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Abstract.  We used the freely available Chemistry Development Kit (CDK)  

fingerprint to classify 5235 representative molecules taken from ten banned 

classes in the 2005 World Anti-Doping Agency’s (WADA) prohibited list, 

including molecules taken from the corresponding activity classes in the MDL 

Drug Data Report (MDDR). We used both Random Forest and k-Nearest 

Neighbours (kNN) algorithms to generate classifiers. The kNN classifiers with k 

= 1 gave a very slightly better Matthews Correlation Coefficient than the 

Random Forest classifiers; the latter, however, predicted fewer false positives. 

The performance of kNN classifiers tended to decline with increasing k. The 

performance of the CDK fingerprint is essentially equivalent to that of Unity 

2D. Our results suggest that it will be possible to use freely available 

chemoinformatics tools to aid the fight against drugs in sport, while minimising 

the risk of wrongfully penalising innocent athletes. 

 

 

1. Introduction 

 
Doping comes from the Dutch word “doop”, meaning a thick liquid or sauce and 

originally a South African drink, drunk to help make an individual work harder. Here, 

we discuss illegal doping in sport, the objective of which is to enhance athletic per-

formance, with little thought as to either the consequences for athlete’s health or the 

integrity of competition. The issue of doping in sport is further complicated by a 

minefield of legal, political, and ethical questions. The urgency and importance of the 

battle against drugs in sport was underlined when several of the world’s leading cy-

clists were forcibly withdrawn on the eve of the 2006 Tour de France, following an 

investigation by Spanish police. 

 

The WADA
1
  prohibited list contains 11 different classes of substance: one of these, 

alcohol (P1), has just one member and is not considered further. Anabolic agents (S1) 

are artificial synthetic analogues of the male sex hormone testosterone. They are used 

to promote growth of the skeletal muscles and red blood cells; particularly useful in 

events such as weightlifting or the 100m sprint, whereby these substances increase 

muscle size and strength allowing the athlete to train harder. Hormones and related 

substances (S2) include: erythropoietin, growth hormones, gonadotrophins, insulin 

and corticotrophins. These substances are taken by athletes to stimulate cell growth 

and red blood cell production and to increase sugar levels in the blood to avoid fatigue. 
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The primary medical use of beta-2 agonists (S3) is to treat asthmatic patients during 

an asthma attack. The drugs are used to open up the airways in the lungs which be-

come restricted following an asthma attack. They are now being used in sport because 

if injected into the bloodstream they have a powerful anabolic effect that can cause 

muscle mass to increase and body fat to drop. Anti-estrogenic agents (S4) are sub-

stances that prevent the full expression of estrogen. Examples of anti-estrogens in-

clude tamoxifen and clomiphene. 

 

Diuretics (S5), normally used to treat heart failure or high blood pressure, have been 

abused in sport for weight loss and elimination of drugs from the system. Diuretics 

work by increasing urine production in the kidneys. Sports where diuretics might be 

abused for promoting weight loss include boxing and lightweight rowing, and indeed 

any sports where competitors are required to reduce their body weight to below a 

specified level. Diuretics have been abused as masking agents to dilute the concentra-

tion of substances in the urine and avoid detection of other performance-enhancing 

drugs. Stimulants (S6) increase the activity of the sympathetic nervous system. Ex-

amples of stimulants include cocaine, amphetamine and modafinil; caffeine has re-

cently been removed from the WADA prohibited list. These substances make the user 

feel more alert, energetic and able to concentrate. Narcotics (S7) enhance perform-

ance in sport by acting as pain killers. Narcotics allow an injured athlete to continue 

to train and compete by relieving pain. Examples of narcotics banned in sport include 

heroin, morphine and fentanyl.  

 

Cannabinoids (S8) have been used to treat pain, migraine, insomnia, nausea and high 

blood pressure. They are used in sport to relax an athlete before competition. Gluco-

corticosteroids (S9) are now used as anti-inflammatory agents to treat arthritis and 

dermatitis. Examples of glucocorticosteroids include hydrocortisone and fludrocorti-

sone acetate. Beta blockers (P2) act as performance-enhancing drugs by lowering the 

human heart rate and blood pressure, particularly useful in Olympic sports such as 

archery or shooting where the beta blockers provide more time for the athlete to aim 

in between heart beats. Examples of beta blockers include acebutolol, alprenolol, 

nadolol and atenolol.  

