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1. Introduction

1.1 Background and motivation

The recent data from the WMAP satellite[1] have allowed the matter density of the

Universe to be quantified with greater precision than ever before, whilst also strongly

disfavouring warm dark matter. With the relative1 matter density Ωm constrained by

the measurement Ωmh
2 = 0.135+0.008

−0.009 and the relative baryon density Ωb constrained

by Ωbh
2 = 0.0224 ± 0.0009, one can infer the following 2-σ contraint on the relative

density of cold dark matter: ΩCDMh
2 = 0.1126+0.0161

−0.0181, where the reduced Hubble

constant h is measured to be 0.73 ± 0.03.

In R-parity conserving supersymmetric (SUSY) models, the lightest supersym-

metric particle (LSP) is stable and is therefore an ideal candidate for non-baryonic

cold dark matter. Past studies in the context of the minimal supergravity (mSUGRA)

model have identified regions of the five dimensional mSUGRA parameter space in

which the relic density of the LSP (usually the lightest neutralino χ̃0
1) is consistent

with dark matter constraints[2], and recent studies carried out post-WMAP have

narrowed these regions further[3]. There has been much recent interest in examining

the phenomenology of SUSY models that are consistent with the WMAP results in

preparation for the arrival of the LHC.

The aim of this paper is to use the study of one such model to demonstrate

a new approach to mass measurements at the LHC. In present analyses, inclusive

signatures are rarely used to constrain SUSY models, despite the fact that they are

straightforward to define and measure at the LHC. This is almost certainly due to

the difficulty associated with calculating the expected values of these signatures at

many points in parameter space, a process that requires a large amount of computing

power. Nevertheless, we demonstrate that inclusive signatures contain a great deal of

information, using as an example the cross-section of events with missing pT greater

than 500 GeV.

1That is the density divided by the universe’s critical density
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The standard technique for analysis of mSUGRA models is to look for kinematic

endpoints, and use these to measure the masses of particles involved in cascade

decays. These can then be used to obtain the values of the GUT scale mSUGRA

parameters. The problem, however, is that such an analysis is often loaded with

assumptions. Although endpoint measurements are in principle model independent,

it is usually assumed that one has correctly identified the particles in the decay

chain, giving unreasonably good precision on the measured masses. Furthermore, it

is inevitable that models more general than mSUGRA will be able to reproduce the

endpoints seen in cascade decays, and hence it is important to develop techniques

that allow one to investigate other possibilities.

Our approach is to combine endpoint measurements with inclusive signatures

through the use of Markov chain sampling techniques, a method that can in principle

be applied to any parameter space, with any information we happen to have obtained

experimentally. The advantage of Markov chain techniques is their efficiency; a

crude scan of 100 points per axis in a 3 dimensional parameter space would require

one million points, whereas obtaining the same useful information with our choice

of sampling algorithm required only 15,000 points. Even so, in order to evaluate

inclusive signatures at many points in the parameter space within a sensible period

of time, it was necessary to develop an MPI adaptation of the HERWIG 6.5 Monte

Carlo event generator [4, 5, 6] for use on a supercomputer with parallel processing.

Throughout this paper, we use a particular mSUGRA model as a description

of nature, but it is important to realise that we could in principle have chosen any

SUSY model that fits with current observations; the techniques described here rely

only on the fact that we have observed endpoints in invariant mass distributions and

are able to measure other well-defined observables. Indeed, given enough inclusive

observables, one would not even need to have observed endpoints in order to obtain

precise results.

Section 2 demonstrates the successful application of kinematic edge analysis to

the chosen mSUGRA point before section 3 reviews Metropolis sampling and applies

the technique to the reconstruction of the masses involved in a squark decay chain.

This differs from current techniques only in the choice of the method used to fit

the masses, as it is assumed in sections 2 and 3 that we have correctly identified

the particles in the decay chain. In section 4, we introduce a method by which we

can combine the endpoint data with a cross-section measurement in order to tighten

the precision on the masses, using the sampling techniques reviewed in section 3.

For the sake of clarity, this is introduced in the familiar context of an mSUGRA

analysis where it is assumed that the particles in the decay chain have been identified

correctly, and we merely wish to fit the endpoints and obtain masses and mSUGRA

parameters.

Finally, in section 5 we admit that we do not know which particles are in the

decay chain, and we also start to relax the conditions of the mSUGRA model by
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having non-universal gaugino masses at the GUT scale. These are both powerful

extensions of the current analysis, and as far as the authors are aware have only

rarely been looked at before (e.g. [7, 8] for consideration of particle ambiguity). We

also investigate the effect of a jet energy scale error, in order to demonstrate how

one might include systematic experimental effects in our technique.

The method developed in sections 4 and 5 can easily be generalised to include

other inclusive signatures, and to explore larger parameter spaces, and it can be used

in future as a basis for obtaining precise measurements in general SUSY models.

1.2 Definition of model

This paper describes an analysis carried out on a point consistent with the WMAP

data, described by the following set of mSUGRA parameters:

m0 = 70 GeV, m1/2 = 350 GeV

tanβ = 10, A0 = 0, µ > 0

The values of the universal scalar and gaugino masses at the GUT-scale (respectively

m0 and m1/2) are chosen such that the point lies in the coannihilation region in which

the LSP’s annihilate with sleptons, thus reducing the LSP relic density to a value

within the range consistent with WMAP. Henceforth we will refer to this model as

the ‘coannihilation point’.

The masses of the most relevant particles are contained in Table 1, whilst branch-

ing ratios for some of the most significant decay processes are given in Table 2, gen-

erated using ISAJET 7.69. Cross-sections in Table 2 were calculated with HERWIG

6.5 and with fortran ATLFAST-2.16. Although similar to the point 5 analysed in

the ATLAS Physics TDR[9], this particular model differs by having small mass dif-

ferences between the χ̃0
1 and the ẽR and between the χ̃0

2 and the ẽL, leading to the

production of soft leptons that may be missed in the detector thereby reducing the

efficiency with which we are able to select relevant SUSY decays.

2. Kinematic edge analysis

We begin by demonstrating that standard edge analysis techniques work (within

their limitations) for the chosen coannihiliation point.

2.1 Search for squark decay

Previous studies (for example [9, 10, 7]) have illustrated the procedure of searching

for kinematic edges in the various invariant mass distributions resulting from a given

event. By isolating exclusive decay processes, one can use these kinematic edges to

obtain measurements of the masses of the sparticles that participate in the decay

chain. The procedure is used here in conjunction with the decay:
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Particle Mass (GeV)

χ̃0
1 137

χ̃0
2 264

ẽL 255

ẽR 154

g̃ 832

ũL 760

ũR 735

d̃L 764

d̃R 733

b̃1 698

b̃2 723

t̃1 574

t̃2 749

τ̃1 147

τ̃2 257

h 116

Process Branching Ratio

χ̃0
2 → ẽRe 2%

χ̃0
2 → ẽLe 29%

χ̃0
2 → τ̃1τ 18%

χ̃0
2 → τ̃2τ 2%

χ̃0
2 → χ̃0

1h 48%

Process Cross-Section

SUSY (Total, HERWIG) 9.3 pb

SUSY (After ATLFAST

missing pT > 500 GeV cut)
2.0 pb

Table 1: The most important sparticle

masses at the coannihilation point.

