∑

n=1

bTn (r1µ, r2µ)un

]

, (80a)

where

bT1 (r1µ, r2µ) = − ln(Ω)− ξ2 ln(ξ2)

1− ξ2 , (80b)

25The current example is by no means unique in this regard. The same occurs also in the absence of large target
fields, e.g. for the well–studied example of the Adler function D(Q2) = 4π2dΠ(Q2)/dQ2, see [91, 105, 106].

32



bT2 (r1µ, r2µ) =
1

2

(

bT1 (r1µ, r2µ)
)2

− π2

6
− 1

2

(

ξ2 ln(ξ2)
)2

(1− ξ2)2 +
1 + ξ2

1− ξ2 Li2(1 − ξ2) , (80c)

bT3 (r1µ, r2µ) =
1

1− ξ2

{

− 1

6
(1− ξ2) ln3(Ω)− 1

2
ln2(Ω) ξ2 ln(ξ2)

+

[

(ξ2 + 1)
(
ln(1− ξ2) ln(ξ2) + Li2(ξ

2)
)
− ξ2 π2

3

]

ln(Ω)

+ 2 ξ2 ln2(ξ2) ln(1− ξ2) + 3 ξ2 ln(ξ2) Li2(ξ
2) + (2 ξ2 + 2)Li3(1 − ξ2)

− 2 ξ2 Li3(ξ
2) +

(

−4

3
+

10 ξ2

3

)

ζ3 − 4 ξ2(1− ξ2) dS2,2(z)

dz

∣
∣
∣
∣
z=1−ξ2

}

. (80d)

dS2,2(z)/dz in (80d) is the first occurrence of a Nielsen polylogarithm,

Sa,b(z) :=
(−1)a+b−1

(a− 1)!b!

∫ 1

0

dξ

ξ
lna−1(ξ) lnb(1− ξz) . (81)

At higher orders in the expansion one encounters [107] higher Nielsen polylogarithms, as well as
other harmonic polylogarithms [108].

The longitudinal part, BL starts at order u, corresponding to O(β0α
2
s). The expansion takes the

form:

Kxzy B
L(u, r1µ, r2µ) =

∞∑

n=1

Kxzyb
L
n(r1µ, r2µ)un , (82a)

where, from (74b), we find

Kxzy b
L
1 (r1µ, r2µ) = − 1

r2
>

ln(ξ2)

1− ξ2 , (82b)

Kxzy b
L
2 (r1µ, r2µ) = +

1

r2
>

ln(ξ2) ln(Ω) + 2Li2(1− ξ2)
1− ξ2 , (82c)

Kxzy b
L
3 (r1µ, r2µ) = − 1

r2
>

1

1− ξ2

[

ln(ξ2) Li2(ξ
2)− 2 Li3(ξ

2) + 2 ζ3 − 4 Li3(1− ξ2)

+
1

2
ln(ξ2) ln2(Ω) + 2 ln(Ω)Li2(1− ξ2)

]

.

(82d)

It is interesting to note that there is a qualitative difference between the leading behavior of the
transverse and the longitudinal contributions, respectively. The sign of the LO, transverse contri-
bution to the kernelMxzy in (77) can be directly read of Eq. (55); it is

MT
xzy > 0 inside the circle: r21 + r22 < r2

MT
xzy < 0 outside the circle: r21 + r22 > r2,

(83)

while the NLO longitudinal contribution to Mxzy, in (82b), is always positive.
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With the explicit expressions of (80) and (82) we can now study the convergence of the perturbative
series in (77) and compare the finite–order results to the PV definition of the all–order sum. Of
course, at this point we must26 make a choice of scale µ. Since Mxzy = R(r1Λ, r2Λ)Kxzy is
renormalization invariant (i.e. µ–independent) one may choose any function of r1, r2 and r as long
as the convergence of the perturbative series is good enough. As we shall see, this choice makes a
significant difference for the apparent convergence at the first few orders.

A priori, a natural choice (see Sec. 2.2) may be the “parent dipole” size: µ2 = c/r2. A posteriori,
knowing the coefficients in (80) and (82), one can optimize the scale to reduce the size of subleading
corrections. One possibility is to introduce BLM scale setting [80] by requiring that the entire NLO
coefficient b1(r1µ, r2µ) would vanish identically27:

Kxzyb
T
1 (r1µ, r2µ) +Kxzyb

L
1 (r1µ, r2µ) = 0

=⇒ µ2
BLM =

4

r2>
exp

{

−5

3
− 2γE +

ξ2 ln(ξ2)

1− ξ2
(

1 +
2r2>

r2 − r2> − r2<

)}

. (84)

In our case, however, this approach is too simplistic: since the leading–order kernel vanishes on the
circle r21+r22 = r2, as implied by (83), while the NLO contribution associated with BL does not, (84)
develops an artificial singularity within the parturbative region. Consequently, with this particular
choice of scale, higher–order terms would not be bounded on the circle, while no special difficulty
would arise there otherwise. While better possibilities for optimizing the scale exist — for example,
setting the BLM scale such that the NLO transverse contribution would vanish bT1 (r1µ, r2µ) = 0
— we will not take this avenue here. Let us just note in passing that the multi–scale nature of
the problem, which is reflected in the dependence on the parent and daughter dipoles — or in
momentum space by the separate Borel powers of the transverse momentum before and after the
interaction with the target (Eq. (67)) — renders any scale–setting procedure in terms of a single
coupling unnatural. Further progress in this direction will be reported in Ref. [103]. Here we
consider a couple of simple examples for the scale:

µ2 =
4e−5/3−2γE

r2
and µ2 =

8e−5/3−2γE

r21 + r22
. (85)

The choice of the constant 4e−5/3−2γE ≈ 0.24 is motivated by Eq. (84).

In Fig. 3 we show a numerical comparison of the order–by–order expansion with the PV Borel sum.
As expected, at short distance scales perturbation theory is well–behaved28: the first few orders
in (64) gradually approach the PV Borel sum. For larger distances, the corrections become large,
and the minimal term in the series is reached sooner (see Fig. 3 (b)). Eventually, for r1Λ of order
of a few times 10−1, the series diverges right from the start. Note that even in that region the PV
Borel sum is uniquely defined, but as we shall see in the next section, power corrections are large
as well.

26To avoid the ultraviolet problems of a conventional fixed–coupling calculation one in fact needs to choose µ as
some function of r1, r2 and r instead of a single homogeneous scale independent of the configuration encountered [45].

27To express the Kxzy in the transverse part in terms of dipole lengths only we substitute: −r1 · r2 = (r2 − r2
1 −

r2
2)/2, as in (55) above.
28If we allow the constant in (85) to vary significantly compared the choice indicated, the convergence in both

Figs. 3 (a) and (b) becomes appreciably worse, an obvious consequence of the logarithmic terms in the coefficients,
see (80) and (82).
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Figure 3: R(r1Λ, r2Λ) as defined with a PV regularization of the Borel sum (64), and the convergence of
perturbation theory at the first few orders, according to (77), with µ2 = 4 exp

(
− 5

3
− 2γE

)
/r2 (in (a)) and

µ2 = 8 exp
(
− 5

3
− 2γE

)
/(r2

1 + r2
2) (in (b)). R is shown as a function of r1, with rΛ = 10−4, r ‖ r1 ‖ r2 and

r2 = r1 + r.

