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Abstract

In this paper we discuss tests for residual cross section dependence in
nonlinear panel data models. The tests are based on average pair-wise
residual correlation coefficients. In nonlinear models, the definition of
the residual is ambiguous and we consider two approaches: deviations
of the observed dependent variable from its expected value and gen-
eralized residuals. We show the asymptotic consistency of the cross
section dependence (CD) test of Pesaran (2004). In Monte Carlo ex-
periments it emerges that the CD test has the correct size for any
combination of N and T whereas the LM test relies on T large relative
to N . We then analyze the roll-call votes of the 104th U.S. Congress
and find considerable dependence between the votes of the members
of Congress.
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1 Introduction

Many panel data models assume that observations across individuals are
independent. However, there could be common shocks that affect all in-
dividuals. Often economic theories also predict that agents take actions
that lead to interdependence among themselves. For example, the predic-
tion that risk-averse agents will make insurance contracts allowing them to
smooth idiosyncratic shocks implies dependence in consumption across in-
dividuals. If observations are dependent across individuals, estimators that
are based on the assumption of cross sectional independence may be in-
consistent. Since contrary to time series data, there is no natural ordering
for cross sectional indices, i, appropriate modeling and estimation of cross
sectional dependence can be difficult, in particular if the dimension of cross
sectional observations, N , is large and the time series dimension, T , is small.
Therefore, it is appealing to first test for cross sectional dependence before
one attempts to incorporate cross sectional dependence into a model.

There are essentially two approaches to test for cross sectional depen-
dence. One is to postulate a “connection” or “spatial” matrix, then test
if the coefficient of this spatial matrix is zero, e.g. Moran (1948), Kelejian
and Prucha (2001). Although under the null of no cross-correlations the
coefficient of spatial matrix is zero no matter how this matrix is postulated,
the power of this kind of test presumably will depend on the choice of the
spatial matrix. Moreover, the computation of the spatial regression model
is quite complicated, see Kelejian and Prucha (1999) and Lee (2002).

Another approach to testing cross sectional dependence is to directly test
if the cross-correlations of the errors are zero. For example, Breusch and Pa-
gan’s (1980) Lagrangian multiplier (LM) test is based on the average of the
squared pair-wise correlation coefficients. However, the mean of the squared
correlation coefficients is not correctly centered when T is small. When N is
large, the incorrect centering of the squared correlation coefficients is likely
to be accentuated, resulting in significant size distortions. Pesaran, Ullah
and Yamagata (2006) have proposed a bias-adjusted normal approximation
version of the LM test for linear regression models with strictly exogenous
regressors and normal errors. Small sample evidence based on their Monte
Carlo experiments suggests that the bias adjusted LM tests successfully con-
trol the size. However, if the model is nonlinear, it does not appear feasible
to derive the exact mean and variance based, for example, on the work of
Ullah (2004).

As an alternative to the test based on the square of the error correla-
tion coefficients, Pesaran (2004) proposes to use the simple average of all
pair-wise correlation coefficients of the least squares residuals from the in-
dividual linear regressions in the panel, which is closely related to the CAVE

by Frees (1995). The advantage of Pesaran cross section dependence test
(CD test) is that it is correctly centered for fixed N and T under the null
of cross section independence assuming that the errors are symmetrically
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distributed.
In a recent paper, Ng (2006) employs spacing variance ratio statistics

to test the severity of cross section correlation in panels by partitioning the
pair-wise cross-correlations into groups from high to low. The proposed
statistics are intended as agnostic tools for identifying and characterizing
correlations across groups. However, they cannot be used as diagnostic tests
of cross section independence that underlie the standard analysis of panel
data. Such tests are important as parameter estimates may be inconsistent
if cross section correlation of errors is not accounted for at the estimation
stage. It is, therefore, important to establish whether the cross section error
independence can be maintained prior to estimation and inference.

This paper explores the use of the LM and CD tests for nonlinear panel
data models. In such models, the calculation of the errors is not as straight-
forward as in linear models. We consider two approaches to estimate the
errors. The first estimate of the errors is the deviation of the observed depen-
dent variable from its expected value, and the second estimate is to predict
the errors conditional on the observed dependent variable, the so called gen-
eralized residual, see e.g. Gourieroux, Monfort and Trognon (1985). Based
on the estimated residuals we introduce the LM and CD test statistics for
nonlinear panel data model and, using Monte Carlo experiments, we exam-
ine the small sample performance of the tests for the probit and the Tobit
model. Using data on voting in the U.S. Congress and campaign contri-
butions by political lobby groups previously analyzed by Wawro (2001) we
demonstrate the application of the test.

The next section introduces the nonlinear panel data model. Section 3
discusses the estimation of the residuals and the tests for cross section de-
pendence. The small sample performance is evaluated using Monte Carlo
experiments in Section 4, and the tests are applied to the data on voting in
the U.S. Congress in Section 5. Finally, Section 6 provides some conclud-
ing remarks. Technical details are provided in Appendices A and B, and
a bootstrap procedure to approximate the finite sample distribution of the
CD test is discussed in Appendix C.

