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Abstract

The complex behaviour of human brains arises from the complex interconnection of the well-

known building blocks – neurons. With novel imaging techniques it is possible to monitor

firing patterns and link them to brain function or dysfunction. How the network structure

affects neuronal activity is, however, poorly understood. In this thesis we study the effects

of degree correlations in recurrent neuronal networks on self-sustained activity patterns.

Firstly, we focus on correlations between the in- and out-degrees of individual neurons.

By using Theta Neurons and Ott/Antonsen theory, we can derive a set of coupled differential

equations for the expected dynamics of neurons with equal in-degree. A Gaussian copula

is used to introduce correlations between a neuron’s in- and out-degree, and numerical

bifurcation analysis is used determine the effects of these correlations on the network’s

dynamics. We find that positive correlations increase the mean firing rate, while negative

correlations have the opposite effect.

Secondly, we turn to degree correlations between neurons – often referred to as degree

assortativity – which describes the increased or decreased probability of connecting two

neurons based on their in-or out-degrees, relative to what would be expected by chance.

We present an alternative derivation of coarse-grained degree mean field equations utilising

Theta Neurons and the Ott/Antonsen ansatz as well, but incorporate actual adjacency ma-

trices. Families of degree connectivity matrices are parametrised by assortativity coefficients

and subsequently reduced by singular value decomposition. Thus, we efficiently perform nu-

merical bifurcation analysis on a set of coarse-grained equations. To our best knowledge,

this is the first time a study examines the four possible types of degree assortativity sepa-

rately, showing that two have no effect on the networks’ dynamics, while the other two can

have a significant effect.
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Chapter 1

Introduction

Despite extensive research on the human brain, it remains to a very large extent a rather

mystical organ - even though the basic mechanisms are well understood. The challenging

complexity arises from its size: A human brain is said to consist of an unimaginable amount

of 100 billion nerve cells, or neurons, and well over 100 trillion directed interconnections.

Together they form the brain atlas or connectome. Like any living cell, neurons are born

and die. However, the synaptic connections between neurons are changeable within their

lifetime. This structural framework allows for different dynamical patterns of neuronal

activity over time, which in turn strengthens or weakens certain synaptic pathways, like

water in a riverbed. Potentially, the connectome carries everything from one’s memories,

personality and behavioural characteristics to thought patterns and mental disorders [Seu12].

Novel imaging techniques and increasing computational power have led to ambitious, large-

scale and long-term research projects mapping out an entire human connectome [EUA�12]

and eventually simulating neurons on it [Mar06]. How the underlying structure of a neuronal

network supports and interacts with emergent patterns of activity is an essential part in

understanding the brain, and still remains a largely open question, which will be hard to

answer with these simulations [JK17].

However, advances have been made. On a single cell level it has been possible to identify

the function of particular neurons, and various connectomes have been mapped, ranging

from the nervous system of C. elegans to rat brains. The investigation of neuronal networks

often involves a large amount of neurons, and due to experimental and computational limits

a feasible approach is to consider groups of neurons – called populations. Within the field

of neural coding it is an open question if some sort of averaging is not already part of the

information process. A lot of research has been conducted on a more coarse level. For

example, the increased or decreased level of activity in the right middle occipital gyrus

can be associated with disorders like depression and anxiety [SOSE�16]. Studies also show
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Chapter 1. Introduction

that schizophrenia patients have an altered connectivity between functional regions of the

brain when compared to healthy subjects [CSK�18], which could explain their auditory

hallucinations. A person suffering from Parkinson’s disease shows highly synchronised neural

activity in the external globus pallidus (GPe), whereas in a healthy condition pairs of neurons

fire in an almost uncorrelated way [SHZ�13]. A potential cause for the lost ability of the

network to desynchronise might be through damage to the synaptic architecture due to

an injury or adaptive remodelling. Are a neuron’s internal biochemical properties entirely

responsible for those activity patterns? Or can the network structure influence them as

well? Does the brain exhibit heterogeneous structures on a cellular scale at all?

It turns out that brains are highly structured, containing densely and sparsely connected

regions with selective coupling present [Spo10, dSSSNL�14]. Evidence for a causal connec-

tion between structural aspects and activity is given in [TIM�14]. Those authors show that

the firing frequencies of cultured neurons from the cortex or hippocampus are correlated

with their number of connections - the more connections the higher their firing frequency.

In the jargon of network theory neurons are referred to as nodes and synaptic connections

as links. The number of links connecting to a node is the node’s degree. The total count of

nodes and links, degrees and their distribution are the most fundamental structural features.

But network theory considers many others: shortest path length, clustering coefficient,

closeness centrality or motif frequencies to name a few [RS10]. Rather basic and often

discussed, yet not well explored in the context of neuronal networks are degree correlations.

As synaptic connections exhibit an inherent direction of information flow, it is necessary to

distinguish between the number of incoming and outgoing links, that is in- and out-degree

respectively. Thus, we distinguish between two cases: First, degree correlations can occur

within neurons, implying for a positive (negative) correlation that a neuron’s in- and out-

degree are rather similar (dissimilar). This type and its dynamical consequences will be

of concern to us in Chapter 2. Second, we turn to degree correlation across links, which

is commonly referred to as degree assortativity. Positive (negative) degree assortativity

describes a preferred attachment between nodes sharing similar (dissimilar) degrees. There

are four different kinds depending on whether in- or out-degree of the pre- and postsynaptic

neuron are considered. In Chapter 3 we investigate those four different assortativity types.

Simulating neuronal networks is often computationally costly due to the large number of

involved neurons. This issue is commonly addressed by averaging over groups or populations

of neurons. In general, there are popular and proven ways of constructing such mean field

theories. How can we incorporate all the relevant structural information? Is it possible to

introduce those different correlations independently from another and to what extent? The

second main focus of this thesis will be answering such questions.

2



1.1. Networks

The thesis is structured as follows:

The remainder of this Chapter gives an introduction to network theory and the relevant

structural properties, followed by a short description of the electrochemical mechanisms of

a neuron and how they have been utilised to build mathematical models. Subsequently, we

look at how our model of choice, the theta neuron model, is embedded in the broad field of

neuronal models.

The topic of Chapter 2 is to identify how neuronal dynamics change when positive or

negative degree correlations within neurons are present in a network. We present the mean

field model and show how degree correlations can be implemented in this theory. The next

step is then the application of a dimension reduction technique. We present our findings

before we compare them to results using more complex Morris-Lecar neurons.

For the degree assortativity study in Chapter 3 we derive similar mean field equations

in a novel and intuitive way. We introduce a scheme to generate connectivity matrices with

a desired degree assortativity of any kind, before we discuss further reduction techniques

for an efficient implementation. As a result we find that (in,in) assortativity has major

dynamical implications, (in,out) assortativity only minor and the remaining two, (out,out)

and (out,in), do not affect neuronal dynamics at all.

Chapter 4’s topic is an analysis of numerical methods we have used in previous chap-

ters, ranging from singular value decomposition over numerical continuation to Gaussian

quadrature and copulas. Chapter 5 is dedicated to the software module which has been

developed for the numerical simulations of this thesis. We finish this thesis in Chapter 6

with a summary of our conclusions.

1.1 Networks

A network is a system of interconnected elements. The elements are commonly referred to as

nodes or vertices and the connections between them as links or edges. A network described

on an abstract mathematical level is called a graph and graph theory became a universal

cross-disciplinary and powerful tool over recent decades [AB02]. In some cases it can be

hard to apply the concept of a graph to a concrete problem. In neuroscience nodes represent

neurons, groups of neurons, or brain regions and links represent the connections between

them. A graph with N vertices and Ne edges is denoted by GpN,Neq. In neuronal networks

with synaptic coupling, edges are directed since neurons receive input from one group of

neurons and transmit their action potentials to another group. When neurons mutually

influence their membrane voltage due to their physical proximity, this is known as gap

junction coupling. This can be modelled with undirected edges, but they will not be subject

of this thesis. The adjacency matrix A fully describes the entire network connectivity. Its

entry Aij is equal to the number of edges from node j to node i, hence A is an N � N

3



Chapter 1. Introduction

Figure 1.1: A simple, directed graph comprising 5 nodes and 7 edges (left) and its adjacency
matrix A (right). We follow the convention that Aij is the count of edges going from node j
to node i. The summation over a row yields the in-degree, whereas the sum over a column
is the out-degree.

matrix. A graph is said to be simple if there are neither multi-edges nor self-edges. This

can easily be read from A. This is Aij P t0, 1u;@i, j and Aii � 0;@i. An example is given in

Figure 1.1.

All structural properties of a network can be extracted from A. First of all, the number

of nodes N is given by its number of columns or rows, since it is an N �N matrix, and the

number of edges Ne equals the sum of all matrix entries

Ņ

i�1

Ņ

j�1

Aij � Ne (1.1.1)

A fundamental quantity of central relevance for this thesis is the node degree (or simply

degree), which is the sum of a node’s connections. In an undirected network, this is a single

integer, but with directed edges we separately sum over incoming and outgoing connections

to compute the in- and out-degree respectively. Those two values can be obtained from A

by

kin
i �

Ņ

j�1

Aij and kout
i �

Ņ

j�1

Aji (1.1.2)

Thus, we write a neuron i’s degrees as the tuple pkin
i , k

out
i q � ki. The sequence pkiqNi�1 is

called the degree sequence and the set of all distinct degrees the degree space. The mean

4



1.1. Networks

degree of a network xky can be computed from either the in- or out-degree sequence

xky � 1

N

Ņ

i�1

kin
i � 1

N

Ņ

i�1

kout
i � Ne

N
(1.1.3)

For the treatment of larger networks or networks where only statistical properties are known,

it is valuable to introduce the notion of a degree distribution. When constructing adjacency

matrices later on, we typically start with a given degree probability P pkq, which specifies the

probability of finding the degree k when randomly picking a node. P pkq is normalised with

respect to the degree space by
°
k P pkq � 1. Due to the difficulty of collecting connectivity

data from real brains, a common approach is to make use of random networks. They are

generated from certain statistical properties, such as the degree probability, to resemble

their real counterparts. Typical degree distributions measured from brain regions scale with

k�2 to k�3 [ECC�05]. In order to construct a network we first sample a degree sequence

from P pkq. Subsequently, there are several methods to assemble an adjacency matrix A

from this sequence – some are more probabilistic than others and thus the actual degree

distribution of that particular network realisation may differ slightly from P pkq, thus

P pkq �
°N
i�1 δkik

N
(1.1.4)

with δkik being the Kronecker delta.

1.1.1 Degree correlations

Along with the previously mentioned properties, degree correlations can be considered the

most basic structural feature of a network. We distinguish between two types of correlations:

firstly the correlation between in- and out-degree within each node and secondly between in-

and out-degree across links. The latter is also called degree assortativity and actually splits

up into four different cases. However, a study where the different types of correlations are

investigated separately is missing from the literature. With this thesis we aim to contribute

to filling this gap.