It is interesting to further observe that there is a significant difference in the apparent convergence
in the first few orders between Figs. 3 (a) and (b): the “parent dipole” scale setting in Fig. 3 (a)
has significant corrections even at short distances, while with the scale choice of Fig. 3 (b) the first
few orders provide a better approximation. It should be emphasized though that Fig. 3 shows a
particular situation where r1, r2 ≫ r. If the dipole sizes are of comparable magnitude, there is no
significant difference between these two choices of scale29. The fact that “parent dipole” running
fails to approximate the kernel for r1, r2 ≫ r, makes a difference for evolution whenRs ≫ r1, r2 ≫ r.
We observe that parent dipole running in this region generically underestimates the perturbative
sum. Accordingly, in Sec. 6.2, we will see that evolution is slower with the “parent dipole” ansatz
than with the Borel sum.

In Fig. 4 we compare the PV Borel sum with two ad hoc running–coupling formulae, the “parent
dipole” running and the “square–root daughter–dipole” running:

Rparent = αMS

s

(
c2/r2

)
/π =

1

β0 ln (c2/(r2Λ2))
; Rsqrt =

[

αMS

s

(
c2/r21

)
αMS

s

(
c2/r22

) ]1/2

/π.

(86)

In these expressions we fix the scale c2 = 4 e−
5
3−2γE , as motivated by Eq. (85). This ensures that

these couplings would match the PV Borel sum soon enough when both r2, r1 ≪ 1/Λ. This is shown
on the right panel of Fig. 4. We note here that c2 here is much smaller than the value c2 = 4 arising

29For clarity, let us comment that we have chosen to show the function R with r1 parallel to r2. This avoids the
apparent divergence (r1 · r2)−1 in the definition of RL; this divergence is exactly canceled in the BK kernel when R
is multiplied by Kxzy .
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from a Fourier transform in the double logarithmic limit. From Fig. 4 it is clear that different
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Figure 4: Comparison of ad hoc implementations for effective couplings R calculated with the principal
value (PV) prescription, the “square root” prescription [αs(c

2/r2
1) αs(c

2/r2
2)]

1/2/π, and the parent dipole
running αs(c

2/r2)/π. On the left panel the size of the parent dipole is fixed, rΛ = 0.1 (and r2 = r1 + r); on
the right panel the ratio of the dipole sizes is fixed, r1 = 2r, r2 = 3r.

definitions of running coupling can be made to match reasonably well at small enough dipole sizes,
at least in parts of phase space, if the scales are chosen appropriately. On the other hand, at small
dipole sizes, already at 0.1–0.3× 1/Λ the coupling diverge strongly. This related of course to the

smallness of the effective scale at which the coupling is evaluated, µ2
eff ∼ 4 e−

5
3−2γE/r2. As we shall

see below, the effect of this divergence on the evolution rate (in the BK approximation) is somewhat
less important than for R. This is to be expected, as evolution rate is an inclusive observable, and
as such has reduced sensitivity to the phase–space region where the effective coupling is large.

5 Non-perturbative power corrections

After discussing the perturbative features in some detail, let us now turn to estimates the non-
perturbative corrections to the JIMWLK kernel Mxzy. The renormalon poles in R allow us to
determine the type of power corrections, and their parametric form, based on the singularities of
BT and BL. The original expressions in (72) and (74) have simple and double poles at integer values
of u. As explained in the Appendices C and D, we perform integration by parts over the double
pole terms to arrive at a representation of the Borel integral where the integrand is composed of
simple poles only; in this way the double poles have been converted into a simple ones accompanied
by a logarithmic–enhancement factor, ln(Ω) where Ω is given in Eq. (79). In this representation,
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the explicit expressions for the renormalon poles are the following:

KxzyB
T (u, r1µ, r2µ) =Kxzy







(

4 e−
5
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2

)−1
−2 + (1− ξ2)
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(−1)m
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5
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)−m
Γ(2m− (n+ 1))
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+ regular contributions (87a)
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∞∑
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>µ

2

)−m
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∞∑
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)−m
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(Γ(m))2(Γ(m− n))2





+ regular contributions . (87b)

To determine the ambiguity associated with each renormalon we should first sum transverse and
longitudinal contributions, and then isolate the residue at fixed u = m.

Power corrections are expected to follow this ambiguity structure. Let us therefore introduce a
non-perturvative parameter Cm, of order 1, relating each power correction to the corresponding
renormalon residue. The underlying assumption is that genuine non-perturbative effects would
be of the same order as the ambiguities. The parametric dependence of the corrections on the
hard scales then follow directly from the residues in Eq. (87): they are written as powers of r2>Λ2

times some function of ξ2, with additional logarithmic terms in Ω. The dependence soft scales is
subsumed in the coefficients Cm. In doing so we write the full kernelMxzy as a sum of perturbative

contributionsMPV
xzy and power corrections δM(m)

xzy:

Mxzy =MPV
xzy +

∞∑

m=1

δM(m)
xzy . (88)

As an example we explicitly present the power correction δM(1)
xzy corresponding to the leading

u = 1 renormalon:

δM(1)
xzy = C1

π

β0

{

Kxzy(1 + ξ2)− 1

r2<

[

ln
(
ξ2
)
− 2 ln

(

4 e−
5
3−2γE

r2
>Λ2

)]}

1

4
r2>Λ2 e

5
3 . (89)
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Figure 5: RPV and the expected range of power corrections for fixed rΛ = 0.1 (left panel), and fixed ratio
r1 = 2r, r2 = 3r (right panel) with r1 parallel to r2. The central solid line corresponds to the principal
value result. The shaded regions estimate the relevance of power corrections by adding and subtracting
π|residue|(u = m). The inner band takes the first residue at u = 1, and the outer hashed band is the sum
of absolute values of contributions from all residues. The dashed line shows the result when the u-integral
has been cut at umax = 0.75, before the first pole is encountered.

Fig. 5 shows R and the expected size of power corrections as functions of r1, for fixed parent dipole
r = 0.1/Λ, and for fixed ratio of dipole sizes r2 = r1/2 (here r2 = r1+r and r2 is parallel to r1). The
power corrections are assumed here to be of the order of the ambiguity in choosing an integration
contour in the Borel plane, π times the absolute value of the residues at u = m = 1, 2, 3 . . .. The
relative importance of renormalon poles can be seen from the width of the error band in Fig. 5.
The contribution from the pole at u = 1, Eq. (89), is shown separately. It is evident that this first
pole strongly dominates, except very close to 1/Λ, as expected from the hierarchy of powers in the
analytical expressions.

The key feature of the power corrections in Fig. 5 is the fact that they quickly die away at small
scales30. This feature is very robust and it does not depend on the detailed prescriptions used
to estimate the size of the power corrections. Just to give an example, one might estimate the
uncertainty by cutting off the u integral at some value umax < 1, before one encounters the first
renormalon pole. This is shown in Fig. 5 for umax = 0.75 with dashed lines. Clearly this prescription
leads to an alternative estimate for the perturbative sum for R which is roughly within the error
band of the full PV integral.

From Fig. 5 it becomes strikingly clear that the poles limit the precision of our knowledge of the
(non-perturbative) evolution kernel at large distances. We will see in Sec. 6, when we discuss
evolution in the context of the BK equation, that for Qs near 1 − 2GeV, where large dipoles
contributes significantly to the evolution, power corrections must be taken into account if one
wants to quantitatively determine the evolution. If we wish to apply JIMWLK or BK evolution

30Note that on the left panel of Fig. 5 r2 approaches r = 0.1/Λ as r1 → 0.
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starting from Qs–values in this range, both the evolution rate and the generic functional form of the
initial condition for the dipole cross section NY0,xy receive sizeable non-perturbative contributions.