2 The nonlinear panel data model

Suppose that the latent variable, y∗it, is generated by the following nonlinear
panel data model,

f(y∗it,xit,θi) = εit, for i = 1, 2, . . . , N, t = 1, 2, . . . , T, (1)

where xit is a k × 1 vector of exogenous variables, θi is a q × 1 vector of
parameters, εit is a scalar disturbance, N is the number of cross section
observations, and T is the number of observations in time. The variable yit

is observed, which is related to the latent variable via the link function g(·),
yit = g(y∗it) . (2)
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This general model encompasses many econometric models. Examples
include binary choice models where

f(y∗it,xit,βi) = y∗it − β′ixit, (3)

and
g(y∗it) = I(y∗it) (4)

where I(A) is the indicator function, which is unity if A > 0 and zero
otherwise. If the distribution of εit is the logistic, then this constitutes
the logit model. If εit is standard normally distributed, then this is the
probit model. The Tobit model is obtained if the latent model is that of
equation (3), errors are normal and the link function is

g(y∗it) = y∗itI(y
∗
it) . (5)

The disturbances are assumed to be potentially contemporaneously cor-
related, εt ∼ (0,Σ), where εt = (ε1t, ε2t, . . . , εNt)′. This paper focuses on
testing Σ = D against Σ 6= D, where D is a diagonal matrix . Such an error
structure could arise, for example, from the presence of unobserved common
factors

εit = γ ′if t + eit,

where γi is the vector of factor loadings, f t ∼ iid (0,Σf ), and eit ∼ iid
(
0, σ2

e

)
.

3 Testing for cross section independence

Pesaran (2004) has suggested two approaches to test for cross section de-
pendence using the pair-wise correlation coefficients of the residuals in the
regression equations of the ith and jth unit, ρ̃ij . One is the LM test of
Breusch and Pagan (1980)

LM =

√
1

N(N − 1)

N−1∑

i=1

N∑

j=i+1

(T ρ̃2
ij − 1). (6)

The other is the CD test

CD =

√
2T

N(N − 1)




N−1∑

i=1

N∑

j=i+1

ρ̃ij


 . (7)

It is clear that, in contrast to the LM test, the CD test requires the cross
section correlation to be different from zero on average to detect deviations
from cross-section independence. While we believe that this is not a restric-
tive assumption for most real life situations, this limitation should be borne
in mind when applying the CD test.
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For linear models residuals are estimated directly from the underlying
linear regressions. For nonlinear models the concept of a residual is ambigu-
ous and can be defined in a number of different ways. One possibility would
be to define the disturbances of the nonlinear models analogous to the linear
case as the deviation of the observed dependent variable from its expected
value

uit = yit − E(yit|xit,θi) (8)

with an estimated counterpart, the residual, given by

ũit = yit − E
(
yit|xit, θ̃i

)
, (9)

where θ̃i is a consistent estimator of θi under the null of cross section inde-
pendence. For the probit model, for example, this deviation is given by

ũit = yit − Φ(β̃
′
ixit), (10)

and for the Tobit model it is

ũit = yit −
(
β̃
′
ixit + σ̃iλ̃it

)
Φ

(
β̃
′
ixit

σ̃i

)
, (11)

where

λ̃it = φ

(
β̃
′
ixit

σ̃i

)[
Φ

(
β̃
′
ixit

σ̃i

)]−1

,

and φ(·) is the standard normal probability density function (pdf), and Φ(·)
is the standard normal cumulative distribution function (cdf).

For many models, the residuals will be heteroskedastic. One can trans-
form them into homoskedastic residuals by dividing the estimated residuals
by their estimated standard errors. In the case of the probit model the
“standardized residual” is defined as

ũ∗it =
yit − Φ(β̃

′
ixit)√

Φ(β̃
′
ixit)(1− Φ(β̃

′
ixit))

, (12)

and, in the case of the Tobit model, it is

ũ∗it = ũit/ω̃it (13)

where

ω̃2
it =

[
(β̃
′
ixit)2 + β̃

′
ixitσ̃iλ̃it + σ̃2

i − (β̃
′
ixit + σ̃iλ̃it)2Φ

(
β̃
′
ixit

σ̃i

)]
Φ

(
β̃
′
ixit

σ̃i

)
.

The derivations of the residuals and their variances is given in Appendix A.
Alternatively, the computation of ρij can be based on the generalized

residual proposed by Gourieroux, Monfort, and Trognon (1985), Gourieroux,
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Monfort, Renault, and Trognon (1987), and Chesher and Irish (1987). The
generalized residuals are defined as

ug
it = E0(f(y

∗
it,xit, θi) |yit) = ψ0(yit,xit, θi), (14)

where E0(.) is the expectation operator under the null hypothesis of no cross
section dependence. In contrast to the residual (8), the expectation of the
generalized residuals in (14) is conditional on the observed dependent vari-
able, yit. An estimator of ψ0(yit,xit, θi) is given by

ũg
it = ψ0(yit,xit, θ̃i). (15)

Using equation (15), the “generalized residual” for the probit models is given
by

ũg
it =

φ(β̃
′
ixit)

Φ(β̃
′
ixit)[1− Φ(β̃

′
ixit)]

[yit − Φ(β̃
′
ixit)]. (16)

For the Tobit model we have

ũg
it = (yit − β̃ixit)I(yit)− σ̃i

φ(β̃ixit/σ̃i)
Φ(−β̃ixit/σ̃i)

[1− I(yit)], (17)

where σ̃i is the estimated standard deviation of the error term (Chesher and
Irish (1987)).