Degree correlation within nodes Correlations can occur between each node’s in- and

out-degree. This is between kin and kout in all tuples k (Figure 1.2). In this case, a positive

(negative) correlation implies that neurons with many incoming connections have a large

(small) number of outgoing connections. We use the Pearson correlation coefficient ρ as a

5



Chapter 1. Introduction

Figure 1.2: The three columns correspond to positive (left), neutral (centre), and negative
(right) degree correlation within nodes. The top row illustrates in-/out-degree configurations
which are favourable in the respective network, whereas the lower row shows the degree
space with points for each node according to their in- and out-degree. In the case of neutral
correlation (ρ � 0), chances for a node with high (or low) in-degree to have a high or low
out-degree are equally likely.

measure of this property:

ρ �
°N
i�1pkin

i � 〈k〉qpkout
i � 〈k〉qb°N

i�1pkin
i � 〈k〉q2

b°N
i�1pkout

i � 〈k〉q2
(1.1.5)

where xky is given in (1.1.3). This value is bounded from above by 1, meaning the total

correlation such that the node with the highest in-degree also has the highest out-degree and

so on, and from below by -1, where in- and out-degrees are perfectly anti-correlated. This

type of degree correlation will be discussed in Chapter 2, where we find similar results to

other studies in this field [VHT13, VR19, LS10, NFS�17] while we use a drastically reduced

set of variables.

Degree assortativity In contrast, the second type of correlations occurs not within

nodes, but between them and affects the connection probability. In a randomly connected

network, the probability that any two chosen nodes are connected depends on their degree;

the chance to be connected is higher when the sending node has a high out-degree and the

receiving node a high in-degree. Assortativity means that this probability is altered due to

some property of the nodes. It does not necessarily have to be the same property on the

sending and on the receiving side. We speak of degree assortativity when those properties

are degrees. If the probability of a connection between two nodes, given their degrees, is

6



1.1. Networks

Figure 1.3: Assortativity in undirected and directed networks. An undirected network (left
column) is assortative if high degree nodes are more likely to be connected to high degree
nodes, and low to low, than by chance (top left). Such a network is disassortative if the
opposite occurs (bottom left). In directed networks (right column) there are four possible
kinds of degree assortativity. The probability of a connection is thus influenced by the
number of solid black links of the sending (left) and receiving (right) node.

what one would expect by chance, the network is referred to as neutral assortative. The

tendency of nodes with similar (different) degrees to prefer to mutually connect is called

positive assortative (negative assortative) (Figure 1.3). Alternatively, it is common to use

the terms assortative and disassortative. A directed network exhibits four different kinds of

degree assortativity, each specifying whether in- or out-degree of the pre- and post-synaptic

neuron are correlated. Those are (in,in)-, (in,out)-, (out,in)-, and (out,out)-assortativity

(Figure 1.3). To some extent these four types can occur independently from one another.

Although assortativity can be measured in different ways, we use the Pearson correlation

coefficient again, which in this context may be referred to as the assortativity coefficient r

– and for the four different types: rpα, βq with α, β P rin, outs. For its definition we form

sums over edges and conveniently introduce the leading superscript s and r to differentiate

between the sending and the receiving node of that edge. For example, the sending node’s

7



Chapter 1. Introduction

in-degree of the second edge would be skin
2 . We then write

rpα, βq �
°Ne

e�1pskαe � 〈skα〉qprkβe �
〈
rkβ

〉qb°Ne

e�1pskαe � 〈skα〉q2
b°Ne

e�1prkβe � 〈rkβ〉q2
(1.1.6)

where

〈skα〉 � 1

Ne

Nȩ

e�1

skαe and
〈
rkβ

〉 � 1

Ne

Nȩ

e�1

rkβe (1.1.7)

Note that there are four different mean values to compute. The assortativity coefficient is

bounded by 1 and �1, referring to maximal positive and negative assortativity, but typically

the combination of degree distribution and number of nodes will impose narrower bounds

on r.

Several authors have produced research addressing some of these cases, sometimes assum-

ing equal in- and out-degree within each node, i.e. not isolating the two types of correlation

[SKSR15, CHC�17, FFGP10, New02]. In Chapter 3 we will investigate the effects of all four

of these in the absence of the other three and without correlations within nodes. Surpris-

ingly, we will find that degree assortativity involving the out-degree of the sending neuron

has no influence on the overall dynamics.

1.2 Neurons

In 1906, the Nobel Prize for Medicine was awarded to Camillo Golgi (1843-1926) and San-

tiago Ramón y Cajal (1852-1934) for their discovery of the neuronal network (Figure 1.4).

Golgi believed that this network would basically behave like blood vessels and nodes are

Figure 1.4: Historic drawing of nerve cells by Santiago Ramón y Cajal.[SNAD17]

just connections, whereas Ramón y Cajal correctly foresaw that those nodes, later called

neurons, are separate entities with a processing function. Since their discovery, the knowl-

8



1.2. Neurons

Figure 1.5: A schematic sketch of a neuron (left) and an illustration of the voltage measured
between the in- and out-side of the cell membrane during a typical action potential (right).
(Right image taken from wikimedia.org)

edge of neurons has become very detailed. We can now say a neuron is a living cell with

the ability to process electrical signals. This is realised through ions, mainly sodium (Na�)

and potassium (K�). Note that there are not only more than 10 distinct types of potassium

channels, but also about 200 different ions involved in shaping the electrical properties of the

various neurons. Signals are received through dendrites, processed in the cell body (soma)

and subsequently transmitted through the axon which branches into synapses passing on

the altered signal to dendrites of connected neurons (Figure 1.5 - left).

Neurons follow an all-or-none principle, meaning that their electrical output remains at

resting voltage until their input exceeds a certain threshold upon which the cell reacts with

an action potential (Figure 1.5 - right), which is a short electrical pulse. In this case a neuron

is said to “fire”. However, there are neurons which constantly fire by themselves (“tonic

firing”) and rather change their firing rate upon a stimulus. Stimuli can be excitatory –

encouraging more action potentials, as well as inhibitory – do the opposite.

In more detail, the process of an action potential and the underlying electrochemical

principles can be summarised as follows: The cell body’s membrane comprises several types

of ion channels with gates allowing only specific ions to pass. There is one type, which always

allows K� to move freely in and out. In contrast, there are voltage (measured between the

in- and outside of the cell) sensitive gates which open and close at certain thresholds for

sodium or potassium. Inside a neuron, there are immobile, negatively charged proteins,

attracting positive ions. At rest, only potassium is able to diffuse through the membrane

until an electrochemical equilibrium is reached, resulting in a higher K� concentration inside.

The cell still exhibits an overall negative charge and typically, one can measure about -

70mV between the in- and outside. If a neuron is stimulated, for instance by injection of

positive ions, up to a critical voltage threshold (approximately -55mV) a series of events

gets triggered. Some of the gates of those ion channels are in fact voltage sensitive and

one type will open for sodium (Na�) to flood the inside following a chemical gradient.

9



Chapter 1. Introduction

Figure 1.6: Firing frequencz ν plotted against the input current I. When stimulated with
a constant synaptic current I, a neuron starts firing at a critical value Iθ. There are two
types of neurons: type I can fire with an arbitrary low frequency ν (left), whereas type II
exhibits a finite minimal value (right). (Image taken from neuronaldynamics.epfl.ch)

Consequently, there is a rapid voltage increase, where the cell is said to depolarise, up to

about +30mV. This triggers the sodium gates to close and voltage sensitive potassium gates

to open. With the outside being more negative now, K� ions leave the cell and in return, the

membrane voltage drops, the cell repolarises, and eventually even hyperpolarises, meaning

it will be more negative than at resting voltage. From here on, the K� gates close and

a sodium-potassium pump mechanism takes over. The cell membrane contains a protein

which hydrolyses ATP (adenosine triphosphate) into ADP (adenosine diphosphate) which

enables the cell to move 3 Na� ions from the inside to the outside in exchange for 2 K� ions

per each ATP molecule. Until the membrane voltage reaches its resting level, the neuron

cannot fire again. This roughly described mechanism for the creation of an action potential

can be extended and specified for the many different kinds of neurons.

Considering a constant input current, which will typically result in a neuron firing at a

certain rate, there is an important classification to make. As illustrated in Figure 1.6, one

type of neuron fires with an arbitrary low frequency once a current threshold is crossed (type

I), whereas another type exhibits a finite minimal firing rate (type II). This distinction will

be relevant in the next section when we look at neurons from a dynamical systems point of

view.

1.2.1 Neuronal modelling

One of the earliest neuron models, from the beginning of the 20th century, is the integrate-

and-fire model by Louis Lapicque [Abb99]:

I � C
dV

dt
(1.2.1)

10



1.2. Neurons

with V being the membrane voltage, C a cell specific capacity constant and I a stimulating

current. A neuron integrates the stimulating current I until a constant threshold Vth is

reached. T‘hen it fires in a delta function like spike and the voltage is reset to zero. Lapicque

derived his model from frog leg experiments without any knowledge of the underlying ion

channels and as such it describes a neuron at a rather phenomenological level. However,

there are major physiological issues. An integrate-and-fire neuron never settles back to

its resting potential without spiking, nor does it exhibit a recovery time between action

potentials. Due to its simplicity, it is still very popular today and numerous models have been

derived from it, for example the quadratic integrate-and-fire model, the leaky integrate-and-

fire model, the fractional-order leaky integrate-and-fire model or the exponential integrate-

and-fire model[FTHVVB03].

A major extension was developed by Hodgkin and Huxley in 1952 [HH52] by taking ion

gates into account. The model comprises four coupled non-linear differential equations

I � C
dV

dt
� ḡKn

4pV � VKq � ḡNam
3hpV � VNaq � ḡlpV � Vlq (1.2.2)

dn

dt
� αnpV qp1� nq � βnpV qn (1.2.3)

dm

dt
� αmpV qp1�mq � βmpV qm (1.2.4)

dh

dt
� αhpV qp1� hq � βhpV qh (1.2.5)

In Eq. 1.2.2, we find three additional terms which take voltage gated potassium and sodium

channels into account and a leak term modelling diffusion through the cell membrane. These

terms resemble resistors in this flow of ions, hence the Hodgkin-Huxley model and all its

derivatives are called conductance-based models. Here, ḡ denotes the maximal conductance

and the dimensionless variables n,m and h ranging between 0 and 1 are associated with K�

gate activation, Na� gate activation and Na� gate inactivation, respectively. With VK, VNa,

and Vl we denote the resting voltage where the respective ionic current comes to a standstill.

The functions αpV q and βpV q determine resting values for the gating variables and are

neuron specific. This model is considered one of the greatest achievements in biophysics of

the 20th century and the discoverers were awarded the Nobel Prize for Medicine in 1963.

Using original parameters models a type II neuron, whereas in different parameter regimes

type II behaviour can be observed.

The model remains widely used and has been generalised and extended to include various

other ion channels. But we encounter a typical modelling problem here: with more incorpo-

rated realism, a model often becomes more complex; there are more parameters one has to

deal with and it can be extremely difficult to study analytically. The Hodgkin-Huxley model

has also been simplified by separating slow and fast variables and utilising symmetries, for

instance the Morris-Lecar model [ML81] or the simple model [Izh03].