6 Evolution in the BK approximation

Our discussion so far focused on the kernel of the JIMWLK equation. We computed and resummed
running–coupling corrections to the kernel and extracted an estimate for non-perturbative power
corrections. All these affect only the “effective charge” in front of the leading–order kernel, although
in a way that strongly depends on the size of the evolving dipole, and that varies significantly over
the transverse phase space of the newly produced dipoles. In order to explore the consequences
of these results on the evolution, one should clearly consider the solution of the equation over a
sufficiently large range in rapidity. Only in this way would it be possible to examine the sensitivity
of observable quantities, such as the rate of evolution, to the corrections computed.

The purpose of the present section is to perform a first exploration of this kind, by considering
the evolution in the case of the BK equation. To this end, let us repeat the derivation of the BK
equation, as described in Sec. 2.1, starting with the JIMWLK equation with the Hamiltonian of
Eq. (63), which includes running–coupling corrections. A simple way to see the way the corrections
enter is to first write the leading–order BK equation with the kernel separated according Eq. (10)
into exchange and self–energy–like diagrams:

∂YNY,xy =
Nc

2π

∫

d2z

[

2
αs(µ

2)

π
Kxzy −

αs(µ
2)

π
Kxzx −

αs(µ
2)

π
Kyzy

]

(90)

×
(

NY,xz +NY,zy −NY,xy −NY,xz NY,zy

)

.

The result obtained using (63) by repeating the steps of Sec. 2.1 simply amounts the substitu-
tion (62), separately for each of the three terms in (90):

αs

π
K̃xzy → M̃xzy = 2R(r1Λ, r2Λ)Kxzy −R(r1Λ, r1Λ)Kxzx −R(r2Λ, r2Λ)Kyzy (91)

where the vectors ri are defined in (8). Our final result for the resummed BK equation is then
written as

∂Y NY,xy =
Nc

2π

∫

d2z M̃xzy

(

NY,xz +NY,zy −NY,xy −NY,xz NY,zy

)

. (92)

6.1 Numerical implementation

The numerical solution of the BK evolution equation (92) requires care. In the following we briefly
describe the choices we made in our implementation. Firstly, we consider only translationally–
invariant and spherically–symmetric solutions; we set x → 0 and Nxy → N|y|. Despite this, the
z-integral in Eq. (92) renders the evolution equation in essence two-dimensional. The simplest
way to perform this integral is to discretize the two-dimensional space using a finite regular square
lattice. This was used in [45] in order to compare BK with JIMWLK evolution. This approach,
however, restricts the ratio of ultraviolet and infrared cutoffs (the ratio of the lattice size to the
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lattice spacing) to, at most, ∼ 104, and hence strongly limits the Y range over which the shrinking
correlation length Rs(Y ) can be resolved on such a lattice. A solution to this problem is to use
discretization with higher resolution power at small distances, as was done in [77].

To achieve this we discretize Nr on an even logarithmic scale, rn = r0 exp(n∆), using ∼ 250 points
with r min = e−22/Λ and rmax = 1/Λ. The two-dimensional integral in Eq. (92) is evaluated using
nested Simpson integrations in the (log |z|, argz) coordinates. While the values of |z| and |y| are
restricted to discrete rn-values, |z − y| is not. Thus, it is necessary to interpolate the value of
N|z−y| in Eq. (92) using the known points Nrn . We have checked the stability of the simulation by
changing the number of discretization points, and verified that this leads to a negligible change in
the results.

In order to evaluate the R-functions in the kernel M̃ of (91), we need to integrate over the Borel
function B(u). However, as described in Sec. 4, one cannot directly use the expressions in Eqs. (72a)
to (74b) when integrating over the positive real axis, because of the presence of single and double
infrared renormalon poles there. As described in App. E, the double poles were converted analyti-
cally into simple ones by means of integration by parts. The integration over the simple poles was
performed by a numerical implementation of the Principal Value prescription. This implementation
is based on different analytic formulae, depending on the value of ξ = r</r>: for ξ2 < 0.8 we use
(123a) and (123b) for RT and RL, switching over to (124) and (125) when ξ2 > 0.8. The integrals
are completely stable when the threshold value of ξ2 is changed within the interval (0.01, 0.99), and
our default value of 0.8 is chosen to optimize the evaluation speed. The numerical evaluation of
the kernel is further stabilized by pulling the integrands of the three R-functions appearing in (91)
under a single integral.

If the parent dipole is much smaller than the daughter dipoles, r≪ r1 ∼ r2, the kernel M̃ contains
large terms that cancel each other almost completely, leading to numerical difficulties. This can
be dealt with by recognizing that the large contributions arise in fact from the leading terms in
the series expressions of Borel functions Eqs. (124) and (125) appearing in (92) (in this parameter
region 1− ξ2 ≈ 0). Combining the first terms analytically stabilizes the evaluation of the series.

The evolution in rapidity Y is performed with the second-order Runge-Kutta method, with a “time”
step of δY = 0.05 . . . 0.1. Again, we observed no significant difference in the results upon varying
the step size.

6.2 Simulation results

The key feature of JIMWLK and BK evolution is scaling of the solutions with Qs(Y ) after the
initial–state effects have died out. This scaling is exact in the fixed–coupling limit and has been
shown to be retained to a very good approximation in simulations with ad hoc implementations of
running coupling. Also our all–order resummation result shows this feature, as is demonstrated in
Fig. 6.

The initial state in our simulations is Nini(r) = 1− exp[−r2/r20], where r0 sets the initial scale. The
evolution tends to flatten N(Y, r) until the scaling shape has been reached. However, the shape
remains considerably steeper than with fixed coupling, see Fig. 6 (b). From this plot we also see
that the scaling shape is quite similar for the running coupling corrections computed in this paper
and the ad hoc prescriptions shown. Thus, the asymptotic shape of N(Y, r) is largely insensitive to
the functional dependence of the scale of the coupling on the phase space.
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Figure 6: (a): The evolution of the function N(r) as a function of Y = ln 1/x, shown in intervals of
∆Y = 4. After initial settling down the function evolves towards smaller r while approximately preserving
its shape. The main effect of the running coupling is to slow down the evolution at small r. (b): The shape
of N(Y, r) using the computed running–coupling corrections (PV) as well as some running–coupling models,
taken at Y where the saturation scale Rs(Y ) = 0.005/Λ, where we define Rs through N(Y, Rs) = 1/2.
Different running–coupling forms display similar shapes for N(r), albeit slightly steeper for the parent–

dipole running; much shallower than the initial state Nini = 1 − e−r2/r2
0 , but much steeper than the fixed

coupling shape shown for comparison.

In Fig. 7 (a) we show the evolution of the saturation scale RsΛ as a function Y ; here the full PV
Borel sum result is compared with the parent–dipole running and the “sqrt” ansatz of (86). The
correlation length Rs characterizes the scale where N(Y, r) is changing and saturation sets in; here
we define Rs(Y ) through the condition N(Y,Rs(Y )) = 1/2. The initial Rs(Y = Y0) is ≈ 0.1/Λ.
We see that Rs(Y ) rapidly evolves towards smaller values.

We note that a different definition of Rs(Y ) would naturally give somewhat different curves. How-
ever, when the system has evolved sufficiently long so that it reaches the scaling form, all reasonable
definitions should yield Rs(Y ) values that differ only by a constant factor. Above all, the evolution
speed

λ(Y ) =
1

Q2
s(Y )

∂Q2
s(Y )

∂Y
= − 1

R2
s(Y )

∂R2
s(Y )

∂Y
; Qs := 1/Rs (93)

should be the same.