 

The repertoire of substances used as doping agents in sport is continually evolving. 

This leads to an “arms race” between cheats and testers. The former are engaged in 

the design and synthesis of novel drugs, exemplified by “designer steroids”
2,3
 such as 

tetrahydrogestrinone (THG), which has recently gained notoriety in track and field 

athletics. The WADA list of prohibited substances uses the phrase “and other sub-

stances with a similar chemical structure or similar biological effect(s)” to prohibit 

analogues of known performance-enhancing molecules. This is a very delicate area 

legally and ethically, since the authorities run the risk of criminalising athletes who 

ingest substances which are in some way “similar”, without any hard evidence of bio-

activity. 

 

Prior to our work, interest in chemoinformatics approaches to drugs in sport appears 

to have been limited to the single study of Kontaxakis and Christodoulou,
4
 devoted to 



the prediction of chromatographic retention times of prohibited substances using an 

artificial neural network. Nonetheless, chemoinformatics may have an important role 

to play, since much of the discipline is built around, firstly, quantifying chemical 

similarity and, secondly, predicting bioactivity – exactly the two issues that are most 

relevant in the present context. In recent work,
5
 we have built classifiers which can be 

used to predict whether a given molecule is likely to exhibit the bioactivity specific to 

any particular class of prohibited substances.  

 

Our approach has a number of advantages, not least of which is putting the definition 

of chemical similarity on a quantitative (algorithmic) footing, which should be less 

vulnerable to legal challenge than a purely qualitative definition. It can also identify 

molecules unlikely to be bioactive and hence reduce the likelihood of athletes being 

unjustifiably penalised. We anticipate that in practice such classifiers would be used 

to complement, rather than replace, experimental methods such as assays.
3
 Experi-

mental methods would allow confirmation of the bioactivities suggested by chemoin-

formatics. The use of classifiers such as ours on large databases or libraries of mole-

cules can help the authorities predict where in chemical space their opponents are 

likely to be sourcing the next (or even current) generation of designer drugs. This 

would be highly beneficial, since it seems almost certain that much drug abuse in 

sport involves bioactive substances that are not currently known to, and hence not 

specifically looked for by, the drug testing regime. 

 

In this paper, we will demonstrate that the freely available CDK Fingerprint
6
 can be 

used to generate excellent classifiers. This is part of the Chemistry Development Kit, 

described as “a freely available open-source Java library for Structural Chemo- and 

Bioinformatics”.
7
 This decouples the classifiers from the commercial fingerprints 

such as Unity 2D
8
 and MACCS,

9
 which had been the basis of the successful classifi-

ers in our previous work.
5
 We will show that Random Forest is particularly suitable 

for minimising false positives. For kNN classifiers, we will find that k = 1 is most 

successful. We will also consider the class-specific predictive abilities of our classifi-

ers, which exhibit a fairly consistent pattern. We believe that our work facilitates the 

use of chemoinformatics in the fight against doping in sport. 

 

2. Methods 
 

2.1 Datasets 

 

All methods were applied to a dataset of 5235 molecules, some derived directly from 

the prohibited list and others taken from activity classes in the MDDR database (Ver-

sion 2003.1) corresponding to each WADA prohibited class of substance.
9
 The use of 

MDDR molecules of the corresponding bioactivities was necessary since the number 

of explicitly named molecules in the WADA list is relatively low, and justified by the 

“similar chemical structure or similar biological effect(s)” criterion. Our dataset con-

tained: 47 anabolic agents (S1), 272 hormones and related substances (S2), 367 beta-2 

agonists (S3), 928 anti-estrogenic agents (S4), 995 diuretics and masking agents (S5), 

804 stimulants (S6), 195 narcotics (S7), 995 cannabinoids (S8), 26 glucocorticoster-

oids (S9), 239 beta-blockers (P2) and 367 explicitly allowed substances.  