The generalized residual is also heterskedastic for many models. In Ap-
pendix A we give the variances for the probit and the Tobit model, which
could be used to obtain standardized versions of the generalized residuals.
However, in line with the literature we will use the residuals (16) and (17)
below.

In general ρij can be estimated using any of the residuals defined above.
For example, using the residuals, ũit, we have

ρ̃ji =
∑T

t=1(ũit − ¯̃ui)(ũjt − ¯̃uj)(∑T
t=1(ũit − ¯̃ui)2

)1/2 (∑T
t=1(ũjt − ¯̃uj)2

)1/2
, (18)

where

¯̃ui = T−1
T∑

t=1

ũit.

The estimated correlation coefficient, ρ̃ji, is then used in equations (6)
and (7) to obtain the LM and CD test statistics. For large T ¯̃ui will tend
to zero and could be ignored but for better small sample performance the
mean correction might be desirable.

Under the null hypothesis and for T sufficiently large, ρ̃ji
p→ 0, for each

i and j. However, the probability limit of ρ̃ji will differ from zero in the
presence of cross section dependence. Under the null of cross section inde-
pendence and for sufficiently large N and T , the CD statistic tends to a
standard normal variate. See Appendix B for a proof and precise mathe-
matical conditions.
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4 Small sample properties: Monte Carlo evidence

4.1 Data generating process

The Monte Carlo experiments are based on the following data generating
process (DGP) for the latent variable,

y
∗(r)
it = α

(r)
i + β′x(r)

it + ε
(r)
it , (19)

where i = 1, 2, . . . , N , t = 1, 2, . . . , T, and r, r = 1, 2, . . . , R, denotes the
replication index in the Monte Carlo experiments with R = 1000, β = 1.
The regressors are generated as

x
(r)
it = δf

(r)
t + η

(r)
it

η
(r)
it = λη

(r)
i,t−1 + ζ

(r)
it , ζ

(r)
it ∼ iidN(0, 1), and f

(r)
t ∼ iidN(0, 1). We set δ = 1

and λ = 0.5. Finally,
α

(r)
i = x̄

(r)
i + Ŝ

(r)
xi ν

(r)
i ,

where x̄
(r)
i =

∑T
t=1 x

(r)
it /T , Ŝ

(r)
xi =

[
(N − 1)−1

∑N
i=1(x̄

(r)
i − ¯̄x(r))2

]1/2
, ¯̄x(r) =

∑N
i=1 x̄

(r)
i /N , and ν

(r)
i ∼ iidN(0, 1). Hence, the setup covers the case, where

the individual specific effects are allowed to be correlated with the explana-
tory variables. This is an important consideration in the analysis of micro
panels, as noted, for example, by Chamberlain (1980).

The estimation of β under a probit specification only makes use of y
(r)
it =

I
(
y
∗(r)
it

)
, and under the Tobit specification y

(r)
it = y

∗(r)
it I

(
y
∗(r)
it

)
. Hence,

without loss of generality the variance of the error term, u
(r)
it , may be set

equal to unity. To allow for correlation across the errors of different cross
section units we adopt the following standardized one-factor structure

ε
(r)
it =

γ
(r)
i f

(r)
t + e

(r)
it√

1 + γ
(r)2
i

where γ
(r)
i is a scalar, f

(r)
t ∼ iidN(0, 1), and e

(r)
it ∼ iidN(0, 1). Under

these assumptions we have E(ε(r)
it ) = 0 and Var(ε(r)

it ) = 1. The pair-wise
correlation coefficient of the errors is given by

Corr
(
ε
(r)
it , ε

(r)
jt

)
=

γ
(r)
i γ

(r)
j√(

1 + γ
(r)2
i

)
(1 + γ

(r)2
j )

.

In the experiments reported below we use γ
(r)
i = 0, ∀i, γ

(r)
i ∼ U(0.1, 0.3),

and γ
(r)
i ∼ U(−0.2, 0.6), where U(a, b) denotes the uniform distribution with

lower bound a and upper bound b.
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Using the artificial data, βi, (and σi in the case of the Tobit model) are
estimated under the assumption of cross section independence by maximum
likelihood for each i, separately. Then, ρ̃ij is computed using the two al-
ternative residuals, ũ∗it and ũg

it, and the CD and LM test statistics are then
calculated with mean corrections given in (18).