Table 2: Branching ratios and cross-

sections for important processes at the

coannihilation point.

q̃ → qχ̃0
2 → ql±2 l̃

∓
L → ql±2 l

∓
1 χ̃

0
1

This is an excellent starting point for analysis due to the clear signature provided

by the two opposite-sign, same-flavour (OSSF) leptons. The left-handed slepton

is considered here rather than the right-handed slepton due to the much greater

branching ratio BR(χ̃0
2 → ẽLe). The following endpoints are expected to be observed

in invariant mass spectra associated with this decay chain (ψ̃ = m2
χ̃0

2
, q̃ = m2

q̃, l̃ =

m2
ẽL
, χ̃ = m2

χ̃0
1
):

(m2
ll)

edge =
(ψ̃ − l̃)(l̃ − χ̃)

l̃
(2.1)

(m2
llq)

edge =











max
[

(q̃−ψ̃)(ψ̃−χ̃)

ψ̃
, (q̃−l̃)(l̃−χ̃)

l̃
, (q̃l̃−ψ̃χ̃)(ψ̃−l̃)

ψ̃l̃

]

except when l̃2 < q̃χ̃ < ψ̃2and ψ̃2χ̃ < q̃l̃2

where one must use(mq̃ −mχ̃0
1
)2.

(2.2)

(m2
lq)

edge

max
= max

[

(q̃ − ψ̃)(ψ̃ − l̃)

ψ̃
,
(q̃ − ψ̃)(l̃ − χ̃)

l̃

]

(2.3)

(m2
lq)

edge

min
= min

[

(q̃ − ψ̃)(ψ̃ − l̃)

ψ̃
,
(q̃ − ψ̃)(l̃ − χ̃)

(2l̃ − χ̃)

]

(2.4)
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(m2
llq)

thres =
2l̃(q̃ − ψ̃)(ψ̃ − χ̃) + (q̃ + ψ̃)(ψ̃ − l̃)(l̃ − χ̃) − (q̃ − ψ̃)

√

(ψ̃ + l̃)2(l̃ + χ̃)2 − 16ψ̃l̃2χ̃

4l̃ψ̃
(2.5)

where “min” and “max” refer to minimising and maximising with respect to the

choice of lepton. In addition, “thres” refers to the threshold that appears in the mllq

distribution when events are chosen such that medge

ll /
√

2 < mll < medge

ll , corresponding

to the angle between the two lepton momenta exceeding π/2 in the slepton rest frame

(see [7]).

2.2 Monte Carlo event simulation

Monte Carlo simulations of SUSY production at the above mass point have been

performed using HERWIG 6.5[4, 5, 6], with the particles subsequently passed through

the fortran ATLFAST-2.16 detector simulation [11]. A HERWIG input file was generated

using ISAJET v7.69 [12] in conjunction with the Herwig-Isajet interface ISAWIG

which converts the ISAJET output into HERWIG input format. A sample corresponding

to 100fb−1 has been generated (being one year of design luminosity in the high

luminosity mode).

2.3 Invariant mass distributions

2.3.1 Cuts

In order to see the above edges clearly, one must apply various cuts to the event data

in order to isolate a clean sample of the squark decay chain. Here, one can select

events with the OSSF lepton signature described above, and one can also exploit

the fact that the required events have a large amount of missing energy (due to

the departure from the detector of two invisible χ̃0
1’s). Furthermore, one expects to

obtain hard jets in SUSY events, resulting from the decay of gluinos and squarks.

All plots are obtained through the use of the following cuts:

• Emiss

T > 300 GeV;

• exactly two opposite-sign leptons with pT > 5 GeV and |η| < 2.5;

• at least two jets with pT > 150 GeV;

Although the cuts chosen are similar to those used for point 5 in the ATLAS Physics

TDR, there are some exceptions. For example, one needs to impose a pT cut on the

leptons in the event due to the fact that ATLFAST is not parametrised properly for

low pT leptons, and yet it is essential to pick up soft leptons due to the small mass

differences that crop up in the decay chain. Hence, a compromise between these two
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Figure 1: The flavour-subtracted dilep-

ton invariant mass plotted with the cuts

described in the text.

Figure 2: The llq invariant mass plot.

factors must be chosen. Some plots are the result of additional cuts, and these are

given below.

The SM background for dilepton processes is generally negligible once the missing

pT cut has been applied, though the OSSF lepton signature can be produced by SUSY

processes other than the decay of the χ̃0
2. One would expect these to produce equal

amounts of opposite-sign opposite-flavour (OSOF) leptons and hence one can often

subtract the dilepton background by producing “flavour subtracted plots” in which

one plots the combination e+e− + µ+µ− − e+µ− − e−µ+. This is only useful in cases

where there are sufficient statistics, and was not done for every plot below.

2.3.2 mll plot

As seen in figure 1, a sharp edge is produced in the spectrum at ≈ 58 GeV, and

this is a very clear signature. The second edge visible at ≈ 98 GeV results from the

right-handed selectron. In practise, it will be very difficult to assign these two edges

correctly, and this problem is revisited in section 5.

2.3.3 mllq plot

This is produced by selecting events with exactly two leptons, and forming the in-

variant mass mllq first with the jet q1 with the largest transverse momentum, and

then with the jet q2 with the second largest transverse momentum. As the hardest

jets in events containing cascade decays of squarks and gluinos usually come from

the processes q̃ → χ̃0
2q and q̃ → χ̃0

1q, the lower of the two invariant masses formed in

this way should lie below the llq edge defined by equation (2.2), and so mllq is defined

by mllq = min(mllq1, mllq2). Figure 2 shows a clear endpoint in the mllq distribution

at ≈ 600 GeV.
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2.3.4 mthres

llq plot

The mllq variable plotted in order to measure mthres

llq is defined almost in the same

way as the mllq variable defined in section 2.3.3. The two differences are that this

time (1) mllq = max(mllq1, mllq2) (because a threshold2 is expected rather than an

endpoint) and (2) events must satisfy an additional constraint that mll must exceed

mmax

ll /
√

2. The resulting mllq distribution may be seen in figure 3. This plot is not

flavour-subtracted.

A threshold is clearly observed a little above 100 GeV, though it is difficult to

state its precise position due to uncertainty in the expected shape of the edge and the

manner in which it is modified by detector effects. This is discussed further below.

2.3.5 mmax

lq and mmin

lq plots

Figure 3: The llq invariant mass thresh-

old plot.

In creating the mmax

lq and mmin

lq plots the fol-

lowing steps are taken. First, one of the two

hardest jets in the event is selected by the

same method used in section 2.3.3, i.e. by

looking for the combination yielding the

lower value of mllq. Having identified this

jet (call it q), the quantities ml1q and ml2q

are formed. The larger of these two combi-

nations mhigh
lq = max (ml1q, ml2q) and the

lower of them mlow
lq = min (ml1q, ml2q) are

identified. The distribution ofmhigh
lq is plot-

ted in figure 4 and the endpoint located

therein is identified as being mmax

lq . The dis-

tribution of mlow
lq is plotted in figure 5 and

the endpoint located therein is identified as being mmin

lq .

For the mmax

lq plot (figure 4) events were subject to the additional constraint that

one of the llq invariant masses formed with the two hardest jets must be above the

llq endpoint, and the other must be below.

The mmin

lq plot (figure 5) has one additional cut: the dilepton invariant mass must

be less than the value of mmax

ll observed in figure 1.

Both plots exhibit endpoints, and the edge is particularly abrupt in the mmax

lq

histogram. Although there are events beyond the endpoint in the mmin

lq plot (due to

SUSY background processes), there is nevertheless a convincing edge at ≈ 180 GeV.

2The terms “endpoint” and “threshold” are used to refer the the extremal values of a random

variable or observable at respectively high and low mass values. The term “edge” describes the

shape of the distribution of that variable near its endpoint or threshold.
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Figure 4: The lq max invariant mass

plot.

Figure 5: The lq min invariant mass

threshold plot.