As with the ad hoc prescriptions, the most interesting consequence of running coupling on JIMWLK
and BK evolution is the fact that it drastically slows down the evolution compared to the purely
fixed–coupling case by restricting the active phase space to within one order of magnitude of the
characteristic scale Qs(Y ) [45]. This qualitative feature does not depend on the details of the imple-
mentation of the running–coupling effects. The precise value of the evolution speed, as expressed by
the evolution rate λ(Y ) on the other hand, does depend on these details. For fixed coupling, scaling
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Figure 7: (a): the evolution of the saturation scale Rs(Y ) with the computed running–coupling correc-
tions (PV), in comparison with a few different running–coupling models. The evolution starts at initial
Rs(Y = Y0) ≈ 0.1/Λ. The horizontal dotted line shows the value of Rs where N(r) was shown in Fig. 6.
(b): the evolution speed λ(Y ) plotted against the saturation scale Rs(Y ). The evolution starts at large Rs

values; the rapid increase at RsΛ ∼ 0.1 is an initial–state effect. Several choices of scale are presented for
the “parent dipole”, demonstrating the sensitivity to the scale and the fact that upon tuning the scale, this
model too can be made to agree with the resummed result for λ(Y ) at small Rs.

with Qs is exact, and λ becomes a constant proportional to αs(µ
2) [79]. With running coupling,

scaling is approximate, and λ becomes a function of Y that will receive both perturbative and
non-perturbative corrections via R(r1Λ, r2Λ), which we already examined numerically in Fig. 5.

While using Eq. (93) with N(Y,Rs(Y )) = C (where C = 1/2 was used above) is certainly possible,
during the initial stages of the evolution it is sensitive to the particular value of the constant C
chosen. A more robust definition is the one used in [45], using a 1/r2 moment of the evolution
equation as an operational definition of λ:

λ(Y ) =
Nc

2π

∫
d2r

r2

∫

d2z Mxzy

(
N(Y, r21) +N(Y, r22)−N(Y, r2)−N(Y, r21)N(Y, r22)

)
(94)

We will follow this convention here.

Our results for λ(Y ) are shown in Fig. 7 (b). Here we plot λ against Rs(Y ); in this way the
result is independent of the initial value for Y . The initial–state effects are visible as a very rapid
increase of λ near the initial (large) Rs. As soon as these effects die out, the evolution approaches
an initial–state–independent curve (see Fig. 8). On this curve N(r) has reached the scaling shape
shown in Fig. 6, and λ decreases slowly as Rs decreases at large Y . This is entirely driven by the
logarithmic decrease of the coupling at short distances.

In this plot one can also observe the sensitivity of the evolution rate to running–coupling corrections.
We show the resummed result computed by the PV prescription (full line) in comparison with LO
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evolution where the scale is set in variety of ways. LO parent–dipole running with µ2 = 4/r2

strongly under–estimates the evolution rate even at very small correlation lengths Rs. This clearly
demonstrates the significance of higher–order running–coupling corrections, which are included in
the PV Borel sum.

Interestingly, as seen in Fig. 7 (b), one can approximate the PV Borel sum result (at sufficiently
small Rs) with a variety of different functional forms, provided that an appropriate choice of scale
is made. Thus, despite the large differences in the “effective charge” between the resummed result
and the models considered — which are particularly significant for large dipoles — the differences
in λ, at sufficiently small Rs, reduce to an overall phase–space independent multiplicative factor
in the scale of the coupling. With the specific scales given in Eq. (85) the “square root” ansatz
approximates the PV Borel sum well, whereas parent–dipole running slightly underestimates it. In
the latter case, choosing µ2 = 2e

5
3−2γE/r2 yields a very good approximation to λ for RsΛ<∼10−2,

but somewhat over–estimates it at larger Rs. The possibility to approximate λ in (94) well as
a function of the correlation length (provided it is sufficiently small) in terms of a phase–space
independent coupling, such as the parent–dipole one, is probably related to the scaling property of
N(Y, r), namely the fact that its shape, which determines the weight given to different final states
in (94) is invariant.
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Figure 8: The evolution speed λ(Rs) for different initial conditions Nini(r) = 1 − exp(−r2/r2
0), using the

PV Borel sum. As the initial–state effects vanish, λ(Rs) approaches a universal evolution trajectory.

In Fig. 8 we show the evolution rate λ(Y ) as a function of Rs using different initial conditions. The
trajectories approach a universal curve, which is independent of the initial condition.

In Fig. 9 (a) we show the evolution rate as a function of Rs using the perturbatively expanded
kernel, Eq. (77) at different truncation orders. Here the scale of the coupling is chosen to be
µ2 = 8e−5/3−2γE/(r21 + r22) as in (85). We note that in contrast with the Borel sum, the perturbative
expansion suffers from a Landau pole when the daughter dipoles become too large. These Landau
singularities obstruct the phase–space integration, so the large ri region must be cut out. To avoid
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Figure 9: (a): Evolution using perturbatively expanded kernel, Eq. (77) with µ2 = 8e−5/3−2γE /(r2
1 + r2

2).
(b): Estimating the non-perturbative influence on λ(Rs) by adding and subtracting π × (residue at u = 1)
to the PV evolution kernel. The effect of the residue dies out quickly as Rs becomes smaller.

any visible effect by this cut we performed the simulation of Fig. 9 (a) with relatively small initial31

Rs. In the small Rs regime shown, one observe good convergence towards the PV Borel sum. At
sufficiently small Rs only the leading–order result differs significantly from the PV one. This is of
course specific to the (almost optimal) choice of scale made here. Much larger corrections appear
for a generic scale choice as we have already seen in Fig. 7.

Fig. 9 (b) shows the effect of the estimated power corrections on evolution. The relative importance
of the power corrections decrease with Qs(Y ): the active phase follows Qs(Y ) towards the ultravi-
olet. With increasing Qs(Y ) the uncertainty induced by power corrections dies away very rapidly.
Despite this general trend, it is apparent that a quantitative determination of evolution speed for
current experiments where Qs = 1 − 2 GeV, requires to take power corrections into account. To
test the predictive power of the approach, it is important to compare several distinct observables,
and address the universality of the relevant power corrections.

7 Conclusions

We have presented a first calculation of running–coupling corrections to both JIMWLK and BK
equations. We have shown that both these equations, which were originally derived at leading
logarithmic accuracy with strictly fixed coupling, can indeed be promoted to the running–coupling
case: the general structure of the equations remains the same, while the kernel receives corrections.
Running–coupling corrections are singled out from other radiative corrections in the following way:

31To study the fixed–order perturbative result at larger Rs with this or a similar phase–space dependent scale one
would have to consider the effect of the cut or introduce another regularization of the Landau pole.

44



with or without running coupling, the r.h.s of the evolution equation of any correlation involves
just one more Wilson line (the produced gluon) than the l.h.s (the evolving object); other radiative
corrections entering at the NLO involve up to two more Wilson lines. The number of additional
Wilson lines grows further at higher orders. It remains for future work to fully generalize the non-
linear small–x evolution equations to NLO. Some work in this direction, which is complementary to
ours, has already been done [56,57,76]. A full NLO generalization exists of course for the linear case
of the BFKL equation, and our expectation is that it exists in the non-linear case as well. Since the
BFKL equation is known in full at NLO, one can make a useful comparison. This goes beyond the
scope of the present paper. One important fact, however, that we do learn from the BFKL limit, is
that running–coupling corrections constitute a significant part of the total NLO correction. This,
we expect holds also in the JIMWLK and BK cases.