4.2 Results

Table 1 presents the size and power of CD and LM tests for the probit
models, and Table 2 presents the size and power of CD and LM tests for
Tobit model. The results in these tables suggest the following.

(i) There are substantial size distortions for the LM test even when N or
T or both are large.

(ii) The empirical size is close to the nominal size for the CD test even
for N and T as small as 10. This result holds generally and does not
require the fixed effects and the regressors to be uncorrelated.

(iii) The power of CD test improves as either N or T increases. However,
the power improves much faster when N increases than when T in-
creases. When T = 20 and N = 100, the power is about 0.9. On the
other hand, when N = 20 and T = 100, the power of CD test is about
0.6 ∼ 0.7.

(iv) The test results are robust to the way residuals from the nonlinear
models are computed.

(v) Even when the LM test has the correct size, as in the case where
T = 100 and N = 10, the CD test continues to exhibit a higher power.

5 Application to an analysis of campaign contri-
butions and roll-call votes

We illustrate the use the use of the CD test by re-analyzing the data on
voting and campaign contributions of Wawro (2001). Using a panel probit
model Wawro analyzes the influence of campaign contributions of a business
lobby group, the US Chamber of Commerce (USCC), and a labor lobby
group, the American Federation of Labor-Congress of Industrial Organiza-
tions (AFL-CIO), on the voting behaviour of members of the US Congress
with the unemployment rate in the constituency of each member of Congress
as an additional explanatory variable.

The data set, which is available from Prof. Wawro’s web page1, con-
tains data for a selections of the roll-call votes for each session of the 102th,
103rd and 104th Congress, where the selected roll-call votes are those that

1http://www.columbia.edu/∼gjw10/panelprobit.html
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Table 1: Size and power of CD and LM tests: The probit model
Standardized residuals, ũ∗it Generalized residuals, ũg

it

T\N 10 20 30 50 100 10 20 30 50 100

γ
(r)
i = 0, ∀i
CD test

10 0.064 0.059 0.077 0.064 0.068 0.066 0.063 0.078 0.057 0.054
20 0.057 0.056 0.059 0.058 0.075 0.056 0.055 0.051 0.059 0.072
30 0.054 0.052 0.063 0.048 0.049 0.054 0.053 0.062 0.047 0.051
50 0.050 0.045 0.061 0.059 0.061 0.048 0.045 0.060 0.056 0.062

100 0.046 0.051 0.060 0.067 0.062 0.048 0.057 0.060 0.066 0.061
LM test

10 0.197 0.459 0.698 0.974 1.000 0.192 0.456 0.712 0.975 1.000
20 0.085 0.203 0.356 0.656 0.985 0.093 0.224 0.419 0.734 0.996
30 0.077 0.132 0.235 0.394 0.858 0.074 0.160 0.290 0.527 0.940
50 0.070 0.087 0.099 0.196 0.491 0.076 0.113 0.152 0.346 0.784

100 0.060 0.083 0.067 0.083 0.195 0.063 0.091 0.095 0.186 0.534

γ
(r)
i ∼ U(0.1, 0.3)

CD test
10 0.097 0.153 0.235 0.381 0.702 0.098 0.141 0.231 0.365 0.674
20 0.128 0.220 0.361 0.596 0.903 0.136 0.235 0.371 0.596 0.897
30 0.140 0.281 0.473 0.736 0.973 0.149 0.295 0.487 0.738 0.978
50 0.190 0.404 0.639 0.908 0.998 0.188 0.424 0.657 0.909 0.999

100 0.246 0.634 0.891 0.993 1.000 0.266 0.660 0.898 0.994 1.000
LM test

10 0.193 0.475 0.728 0.971 1.000 0.186 0.485 0.733 0.973 1.000
20 0.126 0.244 0.383 0.759 0.991 0.130 0.264 0.429 0.821 0.995
30 0.104 0.175 0.261 0.559 0.943 0.105 0.191 0.311 0.652 0.974
50 0.097 0.142 0.240 0.437 0.868 0.092 0.154 0.283 0.548 0.952

100 0.095 0.145 0.238 0.440 0.880 0.102 0.158 0.290 0.548 0.957

γ
(r)
i ∼ U(−0.2, 0.6)

CD test
10 0.104 0.126 0.206 0.347 0.642 0.101 0.129 0.200 0.329 0.615
20 0.124 0.195 0.298 0.545 0.838 0.132 0.203 0.295 0.543 0.836
30 0.136 0.270 0.394 0.661 0.929 0.141 0.280 0.396 0.667 0.934
50 0.170 0.358 0.550 0.808 0.992 0.181 0.366 0.561 0.818 0.993

100 0.243 0.501 0.766 0.938 1.000 0.251 0.502 0.773 0.941 1.000
LM test

10 0.206 0.450 0.730 0.974 1.000 0.208 0.465 0.737 0.974 1.000
20 0.147 0.286 0.466 0.822 0.996 0.145 0.306 0.518 0.871 0.996
30 0.114 0.222 0.402 0.681 0.988 0.114 0.268 0.457 0.774 0.996
50 0.136 0.252 0.403 0.681 0.975 0.140 0.281 0.481 0.786 0.996