2.4 Comparison of observed and predicted edges

The edges predicted by equations (2.1) to (2.5) are summarised in Table 3, where the

spread of in the squark masses has been ignored, approximating them at a common

value of 750 GeV, and all other masses are taken from Table 1. The observed positions

of the endpoints are also given.

Edge Predicted (GeV) Observed (GeV)

ll edge 57.64 57.5±2.5

llq edge 600.1 600±10

llq threshold 134.0 150±30

lq max edge 592.1 590±10

lq min edge 181.7 180±10

Table 3: Predicted and observed edge positions for the mSUGRA mass point described

in the text. Error estimates have been obtained ‘by eye’, and reflect lack of information

regarding the precise shapes of the endpoints.

It is common when extracting the observed edges from plots such as those above

to fit a function to the endpoint in order to determine both the precision and the

accurate position. For the purposes of this analysis, the edges, and their estimated

errors, have been determined ‘by eye’ for several reasons. Firstly, not all edges can

be fitted with functions (in the case of the llq threshold, for example, the correct

shape is not known). Indeed, recent work in [8] highlights the need for caution

in applying these functions too readily without first investigating the theoretical

shape of the distribution, as endpoints can often exhibit tails or ‘feet’ that will be

confused with SUSY background and hence may lead to inaccurate measurements.

The shapes of the endpoints for distributions involving quarks vary significantly over
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the parameter space, introducing a model dependence into the precision with which

one may realistically measure endpoint positions and hence masses. Given that the

purpose of this note is primarily to use an arbitrary example in order to demonstrate

our use of Markov chain sampling techniques, a full investigation of how to resolve

this model dependence is considered to be beyond the scope of this paper, and we

will use the conservative errors given in table 3. For those interested, the fitting of

endpoint functions has been done in work leading to [13] which contains estimates

of the precision expected if one were to take a more optimistic view.

3. Mass reconstruction

3.1 Background

Having obtained measurements of kinematic edges, the next step is to attempt to

reconstruct the masses involved in the squark cascade decay. This has been done

using a Markov Chain Monte Carlo method, details of which may be found in ap-

pendix A. The technique is an excellent way of efficiently exploring high dimensional

parameter spaces, and it is in section 4 that the full advantages of the technique

become apparent.

3.2 Application of Metropolis Algorithm

We now apply the sampling techniques described in the appendix to our mass recon-

struction problem. The five endpoints observed in the previous section essentially

provide an (over-constrained) set of simultaneous equations in the four unknowns

mq̃, mẽL
, mχ̃0

2
and mχ̃0

1
, and these can be solved to determine the masses. Given a

set of observed edges eobs, and a set of postulated masses m, the ultimate goal is

to evaluate p(m|eobs) and thus to find the regions of parameter space favoured by

the data. The best way of doing this is to sample masses m from p(m|eobs), sub-

sequently histogramming the samples to reveal directly the shape of the probability

distribution.

Using Bayes’ Theorem we know that

p(m|eobs) ∝ p(eobs|m)p(m). (3.1)

We choose the prior p(m) to be uniform3 over the mass space considered. This choice

seems a good as any other, and has the added benefit that plots of our posterior
3Some points m in mass space do not satisfy the hierarchy mq̃ > mχ̃0

2

> mẽL
> mχ̃0

1

> 0

required by our decay chain. Under our model, then, these points yield p(eobs|m) = 0 and veto the

selection of such points. While this veto is technically part of the likelihood (given our model) it

simplifies later discussion of the likelihood in more complicated scenarios if we pull the veto out of

the likelihood and move it into the prior p(m). In practise then, our effective prior is uniform over

all of the region of mass space in which the required hierarchy is present, and zero elsewhere. The

effect is the same as if we had left the veto in the likelihood, but the likelihoods will be simpler to

describe and define.
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distribution p(m|eobs) are also just plots of the likelihood p(eobs|m), permitting the

effects of other priors p(m) to be easily imagined.

One can sample from p(m|eobs) using the Metropolis Method as follows. First

a mass point m is chosen, and p(m|eobs) is evaluated using equation (3.1). For the

edges e1, e2, e3, e4, and e5, the likelihood p(eobs|m) is given by the product

p(eobs|m) =

5
∏

i=1

p(eobsi |m), (3.2)

where

p(eobsi |m) ≈ 1
√

2πσ2
i

exp

(

−(eobsi − epredi (m))2

2σ2
i

)

(3.3)

in which σi is the statistical and fit error associated with the edge measurement of

edge ei, and where eobsi and epredi (m) are respectively the observed and predicted

positions of the edge. This probability distribution assigns a weight p(m|eobs) to

each point m in mass space, including the errors associated with the endpoint mea-

surements. Note that p(m|eobs) is the equivalent of the P ∗(x) defined later on in

equation (A.2), as it is defined only up to an unknown normalisation constant.

So, in order to plot the probability distribution, one follows the following steps

of the Metropolis Algorithm:4

1. A new mass point mproposal is suggested on the basis of the current point

mcurrent. The mass-space proposal distribution for the Metropolis Algorithm

was chosen to be a 4-dimensional Gaussian whose width in each dimension was

5 GeV and whose centre was the position of the current point mcurrent. The

widths were chosen for the efficiency reasons outlined in section A.4 and will

not effect the results once convergence has occurred.

2. p(mproposal|eobs) is evaluated at the proposed point.

3. A decision is made on whether to jump to the new point, or remain at the

current point on the basis (see equation (A.3)) of the ratio of p(mproposal|eobs)
to p(mcurrent|eobs).

4. If a decision to not jump is made, then the next point in the chain mnext is again

set equal to mcurrent, otherwise it is set equal to mproposal. When proposals are

rejected, therefore, successive points in the chain are duplicates of each other.

5. All steps are repeated until the sampler has sufficiently explored the interesting

regions of parameter space.

It is noted that in the real ATLAS detector, one might have a systematic shift of the

endpoints due to the jet energy scale error, and this is considered in section 5.
4See Appendix A.3 for discussion of the motivations behind each of these steps, and for definitions

of “proposal functions” and the decision mechanism.
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3.3 Mass space plots

The Metropolis sampler ensures that points which are more likely are sampled more

often. One can observe the shape of the probability distribution by simply histogram-

ming the sampled points. This is a 4 dimensional shape in mass space, which can

be viewed as a projection onto each pair of axes. This is done in figure 6, revealing

that a lengthy region of parameter space is compatible with the edge data, and extra

information is required to constrain this further. Note that the endpoint equations

discussed previously are sensitive principally to mass differences, and hence one ob-

serves lines in each plane of the mass space, constraining each mass only in terms

of the others. Given that the endpoint data does not set the overall mass scale,

the system is able to wander to high masses without affecting the position of the

endpoints provided that the mass differences remain consistent. In the next section,

we show that one can use other measurements from the LHC that are sensitive to

the mass scale to constrain these regions further.

Finally, it is noted that the lines are broader in the plots featuring squark masses,

and this is due to the fact that the end points were calculated using an average squark

mass, whilst the Monte Carlo events feature a range of squark masses. Hence the

resolution is smeared somewhat relative to the other masses.

4. Cross-section information in mSUGRA space

4.1 Background

In principle, any piece of relevant information may be used to further constrain

the regions consistent with the kinematic edge analysis presented in the previous

section. This may be in the form of further kinematic edges, which will provide a

direct constraint on the weak scale sparticle masses, or in the form of constraints at

the SUSY scale. The greater the number of relevant pieces of information one is able

to obtain, the better the precision of the mass measurements.