11
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When investigating large groups of neurons, using a detailed model is computationally

costly, whereas a simplification can sometimes allow analytical work and insights in processes

of the real physical system. Yet, what are the most important features of a neuron we should

not neglect? A possible approach is to change to rate-based models. They can be derived

from conductance-based models and no longer compute the membrane voltage and action

potentials, but the firing rate itself. In this thesis, we apply an intermediate model between

the detailed modelling of membrane potential dynamics and the firing rate approach.

1.2.2 Canonical model

The canonical model approach of Izhikevich [Izh07] suggests we reduce the neuronal model

to a minimal description, which still captures the correct dynamical transition, i.e. exhibits

the same bifurcation. A bifurcation is a substantial change in dynamics, e.g. in our case

transitioning from resting to periodic firing. It occurs while varying the input current, which

is one parameter, thus the bifurcation is said to have codimension-1. In the following, we

consider a neuron’s phase space, which is the space of all its possible states. If a neuron is

at rest, there has to be an attracting or stable fixed point (node) in this phase space. If

it is in a state of periodically spiking, we find a limit cycle attractor. There are only four

codimension-1 bifurcations that feature a transition from a stable fixed point to an attractive

limit cycle (Figure 1.7). To each of the four bifurcations there is a minimal model, also called

the topological normal form or canonical model. It is minimal in the sense of having the

least necessary number of variables to exhibit the respective bifurcation. The authors of

[HI97] state that each member of a family of models sharing the same bifurcation can be

transformed by a piecewise continuous change of variables into the respective canonical

model.

As mentioned earlier, there are two types of neurons with either an arbitrarily low firing

rate at the transition (type I) or a positive, minimal frequency (type II). We find that

only the saddle-node on an invariant circle (SNIC) bifurcation (Figure 1.7(b)) can show the

behaviour of a type I neuron and the other three relate to type II neurons. In this thesis,

we make the choice of studying type I neurons since its canonical model is well known and

there is an elegant framework, which enables us to model a whole network of such neurons

with only a small set of equations. It would be an interesting extension to this work to

investigate networks of the different type II neurons.

12



1.2. Neurons

Figure 1.7: Four codimension-1 bifurcations featuring the transition from exhibiting a stable
fixed point on the one side (left) over the nihilation of the very same (middle) and leaving
nothing but a stable limit cycle (right). (Image taken from [Izh07])

1.2.3 Theta neuron model

We turn now to the topological normal form of a type I neuron, which is the quadratic

integrate-and-fire model (QIF)[FT13]

dV

dt
� V 2 � I, if V ¡ Vpeak, then V Ñ Vreset (1.2.6)

with V being the membrane voltage and I the input current. The theta neuron model can

be obtained from a simple variable transformation and shall be the model of choice for this
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thesis, because of its continuous sinusoidal form. Thus, we will be able to use any standard

ODE solver. Substituting

V � tanpθ{2q (1.2.7)

the left hand side of Eq. (1.2.6) then reads

d tan
�
θ
2

�
dθ

� 1

2 cos2
�
θ
2

� dθ
dt

(1.2.8)

Thus, we write for the dynamical equation of θ

dθ

dt
� 2

�
sin2

�
θ

2



� cos2

�
θ

2



I



(1.2.9)

and by using trigonometric identities we arrive at the so-called Theta Neuron model or

Ermentrout-Kopell canonical model [EK86]

dθ

dt
� p1� cos θq � p1� cos θqI (1.2.10)

The variable θ can be understood as a state variable and per definition a neuron described

by this model is said to fire at θ � π. Using Eq. (1.2.7), we can relate this to the QIF model:

Vpeak � �8 and Vreset � �8. The parameter I still models the input current. Figure 1.8

illustrates how varying the current passing 0 changes the dynamical behaviour. For negative

currents, Eq. (1.2.10) has two roots, i.e. two stationary points. One is stable (node) and

the other unstable (saddle). In this scenario, the neuron approaches the stable fixed point

and rests. It requires a positive, sufficiently strong pulse to push it beyond the unstable

saddle point, from where θ will further increase through π causing an action potential and

eventually return to the node. With a constant positive current, the system has no fixed

points. The instantaneous velocity dθ{dt is strictly positive and the constantly increasing θ

will periodically reach the firing value π. Approaching the transition with a positive current

(I ¡ 0; I Ñ 0), the minimal velocity is still positive, but becomes arbitrary small. In this

regime, a theta neuron slows down around θ � 0, thereby increasing the time between its

spikes. Hence its firing rate gets smaller and smaller. This perfectly resembles the behaviour

of a type I neuron.

1.2.4 A network of excitable theta neurons

We consider the input current to be the sum of two terms: an internal stimulus or intrinsic

excitability η and an incoming current I. With the excitability parameter, we can model

whether a neuron is firing on its own, needs only little external stimulus or is hardly excitable

14



1.2. Neurons

Figure 1.8: Saddle-node on an invariant circle (SNIC) bifurcation of the theta neuron model.
From left to right, the bifurcation parameter I is varied passing 0 and thus changing the
dynamics substantially. The upper plots show the dynamical equation for the respective
input current whereas the figures below illustrate the 1-dimensional phase plane in polar
coordinates with an arbitrary radius.

at all. A network of N theta neurons can be written as

dθi
dt

� p1� cos θiq � p1� cos θiq pηi � Iiq (1.2.11)

with i � 1, 2, . . . , N . Note that this is a heterogeneous model and each neuron has its

individual excitability parameter ηi and incoming current Ii. For our studies of self-sustained

patterns in recurrent neuronal networks, the external stimulus is the sum of output currents

of connected neurons:

Ii � K

xky
Ņ

j�1

AijPnpθjq (1.2.12)

An entry Aij of the adjacency matrix A is either 1 if neuron j’s output is connected to

neuron i or 0 otherwise, as described in Section 1.1. Typically, neuron j’s synaptic pulse

Pnpθjq is modelled by

Pnpθq � anp1� cos θqn with an such that

» 2π

0

Pnpθqdθ � 1 (1.2.13)

where the parameter n determines the sharpness of the pulse (Figure 1.9). For better control

over the external stimulus, we normalise the sum in Eq.(1.2.12) with the average number
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Figure 1.9: The pulse function Pnpθq used in the theta neuron model plotted for different
values of the sharpness parameter n.

of connections, which is the mean degree xky, and multiply the result by a homogeneous

coupling strength K. This value could as well be modelled as being heterogeneous, for

example to model a spatially extended network.

With our chosen pulse function and a particular distribution of intrinsic excitability

values, the system Eq. (1.2.11) is known to be amenable to the use of the Ott/Antonsen

theory [OA08, OA09, LBS13]. It has its origins in the theory of coupled oscillators and was

first applied to the Kuramoto model. When considering several such systems, a probability

density function for the state of each neuron can be introduced. The theory states that

every density function will approach an invariant manifold described by the Ott/Antonsen

ansatz. As we use two slightly different mean field theories in Chapter 2 and Chapter 3,

their derivation will be given as we use them.

1.2.5 Order parameter and firing frequency

Looking at large networks, we do not analyse individual neurons, but compute meaningful

observables of the network dynamics. The first to mention is the complex Kuramoto order

parameter z

z � 1

N

Ņ

j�1

zj with zj � eiθj (1.2.14)

where i denotes the imaginary unit. Its absolute value |z| being in the range r0, 1s correlates

with the synchronicity of the network. The larger |z| the more synchronized the network is.

In a rather synchronised scenario the argument of z indicates the state of the majority of
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Figure 1.10: The left panel shows 100 theta neurons after 10 time units mapped into the
complex plane (blue circles) and their mean value – the Kuramoto order parameter (black
circle). The time evolution of z is illustrated on the right side (top: real part, bottom:
imaginary part). Although the underlying neuronal activity is ongoing, for large systems
the order parameter will often be steady or move in periodic orbits. (Simulation parameters:
N � 1000; kin, kout P r300, 600s; P pkq � k�3; K � 1.6; ηi � �2 @i; n � 4)

neurons (Figure 1.10). This relates to the state θ of an individual theta neuron, i.e. firing

at π and so on. For a more in-depth analysis of the order parameter in the context of

Kuramoto oscillators see [Pet19].

The authors of [MPR15] derive a mapping between the Kuramoto order parameter and

the mean firing rate and membrane potential. Their map is only exact in a system to which

the Ott/Antonsen theory is applicable – such as the systems we will investigate. Given z

we calculate the variable w

w � 1� z̄

1� z̄
(1.2.15)

where z̄ denotes the complex conjugate of z, from which we gain

f � 1

π
Repwq and V � Impwq (1.2.16)

with f being the mean firing frequency and V the mean membrane potential of the original

QIF neurons. In Chapter 2 and Chapter 3 we will use the mean firing frequency as our

primary observable of the system.

We have seen to what extent a theta neuron is a valid representation of a real neuron

and discussed the two types of degree correlation we will study in the following chapters.

How to generate networks with the desired correlation in them will be covered in the respec-

tive section. We now turn to the study of correlations between in- and out-degree within

each neuron.
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Chapter 2

Within-neuron degree

correlations

In this chapter, we consider the effects of correlations between the in- and out-degrees of

individual neurons on the dynamics of a network of neurons. Using theta neurons, we

derive a set of coupled differential equations for the expected dynamics of neurons with the

same in-degree. A Gaussian copula is used to introduce correlations between a neuron’s in-

and out-degree and with numerical bifurcation analysis we determine the effects of these

correlations on the network’s dynamics. We also investigate the propensity of various two-

and three-neuron motifs to occur as correlations are varied and give a plausible explanation

for the observed changes in dynamics.

The content of this section is an altered version of the publication [LB20].

2.1 Introduction

Determining the effects of a network’s structure on its dynamics is an issue of great interest,

particularly in the case of a network of neurons [Rox11, SKSR15, NFS�17, MHT17]. In

Chapter 1 we introduced degrees and their distribution. Since neurons form directed synaptic

connections, a neuron has both an in-degree — the number of neurons connected to it, and

an out-degree — the number of neurons it connects to. In this chapter, we present a

framework for investigating the effects of correlations, both positive and negative, between

these two quantities. To isolate the effects of correlations we assume no other structure in

the networks, that is random connectivity based on the neurons’ degrees.

A number of other authors have considered this issue and we now summarise relevant

aspects of their results. LaMar and Smith [LS10] investigated directed networks of iden-

tical pulse-coupled phase oscillators and mostly concentrated on the probability that the
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network fully synchronises, and the time taken to do so. Vasquez et al. [VHT13] studied

binary neurons whose states were updated at discrete times, and found that negative degree

correlations stabilised a low firing rate state for excitatory coupling. A later paper [MHT17]

dealt with more realistic spiking neurons, had a mix of excitatory and inhibitory neurons,

and concentrated more on the network’s response to transient stimuli, as well as on the anal-

ysis of network properties such as the mean shortest path. Several authors have considered

networks for which the in- and out-degrees of a neuron are equal, thereby inducing positive

correlations between them [SKSR15, KSR17].