2.2 Fingerprints 

 

This work considers two fingerprints, the Chemical Development Kit (CDK) finger-

print and the Unity 2D fingerprint. The CDK fingerprint used in this work is modelled 

on the Daylight
10
 fingerprint. It operates by running a breadth-first search starting at 

each atom in the molecule and produces a string representation of paths up to six at-

oms in length. The software is written in Java and uses the Java hashing function in 

combination with a pseudorandom number generator with a default range of 0-1023. 

The number indicates a position in a fingerprint of length 1024 bits that is set to 1, 

based on the paths computed for the molecule. 

 

The Unity 2D fingerprint is composed of 992 feature bits. It is also similar to the Day-

light fingerprint, the difference being that the Unity fingerprint segregates different 

path lengths into different regions of the fingerprint.
11
 Unity was the best performing 

fingerprint in our recent work,
5
 hence Unity provides an important benchmark. 

 

This work is underpinned by the “Similar Property Principle”, that molecules close 

together in the chemical space defined by our descriptors are likely to share similar 

properties (in this case bioactivities). 

 

2.3 Classification 

 

The two machine learning algorithms used in this work are k-Nearest Neighbours and 

Random Forest. These algorithms were run using R software.
12
  In all cases the classi-

fication was performed in a binary fashion, such that a query molecule was either pre-

dicted to be part of a prohibited class under question or was not.  

 

In our k-Nearest Neighbour (kNN) classifiers, the class of a query molecule is deter-

mined by the majority vote of the class labels (member or non-member) of its k near-

est neighbours, according to Euclidean distance in descriptor space, with tied votes 

resolved randomly. 

 

Random Forest
13
 generates a forest of decision trees. At each node of each tree, a de-

scriptor is chosen for branch splitting; this is not selected from the full set of available 

descriptors, but from a random subset of candidates. The parameter mtry indicates 

how many descriptors will be randomly selected as candidates at each node in the tree. 

Its default value was used in this work, defined as the square root of the number of 

bits in the fingerprint (rounded down to an integer). Hence for the 1024 bit CDK fin-

gerprint mtry is taken as 32, and for the 992 bit Unity 2D fingerprint the default mtry 

is 31. For each tree, branches continue to be subdivided while the minimum number 

of observations in each leaf is no less than a pre-determined nodesize value. Branches 

are not pruned back. The Random Forest algorithm produces one output per molecule 

per tree. Each output classifies the molecule into either the category of member or that 

of non-member of a particular prohibited class. The outputs of the trees are aggre-

gated using majority voting. We used 500 trees per Random Forest (ntree = 500).  

 



We used fivefold cross-validation everywhere. This means that results for the Ran-

dom Forest classifiers are based on five runs, each using a different 20% of the data-

set as an independent test set, with the results being aggregated. Each molecule thus 

appears in exactly one of the five test sets (and exactly four of the five training sets). 

A similar procedure was used in the kNN work, with 20% of the molecules being pre-

dicted based on their nearest neighbours in the remaining 80%. This nearest 

neighbour prediction test was repeated five times on mutually exclusive test sets. 

Thus each molecule was predicted once, and the results aggregated. 

 

2.4 Performance Measures 

 

For each of the classifiers operating on each of the 10 prohibited classes, a 2×2 confu-

sion matrix was generated, giving the numbers of:  

 

• True positives (tp), correctly classified members of the class;  

• True negatives (tn), correctly classified non-members;  

• False positives (fp), non-members misclassified as members; 

• False negatives (fn), members misclassified as non-members. 

 

Since each classifier was run separately against each of the 10 WADA classes, a false 

positive could arise in two different ways. One is that a molecule from an incorrect 

class is predicted as positive, for instance a member of S1 being labelled as a member 

of P2. The other is that an explicitly allowed substance is predicted as a member of 

the WADA class under test. A given test molecule could be classified by our methods 

as belonging to any combination of the 10 classes (or none). The “correct” labels of 

our 5235 molecules are, however, unique with each molecule being assigned mem-

bership of either zero or one WADA class. 

 

Using the numbers of true and false positives and negatives, we calculated a version 

of the Matthews Correlation Coefficient with a slight modification, which we intro-

duced in recent work:
5
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The modification involves the MAX function in the denominator and ensures that 

MCC
*
 is defined even if one of the four sums inside the square root is zero, a situation 

which may occur if no positives are predicted (and thus MCC
*
 = 0). Baldi et al.