One example is given here, and developed further in this section. It should be

possible to measure the cross-section of events with missing pT greater than 500 GeV

in the ATLAS detector to a reasonable precision. As the masses of sparticles increase,

the missing pT will increase, but the total production cross-section will decrease and

hence the high mass solutions encountered in the previous section will lead to missing

pT cross-sections that are lower than the value obtained at the coannihilation point.

Thus, the cross-section information can be added to the definition of the probability

function for the Markov Chain to give a tighter constraint on the SUSY masses.

It should be noted that up to now we have performed a model independent

analysis but, from here on in, some model will have to be assumed in order to

draw conclusions from our measurements. This is because endpoint data can be

analysed purely in the mass space Smass (hereafter “M”) defined by the weak scale
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Figure 6: The region of mass space consistent with the kinematic edge measurements

described in the text, obtained using a Markov chain sampler.

masses, but inclusive measurements must be compared to a given scenario (through

the use of a suitable Monte Carlo generator) before any conclusions can be drawn,

and therefore must be analysed in the space of parameters, Smodel of that model.

In section 4, we investigate the constraints imposed by a cross-section measurement
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on the parameter space SmSUGRA (hereafter “P”) of a particular model, mSUGRA,

in order to introduce the technique in a familiar context. The limitations of this

approach will become apparent by the end of section 4 and will be tackled in section 5.

In view of this change of the constrained-space, (from the space of weak-scale

masses m ∈ M to the space of mSUGRA models p ∈ P ) the description of the

Metropolis algorithm in section 3.2 must, in section 4, be considered re-written in

terms of p(p|eobs) rather than p(m|eobs). This is made more explicit in section 5.1

when a further enlargement of the constrained-space is made to accommodate un-

certainty in the absolute jet energy scale.

4.2 Cross-section measurement

4.2.1 Implementation

It is assumed in this study that the cross-section of events with missing pT greater

than 500 GeV can be measured at ATLAS. One can then pick points in the mSUGRA

parameter space SmSUGRA, work out the mass spectrum, generate Monte Carlo events

and work out the cross-section of events passing this cut. Only certain points in the

parameter space are consistent with this measurement, and these will give a range

of masses that are consistent. Naively, the overlap of this region of the mass space

with the region consistent with the edge data will give the new region of mass space

that is compatible with the ATLAS data. In fact, since the end points are not

entirely independent of the cross-section measurement, one needs to include both

sets of information in the final analysis in order to obtain the required region. The

‘overlap’ picture is approximately true, however, given that the measurement of the

cross-section is not strongly related to the measurements of the edge positions, and

is a useful guide for preliminary investigation before the final analysis is carried out.

A plot of the missing pT cross-section in the m0, m1/2 plane for fixed tanβ and

positive µ is shown in figure 7. As can be seen, there is a lot of variation over the

parameter space and a measurement of even modest precision will be able to rule

out large areas.

The full process of picking mSUGRA points and obtaining the cross-section

that pass the missing pT cut has been accomplished by successively running ISAJET,

HERWIG and ATLFAST, with 1000 events being generated at each point. This is rather

time consuming, however, and a simple scan of the mSUGRA parameter space is

unfeasible if any more than two of the mSUGRA parameters are varied. For this

reason, we again use the Metropolis sampling technique introduced in the previous

section and, indeed, it is here that the power of the method becomes apparent. The

algorithm has been used to map the interesting region of the parameter space with

fewer points than would be required in a scan in order to obtain similar performance.

To demonstrate this, consider the following. There are four and a half parameters
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in the mSUGRA parameter space, though we have held A0 constant for simplicity.5

Of the remaining parameters, one is simply a sign (the sign of µ), and hence one

sampling run was performed with this sign positive, and another with it negative.

In any one application of the software, then, three parameters are varied – m0, m1/2

and tanβ – and even a coarse scan requiring 100 points along each axis would require

one million points for each sign of µ. The Metropolis algorithm maps the interesting

regions of the space in approximately 15,000 points per sign of µ, a dramatic im-

provement without which the analysis would have taken many months, if not years.

Even with this improvement, it was
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Figure 7: The cross-section in picobarns

for events passing a missing pT cut of 500

GeV, for tanβ = 10 and positive µ, obtained

using HERWIG. The value at the coannihila-

tion point is 2.03 pb. The irregularity in the

plot comes from the statistical error from

having only simulated 1000 events at each

point, in keeping with the method used in

the sampler.

still necessary to reduce the run time of

HERWIG significantly through the use of

a parallel computer. Although the Metropo-

lis algorithm itself cannot be parallelised,

we have adapted HERWIG to run on a par-

allel machine with the use of MPI code,

thereby substantially reducing the run time

per point.

4.2.2 Definition of Metropolis quan-

tities for cross-section

We now define the Metropolis algorithm

for use with (only) the cross-section data.

As in the previous section, we require the

definition of the probability distribution

p(p|σobs) from which samples are to be

taken, in which σobs represents the cross-

section supposedly “observed” or measured

by the experiment. Lacking real data, we

take σobs to be 2.04 pb, the value pre-

dicted by a HERWIG and ATLFAST simula-

tuion of the coannihiliation point of section 1.2. The evaluation of p(p|σobs) neces-

sitates the definition of a suitable prior p(p) on the model space P which again we

take to be flat (but equal to zero for invalid values of any of the model parameters

pi ∈ p). Finally the Metropolis sampler’s proposal distribution must be modified to

act on the model space P rather than on the mass space M . The proposal distri-

bution was again chosen to be a multi-dimensional Gaussian centred on the current

point p ∈ P . The widths of the proposal distribution in m0, m1/2 and tanβ were

respectively usually 25 GeV, 25 GeV and 2 GeV, except when both cross-section

and edge constraints were in use simultaneously (only in sections 4.3 and beyond) in

which case a smaller set of widths was used (5 GeV, 5 GeV and 2 GeV). The widths
5In retrospect there was no compelling reason to hold A0 fixed, and in a later study we expect

to look at the effect of allowing A0 to vary and be measured by the data along with all the other

model parameters.
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were chosen for the efficiency reasons outlined in section A.4 and will not affect the

results once convergence has occurred.

The sampled probability distribution p(p|σobs) follows a similar definition to that

encountered previously for p(m|eobs). The analogue of equation (3.2) is then just the

single term p(σobs|p) quantifying the cross-section likelihood according to:

p(σobs|p) ≈ 1
√

2πσ2
err

exp

(

−(σobs − σpred(p))2

2σ2
err

)

, (4.1)

where σerr is the error associated with the cross-section measurement σobs, and

σpred(p) is the value of the cross-section expected at the point p in mSUGRA pa-

rameter space P as again predicted by a HERWIG and ATLFAST simulation.

The error σerr on the observed cross-section σobs was taken to be ten per cent.

This figure was chosen somewhat arbitrarily, for similar reasons to those given when

explaining the sizes of the errors assumed for the enpoint measurments (see sec-

tion 2.4): this paper is designed to illustrate a method, not to claim that a particular

measurement can be made with a certain precision. In contrast, if we had access

to real data, it would be of vital importance to make the estimation of the cross-

section error as accurate as possible. The eventual precision of the final answer will

be strongly correlated with the error attributed to the cross-section. In retrospect,

the chosen value of ten per cent probably underestimates the combination of (1) the

statistical error, (2) luminosity error, (3) the theoretical uncertainty on the signal

cross-section, and (4) the combined experimental and theoretical uncertainty on the

prediction for the number of standard model events likely to pass the signal cuts.

If we were to be granted further time on the supercomputer and were able to start

the analysis again from scratch, we would probably re-simulate with a larger and

more realistic error of thirty percent. Further work (beyond the scope of this paper)

should be done to investigate the expected size of this error, and to confirm that the

effect of increasing this error estimate is just to enlarge the size of the final regions.