The significance of the running coupling in the context of JIMWLK and BK evolution has been
acknowledged long ago. For one thing, in fixed–coupling evolution the active phase space extends
way into the ultraviolet, while practically any dependence of the coupling on the scales present at
a single evolution step reduces the active phase space to within one order of magnitude around
the correlation length Rs [45]. For this reason all simulations of JIMWLK or BK evolution have
been performed with running coupling, implemented using some educated guess as to its scale
dependence. The simulations presented in this paper are the first where the scale dependence
is computed from QCD perturbation theory. While qualitative features of the effects of running
coupling on the evolution — e.g. the decrease of the evolution rate λ(Y ) with decreasing correlation
length Rs(Y ) at large Y — are similar to what has been observed before, the scale factor itself
has been determined here for the first time. As shown in Fig. 7, using the correct scale is crucial
in obtaining a quantitative estimate of the evolution rate. With this predictive power, we can
hope that non-linear evolution equations with running coupling would become directly applicable
to small–x phenomenology at LHC energies.

Technically, running–coupling corrections are computed, as usual, by focusing on a specific set of
diagrams where a single gluon is dressed by fermion–loop insertions, making use of the linearity of
β0 in the number of flavors Nf . To perform this calculation we utilized in this paper the dispersive
approach, where the all–order sum of vacuum–polarization insertions is traded for a dispersive
integral in the “gluon mass”. While this technique has been used extensively in the past, using
it to compute the diagrams entering the JIMWLK Hamiltonian is non-trivial for two reasons:
first, the large–Nf limit by itself is not sufficient to disentangle running–coupling effects from
the new production channel of a qq̄ pair; second, the presence of the strong Weizsäcker-Williams
background field may interfere with the “dressing” by interacting with the fermions. Guided by
the correspondence between real and virtual corrections owing to conservation of probability, we
could nevertheless disentangle running–coupling corrections from other contributions and generalize
the dispersive technique to the case of the background field. To this end we derived a dispersive
representation of the dressed gluon propagator in the background field. This formal development
may well have other applications.

By computing the JIMWLK Hamiltonian using the dispersive technique we could go beyond
the NLO O(β0α

2
s) running–coupling corrections to the kernel, and resum O(βn−1

0 αn
s ) corrections

to all orders in perturbation theory. Besides the obvious advantage of obtaining an exactly
renormalization–scale invariant kernel, the all–order calculation offers a unique window into the
non-perturbative side of the problem. The fact that infrared–finite evolution equations can be
established in the high–energy limit, does not mean of course that the dynamics governing the
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evolution is purely perturbative; non-pertubative dynamics affects the evolution though power–
suppressed corrections. By performing an all–order resummation one can get access to this infrared
sensitivity by looking at the ambiguity in separating perturbative and non-perturbative contri-
butions; these are the infrared renormalons. Using Borel summation we identified explicitly the
ambiguities in defining the perturbative sum, and in this way established an estimate for the para-
metric dependence the of non-perturbative effects on the hard scales involved and the potential
magnitude of these effects.

We find that both perturbative and non-perturbative corrections modify the evolution kernel in
a non-trivial way. In particular, these corrections depend on all the different scales present: the
“parent dipole” r as well as the two “daughter dipoles”, r1 and r2. In this way different final states
are weighted differently. An interesting feature at NLO and beyond is the appearance of two classes
of contributions: one that is proportional to the LO kernel, which is associated uniquely with trans-
versely polarized gluons, and one that is not, which is associated with longitudinal polarizations.
Both perturbative and non-perturbative corrections to the kernel, propagate through the evolution
and affect the rate at which the saturation scale Qs(Y ) flows towards the ultraviolet with increasing
energies. Conversely, the saturation scale itself determines the active phase space, leading to the
decoupling of soft modes at large Y .

We studied here the effect of the newly computed corrections on two levels: first by looking at
the “effective charge” controlling the contribution to the r.h.s. of the evolution equation, and
then by solving the BK equation numerically and studying the effects on the evolution itself. We
found, on both levels, that the running–coupling corrections are significant. Our simulations have
shown that non-perturbative corrections are strongly suppressed at high energies, reflecting the
fact that the increase of Qs(Y ) with energy moves the active phase space along with it towards
shorter distances. At presently accessible energies, where the saturation scale is estimated to be
Qs(Y ) ∼ 1 − 2 GeV, power corrections are definitely relevant. Going from high to low energies,
one may view the breakdown of the perturbative evolution as the onset of the Soft Pomeron. If
we accept this premise, our calculation opens a new way to think about the Soft Pomeron: as the
energy is lowered the number of power–suppressed terms that need to be included in the evolution
kernel increases. A possible determination of the power terms from data can thus be attempted
at intermediate energies, before the power expansion breaks down. A detailed examination of this
idea must address the distinction between the initial condition to the evolution and the corrections
to the kernel itself.

In conclusion, we made an impotent step in extending the framework of non-linear evolution equa-
tions at small x to include running–coupling and power corrections. Nevertheless, this endeavor is
by no means complete: small–x evolution at high densities presents many challenges, some of which
we touched upon in this paper. This includes for example the generalization of the non-linear evo-
lution equations to the NLO; the detailed comparison with the NLO BFKL kernel; understanding
the relation with DGLAP evolution and higher–twist corrections to the twist expansion, gaining
better understanding of the initial condition for the evolution; the development of (experimentally
accessible!) observables of different degree of inclusiveness, which are sensitive to the dynam-
ics underlying the evolution; and the determination to non-perturbative corrections affecting the
small–x evolution.
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A B
T in coordinate space

We begin with FT in d dimensional coordinate space. The regulator is only needed to have sep-
arately finite terms in (97) and may be removed once the cancellation of infinite contributions is
manifest by setting d → 2. The simplest way to obtain a dimensionally regulated expression for
FT is to start from Eq. (57) and to promote the momentum integrals from 2 to d dimensions. One
then exponentiates the denominators using two Schwinger parameters t1 and t2. This leads to

FT (r1m, r2m) =
1

Γ2(d
2 )

(
r21
4

r22
4

) d
2

∞∫

0

dt t−(d/2+1) e−tm2−
(r2

1/4)

t

∞∫

0

ds s−(d/2+1) e−sm2−
(r2

2/4)

s (95)

and a d dimensional generalization of Eq. (60)

=
22−d

Γ2(d
2 )

(r1m)
d
2K d

2
(r1m)(r2m)

d
2K d

2
(r2m) . (96)

From here we obtain BT according to (65):

BT (u, r1µ, r2µ) =− e
5
3u sinπu

π

∫ ∞

0

dm2

m2

(
m2

µ2

)−u

[FT (r1m, r2m)− 1] . (97)

We will first perform the m2 integral by using (95):

∞∫

0

dm2

m2

(
m2

µ2

)−u

[FT (r1m, r2m)− 1] =

∫ ∞

0

dm2

m2

(
m2

µ2

)−u

×




1

Γ2(d
2 )

(
r21
4

r22
4

) d
2

∞∫

0

dt1 t
−(d/2+1)
1 e−t1m2−

(r2
1/4)

t1

∞∫

0

dt2 t
−(d/2+1)
2 e−t2m2−

(r2
2/4)

t2 − 1



 .
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The F − 1 structure serves to regulate at m = 0. To capture its effect it is expedient to make use

of e−m2(t1+t2)−1
m2 = −

t1+t2∫

0

dα e−m2α to decouple the m2 and ti integrals

=− 1

Γ2(d
2 )

(
r21
4

r22
4

) d
2

∞∫

0

dt1 t
−(d/2+1)
1 e

−
(r2

1/4)

t1

∞∫

0

dt2 t
−(d/2+1)
2 e

−
(r2

2/4)

t2

×
t1+t2∫

0

dα

∫ ∞

0

dm2

(
m2

µ2

)−u

e−m2α

︸ ︷︷ ︸

(µ2)uαu−1Γ(1−u)