100 0.176 0.373 0.613 0.854 0.999 0.198 0.427 0.687 0.919 1.000
The Table reports the percentage of rejections of the null of no cross-section dependence for the

CD-statistic (7) and the LM-statistic (6) from the standardized and the generalized residuals at the

5% significance level for 1000 repetitions of the experiment.
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Table 2: Size and power of CD and LM tests: The Tobit model
Standardized residuals, ũ∗it Generalized residuals, ũg

it

T\N 10 20 30 50 100 10 20 30 50 100

γ
(r)
i = 0, ∀i
CD test

10 0.063 0.080 0.060 0.066 0.072 0.062 0.048 0.068 0.054 0.057
20 0.059 0.055 0.047 0.055 0.066 0.048 0.048 0.070 0.053 0.056
30 0.069 0.066 0.063 0.067 0.059 0.049 0.064 0.059 0.055 0.047
50 0.048 0.052 0.052 0.043 0.064 0.050 0.055 0.045 0.057 0.060

100 0.038 0.046 0.062 0.060 0.053 0.045 0.065 0.048 0.038 0.046
LM test

10 0.184 0.461 0.737 0.984 1.000 0.201 0.498 0.765 0.982 1.000
20 0.122 0.253 0.406 0.722 0.985 0.137 0.288 0.501 0.822 0.996
30 0.114 0.160 0.260 0.467 0.893 0.102 0.214 0.374 0.668 0.983
50 0.069 0.129 0.153 0.245 0.589 0.080 0.126 0.246 0.537 0.941

100 0.067 0.078 0.092 0.134 0.255 0.084 0.070 0.182 0.362 0.882

γ
(r)
i ∼ U(0.1, 0.3)

CD test
10 0.144 0.267 0.388 0.600 0.881 0.133 0.261 0.391 0.613 0.884
20 0.173 0.379 0.545 0.786 0.971 0.200 0.371 0.588 0.808 0.978
30 0.174 0.474 0.674 0.892 0.999 0.221 0.497 0.710 0.924 0.996
50 0.261 0.620 0.846 0.984 1.000 0.301 0.682 0.883 0.990 1.000

100 0.402 0.841 0.983 1.000 1.000 0.481 0.894 0.989 1.000 1.000
LM test

10 0.225 0.542 0.784 0.986 1.000 0.254 0.550 0.783 0.994 1.000
20 0.193 0.368 0.596 0.871 0.999 0.173 0.391 0.591 0.894 1.000
30 0.132 0.316 0.467 0.788 0.991 0.147 0.327 0.521 0.845 0.996
50 0.149 0.298 0.492 0.761 0.985 0.138 0.316 0.525 0.851 0.997

100 0.189 0.367 0.557 0.848 1.000 0.195 0.403 0.653 0.931 1.000

γ
(r)
i ∼ U(−0.2, 0.6)

CD test
10 0.144 0.243 0.356 0.574 0.821 0.143 0.264 0.360 0.572 0.845
20 0.151 0.326 0.448 0.725 0.945 0.180 0.351 0.527 0.745 0.964
30 0.178 0.397 0.569 0.821 0.988 0.205 0.431 0.628 0.865 0.995
50 0.264 0.511 0.707 0.975 0.999 0.285 0.557 0.765 0.935 0.999

100 0.361 0.693 0.874 0.989 1.000 0.429 0.730 0.907 0.992 1.000
LM test

10 0.228 0.581 0.829 0.991 1.000 0.230 0.559 0.838 0.989 1.000
20 0.183 0.443 0.675 0.925 1.000 0.209 0.474 0.714 0.954 0.999
30 0.216 0.410 0.648 0.914 1.000 0.224 0.464 0.746 0.956 1.000
50 0.267 0.498 0.708 0.913 1.000 0.274 0.572 0.820 0.979 1.000

100 0.345 0.685 0.878 0.985 1.000 0.438 0.822 0.964 0.999 1.000
The specification of the observed dependent variable is given in (5). Otherwise see footnote of

Table 1.
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the lobby groups themselves deemed important. We test for cross section
independence in the sessions of the 104th Congress for the roll-call votes
suggested by the USCC, which has the largest number of votes of the data
sets. We exclude members of Congress that do not change their vote more
than three times as the estimation of the regression equation for each indi-
vidual separately would otherwise be computationally unstable. This leads
to two data sets with M = 19 each, and N = 139 for the first session and
N = 145 for the second session, where M is the number of motions that
are put before Congress and are recorded in Prof. Wawro’s data set—as the
timing of the votes is not obvious we refer to the different motions for which
the roll-call votes were recorded as m = 1, 2, . . . , M instead of t.

Wawro (2001, p.570) includes a motion-specific intercept to account for
the particular political context around the roll-call votes. We do not include
such a motion-specific intercept. However, if the political context around
a motion influences the voting behaviour, then omitting a motion specific
intercept is tantamount to introducing cross-correlation among the residuals.
The CD test can therefore be interpreted as a test for the necessity to include
a motion-specific intercept.