Vegué and Roxin [VR19] simulated large networks of both excitatory and inhibitory leaky

integrate-and-fire neurons and used a mean-field formalism to determine steady state distri-

butions of firing rates within neural populations. They studied the effects of within-neuron

degree correlations for the excitatory to excitatory connections, and varied the probability

of inhibitory to excitatory connections in order to create a “balanced state”. Nykamp et

al. [NFS�17] also considered large networks of both excitatory and inhibitory neurons and

used a Wilson-Cowan type firing rate model to investigate the effects of within-neuron de-

gree correlations. They showed that once correlations were included, the dynamics were

effectively four-dimensional, in contrast to the two-dimensional dynamics expected from a

standard rate-based excitatory/inhibitory network. They also related the degree distribu-

tions to cortical motifs. Experimental evidence for within-neuron degree correlations was

given in [VPR17].

This chapter is structured as follows: in Sec. 2.2, we present the model network and

summarise the analysis of [CHC�17], showing that under certain assumptions the network

dynamics can be described by a coupled set of ordinary differential equations, one for each

in-degree. In Sec. 2.3, we discuss how to generate correlated in- and out-degrees using a

Gaussian copula. Our model involves sums over all distinct in-degrees, and in Sec. 2.4,

we present a computationally efficient method for evaluating these sums, in analogy with

Gaussian quadrature. Our main results are described in Sec. 2.5 and we show in Sec. 2.6

that they also occur in networks of more realistic Morris-Lecar spiking neurons. An analysis

of how motifs change under the influence of degree correlations is given in Sec. 2.7. We

conclude this chapter in Sec. 2.8.

2.2 Theta neuron mean field using a degree dependent

Ott/Antonsen ansatz

We consider the same model of pulse-coupled theta neurons as in [CHC�17].

The governing equations are

dθi
dt

� 1� cos θi � p1� cos θiqpηi � Iiq (2.2.1)
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for i � 1, 2 . . . N , where the phase angle θi characterises the state of neuron i, which fires

an action potential as θi increases through π, the synaptic current Ii reads

Ii � K

xky
Ņ

j�1

AijPnpθjq (2.2.2)

K is the strength of connections within the network, Aij � 1 if there is a connection from

neuron j to neuron i and Aij � 0 otherwise, xky is the average degree,
°
i,j Aij{N , and

Pnpθq � anp1 � cos θqn where an is chosen such that
³2π

0
Pnpθqdθ � 1. The function Pnpθjq

models the pulse of current emitted by neuron j when it fires and can be made arbitrarily

“spike-like” and localised around θj � π by increasing n.

The parameter ηi is the input current to neuron i in the absence of coupling and the ηi

are independently and randomly chosen from a Lorentzian distribution

gpηq � ∆{π
pη � η0q2 �∆2

(2.2.3)

Chandra et al. [CHC�17] considered the limit of large N and assumed that the network

can be characterised by two functions: firstly, a degree distribution P pkq, normalised so

that
°
k P pkq � N , where k � pkin, koutq and kin and kout are the in- and out-degrees,

respectively of a neuron with degree k. Secondly, an assortativity function apk1 Ñ kq
giving the probability of a connection from a neuron with degree k1 to one with degree

k. While [CHC�17] investigated the effects of varying apk1 Ñ kq, here we consider the

default value for this assortativity function (i.e. its value expected by chance, see (2.2.11))

and investigate the effects of varying correlations between kin and kout as specified by the

degree distribution P pkq. We emphasise that we are only considering within-neuron degree

correlations in this chapter and are not considering degree assortativity, which refers to

the probability of neurons with specified degrees being connected to one another [CHC�17,

RO14] as in Chapter 3.

In the limitN Ñ8, the network can be described by a probability distribution fpθ, η|k, tq,
where fpθ, η|k, tqdθ dη is the probability that the phase angle of a neuron with degree k is

in rθ, θ�dθs and its intrinsic excitability η in rη, η�dηs at time t. This distribution satisfies

the continuity equation
Bf
Bt �

B
Bθ pvfq � 0 (2.2.4)

where v is the continuum version of the right hand side of (2.2.1):

vpθ,k, η, tq � 1� cos θ � p1� cos θq

�
�
η � K

xky
¸
k1

P pk1qapk1 Ñ kq
» 8

�8

» 2π

0

fpθ1, η1|k1, tqPnpθ1qdθ1 dη1
�

(2.2.5)

21



Chapter 2. Within-neuron degree correlations

The system (2.2.4)-(2.2.5) is amenable to the use of the Ott/Antonsen ansatz [OA08, OA09]

and using standard techniques [LBS13, Lai14a, Lai16, CB19] one can show that the long-

time dynamics of the system is described by

Bbpk, tq
Bt � �ipbpk, tq � 1q2

2
� pbpk, tq � 1q2

2

�
�
�∆� iη0 � iK

xky
¸
k1

P pk1qapk1 Ñ kqGpk1, tq
�

(2.2.6)

where (having chosen n � 2)

Gpk1, tq � 1� 2pbpk1, tq � b̄pk1, tqq
3

� bpk1, tq2 � b̄pk1, tq2
6

(2.2.7)

The quantity

bpk, tq �
» 8

�8

» 2π

0

fpθ, η|k, tqeiθdθ dη (2.2.8)

can be regarded as a complex-valued “order parameter” for neurons with degree k at time

t. The function Gpk1, tq can be regarded as the output current from neurons with degree k1,

and its form results from rewriting the pulse function Pnpθq in terms of bpk1, tq. [For general

n, Gpk1, tq is the sum of a degree-n polynomial in bpk1, tq and in b̄pk1, tq (the conjugate of

bpk1, tq) [Lai14a, LBS13]. One can take the limit nÑ8, corresponding to a delta-function

like pulse, and obtain Gpk1, tq � p1 � |bpk1, tq|2q{p1 � bpk1, tq � b̄pk1, tq � |bpk1, tq|2q.] Note

that the parameters of the Lorenztian (2.2.3) appear in (2.2.6) as a result of evaluating the

integral over η1 in (2.2.5). The equation (2.2.6) describes only the long-time asymptotic

behaviour of the network (2.2.1), on the “Ott/Antonsen manifold”, and thus may not fully

describe transients from arbitrary initial conditions, nor the effects of stimuli which move

the network off this manifold.

One can also marginalise fpθ, η|k, tq over η to obtain the distribution of θ for each k and

t:

pθpθ|k, tq � 1� |bpk, tq|2
2πt1� 2|bpk, tq| cos rθ � argpbpk, tqqs � |bpk, tq|2u (2.2.9)

a unimodal function with maximum at θ � argpbpk, tqq. The firing rate of neurons with

degree k is equal to the flux through θ � π:

fpk, tq � 2pθpπ|k, tq

� 1� |bpk, tq|2
πt1� 2|bpk, tq| cos rargpbpk, tqqs � |bpk, tq|2u

� 1

π
Re

�
1� b̄pk, tq
1� b̄pk, tq



(2.2.10)
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2.2. Theta neuron mean field using a degree dependent Ott/Antonsen ansatz

where we have used the fact that dθ{dt � 2 when θ � π.

Suppose our network has neutral assortativity, that is the probability for two neurons

to be connected scales linearly with the out-degree of the sending one and the in-degree of

the receiving one. Then [RO14, CHC�17]

apk1 Ñ kq � k1outkin
Nxky (2.2.11)

and ¸
k1in

¸
k1out

P pk1in, k1out, ρ̂qapk1 Ñ kqGpk1in, k1out, tq

� kin
Nxky

¸
k1in

¸
k1out

P pk1in, k1out, ρ̂qk1outGpk1in, k1out, tq (2.2.12)

where we write P pk1in, k1out, ρ̂q instead of P pk1q from now on, where ρ̂ is a parameter used

to calibrate the desired correlation between k1in and k1out, defined below in (2.3.2). This

quantity is proportional to the input to a neuron with degree pkin, koutq from other neurons

within the network but it is clearly independent of kout, hence the state of a neuron with

degree pkin, koutq must also be independent of kout, and thus G must be independent of k1out.

Therefore the expression in (2.2.12) can be written

kin
Nxky

¸
k1in

Qpk1in, ρ̂qGpk1in, tq (2.2.13)

where

Qpk1in, ρ̂q �
¸
k1out

P pk1in, k1out, ρ̂qk1out (2.2.14)

The function Q can be thought of as a k1in-dependent mean of k1out which also depends on

the correlations between k1in and k1out.

Our model equations are thus

Bbpkin, tq
Bt � �ipbpkin, tq � 1q2

2
� pbpkin, tq � 1q2

2

�
���∆� iη0 � iKkin

Nxky2
¸
k1in

Qpk1in, ρ̂qGpk1in, tq
�� (2.2.15)

where kin takes on integer values between the minimum and maximum in-degrees. The

correlation between in- and out-degrees of a neuron is controlled by ρ̂ (see Sec.2.3). It

appears as a parameter in (2.2.14).

It is interesting to compare (2.2.14)-(2.2.15) with the heuristic rate equation in [NFS�17].
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Chapter 2. Within-neuron degree correlations

These authors characterised a neuron by its “f-I curve” — a nonlinear function transforming

an input current into a firing rate. They concluded that the input current to a neuron is

proportional to two quantities: (i) its in-degree, and (ii) the sum over in- and out-degrees

of presynaptic neurons of the product of the joint degree distribution, the out-degree of the

presynaptic neuron, and the “output” of presynaptic neurons. We also find this form of

equation.

The transformation V � tan pθ{2q maps a theta neuron to a quadratic integrate-and-fire

(QIF) neuron with threshold and resets of �8. For the special case delta-function like sharp

pulses with n � 8 in P pθqn one can derive an equivalent pair of real equations rather than

the single equation (2.2.15) where the two real variables are the mean voltage and firing

rate of the QIF neurons with a specific in-degree [MPR15].

2.3 Generating correlated in- and out-degrees

We now turn to the problem of deriving P pk1in, k1out, ρ̂q and thus Qpk1in, ρ̂q. For simplicity,

we choose the distributions of both in- and out-degrees to be the same, namely power law

distributions with exponent �3, truncated below and above at degrees a and b, respectively.

(Evidence for power law distributions in the human brain is given in [ECC�05], for example.)

The probability distribution function of either in- or out-degree k is

ppkq �
$&%
�

2a2b2

b2�a2

	
k�3 a ¤ k ¤ b

0 otherwise
(2.3.1)

where the normalisation factor results from approximating the sum from a to b by an

integral. (The approximation improves as a and b are both increased.) We want to introduce

correlations between the in- and out-degree of a neuron, while retaining these marginal

distributions. We do this using a Gaussian copula [Nel07]. The joint probability function

P pk1in, k1out, ρ̂q can be computed numerically, but below we give an analytical expression for

the chosen marginal functions ppkinq and ppkoutq. Using the cumulative density function of

the degree probability function we can relate degrees to the cumulative density function of

a correlated bivariate normal distribution. The mixed partial derivative of this remapped

cumulative density function is the desired probability function P pk1in, k1out, ρ̂q (see Fig.2.1).