Within this article, however, the cross section error will be taken to be the stated

ten per cent – and this will be sufficient for the purpose of demonstrating how the

proposed method can be used in practice.

Certain regions of mSUGRA parameter space P are known to be unphysical – for

example there may be no electroweak symmetry breaking or there may be a charged

LSP. In both cases, ISAJET will detect this and fail to run. Furthermore there

are points p for which HERWIG will not run. When any of these problems occur we

take the point p to be unphysical and multiply the likelihood by zero (as unphysical

points cannot have generated the observed data!).

4.2.3 Results in mSUGRA space (for cross-section information alone)

The results of the Markov Chain in mass space for positive µ can be seen in figure 8,

with those for negative µ presented in figure 9. The distributions look very similar
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in the m0, m1/2 plane, reflecting a lack of sensitivity to the sign of µ. The tanβ

distribution is approximately flat for negative µ, whilst there is some insignificant

preference for the ‘correct’ value of tan β = 10 in the positive µ case.
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Figure 8: The region of mSUGRA parameter space consistent with the measurement of

the cross-section of events with missing pT greater than 500 GeV, for positive µ.
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Figure 9: The region of mSUGRA parameter space consistent with the measurement of

the cross-section of events with missing pT greater than 500 GeV, for negative mu.
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4.2.4 Results in mass space (for cross-section information alone)

We now relate the results in figures 8 and 9 to the weak scale mass space in which we

have already observed the regions consistent with the kinematic edge analysis. The

positive µ and negative µ data sets presented previously have been evolved to the

weak scale using ISAJETand combined into a single data set by weighting each of the

two sets by the average likelihood of that set. The region obtained in mass space is

shown in figure 10, and is dramatically different from that obtained using the edge

analysis. The overlap between the regions found by the two methods (figures 6 and

10) is shown in figure 11, and was obtained by multiplying the previous data sets.

The overlap of the two regions has produced much tighter constraints on the

particle masses, even with a relatively conservative estimate of the precision of the

endpoint measurements. It is worth noting that the projections of the region of

overlap on each pair of axes give different size regions in each plane, with the smallest

being that in the plane of the neutralino masses. This could be used to remove some of

the area shown in the other planes, although the strictly correct procedure (followed

in section 4.3) is to run a Markov Chain with the edge and cross-section information

implemented at the same time.

4.3 Further analysis

The overlap plots presented in the previous subsection give a rough idea of what to

expect from the combination of edge and cross-section information, but the approach

is only approximately valid given that the cross-section measurement is not indepen-

dent of the kinematic edge positions. In order to be fully rigorous, one must run a

Markov Chain whose probability density function combines both the cross-section

and the edge information at the same time – in other words one must sample this

time from p(p|eobs, σobs).
Accordingly, a Metropolis sampler of p(p|eobs, σobs) was set to explore the mSUGRA

parameter space P .

At each point p ∈ P the number of events passing the missing pT cut was

obtained from the ATLFAST output whilst the ISAJET mass spectrum was used to

find the expected position of the endpoints. This information was then compared

to the ‘measured’ information (in this case, the endpoints shown earlier, and the

cross-section obtained through Monte Carlo simulation of the coannihilation point)

in the definition of the probability weight for each point p ∈ P . The likelihood

p(eobs, σobs|p), the analogue of equations (3.2) and (4.1), is this time the product of

the pair of them:

p(eobs, σobs|p) = p(σobs|p)
5
∏

i=1

p(eobsi |m(p)). (4.2)

The same flat prior p(p) on mSUGRA space P was used as in section 4.2.2. The

likelihood was multiplied by zero if the sparticle masses m(p) obtained at a point p
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Figure 10: The region of mass space consistent with a measurement at 10% precision of

the cross-section of events with missing pT greater than 500 GeV, obtained using a Markov

chain sampler.

were not consistent with the mass hierarchy required for the squark decay chain to

exist. The Metropolis algorithm’s proposal distribution was the same as that used

previously in section 4.2.2. Chains were run separately for positive and negative µ.
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Figure 11: The region of mass space consistent with a measurement at 10% precision

of the cross-section of events with missing pT greater than 500 GeV, overlapped with a

measurement of the squark decay kinematic endpoints obtained in section 2.

4.3.1 Results for cross-section and edge measurements together

The mSUGRA space results for cross-section and edge measurements are shown in
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figures 12 and 13, with the results in mass space shown in figure 14. Note that inclu-

sion of the cross-section information greatly improves the precision in the m0, m1/2

plane.

We would like to emphasise at this stage that the majority of the apparent

improvement is not the result of the inclusion of the cross-section measurement –

but is rather a well known side-effect of the fit taking place in a model space which

is more tightly constrained (masses depend primarily on just the two parameters m0

and m1/2) than the original mass space (four free masses). Many points in mSUGRA

space are now rejected as they give the wrong mass hierarchy for the decay chain.

This leads to a jump in mass-space precision, at the expense of incorporating some

model dependence. If we are prepared to accept the model dependence introduced

by moving to the space of a particular model (in this case mSUGRA) we are forced

to accept “uncomfortably” tight constraints on the compatible regions of parameter

space. Why uncomfortable? Uncomfortable because the choice of mSUGRA was

somewhat arbitrary, and made without a strong degree of belief that mSUGRA is

an effective theory of Nature. Given this lack of confidence in mSUGRA itself,

there seems little use in being able to quote tiny errors on the parts of it which are

compatible with the data – especially when even small departures from the mSUGRA

model might lead to significant changes in the sparticle spectra or properties.

However, this very distaste is now the motivation for recognising that we are no

longer restricted to looking at overly constrained models like mSUGRA, and suggests

that we can now look at a wider class of models in which we hope to have a higher

degree of faith. In this way we can lose some of the unpleasant model dependence

just introduced, and can for the first time actually put the cross-section measurement

in a position in which it can play an active role in constraining competing theories.

We thus hope to illustrate the power of our technique.

In section 5 we go on to increase the dimensionality of the parameter space

in exactly this way (by relaxing the conditions that impose, for example, universal

gaugino masses at the GUT scale, etc) and still maintain good precision by using the

endpoint data together with the cross-section measurement. Inclusive and exclusive

data is combined to explore more general SUSY models in order to learn yet more

about the SUSY Lagrangian.

Finally, it is crucial to note that there is another limitation in the analysis so

far in that it has been assumed that one has established that the particles involved

in the decay chain are the two lightest neutralinos and the left-handed slepton. In

practise, one could just as easily fit endpoints using, for example, the heaviest two

neutralinos and the right-handed slepton. This ambiguity ought to be reflected in

the analysis, and has only rarely been considered before (see for example [7, 8]). This

is also considered in section 5.

– 21 –



0 100 200 300 400 500 600 700 800 90010000

100

200

300

400

500

600

700

800

900

1000

 (GeV)0m

 (
G

eV
)

1/
2

m

40 50 60 70 80 90 100300

310

320

330

340

350

360

370

380

390

400

 (GeV)0m

 (
G

eV
)

1/
2

m

0 10 20 30 40 50 60 70 80 90 1000

500

1000

1500

2000

2500

3000

3500

4000

βtan

N
u

m
b

er
 o

f 
p

o
in

ts
Figure 12: The region of mSUGRA parameter space consistent with the measurement of

the cross-section of events with missing pT greater than 500 GeV and with the endpoint

measurements obtained in section 2, for positive µ.
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Figure 13: The region of mSUGRA parameter space consistent with the measurement of

the cross-section of events with missing pT greater than 500 GeV and with the endpoint

measurements obtained in section 2, for negative µ.