We proceed as follows. We estimate the parameters of the probit model
by maximizing the likelihood

Li =
M∏

m=1

Φ(βixim)yim(1− Φ(βixim))(1−yim), for i = 1, 2, . . . , N (20)

where yim is a binary indicator for the votes of the member of Congress
(“aye” or “nay”), xim contains an intercept, the contributions of the USCC,
the contributions of the AFL-CIO, and the unemployment rate of the con-
stituency of the member of Congress. Note that this model is more general
than the random effects model estimated by Warwo (2001) as we also allow
the slope parameters to vary between individuals.

Using the parameter vector β̃i, we calculate the conditional generalized
residual as given in equation (16) and the unconditional residual of equa-
tion (12). From these we obtain the pairwise correlation coefficient. The
average correlation coefficient for the conditional residuals are 0.283 for the
first session and 0.310 for the second session. For the unconditional residu-
als, they are 0.286 and 0.310.

Using pairwise correlation coefficients we can calculate the CD test statis-
tic. However, both panels are unbalanced as some observations are missing
and, therefore, the statistic has to be adjusted to

CD =

√
2

N(N − 1)




N−1∑

i=1

N∑

j=i+1

√
Mij ρ̃ij


 , (21)

where Mij is the number of motions where observations on votes are available
for both i and j.
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Table 3: CD test for roll-call votes in the 104th Congress

ũg
it Bootstrap ũ∗it Bootstrap

5% crit. val. 5% crit. val.

All motions
1st session 151.488 [−1.670 2.545] 151.470 [−1.677 2.539]
2nd session 169.300 [−1.655 2.392] 169.310 [−1.658 2.393]

Subset of motions
1st session 104.488 [−1.727 2.092] 104.496 [−1.726 2.092]
2nd session 118.742 [−1.733 2.078] 118.839 [−1.726 2.078]
The results for the subset of motions only use motions with less than 90% una-

nimity, which excludes two motions of each session of Congress. The bootstrap

critical values were computed using 1000 iterations. The first number gives the

2.5% lower critical value and the second number the 2.5% upper critical value.

While the Monte Carlo results suggest that the CD test has the correct
size for all combinations of N and T , it might be worthwhile to double check
that the results for possible departures from the asymptotic test results.
Hence, we also calculate critical values of the CD test using a bootstrap
procedure, the details of which are given in Appendix C.

The upper half of Table 3 reports the results for the CD test for the entire
sample. The test statistics are very large and clearly reject the null of cross
section independence. The values in brackets are the 5% critical bootstrap
values. The bootstrap test results are generally in line with asymptotic test
results, and confirm the existence of statistically significant evidence of cross
section error correlations in Warwo’s application.

In order to address the question of whether our test results are driven by
a few motions with near unanimity of the votes, we eliminated the motions
where more than 90% of the votes are in agreement. This reduces the number
of motions being considered, M, from 19 to 17 for each of the two sessions.
We apply the CD tests to this subset and report the results in the lower
half of Table 3. While the test statistics are reduced in size, they remain
statistically highly significant. The CD test therefore still rejects the null
hypothesis of cross section error independence in this empirical application.

6 Conclusion

In this paper, we have generalized Pesaran’s (2004) CD test for cross section
independence to nonlinear models. Our Monte Carlo studies show that there
are substantial size distortions of the Lagrangian multiplier type tests. On
the other hand, CD tests perform well even in small N and T cases. The

12



empirical size of the CD test is close to the nominal size. The test also has
good power, in particular when N is large, even when T is relatively small.

The CD test is simple to implement. As is well known in panel data
literature when T is small and N is large, the presence of individual-specific
effects introduces the classical incidental parameter problems (Neyman and
Scott 1948). The estimation of structural parameters are often entangled
with the estimation of incidental parameters. To obtain a consistent estima-
tor of structural parameters, one often has to impose stringent conditions
on the data and the estimation becomes complicated (see e.g. Hsiao 2003).
The problem can only become more unwieldy if there exist cross section de-
pendence. A nice feature of Pesaran CD test is that one can estimate model
parameters under cross section independence and the presence of individual-
specific effects (possibly correlated with the regressors) does not affect the
performance of the test because each cross sectional unit parameter is esti-
mated using that unit’s time series observation alone.

In cases, such as the application in this paper, where cross section error
independence is rejected, one may wish to investigate the nature of the
dependence, possibly along the lines of Ng (2006). Also the estimation of
the structural parameters in the model will need to take the cross section
dependence into account. While these two topics are beyond the scope of
the current paper and are left for future research, this paper proposes a
simple yet powerful test for the detection of cross section error dependence,
which is the starting point for any such endeavor.
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Appendix A: Derivations of the residuals

The unconditional residual for the probit model

uit = yit − E(yit)
= yit − E(yit|yit = 1)Pr(yit = 1)− E(yit|yit = 0)Pr(yit = 0)
= yit − Φ(β′ixit),

where for notational convenience the fact that the moments are conditional
on xit and the parameters is not stated explicitly. The variance is

Var(uit) = E
(
y2

it

)− Φ(β′ixit)2

= E(y2
it|y = 1)Pr(yit = 1) + E(y2

it|y = 0)Pr(yit = 0)− Φ(β′ixit)2

= Φ(β′ixit)
[
1− Φ(β′ixit)

]
.