The correlated bivariate normal distribution with zero mean is

fpx, y, ρ̂q � 1

2π
a|Σ|e

�pxT Σ�1xq{2

� 1

2π
a

1� ρ̂2
e�px

2�2ρ̂xy�y2q{r2p1�ρ̂2qs (2.3.2)
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2.3. Generating correlated in- and out-degrees

Figure 2.1: A schematic illustration of the construction of a correlated probability function
P pkin, kout, ρ̂ � �0.5q using a Gaussian copula. On the left panel, the degree tuple p120, 200q
is mapped via Ck and C�1 onto F pX,Y,�0.5q. Setting F pX,Y,�0.5q � pCpkin, kout,�0.5q
gives a remapped function in degree space shown on the right top. Below, the col-
ormap shows the logarithm of P pkin, kout,�0.5q, which is the mixed partial derivative ofpCpkin, kout,�0.5q. The same plot can be found on the left hand side of Figure 2.2. The
summation over either degree axis yields the original marginal degree probability ppkq.

where

x �
�
x

y

�
Σ �

�
1 ρ̂

ρ̂ 1

�
(2.3.3)

and the scalar ρ̂ P p�1, 1q is the correlation between x and y. The variables x and y have

no physical meaning. We use the copula as a way of deriving an analytic expression for

P pk1in, k1out, ρ̂q for which the correlations between k1in and k1out can be varied systematically.

The marginal distributions and therefore the cumulative distribution functions for x and

y are the same:

p̃pxq � 1?
2π
e�x

2{2 and Cpxq � r1� erfpx{
?

2qs{2 (2.3.4)

We define the cumulative distribution function of f :

F pX,Y, ρ̂q �
» Y
�8

» X
�8

fpx, y, ρ̂qdx dy (2.3.5)
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Chapter 2. Within-neuron degree correlations

Further, we have the cumulative distribution function for a degree k:

Ckpkq �
» k
a

�
2a2b2

b2 � a2



s�3ds � b2pk2 � a2q

k2pb2 � a2q (2.3.6)

where we have treated k as a continuous variable and again approximated a sum by an

integral. We thus have the joint cumulative distribution function for kin and kout

pCpkin, kout, ρ̂q � F pC�1pCkpkinqq, C�1pCkpkoutqq, ρ̂q

�
» C�1pCkpkoutqq

�8

» C�1pCkpkinqq

�8

fpx, y, ρ̂qdx dy (2.3.7)

This is schematically illustrated on the left hand side of Figure 2.1.

The joint degree distribution for kin and kout is then

P pkin, kout, ρ̂q � B2

BkinBkout
pCpkin, kout, ρ̂q

�tC�1rCkpkinqsu1tC�1rCkpkoutqsu1

� ftC�1rCkpkinqs, C�1rCkpkoutsq, ρ̂u (2.3.8)

where the primes indicate differentiation with respect to the relevant k (Right hand side of

Figure 2.1). Now,

C�1pxq �
?

2 erf�1p2x� 1q (2.3.9)

so

C�1rCkpkqs �
?

2 erf�1

�
2b2pk2 � a2q
k2pb2 � a2q � 1



(2.3.10)

and

tC�1rCkpkqsu1 �
c
π

2
exp

�"
erf�1

�
2b2pk2 � a2q
k2pb2 � a2q � 1


*2
�

4a2b2

pb2 � a2qk3
(2.3.11)

Substituting these into (2.3.8)

P pkin, kout, ρ̂q � 4a4b4a
1� ρ̂2pb2 � a2q2k3

ink
3
out

� exp

"
ρ̂C�1rCkpkinqsC�1rCkpkoutqs

1� ρ̂2

*

� exp

���ρ̂2
�
tC�1rCkpkinqsu2 �  

C�1rCkpkoutqs
(2
	

2p1� ρ̂2q

�� (2.3.12)
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Figure 2.2: The logarithm of P pkin, kout, ρ̂q is shown for three different values of ρ̂ (red:
larger P , blue: smaller P ). a � 100, b � 400.

and simplifying we find

P pkin, kout, ρ̂q �ppkinqppkoutqa
1� ρ̂2

exp

"
ρ̂C�1rCkpkinqsC�1rCkpkoutqs

1� ρ̂2

*

� exp

���ρ̂2
�
tC�1rCkpkinqsu2 �  

C�1rCkpkoutqs
(2
	

2p1� ρ̂2q

�� (2.3.13)

Note that for ρ̂ � 0, this simplifies to ppkinqppkoutq, as expected. Examples of P pkin, kout, ρ̂q
for different ρ̂ are shown in Fig. 2.2. Both Zhao et al. [ZBNN11] and LaMar and Smith [LS10]

used Gaussian copulas to create networks with correlated in- and out-degrees as done here,

but did not derive an analytical expression of the form (2.3.13).

We need to relate ρ̂, a parameter in (2.3.13), to ρ, the Pearson’s correlation coefficient

between in- and out-degrees of a neuron (note: not between two connected neurons). We

have

ρ � Σ̃P pkin, kout, ρ̂qpkin � xkyqpkout � xkyqb
Σ̃P pkin, kout, ρ̂qpkin � xkyq2

b
Σ̃P pkin, kout, ρ̂qpkout � xkyq2

(2.3.14)

where Σ̃ indicates a sum over all kin and kout. ρ as a function of ρ̂ is shown in Fig. 2.3. We

see that the relationship is monotonic, and while it is possible to obtain values of ρ close to

1, the lower limit is approximately �0.6. By varying ρ̂ in (2.2.15), we can thus investigate

the effects of varying the correlation coefficient ρ between in- and out-degrees of a neuron

on the dynamics of a network. Note that for the distributions used here, we treat k as a

continuous variable with mean value xky � 2ab{pb� aq.
Keeping in mind the normalisation

°
k P pkq � N , we write Qpk1in, ρ̂q as

Qpk1in, ρ̂q � N
b̧

k1out�a

P pk1in, k1out, ρ̂qk1out (2.3.15)
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Figure 2.3: Correlation coefficient between in- and out-degrees, ρ, as a function of the
correlation coefficient in the Gaussian copula, ρ̂. Parameters: a � 100, b � 400.
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Figure 2.4: The function Qpkin, ρ̂q (Eqn. (2.3.15)) for different ρ̂. The right panel is a zoom
of the left panel. Parameters: a � 100, b � 400, N � 2000.

Note that the factor of N here cancels with that in the last term in (2.2.15), giving equations

which do not explicitly depend on N . Examples of Qpk1in, ρ̂q for different ρ̂ are shown in

Fig. 2.4. We see that increasing ρ̂ gives more weight to high in-degree nodes and less to low

in-degree nodes and vice versa.

2.4 Model reduction to “virtual degrees”

We now turn to the issue of evaluating the sums over degrees in both (2.3.15) and (2.2.15).

Although such sums are typically over only several hundred terms, it is possible to accurately

evaluate them using many fewer terms, in analogy with Gaussian quadrature [Eng06]. (See

Section 4.3 for more details.)

28



2.4. Model reduction to “virtual degrees”

If we assume that the function Qpk1in, ρ̂q can be well approximated by a polynomial of

degree 2n� 1, we can make use of the approximation

b̧

k�a

fpkq �
ņ

i�1

wifpxiq (2.4.1)

where n ! b� a� 1, the number of terms in the original sum. We thus choose a number n,

construct a set of n orthogonal polynomials tqipkqu, and write

Qpk1in, ρ̂q � N
ņ

j�1

wjP pk1in, kj , ρ̂qkj (2.4.2)

where kj are the roots of the highest order polynomial qnpkq and wj are the associated

weights. In order to use the same approximation for the sum in (2.2.15), we consider only

values of kin equal to the kj . As mentioned, these are typically not integers. We refer to

them as “virtual degrees”. Thus our model equations are

Bbpkj , tq
Bt � �ipbpkj , tq � 1q2

2
� pbpkj , tq � 1q2

2

�
�∆� iη0 � iKkj

Nxky2
ņ

j�1

wjQpkj , ρ̂qGpkj , tq
�

(2.4.3)

for j � 1, . . . n. We are interested in fixed points of these equations, and how these fixed

points and their stabilities change as parameters such as η0 and ρ̂ are varied. We use

pseudo-arclength continuation [Lai14b, Gov00] to investigate this.

In order to calculate the mean frequency of the network we use the result that the

frequency for neurons with in-degree k is [MPR15]

fpkq � 1

π
Re

�
1� b̄pkq
1� b̄pkq



, (2.4.4)

where overline indicates complex conjugate, and then average over the network to obtain

the mean frequency

f �
°
kin

°
kout

P pkin, kout, ρ̂qfpkinq°
kin

°
kout

P pkin, kout, ρ̂q

�
°n
i�1

°n
j�1 wiwjP pki, kj , ρ̂qfpkiq°n

i�1

°n
j�1 wiwjP pki, kj , ρ̂q

(2.4.5)

(The normalisation is needed because even though the integral of the joint degree distribu-

tion over rkin, kouts2 equals 1, the sum over the corresponding discrete grid does not.)

Typical convergence of a calculation of f with increasing n is shown in Fig. 2.5 for

several sets of parameter values. We see rapid convergence and choose n � 15 for future
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Figure 2.5: Mean frequency, f , as a function of n, the number of virtual degrees used to
simulate the network. (a): ρ̂ � �0.2,K � 1, η0 � 0.5. (b): ρ̂ � 0.3,K � �0.1, η0 � �0.5.
Other parameters: a � 100, b � 400,∆ � 0.05, N � 2000.

calculations. (Calculations of the form shown in Figs. 2.6 and 2.8 were repeated using the

full degree sequence from a to b, with essentially identical results.)

2.5 Results

2.5.1 Excitatory coupling

We first consider the case of excitatory coupling with K ¡ 0. We expect a region of

bistability for negative η0, as seen in Fig. 2.6. We see that a decreasing ρ moves the curve

to the right and vice versa (ρ̂ was chosen to give these particular values of ρ). Following the

saddle-node bifurcations as ρ is varied we obtain Fig. 2.7.

Given the influence of ρ̂ (and thus ρ) on Q (see Fig. 2.4), this result is easy to understand.

Neurons with high in-degree fire faster than those with low in-degree, and for positive ρ,

high in-degree neurons contribute more to the sum in (2.4.3) than for negative ρ. Thus the

total amount of “output” from neurons is higher for positive ρ and lower for negative ρ.

Put another way, with positive ρ, neurons with high firing rate (due to high in-degree) are

more likely to have a high out-degree, thus exciting more neurons than would otherwise be

the case. Increasing ρ has the same qualitative effect as increasing the coupling strength K,

as observed by [NFS�17].
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Figure 2.6: Mean frequency, f , versus intrinsic excitability η0 for (left to right) ρ � 0.5, 0 and
�0.5. Solid: stable, dashed: unstable. Parameters: a � 100, b � 400,K � 1.5,∆ � 0.05.
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Figure 2.7: Continuation of the saddle-node bifurcations shown in Fig. 2.6. The network is
bistable in the region between the curves. Parameters as in Fig. 2.6.
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Figure 2.8: Mean frequency, f , versus η0 for ρ � �0.5, 0 and 0.5; same colour code as in
Fig. 2.6. All branches are stable. Parameters: a � 100, b � 400,K � �1,∆ � 0.05.