 14
 

have shown that the limiting value of the unmodified MCC as (tp + fp) tends to zero is, 

as expected, zero. This may be considered by some a more mathematically elegant 

way of ensuring that the coefficient is defined; nonetheless our introduction of MCC
*
 

provides a pragmatic solution. The possible range of MCC
*
 values is from -1 (perfect 

anticorrelation), through 0 (random performance) to +1 (perfect correlation).  

 

 



3. Results and Discussion 

 

The Random Forest results are illustrated in Fig. 1. The levels of performance ob-

tained with CDK and Unity are almost identical, both overall and across the individ-

ual classes. Unity does a little better on S1, but conversely CDK is superior in classi-

fying S9. Comparison of the first two lines of Table 1 shows that the overall MCC
*
s, 

with tp, tn, fp and fn aggregated over the ten classes, of the two Random Forest classifi-

ers are virtually identical (MCC
*
 is 0.8143 for Unity and 0.8136 for CDK). The prin-

cipal purpose of Unity’s inclusion here is comparison with the new results for the 

freely available CDK fingerprint; the results for Unity are naturally very close to 

those we obtained in previous work
5
 on an extremely similar dataset. In that work, 

Unity was shown to perform better than four other fingerprint definitions in classify-

ing prohibited substances.  

 

Random Forest: MCC* - CDK v Unity
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Fig. 1. MCC* values obtained for each prohibited class using Random Forest classifiers based 

on the CDK (left hand side of each pair of bars) and Unity (right) fingerprints. 

 

 

The Random Forest classifiers have the very useful property of predicting very few 

false positives. For Unity, only 147 false positives are predicted; this amounts to only 

0.3% of the individual class assignments that ought correctly to be negatives (0.35% 

for CDK). Even considering that there are ten possible banned classes that a molecule 

could be assigned to, these figures suggest that the overall probability of an inactive 

molecule being wrongly classified as a positive by this Random Forest classifier is 

approximately 3% for Unity (approximately 3.5% for CDK). The false positive rate 

would be further reduced by combining the chemoinformatics approach with suitable 

assays.
3
 Minimising false positives is important for legal reasons, and for the credibil-

ity and integrity of the anti-doping process; wrongful disqualification of athletes is to 

be avoided so far as possible.  



 

 
Table 1. Performance of the classifiers aggregated across all ten prohibited classes. 

 

FP Method tp tn fp fn MCC
* 

CDK RF 3493 47318 164 1375 0.8136 
Unity RF 3482 47335 147 1386 0.8143 

CDK 1NN 4091 46763 719 777 0.8297 
Unity 1NN 4124 46766 716 744 0.8342 
CDK 3NN 3813 46792 690 1055 0.7962 
Unity 3NN 3833 46808 674 1035 0.8005 
CDK 5NN 3592 46799 683 1276 0.7673 
Unity 5NN 3605 46792 690 1263 0.7683 

CDK 10NN 3098 46876 606 1770 0.7063 
Unity 10NN 3193 46783 699 1675 0.7098 
CDK 20NN 2665 46972 510 2203 0.6530 
Unity 20NN 2688 46895 587 2180 0.6474 

 

 

Fig. 2 shows the performance of the kNN classifiers with k = 1, which we shall call 

1NN classifiers (those with k = 3 are called 3NN classifiers etc.). The performance of 

CDK is very similar to that of Unity, except that it fares less well on class S1. The 

overall MCC
*
 values, shown in Table 1, are very similar for 1NN and Random Forest 

classifiers.  In fact, 1NN achieves a slightly higher value than Random Forest in each 

case. Unity does very marginally better than CDK. An important difference is that, 

despite the very similar MCC
*
 values, the 1NN classifiers predict many more false 

positives, but fewer false negatives, than Random Forest (Table 1). As a consequence, 

1NN gives a higher recall but lower precision for positives. This is true for both CDK 

and Unity fingerprints. 