. (98)

The m2 integral converges only if Re(u) < 1. u = 1 will be the location of the first renormalon
pole. At this point we may set d = 2 since all expressions are now explicitly finite:

=−
(
µ2
)u r21

4

r22
4

∞∫

0

dt1 t
−2
1 e−

(r2
1/4)

t1

∞∫

0

dt2 t
−2
2 e−

(r2
2/4)

t2
(t1 + t2)

u

u
Γ(1− u) . (99)

One might guess that the poles of Γ(1− u) reflect the location of the renormalon poles, but this is
not true: once one restores the pre-factor to recover B, Γ(1− u) is actually canceled by sin(πu)):

BT (u, r1m, r2m) =
e

5
3u
(
µ2
)u

Γ(u + 1)

(
r21
4

r22
4

) d
2

∞∫

0

dt1 t
−(d/2+1)
1 e−

(r2
1/4)

t1

∞∫

0

dt2 t
−(d/2+1)
2 e−

(r2
2/4)

t2

× (t1 + t2)
u (100)

which would be completely regular if not the t integrations expose poles at positive u.

This can be uncovered by using a Mellin-Barnes representation for the (t1 + t2)
u factor in this

expression (see [109] for a textbook on applications of the Mellin-Barnes technique in field theory).
We write

(t1 + t2)
u =

1

2πi

∫

γ

dν
Γ(−u+ ν)Γ(−ν)

Γ(−u)
tν1

t−u+ν
2

, (101)

where the path γ connects −η − i∞ to η + i∞ (η real and infinitesimal) in such a way that it
separates all left from all right poles of the integrand. [To recall the definition: poles originating
from factors Γ(a+ ν) and Γ(a− ν) are called left and right poles respectively. The left hand side is
recovered as a series in either t1/t2 or t2/t1 by summing residues. The sign of ln(t1/t2) determines
which way to close the contour and in turn the form of the series by selecting the relevant residues.]
This decouples the t integrations which provide additional ν dependent Γ functions allows us to
write BT as

BT (u, r1µ, r2µ) = −e 5
3 u (r2/4)u

Γ(u+ 1)Γ(−u)
1

2πi

−η+i∞∫

−η−i∞

dν

(
r21
r22

)ν
Γ2(1− u+ ν)

−u+ ν

Γ2(1− ν)
ν

. (102)

The integral can now be done by summing residues. We have to distinguish two cases: the sign
of ln(r21/r

2
2) determines where to close the contour. It proves useful to emphasize the symmetry of

this procedure by expressing the result via r<, r> and ξ2 = r2</r
2
>:
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• ln(r21/r
2
2) < 0, closing to the right:

(102)→ sin(πu)

π

(

4 e−
5
3

r2>µ
2

)−u{

uΓ2(−u)−
∞∑

n=0

(n+ 1)
(
ξ2
)n+1

Γ2(2 + n− u)
(n+ 1− u)Γ2(n+ 2)

×
[

− (2 + 2n− u)
(n+ 1)(n+ 1− u) + ln

(
ξ2
)
− 2(ψ(n+ 1)− ψ(n+ 2− u))

]}

(103)

• ln(r21/r
2
2) > 0, closing to the left:

(102)→ sin(πu)

π

(

4 e−
5
3

r2<µ
2

)−u{

uΓ2(−u)
(
ξ2
)−u −

∞∑

n=0

(n+ 1)
(
ξ2
)(n+1)−u

Γ2(2 + n− u)
(n+ 1− u)Γ2(n+ 2)

×
[

− (2 + 2n− u)
(n+ 1)(n+ 1− u) + ln

(
ξ2
)
− 2(ψ(n+ 1)− ψ(n+ 2− u))

]}

(104)

This is identical to (103).

Using shift identities for the digamma functions, 2ψ(n + 1) = ψ(n + 1) + ψ(n + 2) − 1
n+1 and

2ψ(n+ 2− u) = ψ(n+ 1− u) + ψ(n+ 2− u) + 1
n+1−u , we arrive at our final result

BT (u, r1µ, r2µ) =
sin(πu)

π

(

4 e
5
3

r2>µ
2

)u{

uΓ2(−u)−
∞∑

n=0

(
ξ2
)(n+1)

Γ(n+ 1− u)Γ(n+ 2− u)
Γ(n+ 1)Γ(n+ 2)

×
[
ψ(n+ 2− u) + ψ(n+ 1− u)− ψ(n+ 1)− ψ(n+ 2) + ln

(
ξ2
)]

}

. (105)

B B
L in coordinate space

The calculation of the coordinate expression for BL is slightly simpler than that of BT and uses
the same techniques.

We start from (65) for the longitudinal contribution and note that its contribution to the m = 0
subtraction term vanishes:

Kxzy B
L(u, r1µ, r2µ) = −e

5
3u sinπu

π

∫ ∞

0

dm2

m2

(
m2

µ2

)−u

KL,m
xzy . (106)

Abbreviating f(u) = −e
5
3u sin πu

π and using the parameter the appropriate parameter representation
for the K0 factors this turns into

=
f(u)

(2π)2

∫ ∞

0

dm2

m2

(
m2

µ2

)−u

(−m2)

∞∫

0

dt1e
−t2m2−

(r2
1/4)

t1 t
−d/2
1 πd/2

∞∫

0

dt2e
−t2m2−

(r2
1/4)

t2 t
−d/2
2 πd/2
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For the remainder of the caclulation we present only minimal comments.

–separate off the m integral–

= − f(u)

(2π)2
πd

∞∫

0

dt1

∞∫

0

dt2 e
−

(r2
1/4)

t1 t
−d/2
1 e−

(r2
1/4)

t2 t
−d/2
2

∫ ∞

0

dm2

m2

(
m2

µ2

)−u

m2 e−(t1+t2)m2

–the m integral requires Re(u) < 1–

= − f(u)

(2π)2
(µ2)uπd

∞∫

0

dt1

∞∫

0

dt2 e
−

(r2
1/4)

t1 t
−d/2
1 e

−
(r2

1/4)

t2 t
−d/2
2 (t1 + t2)

u−1Γ(1 − u) (107)

–use MB to factor (t1 + t2)
u−1–

= − f(u)

(2π)2
(µ2)uΓ(1− u)πd

∞∫

0

dt1

∞∫

0

dt2 e
−

(r2
1/4)

t1 t
−d/2
1 e

−
(r2

1/4)

t2 t
−d/2
2

× 1

2πi

∫

γ

dν
Γ(−(u− 1) + ν)Γ(−ν)

Γ(−(u− 1))

tν1

t
−(u−1)+ν
2

(108)

–separate the t integrals and perform them (Re(−d/2+ ν) < −1 and Re(−d/2+u− 1)− ν < −1) –

= − f(u)

(2π)2
(µ2)uπd 1

2πi

∫

γ

dνΓ(−(u − 1) + ν)Γ(−ν)

× (r21/4)1−
d
2 +νΓ(

d

2
− 1− ν) (r22/4)−

d
2 +u−νΓ(

d

2
− u+ ν) (109)

–rearrange to expose convergence of the MB integral–

= − f(u)

(2π)2
(µ2 r22/4)u(r21/4)1πd

(
r21
4

r22
4

)− d
2

× 1

2πi

∫

γ

dν Γ(−(u− 1) + ν)Γ(
d

2
− u+ ν)Γ(−ν)Γ(

d

2
− 1− ν)

(
r22
r21

)−ν

(110)