2.5.2 Inhibitory coupling

Next we consider inhibitory coupling, with K � �1. Average network frequency f versus

mean intrinsic excitability η0 is shown in Fig. 2.8 for three different values of ρ. We see

that increasing ρ slightly increases the frequency and vice versa. We can also understand

this behaviour in a qualitative sense. For inhibitory coupling, neurons with high in-degree

are not likely to be firing and can be ignored. When ρ   0, neurons with low in-degree will

have high out-degree, thus the amount of inhibitory “output” in the network is increased.

For positive ρ, neurons with low in-degree will have low out-degree, thus they will inhibit

fewer neurons than in the case of negative ρ, leading to a higher average firing rate.

We performed calculations corresponding to the results shown in Fig. 2.6 and Fig. 2.8

for networks of theta neurons and found qualitatively, and to a large extent quantitatively,

the same behaviour as in those figures (results not shown).

2.6 Validation with a Morris-Lecar neuronal network

To verify the behaviour seen above in a network of theta neurons, we investigated a more

realistic network of spiking neurons, in this case Morris-Lecar neurons. They feature calcium

and potassium channels, a leak current and synaptic coupling. For each neuron there are

three variables describing the membrane voltage V , the potassium gate activation n, and

the synaptic output s. For the case of excitatory coupling the network equations for N
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2.6. Validation with a Morris-Lecar neuronal network

neurons are [TKY�06]

C
dVi
dt

� gLpVL � Viq � gCam8pViqpVCa � Viq (2.6.1)

� gKnipVK � Viq

� I0 � Ii � pVex � Viq ε
N

Ņ

j�1

Aijsj

dni
dt

� λ0pw8pViq � niq
τnpViq (2.6.2)

τ
dsi
dt

� m8pViq � si (2.6.3)

where

m8pV q � 0.5p1� tanh rpV � V1q{V2sq (2.6.4)

w8pV q � 0.5p1� tanh rpV � V3q{V4sq (2.6.5)

τnpV q � 1

cosh rpV � V3q{p2V4qs (2.6.6)

and i P t1, . . . Nu. The equilibrium potentials are given in mV and read VL � �60, VCa �
120 and VK � �80. The model assumes much faster dynamics for calcium currents, such

that they are always in equilibrium with their activation function m8pV q. Both, m8pV q
and the steady-state potassium activation w8pV q, are of similar shape and each contain

two voltage parameters measured in mV. V1 � �1.2 and V3 � 12, respectively, determine

the voltage of half activated gates, whereas V2 � 18 and V4 � 17.4 relate to the slope of the

respective activation function. The maximum conductances gL � 2, gK � 8, and gCa � 4

are in mS/cm2. The overall coupling strength is ε � 5mS/cm
2
. Further, we have the

overall voltage independent activation time scale λ0 � 1{15msec�1 and synaptic time scale

τ � 100. A neuron’s electrical capacity is modelled with C � 20µF/cm
2
. The large reversal

potential Vex � 120mV ensures excitatory coupling. Time is measured in milliseconds and

currents in µA/cm2. In the absence of coupling and heterogeneity a neuron undergoes a

SNIC bifurcation as I0 is increased through � 40. We have used synaptic coupling of the

form in [EK90], but on a timescale τ rather than instantaneous as in that paper. The Ii are

randomly chosen from a Lorentzian distribution with a zero mean value and a half-width at

half-maximum of 0.05.

The network is created as follows, using the Gaussian copula of Sec. 2.3. For each

i P t1, . . . Nu let x1 and x2 be independently chosen from a unit normal distribution. Then

x1 and y1 � ρ̂x1�
a

1� ρ̂2x2 both have unit normal distributions and covariance ρ̂, i.e. are

realisations of x and y in (2.3.2). We then set kiin � C�1
k pCpx1qq and kiout � C�1

k pCpy1qq.
These degrees each have distribution ppkq but have correlation coefficient ρ, where ρ is
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Figure 2.9: Degrees for a network whose generation is described in Sec. 2.6 for ρ̂ � 0.9 (left)
and ρ̂ � �0.9 (right). Parameters: N � 2000, a � 100, b � 400.

determined by the value of ρ̂ as shown in Fig. 2.3. We then create the connection from

neuron j to neuron i (i.e. set Aij � 1) with probability

kiink
j
out

Nxky (2.6.7)

where xky is the mean of the degrees, and Aij � 0 otherwise (the Chung-Lu model [CL02]).

Typical results for the network generation are shown in Fig. 2.9, and the measured corre-

lations are given in the figure. The distributions of the resulting degrees no longer match

the distributions of the kiin and kiout, but are close. We could have used the configuration

model to avoid this problem [New03], but here we are only interested in qualitative results.

Quasi-statically sweeping through I0 for networks with three different values of ρ we obtain

Fig. 2.10, in qualitative agreement with Fig. 2.6. In Fig. 2.6 there is a region of bistability

for each value of ρ, and the region moves to lower average drive as ρ is increased. Since

we cannot detect unstable states through simulation of (2.6.1)-(2.6.3), this bistability is

manifested as jumps from low frequency to high frequency branches as I0 is varied, as seen

in Fig. 2.10.

For inhibitory coupling we replace m8pViq in (2.6.3) by w8pViq, replace Vex�Vi in (2.6.1)

by VK � Vi, and choose ε � 10mS{cm2. Sweeping through I0 for three different values of ρ

we obtain Fig. 2.11, in qualitative agreement with Fig. 2.8.

2.7 Motifs

A number of authors have found that “motifs” (small sets of neurons connected in a

specific way) do not occur in cortical networks in the proportions one would expect by
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Figure 2.10: Mean frequency versus I0 for a network of Morris-Lecar neurons. N � 2000.
Red crosses: ρ � �0.57; black diamonds: ρ � 0; blue circles: ρ � 0.85. I0 is quasi-statically
increased and then decreased in all cases.
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Figure 2.11: Mean frequency versus I0 for networks of Morris-Lecar neurons with inhibitory
coupling. N � 2000.
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Figure 2.12: Relative counts of order-2 motifs. We generate three networks at a time with
ρ̂ P r�0.9, 0, 0.9s to compute motif frequencies and repeat this process 100 times. Error bars
indicate the standard deviation. Parameters are chosen as in Figure 2.9.

chance [SSR�05, PBM11]. Some theoretical results relating the presence or absence of cer-

tain motifs to network dynamics have been obtained [ZBNN11, HTJSB13, OLKD15]. For

networks whose generation is described in Sec. 2.6 we counted the number of order-2 and

order-3 motifs (involving two or three neurons respectively), for negative, zero and positive

values of ρ. We compute the frequencies (amount) of order-2 motifs by counting the num-

ber of 0’s, 1’s and 2’s in the upper triangular part of pA � AT q, where A is the adjacency

matrix and T means transposed. They refer to unconnected, unidirectional connected and

reciprocal connected pairs of neurons, respectively. For all 13 connected order-3 motifs we

used the software “acc-motif”[MMFDCa14]. The remaining three unconnected motifs have

been counted by our own algorithm, that is looping through all neurons, we create for each

a list of disconnected neurons and count among those order-2 motifs. The results are shown

in Figs. 2.12 and 2.13, where counts are shown relative to the numbers found for ρ � 0.

In all motifs with at least one reciprocal connection between two neurons, we see that the

number of motifs goes up with positive ρ and down with negative ρ. This can be understood

in an intuitive way: suppose 0   ρ and consider a neuron with a high out-degree. It is likely

to connect to a neuron with a high in-degree. But this second neuron will also have a high

out-degree and is therefore more likely to connect to the first neuron, which also has a high

in-degree, forming a reciprocal connection. Similarly, suppose ρ   0 and consider a neuron

with high out-degree. It is likely to connect to a neuron with high in-degree but low out-

degree. Thus it is unlikely that this second neuron will connect back to the first, which has

a low in-degree.
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Figure 2.13: Relative counts of order-3 motifs.

2.8 Conclusion

We have investigated the effects of correlating the in- and out-degrees of spiking neurons

in a structured network. We considered a large network of theta neurons, allowing us to

exploit the analytical results previously derived by [CHC�17], which give dynamics for

complex-valued order parameters, indexed by neurons with the same degrees. The states

of interest are steady states of these dynamics, and by using a Gaussian copula we were

able to analytically incorporate a parameter which controls the correlations between in-

and out-degrees. Numerical continuation was then used to determine the effects of varying

parameters, particularly the degree correlation. In order to reduce the computational cost

we introduced the concept of “virtual degrees” allowing us to efficiently approximate sums

with many terms by sums with fewer terms.

For an excitatory network we found that increasing degree correlations had a similar

effect as increasing the overall strength of coupling between neurons, consistent with the

findings of [NFS�17, VR19]. Our results are also consistent with those of [VHT13], who

found that negative correlations stabilised the low firing rate state, as shown in Fig. 2.6. For

inhibitory coupling we found that increasing degree correlations slightly increased the mean

firing rate of the network. Both of these effects were reproduced in more realistic networks

of Morris-Lecar spiking neurons.
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Chapter 2. Within-neuron degree correlations

We also measured the relative frequency of occurrence of order-2 and order-3 motifs

as within-degree correlations were varied and found that in all motifs with at least one

reciprocal connection between two neurons, the number of motifs is positively correlated with

ρ. Several authors have linked motif statistics to synchrony within a network [HTJSB13,

ZBNN11], however a link between motif statistics and firing rate, as observed here, seems

yet to be developed.

We chose a Lorentzian distribution of the ηi in (2.2.1), as many others have done [OA08],

in order to analytically evaluate an integral and derive (2.2.6). However, we repeated the

calculations shown in Figs. 2.6, 2.8, 2.10 and 2.11 using a Gaussian distribution of the

ηi and found the same qualitative behaviour (not shown). Regarding the parameter n

governing the sharpness of the function Pnpθq, we repeated the calculations shown in Figs. 2.6

and 2.8 for n � 5,8 and obtained qualitatively the same results (not shown). We used a

Gaussian copula to correlate in- and out-degrees due to its analytical form, but numerically

investigated the scenarios shown in Figs. 2.6 and 2.8 for t copulas and Archimedean Clayton,

Frank and Gumbel copulas and found the same qualitative behaviour (also not shown).

For simplicity we used the same truncated power law distribution for both in- and out-

degrees. However, the use of a Gaussian copula for inducing correlations between degrees

does not require them to be the same, so one could use the framework presented here to

investigate the effects of varying degree distributions [Rox11], correlated or not.

We also only considered either excitatory or inhibitory networks, but it would be straight-

forward to generalise the techniques used here to the case of both types of neuron, with

within-neuron degree correlations for either or both populations, though at the expense of

increasing the number of parameters to investigate.

38



Chapter 3

Degree assortativity

Degree assortativity refers to the increased or decreased probability of connecting two neu-

rons based on their in- or out-degrees, relative to what would be expected by chance. We

investigate the effects of such assortativity in a network of theta neurons. The Ott/Antonsen

ansatz is used to derive equations for the expected state of each neuron, and these equations

are then coarse-grained in degree space. We generate families of effective connectivity ma-

trices parametrised by the assortativity coefficient and use SVD decompositions of these to

efficiently perform numerical bifurcation analysis of the coarse-grained equations. We find

that of the four possible types of degree assortativity, two have no effect on the networks’

dynamics, while the other two can have a significant effect.