5. Going beyond mSUGRA

We have seen thus far that one can sample from the mSUGRA parameter space using

both kinematic endpoint data and a simple cross-section measurement. Endpoint
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data alone gives more than adequate precision within the framework of mSUGRA,

provided one samples the mSUGRA parameter space and assumes that one has

identified the particles in the decay chain correctly. The aim of this section is to

generalise this analysis to include both ambiguity in the decay chain and more general

assumptions about the mechanism of SUSY breaking. We will also consider the effect

of the jet energy scale error on the endpoint positions, thus demonstrating how one

would include correlated experimental effects in our analysis.

5.1 Effect of a jet energy scale error

Any detector such as ATLAS does not measure the energy of jets perfectly, but

instead has some energy scale error. Given that most of the endpoints feature a quark

jet, it is worth investigating the effect of the energy scale error on the positions of

the endpoints, and the subsequent effect on our precision in the mSUGRA parameter

space.

Firstly, it is noted that for jets whose energy exceeds 70 GeV (the likely energy

of the jet in our endpoints given the relatively large mass difference between the

squarks and the neutralinos), the energy scale error is expected to be of the order

of 1 per cent [9]. This is much lower than the errors we have already attributed to

the endpoints that arise from mismeasurement, and hence the effect will not cause

a discernible difference to our results. We have nevertheless included the effect in

our analysis as an example of how one can incorporate experimental effects in our

analysis.

To accommodate the effect of an unknown shift s in the absolute jet energy

scale, we add s to the parameter set explored by the sampler. In other words, the

sampler now wanders around the extended space Q = P ⊗ S defined as the product

of the mSUGRA parameter space P = {p} with the set S of possible values of s.

At each point q = (p, s) ∈ Q we work out the masses m(p) of the particles in the

decay chain. We then calculate the “idealised” positions of the edges corresponding to

these masses (as before) but we then move the positions of these edges by the amount

predicted by the current hypothesis s for the the absolute jet energy scale correction.

The resulting modified edge positions epred = epred(q) = epred(m(p), s), which now

depend on s, are the values which are used in the new version of equation (3.3).

Having extended P to the larger space Q, our goal is now to sample not from

p(p|eobs) but from p(q|eobs). The latter is proportional to p(eobs|q)p(q). The first

term p(eobs|q) may be calculated almost exactly as before in equation (3.3) but with

the new modified edge positions epred(m(p), s) described above. The last term p(q)

may be decomposed by independence into two parts: p(p)p(s). The first of these,

p(p), is the mSUGRA-space prior which we have seen before,6 while the other, p(s),

6We must remember that, as in earlier sections, the likelihood p(eobs|q) will be zero (given our

model) at points where the masses of the particles in the chain do not obey the necessary mass

hierarchy. It was computationally easier for us to place this veto into the prior p(p) as before.
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is the expected distribution of the final uncertainty in the absolute jet energy scale.

Following [9] we take p(s) to be a Gaussian of width 1%.

In order to determine the particular amounts δi by which the ith endpoint should

be shifted for a given jet energy scale correction factor s, we run a toy Monte Carlo

simulation at that point and for that edge.7 This is done once with and once without

the correction factor s multiplying the jet energies. The positions of the endpoints

are compared in the two cases. Different endpoints are thus shifted by different

fractions of the energy scale error s.

The results including uncertainty in the jet energy scale are shown in figures 15

and 16 for positive and negative µ respectively and are comparable to those obtained

previously (figures 12 and 13) when uncertainty in the jet energy scale was not

considered.

5.2 Chain ambiguity in mSUGRA

In order to investigate the effect of
Name Hieracrchy

H1 mq̃ > mχ̃0
2
> mẽL

> mχ̃0
1

H2 mq̃ > mχ̃0
3
> mẽL

> mχ̃0
1

H3 mq̃ > mχ̃0
3
> mẽL

> mχ̃0
2

H4 mq̃ > mχ̃0
4
> mẽL

> mχ̃0
1

H5 mq̃ > mχ̃0
4
> mẽL

> mχ̃0
2

H6 mq̃ > mχ̃0
4
> mẽL

> mχ̃0
3

H7 mq̃ > mχ̃0
2
> mẽR

> mχ̃0
1

H8 mq̃ > mχ̃0
3
> mẽR

> mχ̃0
1

H9 mq̃ > mχ̃0
3
> mẽR

> mχ̃0
2

H10 mq̃ > mχ̃0
4
> mẽR

> mχ̃0
1

H11 mq̃ > mχ̃0
4
> mẽR

> mχ̃0
2

H12 mq̃ > mχ̃0
4
> mẽR

> mχ̃0
3

Table 4: The twelve mass hierarchies con-

sidered in Section 5.2.

chain ambiguity on the mSUGRA param-

eter space, the edge data from section 2

are here used in an mSUGRA fit with-

out the assumption that the particles in

the decay chain have been identified cor-

rectly. It is still true that there are few

processes that can give the characteris-

tic endpoints associated with the squark

cascade decay already described, and it

should be sufficient merely to include the

possibility that any of the neutralinos may

be produced in the decay (provided of

course that the one further down the chain

is lighter than that above it) and that

one has ambiguity over the slepton chi-

rality. This gives twelve possible mass

hierarchies (see Table 4) and each of these gives a series of possible endpoints in the

mass spectra. The issue of how to deal with parts of parameter space able to gen-

erate the same final state through three- rather than two-body decays (for example

when the sleptons are too massive to produce directly) is beyond the scope of this

document but is ideal for further study.

There can easily be points in parameter space at which almost all sparticle

production goes through one particular hierarchy (say H1), but in which a different

hierarchy (sayH2) has end-point locations which are a much better fit to the positions

of the “observed” edges. This could be true even if the cross section for H2 was much

less than for H1. Events from H2 might not even be observable. It is very costly to
7Strictly speaking the toy Monte Carlo simulation is only needed for the llq edge and the llq

threshold as the shifts in the edge positions for the other edges are linear in
√

s and may be

calculated analytically.
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accurately determine the observability (after realistic detector cuts and consideration

of backgrounds) of each of the hierarchies in Table 4 at every point in parameter space

visited by the Markov Chain. For this reason, in this article we adopt the following

conservative position. We choose not to consider the (un)observability of end points

at different points in parameter space. Instead we assume that every hierarchy

consistent with the masses of a given point is potentially visible. This assumption is

conservative because in reality only a few hierarchies will be visible. The consequence

of our assumption is that we will not reject points of parameter space that a more

in-depth analysis might be able to reject. It would be interesting for further work

to pursue the possibility of making stronger statements at each point in parameter

space based not only on the positions of the observed edges, but also based on the

number of event in them, and the number of events in distributions which were not

observed to have edges etc. How to cope with points at which heavy sleptons force

three- rather than two-body neutralino decays should also be investigated. In depth

analyses of this kind are beyond the scope of this paper, however.

If we label the Na different mass assignments with a tag ai, the likelihood for the

i-th observed edge at each point p in the mSUGRA parameter space P now becomes:

p(eobsi |p) =

Na
∑

j=1

p(eobsi |p, aj)p(aj)

=
Na
∑

j=1

p(eobsi |maj
(p))p(aj) (5.1)

where p(ai) is the prior for the mass assignments, and Na gives the number of as-

signments open at that point in parameter space. If we assume that each of the

assignments is equally likely, the prior p(ai) is simply 1/Na. The term p(eobsi |mai
(p))

is calculated using equation (3.3) with the masses corresponding to the assignment

ai.