–evaluate MB independently for both cases r2 > r1 and r1 > r2, find sums of residues to agree, set
d = 2 to obtain the final result–

=− sin(πu)

π

1

r2>

(

4 e−
5
3

µ2r2>

)−u ∞∑

n=0

(
Γ(n+ 1− u)

Γ(n+ 1)

)2
(
ξ2
)n (

ln(ξ2)− 2ψ(n+ 1) + 2ψ(n+ 1− u)
)

(111)
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C Pole and renormalon structure of B
T

To expose the pole structure of BT we find it easiest to start from (72b) and rewrite it as

BT (u, r1µ, r2µ) =

(

4 e−
5
3

r2>µ
2

)−u
sin(πu)

π

u(1− u)
(

Γ(1− u)Γ(−u)
)2

Γ(2(1− u)) 2F1

(
1− u,−u
2(1− u)

∣
∣
∣
∣
1− ξ2

)

=−
∞∑

n=0

(1− ξ2)n

Γ(n+ 1)

(

4 e−
5
3

r2>µ
2

)−u
1

Γ(u)

Γ(1 − u+ n)

Γ(2(1− u) + n)
Γ(2− u)Γ(−u+ n) (112)

Here all is regular but the factor Γ(2−u)Γ(n−u) which will cause at most double poles at positive
integers u = m = 1, 2, . . .. In the following we will encounter Laurent expansions around given pole
locations and use the abbreviation ǫ = u−m.

• Double poles arise via combined divergence in Γ(2− (m+ ǫ))Γ(n− (m+ ǫ)). For a fixed pole
location u = m = 2, 3, . . . ,∞ the second factor appears to contribute as long as n ≤ m. The
Laurent expansion around u = m in these cases can generically be written as

2(−1)m−n

(

4 e−
5
3

r2>µ
2

)−m
(1− ξ2)n

Γ(n+ 1)

Γ(2m− (n+ 1))

Γ(m)Γ(m− 1)Γ(m− n)Γ(m+ 1− n)

{

1

ǫ2

+

[

− ln

(

4 e−
5
3

r2>µ
2

)

−Ψ(m− 1)−Ψ(m)−Ψ(m− n)−Ψ(m+ 1− n) + 2Ψ(2m− (n+ 1))

]

1

ǫ

+O(ǫ0)

}

(113)

We note that coefficient of the double pole also vanishes for n = m so that the sum of the
double pole terms may be expressed as

BT
double pole =

∞∑

m=2

m−1∑

n=2

(1− ξ2)n

Γ(n+ 1)

×
(

4 e−
5
3

r2>µ
2

)−m
Γ(2m− (n+ 1))

Γ(m)Γ(m− 1)Γ(m− n)Γ(m+ 1− n)

2(−1)m−n

(u −m)2
(114)

• As is obvious from the Laurent expansion in (113) we inherit single poles at the double pole
locations. Additional single poles arise when

– only the first of the factors contributes a pole, i.e. for n > m ≥ 2, (the coefficients here
vanish, however, where n ≤ 2(m− 1))

– or where only the second of the factors does contribute, i.e. for 2 > m ≥ n (this is
limited to m = 1, n = 0, 1):
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The Laurent expansion around any of these additional single poles is given by

(−1)m

(

4 e−
5
3

r2>µ
2

)−m

(1 − ξ2)n Γ(1−m+ n)

Γ(n+ 1)Γ(n+ 2− 2m)Γ(m− 1)

1

ǫ
+O(ǫ0) (115)

Adding all these leads to the following sum of single pole contributions which mark the power
correction to to BT

BT
single pole =

(

4 e−
5
3

r2>µ
2

)−1
−2 + (1 − ξ2)

u− 1

+

∞∑

m=2

∞∑

n=2(m−1)

(−1)m

u−m
(1− ξ2)n

Γ(n+ 1)

(

4 e−
5
3

r2>µ
2

)−m
Γ(1−m+ n)

Γ(n− 2(m− 1))Γ(m− 1)

+

∞∑

m=2

m−1∑

n=2

(1 − ξ2)n

Γ(n+ 1)

2(−1)m−n

(u −m)

× d

dm







(

4 e−
5
3

r2>µ
2

)−m
Γ(2m− (n+ 1))

Γ(m)Γ(m− 1)Γ(m− n)Γ(m+ 1− n)






(116)

As a power correction each of the terms at fixed m comes with an a priori unknown coefficient.

D Pole and renormalon structure of B
L

KxzyB
L(u, r1µ, r2µ) = +

sin(πu)

π

1

r2
>

(

4 e−
5
3

r2
>µ

2

)−u
(Γ(1− u))4
Γ(2(1− u)) 2F1

(
1− u, 1− u

2(1− u)

∣
∣
∣
∣
1− ξ2

)

= +

∞∑

n=0

(1− ξ2)n

Γ(n+ 1)

1

r2
>

(

4 e−
5
3

r2
>µ

2

)−u
1

Γ(u)

Γ(1 + n− u)
Γ(2(1− u) + n)

Γ(1− u)Γ(1− u+ n) (117)

Renormalon poles again appear at u = m = 1, 2, 3, . . ., with everything regular but the factor
Γ(1− u)Γ(1− u+ n).

• Double poles at m arise where both Γ(1 − (m + ǫ))Γ(n + 1 − (m + ǫ)) diverge, i.e. for
1 ≤ m ≥ n+ 1. The Laurent expansion around these pole locations u = m is

2(−1)m−n 1

r2>

(

4 e−
5
3

r2
>µ

2

)−m
(1− ξ2)n

Γ(n+ 1)

Γ(2m− (n+ 1))

(Γ(m))2(Γ(m− n))2

×
{

1

ǫ2
+

[

− ln

(

4 e−
5
3

r2
>µ

2

)

− 2Ψ(m− 1)− 2Ψ(2(m− 1)) + 2Ψ(m)

]

1

ǫ
+O(ǫ0)

}

(118)
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so that the double pole part of the longitudinal contribution may be written as

KxzyB
L
double pole = −

∞∑

m=1

m−1∑

n=0

2(−1)m−n

(u−m)2
(1− ξ2)n

Γ(n+ 1)

1

r2>

(

4 e−
5
3

r2
>µ

2

)−m
Γ(2m− (n+ 1))

(Γ(m))2(Γ(m− n))2

(119)

• As for BT , we inherit single poles at the double pole locations. Additional single poles arise
when only the first factor in Γ(1− (m+ ǫ))Γ(n+1− (m+ ǫ)) diverges, i.e. for 1 ≤ m < n+1.
The Laurent expansion around these new pole locations reads

+(−1)m 1

r2>

(

4 e−
5
3

r2
>µ

2

)−m

(1− ξ2)n (Γ(n+ 1−m))2

Γ(n+ 1)(Γ(m))2Γ(n+ 2− 2m)

1

ǫ
+O(ǫ0) (120)

Some of the residues vanish (where 2m > n+ 2).

Combining the two contributions leads to an expression for the single pole part of BL of the
form

KxzyB
L
single pole = −

∞∑

m=1

∞∑

n=m

−(−1)m

u−m
1

r2>

(

4 e−
5
3

r2
>µ

2

)−m
(1− ξ2)n

Γ(n+ 1)

(Γ(n+ 1−m))2

(Γ(m))2Γ(n+ 2− 2m)

−
∞∑

m=1

m−1∑

n=0

2(−1)m−n

u−m
(1− ξ2)n

Γ(n+ 1)

1

r2>

d

dm







(

4 e−
5
3

r2
>µ

2

)−m
Γ(2m− (n+ 1))

(Γ(m))2(Γ(m− n))2






(121)

E Principal value definition of the perturbative sum

The small ξ2 series differ strongly from the 1− ξ2 series so that we will deal with them separately.