The content of this section is an altered version of the publication [BML20].

3.1 Introduction

Our nervous system consists of a vast network of interconnected neurons. The network

structure is dynamic and connections are formed or removed according to their usage. Much

effort has been put into creating a brain atlas or connectome, which is a map of all neuronal

interconnections. Given such a network there are many structural features and measures

that one can use to characterise it, for instance betweenness, centrality, average path-length

and clustering coefficient [New03].

Obtaining these measures in actual physiological systems is challenging to say the least;

nevertheless, insights into intrinsic connectivity preferences of neurons were observed via

their growth in culture [dSSSNL�14, TGDD�14]. Neurons with similar numbers of pro-

cesses (e.g., synapses and dendrites) tend to establish links with each other – akin to so-

cialites associating in groups and vice-versa. Such an assortativity, typically referred to as a

positive assortativity, or a tendency of elements with similar properties to mutually connect,
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Chapter 3. Degree assortativity

emerges as a strong preference throughout the stages of the cultured neuron development.

Furthermore, this preferential attachment between highly-connected neurons is suggested to

fortify the neuronal network against disruption or damage [TGDD�14]. Moreover, a similar

positive assortativity is inferred in human central nervous systems as well [dSSSNL�14] at

both a structural and functional level, where a central “core” in the human cerebral cortex

may be the basis for shaping overall brain dynamics [HCG�08]. It seems that in no in-

stance, however, is the directional flow of information (e.g., from upstream neuron via axon

to synapse and downstream neuron) observed – either in culture or in situ.

As mentioned in the introduction (Sec. 1.1.1), assortativity in this context refers to the

probability that a neuron with a given in- and out-degree connects to another neuron with

a given in- and out-degree. If this probability is what one would expect by chance, given

the neurons’ degrees (and this is the case for all pairs of neurons), the network is referred

to as neutrally assortative. If the probability is higher (lower) than one would expect by

chance — for all pairs — the network is assortative (disassortative). Interchangeably, we

will use the term positive assortativity (negative assortativity).

Assortativity has often been studied in undirected networks, where a node simply has

a degree, rather than in- and out-degrees (the number of connections to and from a node,

respectively) [RO14, New03, New02]. Since neurons form directed connections, there are

four types of assortativity to consider [FFGP10]: between either the in- or out-degree of a

presynaptic neuron, and either the in- or out-degree of a postsynaptic neuron (Figure 1.3).

We are aware of only a small number of previous studies in this area [SKSR15, KSR17,

AGAP�12, DFJT11]. Kähne et al. [KSR17] considered networks with equal in- and out-

degrees and investigated degree assortativity, effectively correlating both in- and out-degrees

of pre- and post-synaptic neurons. They mostly considered networks with discrete time and

a Heaviside firing rate, that is a McCulloch-Pitts model [MP48]. They found that positive

assortativity created new fixed points of the model dynamics. Schmeltzer et al. [SKSR15]

also considered networks with equal in- and out-degrees and investigated degree assorta-

tivity. These authors considered leaky integrate-and-fire neurons and derived approximate

self-consistency equations governing the steady state neuron firing rates. They found, among

other things, that positive assortativity increased the firing rates of high-degree neurons and

decreased that of low-degree ones. Positive assortativity also seemed to make the network

more capable of sustained activity when the external input to the network was low. De Fran-

sciscis et al. [DFJT11] considered assortative mixing of a field of binary neurons, or Hopfield

networks. They concluded that assortativity of such simple model neurons exhibited asso-

ciative memory (similar to bit fields of a magnetic storage medium), and robustly so in the

presence of noise that negatively assortative networks failed to withstand. Avalos-Gaytan et

al. [AGAP�12] considered the effects of dynamic weightings between Kuramoto oscillators

— effectively a dynamically evolving network — on assortativity. They observed that if
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3.2. A degree mean field featuring a derived assortativity function

the strength of connections between oscillators increased when they were synchronised, a

strong positive assortativity evolved in the network, suggesting a potential mechanism for

the creation of assortative networks, as observed in cultured neurons mentioned above, and

as we study here.

To briefly summarise our results, we find that only two out of the four types of de-

gree assortativity have any influence on the network’s dynamics: those when the in-degree

of a presynaptic neuron is correlated with either the in- or out-degree of a postsynaptic

neuron. Of these two, (in,in)-assortativity has a greater effect than (in,out)-assortativity.

For both cases, negative assortativity widens the parameter range for which the network is

bistable (for excitatory coupling) or undergoes oscillations in mean firing rate (for inhibitory

coupling), and positive assortativity has the opposite effect.

Our work is similar in some respects to that of Restrepo and Ott [RO14] who considered

degree assortativity in a network of Kuramoto-type phase oscillators. They found that

for positive assortativity, as the strength of connections between oscillators was increased

the network could undergo bifurcations leading to oscillations in the order parameter, in

contrast to the usual scenario that occurs for no assortativity. However, their network was

undirected, and thus there is only one type of degree assortativity possible.

The outline of this chapter is as follows. In Sec. 3.2 we present the model and then derive

several approximate descriptions of its dynamics. In Sec. 3.3 we describe the method for

creating networks with prescribed types of degree assortativity, and in Sec. 3.4 we discuss

aspects of the numerical implementation of the reduced model. Results are given in Sec. 3.5

and we conclude with a discussion in Sec. 3.6.

3.2 A degree mean field featuring a derived assortativ-

ity function

We consider a network of N theta neurons:

dθj
dt

� 1� cos θj � p1� cos θjqpηj � Ijq (3.2.1)

for j � 1, 2, . . . N where

Ij � K

xky
Ņ

n�1

AjnPqpθnq (3.2.2)

ηj is a constant current entering the jth neuron, randomly chosen from a distribution gpηq,
K is strength of coupling, xky is mean degree of the network, and the connectivity of the

network is given by the adjacency matrix A, where Ajn � 1 if neuron n connects to neuron j,

and zero otherwise. The connections within the network are either all excitatory (if K ¡ 0)

or inhibitory (if K   0). Thus we do not consider the more realistic and general case of
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a connected population of both excitatory and inhibitory neurons, although it would be

possible using the framework below.

The theta neuron is the normal form of a Type I neuron which undergoes a saddle-

node on an invariant circle bifurcation (SNIC) as the input current is increased through

zero [Erm96, EK86]. A neuron is said to fire when θ increases through π, and the function

Pqpθq � aqp1� cos θqq; q P t2, 3, . . . u (3.2.3)

in (3.2.2) is meant to mimic the current pulse injected from neuron n to any postsynaptic

neurons when neuron n fires. aq is a normalisation constant such that
³2π

0
Pqpθqdθ � 2π

independent of q.

3.2.1 An infinite ensemble

As a first step we consider an infinite ensemble of networks with the same connectivity, that

is the same Ajn, but in each member of the ensemble, the value of ηj associated with the jth

neuron is randomly chosen from the distribution gpηq [BAO11]. Thus we expect a randomly

chosen member of the ensemble to have values of η in the ranges

η1 P rη11, η11 � dη11s
η2 P rη12, η12 � dη12s

... (3.2.4)

ηN P rη1N , η1N � dη1N s

with probability gpη11qgpη12q . . . gpη1N qdη11dη12 . . . dη1N . The state of this member of the ensem-

ble is described by the probability density

fpθ1, θ2, . . . , θN ; η1, η2, . . . ηN ; tq (3.2.5)

which satisfies the continuity equation

Bf
Bt � �

Ņ

j�1

B
Bθj tr1� cos θj � p1� cos θjq pηj � Ijqs fqu (3.2.6)

If we define the marginal distribution for the jth neuron as

fjpθj , ηj , tq �
»
fpθ1, θ2, . . . θN ; η1, η2, . . . ηN ; tq

¹
k�j

dθkdηk (3.2.7)
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we can write

Ijptq � K

xky
Ņ

n�1

Ajn

» 8

�8

» 2π

0

Pqpθnqfnpθn, ηn, tqdθndηn (3.2.8)

where we have now evaluated Ij as an average over the ensemble rather than from a single

realisation (as in (3.2.2)). This is reasonable in the limit of large networks [BAO11].

Multiplying (3.2.6) by
±
k�j dθkdηk and integrating we obtain

Bfj
Bt � � B

Bθj tr1� cos θj � p1� cos θjq pηj � Ijqs fju (3.2.9)

A network of theta neurons is known to be amenable to the use of the Ott/Antonsen

ansatz [OA08, LBS13, Lai14a] so we write

fjpθj , ηj , tq � gpηjq
2π

�
1�

8̧

k�1

tαjpηj , tqukeikθj �
8̧

k�1

tᾱjpηj , tquke�ikθj
�

(3.2.10)

Appendix B contains the following derivation in more detail. The dependence on θj is

written as a Fourier series where the kth coefficient is the kth power of a function αj .

Substituting this into (3.2.9) and (3.2.8) we find that αj satisfies

Bαj
Bt � �i

�
ηj � Ij � 1

2
� p1� ηj � Ijqαj �

�
ηj � Ij � 1

2



α2
j

�
(3.2.11)

and

Ijptq � K

xky
Ņ

n�1

Ajn

» 8

�8

Hpαnpηn, tq; qqdηn (3.2.12)

where

Hpα; qq � aq

�
C0 �

q̧

n�1

Cnpαn � ᾱnq
�

(3.2.13)

where an overbar indicates complex conjugate, and

Cn �
q̧

k�0

ķ

m�0

δk�2m,nq!p�1qk
2kpq � kq!m!pk �mq! (3.2.14)

Assuming that g is a Lorentzian:

gpηq � ∆{π
pη � η0q2 �∆2

(3.2.15)

we can use contour integration to evaluate the integral in (3.2.12), and evaluating (3.2.11)
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at the appropriate pole of g we obtain

dzj
dt

� �ipzj � 1q2
2

� pzj � 1q2
2

r�∆� iη0 � iJjs (3.2.16)

where

Jj � K

xky
Ņ

n�1

AjnHpzn; qq (3.2.17)

and zj � xeiθj y, where the expected value is taken over the ensemble.

Now (3.2.16) is a set of N coupled complex ODEs, so we have not simplified the original

network (3.2.1) in the sense of decreasing the number of equations to solve. However, the

states of interest are often fixed points of (3.2.16) (but not of (3.2.1)), and can thus be

found and followed as parameters are varied. At this point the network we consider, with

connectivity given by A, is arbitrary. If A was a circulant matrix, for example, this would

represent a network of neurons on a circle, where the strength of coupling between neurons

depends only on the distance between them [Lai14a].

3.2.2 Lumping by degree

The next step is to assume that for a large enough network, the dynamics of neurons with

the same degrees will behave similarly [CHC�17]. Such an assumption has been made a

number of times in the past [KSR17, Ich04, RO14]. We thus associate with each neuron the

degree vector k � pkin, koutq and assume that the values of z for all neurons with a given

k are similar. There are Nk � NkinNkout distinct degrees where Nkin and Nkout are the

number of distinct in- and out-degrees, respectively. We define bs to be the order parameter

for neurons with degree ks, where s P r1, Nks, and now derive equations for the evolution of

the bs.