 

This illustrates the point that kNN generates models which are local in nature, with 

the class membership of a test molecule being predicted based on a very small num-

ber of its neighbours. This is especially true for the 1NN models. We believe that this 

makes the kNN method especially suitable for identifying members of those classes 

which correspond to several different clusters in chemical space. This is likely to oc-

cur when interaction with any one of a plurality of receptors can give rise to the speci-

fied bioactivity.   

 
The four classifiers generated from Unity and CDK, Random Forest and 1NN (illus-

trated in Fig. 1 and Fig. 2) are in excellent agreement about the relative degrees of dif-

ficulty of predicting the ten prohibited classes. The six independent correlation coeffi-

cients between their sets of class-specific MCC* values are all in the range r = 0.9154 

(Unity-RF vs CDK-1NN) to r = 0.9906 (Unity-RF vs Unity-1NN). Although the 



smallest classes, S1 and S9, are amongst the hardest to predict, there is only a weak 

relationship between class size and MCC*.  The overall consensus ranking of the 

classes, in decreasing order of prediction quality, is: 

 

S3 ≈ S4 ≈ P2 > S2 ≈ S6 ≈ S7 > S5 > S1 ≈ S8 ≈ S9.  

 

1NN: MCC* - CDK v Unity
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Fig. 2. MCC* values obtained for each prohibited class using 1NN classifiers based on the CDK 

(left hand side of each pair of bars) and Unity (right) fingerprints. 

 

 

We have also evaluated (Fig. 3 and Table 1) the performance of the kNN classifiers 

for higher values of k, for both the CDK and Unity fingerprints. There are two salient 

features of these results. Firstly, the MCC
*
 values tend to deteriorate for higher values 

of k. Secondly, the differences in performance between the two fingerprints are tiny.  

The fall-off with increasing k reinforces the local nature of the successful kNN models. 

For these data, at least, inclusion of additional neighbours generally reduces the 

MCC* obtained. This indicates that the potential benefit of having information from 

more molecules is outweighed by the fact that these extra molecules are further away 

from that being classified. Fig. 3 contains some information additional to that in Table 

1, in particular the inclusion of k = 2, k = 4 and k = 15.  The slight recovery between k 

= 2 and k = 3 may be related to the random resolution of ties in the k = 2 case.  This 

mirrors the observation, in a rather different field, by Lam and Suen
15
 that augmenting 

an odd number of classifiers by an additional one can have a deleterious effect on 

overall prediction quality. Having an odd number of voters for a binary classification 

problem is an obvious way of avoiding problems with tied votes. 

 



MCC* Values for kNN Classifiers
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Fig. 3. MCC* values obtained by kNN classifiers as a function of k for CDK (solid line) and 

Unity (broken line) fingerprints; based on results aggregated over all ten classes. 

 

 

4. Conclusions 
 

We have successfully categorised molecules into WADA prohibited classes using 

both Random Forest and k-Nearest Neighbours algorithms, with Matthews Correla-

tion Coefficients above 0.8. In addition, we have shown that the freely available CDK 

fingerprint performs almost exactly as well as Unity 2D, which we previously demon-

strated to be the best of five commercial fingerprints for this purpose. Although the 

1NN algorithm (kNN with k = 1) gives the slightly higher MCC
*
, the Random Forest 

classifier produces fewer false positives. Our best Random Forest models have a false 

positive rate, aggregated over all classes, of around 3%. The relative prediction accu-

racies of the different prohibited classes are very similar for the four different classifi-

ers comprising Random Forest and 1NN algorithms with Unity and CDK fingerprints.  

 

We find that 1NN is clearly the best kNN model for both fingerprints. The use of 2NN 

models is problematic due to the occurrence of tied votes, which are then resolved 

randomly. We favour the use of odd numbers of votes in classification problems of 

this kind. We also argue that the highly local nature of our 1NN models makes them 

particularly suitable for assigning molecules to classes of prohibited substances which 

comprise more than one cluster in chemical space. 

 

These results suggest that it will be possible to create chemoinformatics-based classi-

fiers, using freely available software, to determine whether novel molecules should be 

assigned to WADA prohibited classes. This will be especially powerful in combina-



tion with complementary experimental methods. Such tools will aid the fight against 

drug abuse in sport, while protecting competitors against unjustified sanctions. 
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