The generalized residual for the probit model

ug
it = E(uit|yit)

= E(uit|yit = 1)yit + E(uit|yit = 0)(1− yit)
= E(uit|uit > −β′ixit) yit + E(uit|uit ≤ −β′ixit) (1− yit)

=
φ(β′ixit)
Φ(β′ixit)

yit +
φ(β′ixit)[

1− Φ(β′ixit)
](1− yit)

=
φ(β′ixit)

Φ(β′ixit)
[
1− Φ(β′ixit)

] [
yit − Φ(β′ixit)

]
.

The variance of the generalized residual is

Var(ug
it) =

φ(β′ixit)2

Φ(β′ixit)2
[
1− Φ(β′ixit)

]2 E[(yit − Φ(β′ixit))2]

=
φ(β′ixit)2

Φ(β′ixit)
[
1− Φ(β′ixit)

] .

The unconditional residual for the Tobit model

uit = yit − E(yit)
= yit − E(yit|yit > 1)Pr(yit > 1)− E(yit|yit = 0)Pr(yit = 0)
= yit − E(β′ixit + uit|uit > −β′ixit)Φ

(
β′ixit/σi

)

= yit −
(
β′ixit + σiλit

)
Φ

(
β′ixit/σi

)
,

where λit = φ(β′ixit/σi)/Φ(β′ixit/σi) is the inverse Mills ratio with argument
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−β′ixit/σi. The variance is

Var(uit) = E
(
y2

it

)− [(
β′ixit + σiλit

)
Φ

(
β′ixit/σi

)]2

= E(y2
it|uit > −β′ixit)Pr(yit > 0)− [(

β′ixit + σiλit

)
Φ

(
β′ixit/σi

)]2

= σ2
i

{
E((α′ixit + vit)2|vit > −α′ixit)Φ

(
α′ixit

)

− [(
α′ixit + λit

)
Φ

(
α′ixit

)]2
}

= σ2
i

{[
(α′ixit)2 + α′ixitλit + 1

]
Φ

(
α′ixit

)
(22)

− [(
α′ixit + λit

)
Φ

(
α′ixit

)]2
}

,

where αit = βit/σi, vit = uit/σi ∼ N(0, 1), and we used the fact that

E(v2
it|vit > −α′ixit) = Var(vit|vit > −α′ixit) + E(vit|vit > −α′ixit)2

= [1− λit(λit + α′ixit)] + λ2
it

= 1− λitα
′
ixit.

Substituting αit into (22) gives the variance in (13).

The generalized residual for the Tobit model

ug
it = E(uit|yit)

= E(uit|yit = 1)I(yit) + E(uit|yit = 0) [1− I(yit)]
= (yit − β′ixit)I(yit) + E(uit|uit < −β′ixit) [1− I(yit)]

= (yit − β′ixit)I(yit)− σi
φ(β′ixit/σi)

Φ(−β′ixit/σi)
[1− I(yit)] .

For the variance we have,

Var(ug
it) = E(u2

it|uit > −β′ixit)Φ(β′ixit/σi)

+σ2
i

φ(β′ixit/σi)2

Φ(−β′ixit/σi)2
[1− Φ(β′ixit/σi)]

= σ2
i

[
(1− λitβ

′
ixit/σi)Φ(β′ixit/σi) +

φ(β′ixit/σi)2

Φ(−β′ixit/σi)

]
.

Appendix B: Limiting distribution of CD test for
nonlinear models

In this appendix we show that the limiting distribution of Pesaran (2004)
CD test holds for nonlinear panel data models. We consider a nonlinear
model of the form

yit = f(xit, θi) + uit,

where θi is a p × 1 vector of unknown parameters for cross section unit i.
We denote the true value of θi by θi0, and make the following assumptions.
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A1: For each i, the disturbances, uit, are serially independent with zero
means and variances, σ2

i , such that 0 < σ2
i < ∞.

A2: Under the null hypothesis defined by H0 : uit = σiεit, with εit ∼
iid(0, 1) for all i and t, the disturbances, εit, are symmetrically dis-
tributed around 0.

A3: The k × 1 explanatory variables, xit, are strictly exogenous such that
E(uit|xi) = 0 for all i and t, where xi = (x′i1, . . . ,x

′
iT )′, such that

1
T

∑T
t=1 uit

∂fjt

∂θj0

p→ 0, ∀ i, j, and t.

A4: Let Θi be an open neighborhood of θi and fit = f(xit, θi), fit is con-
tinuous in θi ∈ Θi uniformly in t.