• Closer inspection of (64) via (72a) and (74b) reveals, that the double poles in the obstructing
terms have their origin in a u derivative of a Γ function, i.e. they arise from differentiating
simple poles. To make this manifest we rewrite (72a) and (74a) as

BT (u, r1µ, r2µ) =

(

r2>µ
2e

5
3

4

)u {
Γ(1− u)
Γ(1 + u)

+
∞∑

n=1

(−1)n+1 (ξ2)n Γ(1− u+ n)

nΓ2(n) Γ(1 + u− n)

(
Ψ(1 + n) + Ψ(n)− ln ξ2

)

+

∞∑

n=1

(−1)n+1 (ξ2)n 2 d
duΓ(1 − u+ n) + Γ(n− u)
nΓ2(n) Γ(1 + u− n)

}

(122a)

KxzyB
L(u, r1µ, r2µ) =− 1

r2>

(

µ2r2>e
5
3

4

)u ∞∑

n=0

(
ξ2
)n

(−1)nΓ(u− n)
(

Γ(n+ 1)
)2

×
[

Γ(n+ 1− u)
(
ln(ξ2) + 2ψ(n+ 1)

)
+ 2

d

du
Γ(n+ 1− u)

]

(122b)
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The double pole contributions arise from factor d
duΓ(1 − u + n) and as such they can be

converted into single poles under the Borel integral by a partial integration in the expression
for R, Eq. (64). For this, we note that boundary terms of the partial integration in (64) vanish
to display the results separately for RT and RL as

RT (r1Λ, r2Λ, ) =
1

β0

∞∫

0

du T (u)

(
µ2

Λ2

)−u

BT (u, r1µ, r2µ)

=
1

β0

∞∫

0

du T (u)

(

4 e−
5
3

r2>Λ2

)−u {

Γ(1− u)
Γ(1 + u)

+

∞∑

k=1

(−1)k+1

(
ξ2
)k

kΓ2(k)

[

Γ(1− u+ k)

Γ(1 + u− k)
(
Ψ(1 + k) + Ψ(k)− ln ξ2

)
+

Γ(k − u)
Γ(1 + u− k)

+
2Γ(1− u+ k)

Γ(1 + u− k)

(

ln

(

4 e−
5
3

r2>Λ2

)

− T ′(u)

T (u)
+ Ψ(1 + u− k)

)]}

(123a)

and

KxzyR
L(r1Λ, r2Λ, ) =

1

β0

∞∫

0

du T (u)

(
µ2

Λ2

)−u

KxzyB
L(u, r1µ, r2µ)

=− 1

β0

∞∫

0

du T (u)
1

r2>

(

4 e−
5
3

r2>Λ2

)−u ∞∑

n=0

Γ(n+ 1− u)
(
ξ2
)n

(−1)nΓ(u− n)
(

Γ(n+ 1)
)2

×
[

ln(ξ2)− 2ψ(n+ 1) + 2

(

ln

(

4 e−
5
3

r2>Λ2

)

− T ′(u)

T (u)
− ψ(u − n)

)]

.

(123b)

• The single pole expressions given above converge only very slowly near ξ = 1. To circumvent
this we also present single pole expressions based on (72b) and (74b). For the transverse
contributions we write

RT (r1Λ, r2Λ, ) =
1

β0

∞∫

0

du T (u)

(
µ2

Λ2

)−u

BT (u, r1µ, r2µ)

=
1

β0

∞∫

0

du T (u)







(
µ2

Λ2

)−u

BT (u, r1µ, r2µ)−
[(

µ2

Λ2

)−u

BT (u, r1µ, r2µ)

]

double pole







+
1

β0

∞∫

0

du T (u)

[(
µ2

Λ2

)−u

BT (u, r1µ, r2µ)

]

double pole

(124a)

where BT is taken from (72b) and the double pole part of the integrand is derived in Ap-
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pendix C. It is given by

[(
µ2

Λ2

)−u

BT (u, r1µ, r2µ)

]

double pole

=

∞∑

m=2

m−1∑

n=2

(

4 e−
5
3

r2>Λ2

)−m
(1 − ξ2)n

Γ(n+ 1)

2(−1)m−n

(u−m)2

× Γ(2m− (n+ 1))

Γ(m)Γ(m− 1)Γ(m− n)Γ(m+ 1− n)
(124b)

The first term can now be integrated with a principal value prescription (it only contains
single poles) while (for one loop running) the last term is given a meaning via integration by
parts and gives only a boundary contribution. To this end we recall that for one loop running
we may set T (u)→ 1, T ′(u)→ 0 and identify ln

(
µ2/Λ2

)
= π

β0αs(µ2) :

1

β0

∞∫

0

du T (u)

[(
µ2

Λ2

)−u

BT (u, r1µ, r2µ)

]

double pole

(124c)

T (u)→1−−−−−→−
∞∑

m=2

m−1∑

n=2

(

4 e−
5
3

r2>Λ2

)−m
(1− ξ2)n

Γ(n+ 1)

2(−1)m−n

m

Γ(2m− (n+ 1))

Γ(m)Γ(m− 1)Γ(m− n)Γ(m+ 1− n)

We have checked that this result matches with a very costly evaluation of RT via (123). RL

can be treated analogously

RL(r1Λ, r2Λ, ) =
1

β0

∞∫

0

du T (u)

(
µ2

Λ2

)−u

BL(u, r1µ, r2µ)

=
1

β0

∞∫

0

du T (u)







(
µ2

Λ2

)−u

BL(u, r1µ, r2µ)−
[(

µ2

Λ2

)−u

BL(u, r1µ, r2µ)

]

double pole







+
1

β0

∞∫

0

du T (u)

[(
µ2

Λ2

)−u

BL(u, r1µ, r2µ)

]

double pole

, (125a)

where now (see App. D)

Kxzy

[(
µ2

Λ2

)−u

BL(u, r1µ, r2µ)

]

double pole

=−
∞∑

m=1

m−1∑

n=0

2(−1)m−n

(u−m)2
(1− ξ2)n

Γ(n+ 1)

1

r2>

(

4 e−
5
3

r2
>Λ2

)−m

× Γ(2m− (n+ 1))

(Γ(m))2(Γ(m− n))2
(125b)

55



and to one loop accuracy

Kxzy

1

β0

∞∫

0

du T (u)

[(
µ2

Λ2

)−u

BL(u, r1µ, r2µ)

]

double pole

T (u)→0−−−−−→ +

∞∑

m=1

m−1∑

n=0

2(−1)m−n

m

(1 − ξ2)n

Γ(n+ 1)

1

r2>

(

4 e−
5
3

r2
>Λ2

)−m
Γ(2m− (n+ 1))

(Γ(m))2(Γ(m− n))2
.

(125c)

The expressions on the r.h.s. of all the Borel integrals shown in this section are in general well
defined with any arbitrary contour connecting 0 to ∞ in the complex plane that avoids the poles
of the integrand on the real axis. All such expressions share the same perturbative expansion (be
they partially integrated or not!). The uncertainty introduced by the this freedom of choice in the
contour is qualitatively determined by the size of residues of these poles. An important consistency
condition for using the partially integrated version to study non-perturbative corrections is therefore
that the residues of the integrand remain the same as in the original version (64). This is a generic
consequence of the fact that Γ(2 − u+ k) (the function contributing the poles) has no logarithmic
terms in its Laurent expansions. Appendices C and D contain an explicit discussion of the pole
part of BT and BL.
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