Equation (5.1) makes the conservative assumption that any observed edge could

have come from any observed chain (i.e. not necessarily from the same chain as that

generating a different observed edge). Furthermore (but less realistically) it assumes

that there is no correlation between the chains generating each of the edges, whereas

in many parts of parameter space it is highly likely that there is only one dominant

chain. It is thus arguable that equation (5.1) should be replaced by the stronger

statement

p(eobs|p) =

Na
∑

j=1

p(eobs|p, aj)p(aj)

=
Na
∑

j=1

p(eobs|maj
(p))p(aj) (5.2)
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which says that all the observed edges were the result of the same (albeit unknown

and unidentified) chain of sparticles. We choose to present results using (5.1) rather

than (5.2).

The results for positive µ are seen in figure 17, whilst those for negative µ are

in figure 18. The precision is worse than that encountered previously, but not by

much. It may be seen that there are two favoured regions in each plot, rather than

the single region encountered previously. The region at larger m0 is one in which

hierarchy H1 dominates the sum (5.1). The lower m0 region has (5.1) dominated by

hierarchy H7 in which the right-slepton is substituted for the left-slepton.

The next course of action is to view the regions in the weak scale mass space that

correspond to the chosen mSUGRA points, and here we have a problem. Since we

are now assuming that we do not know exactly which particles are in the decay chain,

we can no longer take the points in the mSUGRA plane and claim that they give

us the masses of the lightest two neutralinos and the left handed slepton. Instead,

we can merely say that we have measured a neutralino-like object and a slepton-like

object, but that we need some more facts before we can say anything more.

We can, however, use some other information to tell us more about the particles

in the decay chain. For a start, we can look at the width of the distribution for each

mass (neutralino 1, neutralino 2, etc) that results from the mSUGRA points and use

these widths as a qualitative guide. If the endpoints are really caused by a single

mass hierarchy, the masses in this chain should generally fit the data better than

other hierarchies, and this will manifest itself in a smaller spread of masses for the

masses involved in the correct hierarchy. In our case, the endpoints should all be

caused by a decay chain featuring the lightest two neutralinos and the left handed

slepton, so we expect these masses to have narrower distributions. This is indeed

the case for the neutralinos, as seen in figure 19, though the selectron results are less

different.

Note that figure 19 does not yet show mass measurements. The plots could

only be interpreted as mass measurements if further work were able to establish the

identities of the particles involved and confirm that they came predominantly from

just one chain. Here we show them only to help get a hold on which decay chains

appear to be consistent with the results.

There are other things that can be done. Having had our attention drawn to

a small region of the mSUGRA parameter space, we can look within that region

at the branching ratios for the different possible mass hierarchies, after which we

might find that there are not enough events of a given type to be consistent with

the observed endpoints. Therefore, although a decay chain featuring a neutralino 3

and neutralino 2 may fit a given endpoint slightly better than the correct chain, it

might be impossible for that chain to produce an endpoint with the same number

of events present as has been observed. This, in conjunction with the width of the

mass distributions, might be enough to confirm the nature of the true decay chain,
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but it would be foolish to assume that the true chain will always be easy to identify.

Given that the region in mSUGRA space has not substantially increased in size,

we will not add the cross-section information at this stage. Instead, we will investigate

the effect of relaxing some of the assumptions of the mSUGRA model.

5.3 A non-universal SUGRA model

The mSUGRA model assumes universality of the scalar and gaugino masses at the

GUT scale, and also unifies the trilinear couplings at the GUT scale. Although this

helps in reducing the SUSY breaking parameter set to a manageable level, reality

may present a more complicated case. Hence, there is a very strong motivation for

developing techniques that are either model independent or are at least able to tackle

some more general SUSY models.

In this subsection, we investigate the effect of relaxing the assumption of universal

GUT scale gaugino masses, whilst still retaining the chain ambiguity and jet energy

scale effects encountered in the sections 5.1 and 5.2. It is important to realise that

this is merely a first example of the use of the techniques developed here; one could

just as easily relax more of the mSUGRA assumptions provided that one has made

enough measurements to provide suitable constraints on the resulting model.

5.3.1 Kinematic edge constraints on non-universal SUGRA

The parameter set for the SUGRA model now becomes m0, tanβ, A0, sgn(µ), M1,

M2 and M3. A Metropolis sampler was used to sample from this parameter space

(along with the jet energy scale error s), with the mass spectrum of each point found

using ISAJET 7.69. Chain ambiguity was incorporated in the same way as described

in section 5.2. The results are seen in figures 20 and 21: it should be noted that

the previous m0 vs m1/2 plot has been superseded by three plots against the various

GUT scale gaugino masses. The plots shown contain 800,000 points, after which the

sampler was still clearly exploring new areas of the parameter space. In these plots,

the Markov Chain has not yet converged, and this lack of convergence is sufficient to

show that the endpoint data alone do not provide sufficient information to adequately

constrain the non-universal SUGRA model, and so we have indeed reached a point

where we need to consider additional measurements – such as the cross-section.

5.3.2 Kinematic edge data and cross-section constraints on non-universal

SUGRA

A further Metropolis sampler was used to explore the parameter space of our non-

universal SUGRA model using both the cross-section information and the edge data

in the definition of the probability weight for each point. The results for positive

µ are seen in figure 22, whilst those for negative µ are seen in figure 23, and the

difference from the plots described above is immediately apparent. The system is

much more tightly constrained, and it has not wandered too far from the region
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corresponding to an mSUGRA model in which M1, M2 and M3 are degenerate. One

can convert this GUT scale region to a region in mass space as before (see figure 24),

though with the previous disclaimer that we have not yet identified which of the

particles are involved in the decay chain but merely the range on the various masses

that might be involved. Further work in the form of Monte Carlo studies targeted

in the selected region at the GUT scale might possibly identify which masses are

involved and hence improve the precision further, a study that is perfectly feasible

given the relatively small extent of the region allowed by our data.

The results presented here are very encouraging, however, showing that even

with only one extra observable we can afford to be more honest about our lack of

information regarding decay processes whilst still obtaining adequate precision within

the framework of mSUGRA, and reasonable precision in a more general model.

6. Conclusions

We have used Markov Chain sampling techniques to combine kinematic endpoint

measurements with a cross-section measurement in order to obtain precision SUSY

mass measurements in simulated ATLAS data. Previous analyses have been ex-

tended to include ambiguity in the decay chain responsible for the endpoints, and a

preliminary study has been made of a non-universal SUGRA model. Throughout it

has been shown that the precision of mass measurements is greatly improved through

the use of inclusive data, and the technique described offers a rigorous and general

approach to the problem of constraining SUSY at the LHC. Reasonable precision has

been obtained even with a fairly conservative estimate of the errors on the endpoints

themselves.

The work described here is the first step toward what is hoped will be a powerful

technique for future analysis. By collecting inclusive observables, one can start to

look at more and more general models, with the final result limited only by the

ability of physicists to come up with new pieces of information. At the very least,

the Markov Chain approach is a powerful framework for combining information and

exploring multi-dimensional parameter spaces in an efficient manner.

As a final note, it is worth remarking that the technique is not limited solely

to data obtained at the LHC. Any piece of relevant data is potentially useful, with

obvious examples being cross-section limits for rare decay processes, and dark matter

measurements that are currently already being used to set limits on theories. As we

start to explore models with greater numbers of parameters, this extra knowledge

could prove invaluable in providing a sufficient number of constraints, and this will

be the subject of future papers.
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Figure 14: The region of mass space consistent with a measurement at 10% precision

of the cross-section of events with missing pT greater than 500 GeV combined with the

endpoints measured in section 2, obtained using a Markov chain sampler in mSUGRA

space.
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Figure 15: The region of mSUGRA parameter space consistent with the endpoint mea-

surements obtained in section 2, for positive µ, with a 1 per cent jet energy scale error

included.
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Figure 16: The region of mSUGRA parameter space consistent with the endpoint mea-

surements obtained in section 2, for negative µ, with a 1 per cent jet energy scale error

included.