A5: ∂fit
∂θi

exists and is continuous on Θi and 1
T

∑T
t=1

∂fit
∂θi

∂fit
∂θ′i

p→ Ωii and
1
T

∑T
t=1

∂fjt

∂θj

∂fit
∂θ′i

p→ Ωij , where Ωii and Ωij are finite, non-stochastic
matrices, and convergence is uniformly for all θi ∈ Θi.

A6: ∂2fit
∂θi∂θ′i

is continuous in θi ∈ Θi uniformly in t, and 1
T

∑T
t=1

∂2fit
∂θi∂θ′i

converges to a finite nonsingular matrix.

A7:
√

T (θ̂i − θi0)
a∼ N(0,Σ), where Σ is a positive definite matrix.

Let Li denote the log-likelihood function of the ith cross section unit
with the joint pdf `i = `(ui1, . . . , uiT ) =

∏T
t=1 `(uit), and denote by θ̂i the

maximum likelihood estimator of θi,

∂Li

∂θi

∣∣∣∣
θ̂i

= 0.

Then as T −→∞, θ̂i is consistent and asymptotically normally distributed
with

θ̂i − θi0 = −
(

∂2Li

∂θi∂θ′i

∣∣∣∣
θi0

)−1 (
∂Li

∂θi

∣∣∣∣
θi0

)
+ Op

(
1
T

)
.

The estimated residuals, ûit,

ûit = yit − f(xit, θ̂i)

= yit − f(xit, θi0)− ∂fit
∂θ′i

∣∣∣∣
θi0

(θ̂i − θi0) + Op

(
1
T

)
.
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1√
T

T∑

t=1

ûitûjt =
1√
T

T∑

t=1

uitujt

+
1√
T

T∑

t=1


(θ̂i − θi0)′

∂fit
∂θi

∣∣∣∣
θi0

∂fjt
∂θ′j

∣∣∣∣∣
θj0

(θ̂j − θj0)




− 1√
T

T∑

t=1

uit
∂fjt
∂θ′j

∣∣∣∣∣
θj0

(θ̂j − θj0)

− 1√
T

T∑

t=1

ujt
∂fit
∂θ′i

∣∣∣∣
θi0

(θ̂i − θi0) + Op

(
1
T

)

=
1√
T

T∑

t=1

uitujt

+
1√
T


√T (θ̂i − θi0)′


 1

T

T∑

t=1

∂fit
∂θi

∣∣∣∣
θi0

∂fjt
∂θ′j

∣∣∣∣∣
θj0


√

T (θ̂j − θj0)




−

 1

T

T∑

t=1

uit
∂fjt
∂θ′j

∣∣∣∣∣
θj0


√

T (θ̂j − θj0)

−
(

1
T

T∑

t=1

ujt
∂fit
∂θ′i

∣∣∣∣
θi0

)√
T (θ̂i − θi0) + Op

(
1
T

)

Hence, using assumptions A3, A5, and A6 it follows that

1√
T

T∑

t=1

ûitûjt =
1√
T

T∑

t=1

uitujt + Op

(
1
T

)
.

Therefore, following the same argument of Pesaran (2004), we can show
that the limiting distribution of the CD test continues to hold in the case of
nonlinear panel data models as well.

Appendix C: Bootstrap procedure

A bootstrap approximation might be used to improve the finite sample ap-
proximation of the distribution of the CD test. The bootstrap procedure we
suggest has previously been employed in different contexts in the literature.
Härdle, Mammen and Proença (2001) use the bootstrap approximation to
improve the size of the Horowitz-Härdle test for the specification of the link
function, g(·) in equation (2). Dikta, Kvesic and Schmidt (2006) call the
procedure a “model based resampling scheme” and use it to test for the
functional form of the underlying regression model.

For the test at hand the bootstrap procedure works as follows.
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1. Using the observed data yit and xit estimate the parameters for the
model and obtain θ̃i for each i = 1, 2, . . . , N .

2. Sample ε̂it ∼ iid F(0, σ̃2
i ) for i = 1, 2, . . . N and t = 1, 2, . . . T , where

F(·) is the distribution of the error term implied by the maintained
model.

3. Construct ŷit using the model f
(
ŷ∗it,xit, θ̃i

)
= ε̂it, and ŷit = g(ŷ∗it) .

4. Using ŷit and xit estimate the parameters for the model and obtain ˆ̃
θi

for each i = 1, 2, . . . , N . Construct the CD test statistic using xit and
ˆ̃
θi.

5. Repeat step 2–4 B times.

6. The B samples of the test statistic are then used to calculate the
critical values against which the test statistic obtained from the data
is evaluated. The critical values are the, say, the 2.5% lowest and the
2.5% highest values in the sample of the B bootstrap test statistics.

Given that nonlinear models are typically estimated via maximum like-
lihood, this bootstrap procedure entails considerable computational costs.
Härdle, Mammen and Proença (2001) suggest to set the starting values in

the estimation of ˆ̃
θi to θ̃i and use only one iteration to obtain the estimates.

In the application in Section 5, however, we let the maximization algorithm
run to convergence.
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