– 31 –



0 100 200 300 400 500 600 700 800 90010000

100

200

300

400

500

600

700

800

900

1000

 (GeV)0m

 (
G

eV
)

1/
2

m

20 40 60 80 100 120 140300

310

320

330

340

350

360

370

380

390

400

 (GeV)0m

 (
G

eV
)

1/
2

m

0 10 20 30 40 50 60 70 80 90 1000

1000

2000

3000

4000

5000

6000

7000

βtan

N
u

m
b

er
 o

f 
ev

en
ts

Figure 17: The region of mSUGRA parameter space consistent with the endpoint mea-

surements of section 2, without the assumption that the neutralinos and slepton in the

squark decay chain have been correctly identified. For full details, see text. Results are

shown for positive µ.
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Figure 18: The region of mSUGRA parameter space consistent with the endpoint mea-

surements of section 2, without the assumption that the neutralinos and slepton in the

squark decay chain have been correctly identified. For full details, see text. Results are

shown for negative µ.
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Figure 19: The mass distributions obtained from the mSUGRA chain, in which one has

not assumed that the particles in the decay chain have been identified. These are not to

be confused with mass measurements! The width of each plot (RMS about the mean) is

recorded for each plot in GeV.

– 33 –



0 100 200 300 400 500 600 700 800 90010000

500

1000

1500

2000

2500

 (GeV)0m

 (
G

eV
)

3
M

0 10 20 30 40 50 60 70 80 90 1000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

βtan

N
u

m
b

er
 o

f 
p

o
in

ts

0 100 200 300 400 500 600 700 800 90010000

500

1000

1500

2000

2500

 (GeV)0m

 (
G

eV
)

1
M

0 100 200 300 400 500 600 700 800 90010000

500

1000

1500

2000

2500

 (GeV)0m

 (
G

eV
)

2
M

Figure 20: The region of our non-universal SUGRA parameter space consistent with the

endpoint measurements of section 2, with chain ambiguity included. Results are shown for

positive µ.
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Figure 21: The region of our non-universal SUGRA parameter space consistent with the

endpoint measurements of section 2, with chain ambiguity included. Results are shown for

negative µ.
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Figure 22: The region of our non-universal SUGRA parameter space consistent with

the endpoint measurements of section 2 and the cross-section measurement, with chain

ambiguity included. Results are shown for positive µ.
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Figure 23: The region of our non-universal SUGRA parameter space consistent with

the endpoint measurements of section 2 and the cross-section measurement, with chain

ambiguity included. Results are shown for negative µ.
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Figure 24: The region of mass space corresponding to the non-universal SUGRA param-

eter space region obtained in the text.
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A. Markov Chain Sampling

There follows a brief review of the relevant techniques involved in the Markov chain

methods used in our analysis. For a more comprehensive explanation, see [14]).

A.1 Markov Chains

Let Xi be a (possibly infinite) discrete sequence of random variables. X1, X2,... is

said to have the Markov property if:

P (Xi+1 = xi+1|Xi = xi, Xi−1 = xi−1, ..., X1 = x1) = P (Xi+1 = xi+1|Xi = xi) (A.1)

for every sequence x1, ..., xi, xi+1 and for every i ≥ 1. A sequence of random variables

with the Markov property is called a Markov Chain.

Suppose i is a discrete step in a time variable. The Markov property is then

equivalent to stating that, given a present element of the sequence Xi, the conditional

probability of the next element in the sequence is dependent only on the present.

Thus, at each time i the future of the process is conditionally independent of the

past given the present.

A.2 Sampling and probability distributions

Suppose we wish to determine a probability distribution P (x); for example, the

posterior probability of a model’s parameters given some data. It is assumed in

general that x is an N -dimensional vector and that P (x) can be evaluated only to

within a normalisation constant Z; i.e. we can evaluate the function P ∗(x) where:

P (x) =
P ∗(x)

Z
(A.2)

Although P (x) cannot be obtained analytically, we can in theory solve the prob-

lem by sampling from P (x) and plotting the results. Two immediate problems

present themselves; the first is that Z is in general unknown. The second, which

holds true even if we know Z, is that it is not obvious how to sample from P (x)

efficiently without visiting every position x. We would like a way to visit places in

x-space where P (x) is large in preference to places where P (x) is small, thus giving a

description of the probability distribution with a minimum of computational effort.

A.3 The Metropolis-Hastings Algorithm

The above problem can be solved through the use of Markov Chain Monte Carlo

methods, one example of which is the Metropolis-Hastings algorithm. This makes

use of a proposal density Q which depends on the current state of a system, which we

label x(t). (This state is really a point in a Markov Chain, and may be, for example,

a particular choice of the parameters in the model whose probability distribution we

are trying to sample). The density Q(x′;x(t)) (where x′ is a tentative new state,
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or the next point in the Markov chain) can be any fixed density from which it is

possible to draw samples; it is not necessary for Q(x′;x(t)) to resemble P (x) for the

algorithm to be useful, and it is common to choose a simple distribution such as a

Gaussian with a width chosen for the reasons outlined in section A.4.

Assuming that it is possible to evaluate P ∗(x) for any x as above, the first step

in the Metropolis-Hastings algorithm is to generate a new state x′ from the proposal

density Q(x′;x(t)). The decision on whether to accept the new state is made by

computing the quantity:

a =
P ∗(x′)Q(x(t);x′)

P ∗(x(t))Q(x′;x(t))
(A.3)

Equation (A.3) exists to ensure that the sampled distribution does not depend

on the choice of Q.

If a ≥ 1 the new state is accepted, otherwise the new state is accepted with

probability a. It is noted that if Q is a simple symmetric density, the ratio of the Q

functions in equation (A.3) is unity, in which case the Metropolis-Hastings algorithm

reduces to the Metropolis method, involving a simple comparison of the target density

at the two points in the Markov Chain.

If Q is chosen such that Q(x′;x) > 0 for all x,x′, the probability distribution

of x(t) tends to P (x) = P ∗(x)/Z as t → ∞. Thus, by choosing points via the

Metropolis algorithm and then plotting them, we have achieved our goal of obtaining

a description of P (x) in an efficient manner.

A.4 Efficiency of the Metropolis-Hastings Algorithm

Note that the presence of the caveat t → ∞ implies that there is an issue of con-

vergence in the application of the Metropolis-Hastings algorithm. Each element in

the sequence x(t) has a probability distribution that is dependent on the previous

value x(t−1) and hence, since successive samples are correlated with each other, the

Markov Chain must be run for a certain length of time in order to generate samples

that are effectively independent – at which point we say the chain has “converged”.

The time it takes for the chain to converge depends on the particular P (x) being

sampled, and on the details of Q. You cannot modify P (x), but you are free to

choose the form of Q so as to reduce the number of points which must be sampled

before convergence is reached. Remember that equation (A.3) exists to ensure that

the sampled distribution does not depend on your choice of Q.

Finding a sensible Q is a balance between choosing distributions that are wide

(and thus lead to successive samples being relatively un-correlated) and choosing

distributions which are too wide (and which then take a long time to random walk

from one end of the sample space to the other). The widths of the proposal functions

Q used in this paper were chosen to be as large as possible, subject to the Markov

Chain’s efficiency (the fraction of proposal points being accepted) not falling much
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below one in twenty. This choice only affects the sampler’s time to convergence

and not the shape of the resultant sampled distributions once convergence has been

reached.
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