Let z be the vector of ensemble states zj , where j P r1, N s and the degree index of neuron

j be dpjq, such that kdpjq is its degree. We assume that for all neurons with the same degree

kdpjq � ks the ensemble state zj is similar in sufficiently large networks and thus we only

care about the mean value 〈zj〉dpjq�s � bs with s P r1, Nks. We say that degree ks occurs

hs times and thus write

b � Cz, (3.2.18)

where the Nk�N matrix C has hs entries in row s, each of value 1{hs, at positions j where

dpjq � s and zeros elsewhere, that is Csj � δs,dpjq{hs with δ being the Kronecker delta.

To find the time derivative of b we need to express z in terms of b, which we do with an
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N �Nk matrix B which assigns to zj the corresponding bs value, such that

z � Bb, (3.2.19)

with components Bjs � δdpjq,s. Note that CB � INk
, the Nk �Nk identity matrix. Differ-

entiating (3.2.18) with respect to time, inserting (3.2.16) into this and writing z in terms of

b using (3.2.19) we obtain

9bs �
Ņ

j�1

Csj

����i
�°Nk

t�1Bjtbt � 1
	2

2
� i

�°Nk

t�1Bjtbt � 1
	2

2
pη0 � i∆q

���loooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooon
local

�
Ņ

j�1

Csj

���i
�°Nk

t�1Bjtbt � 1
	2

2
Jj

���looooooooooooooooooooomooooooooooooooooooooon
non-local

. (3.2.20)

Considering that for all t there is only a single non-zero entry Bjt, equal to 1, the identity���Nķ

t�1

Bjtloomoon
�δdpjq,t

bt

��
n

� bndpjq (3.2.21)

holds for any power n. Further we find that

Ņ

j�1

Csjloomoon
�1{hs�δs,dpjq

bdpjq � bs. (3.2.22)

Thus, the local term in (3.2.20) is

9bs
local � �i pbs � 1q2

2
� i

pbs � 1q2
2

pη0 � i∆q . (3.2.23)

For the non-local term we write

9bs
non-local �

Ņ

j�1

1

hs
δs,dpjqi

�
bdpjq � 1

�2

2
Jj (3.2.24)

� i
pbs � 1q2

2

Ņ

j�1

1

hs
δs,dpjqJjloooooooomoooooooon

�
°N

j�1 CsjJj�J̃s

,
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where J̃s describes the synaptic current of the ensemble equations averaged over nodes

sharing the same degree ks. The identity (3.2.21) also applies to (3.2.17), so that

Hpzn; qq � H

�
Nķ

t�1

Bntbt; q

�
�

Nķ

t�1

BntHpbt; qq (3.2.25)

and the current can be written as

J̃s �
Ņ

j�1

Csj
K

〈k〉

Ņ

n�1

Ajn

Nķ

t�1

BntHpbt; qq

� K

〈k〉

Nķ

t�1

Ņ

j�1

Ņ

n�1

CsjAjnBntloooooooooomoooooooooon
Est

Hpbt; qq (3.2.26)

The effective connectivity between neurons with different degrees is therefore expressed in

the matrix E � CAB and we end up with equations governing the bs:

dbs
dt

� �ipbs � 1q2
2

� pbs � 1q2
2

�
�∆� iη0 � iJ̃s

�
(3.2.27)

where

J̃s � K

〈k〉

Nķ

t�1

EstHpbt; qq (3.2.28)

These equations are of the same form as (3.2.16)-(3.2.17) except that A has been replaced

by E. Note that the connectivity matrix A is completely general; we have only assumed that

neurons with the same degrees behave in the same way. We are not aware of a derivation

of this form being previously presented.

3.3 Network assembly

We are interested in the effects of degree assortativity on the dynamics of the network of

neurons. We will choose a default network with no assortativity and then introduce one of

the four types of assortativity and investigate the changes in the network’s dynamics. Our

default network is of size N � 5000 neurons where in- and out-degrees k for each neuron

are independently drawn from the interval r750, 2000s with probability P pkq � k�3 (i.e. a

power law, as found in [ECC�05] and used in [CHC�17]). We create networks using the

configuration model [New03], then modify them using algorithms which introduce assorta-

tivity and then remove multiple connections between nodes (or multi-edges) (described in

Appendix C). We choose as our default parameters η0 � �2,∆ � 0.1,K � 3, for which

a default network approaches a stable fixed point. The sharpness of the synaptic pulse
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Figure 3.1: Orange circles: steady state of (3.2.16)-(3.2.17) for 20 different default networks.
Blue circles: results from 50 different realisations of the ηi for (3.2.1)-(3.2.2), for each
network. Parameters: η0 � �2,∆ � 0.1,K � 3. The orange line marks the ensemble mean
value.

function is set to q � 2 for all simulations.

We first check the validity of averaging over an infinite ensemble. We assemble 20

different default networks and for each, run (3.2.16)-(3.2.17) to a steady state and calculate

the order parameter z, the mean of Bb. The real part of z is plotted in orange in Fig. 3.1.

For each of these networks we then generated 50 realisations of the ηi’s and ran (3.2.1)-

(3.2.2) for long enough that transients had decayed, and then measured the corresponding

order parameter for the network of individual neurons

R � 1

N

Ņ

j�1

eiθj (3.3.1)

and plotted its real part in blue in Fig. 3.1. Note that the orange circles always lie well within

the range of values shown in blue. The fact that deviations within the 50 realisations are

small relative to the value obtained by averaging over an infinite ensemble provide evidence

for the validity of this approach, at least for these parameter values.

We also investigate the influence of multi-connections (i.e. more than one connection)

between neurons on the network dynamics. The configuration model creates a network in

which the neuron degrees are exactly those specified by the choice from the appropriate
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Figure 3.2: 20 different default adjacency matrices (indicated by different colours) are cre-
ated, and then multi-edges are systematically removed. Top: real part of the order parameter
at steady state. Bottom: difference of real part of z from that obtained before multi-edges
are removed. There is no significant change nor trend observable while removing multi-edges.
Parameters: η0 � �2,∆ � 0.1,K � 3.

distribution, but typically results in both self-connections and multiple connections between

neurons. We have an algorithm (Appendix C) for systematically removing such connections

while preserving the degrees, and found that removing such edges has no significant effect.

We show the effect of removing such edges in Fig. 3.2. We create 20 default adjacency

matrices and run (3.2.16)-(3.2.17) to a steady state, keeping 100% of all multi-edges. We

then remove some fraction of initial multi-edges and repeat the process, continuing until no

multi-edges remain. The real part of the order parameter for all cases is shown in Fig. 3.2,

and we see that (for these parameters) variations between the default matrices are greater

than those caused by removing all multi-edges. However, in our simulations we use simple

graphs without multi-edges.

A novel technique to introduce multi-edges has been developed by the authors of [MBL20],

which allows further investigation in this field.
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3.3. Network assembly

3.3.1 Assortativity

For a given matrix A we can measure its assortativity by calculating the four Pearson

correlation coefficients rpα, βq with α, β P rin, outs which read

rpα, βq �
°Ne

e�1pskαe � 〈skα〉qprkβe �
〈
rkβ

〉qb°Ne

e�1pskαe � 〈skα〉q2
b°Ne

e�1prkβe � 〈rkβ〉q2
(3.3.2)

where

〈skα〉 � 1

Ne

Nȩ

e�1

skαe and
〈
rkβ

〉 � 1

Ne

Nȩ

e�1

rkβe , (3.3.3)

Ne being the number of connections and the leading superscript s or r refers to the sending

or receiving neuron of the respective edge. For example the sending node’s in-degree of the

second edge would be skin2 . Note that there are four mean values to compute.

We introduce assortativity by randomly choosing two edges and swapping postsynaptic

neurons when doing so would increase the target assortativity coefficient [SKSR15]. An edge

pi, jq is directed from neuron j to neuron i. In order to know whether the pair pi, jq and

ph, lq should be rewired or left untouched, we compare their contribution to the covariance

in the numerator of (3.3.2):

c‖ � cppi, jq, ph, lqq
� �

kαj � 〈skα〉
� �
kβi �

〈
rkβ

〉	� pkαl � 〈skα〉q
�
kβh �

〈
rkβ

〉	
; (3.3.4)

cz{ � cppi, lq, ph, jqq
� pkαl � 〈skα〉q

�
kβi �

〈
rkβ

〉	� �
kαj � 〈skα〉

� �
kβh �

〈
rkβ

〉	
. (3.3.5)

If cz{ ¡ c‖ we replace the edges pi, jq and ph, lq by pi, lq and ph, jq, respectively, otherwise

we do not, and continue by randomly choosing another pair of edges. Algorithm 3 (see

Appendix C) demonstrates a scheme for reaching a certain target assortativity coefficient.

We investigate the effects of different types of assortativity (see Fig 1.3) in isolation.

We thus need a family of networks parametrised by the relevant assortativity coefficient.

Algorithm 3 is used to create a network with a specific value of one of the assortativity

coefficients, but especially for high values of assortativity it may be that in doing so a small

amount of assortativity of a type other than the intended one is introduced. Accordingly, it

may be necessary to examine all types of assortativity and apply the mixing scheme to reduce

other types back to zero, and then (if necessary) push the relevant value of assortativity back

to its target value. We do multiple iterations of these mixing rounds until all assortativities

are at their target values (which may be 0) within a range of �0.005. We use Algorithm 3
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Chapter 3. Degree assortativity

with a range of target assortativities r, and for each value, store the connectivity matrix A

and thus form the parametrised family Eprq. We do this for the four types of assortativity.

We have chosen to use the configuration model (Appendix A.1) to create networks with

given degree sequences and then introduced assortativity by swapping edges. By contrast,

another common adjacency network assembly technique, that of Chung and Lu [CL02] to-

gether with an analytical expression for assortativity (as in [CHC�17]), proved inadequate.

We found that the latter approach significantly alters the degree distribution for large as-

sortativity, whereas the configuration model combined with our mixing algorithm does not

change degrees at all. More details on this topic can be found in the Appendix A.2. For

our default network this approach allows us to introduce assortativity of any one kind up

to r � �0.5.

3.4 Implementation

For networks of the size we investigate it is impractical to consider each distinct in- and

out-degree (because E will be very large and sparse). Due to the smoothness of the degree

dependency of bpkq we coarse-grain in degree space by introducing “degree clusters” —

lumping all nodes with a range of degrees into a group with dynamics described by a single

variable. Let there be Ncin clusters in in-degree and Ncout clusters in out-degree, with a total

of Nc � Ncin �Ncout degree clusters. The matrix C then is an Nc�N matrix and constructed

as previously, except that dpjq is not the degree index of neuron j, but the cluster index and

s is the cluster index running from 1 to Nc. Similarly for the matrix B. There are multiple

options for how to combine degrees into a cluster. We can split the degree space evenly

and assign a cluster index to each interval. However, with this approach, depending on the

degree distribution, some of the clusters may be empty or hardly filled, resulting in poor

statistics. To overcome this issue, the cumulative sum of in- and out-degree distribution

can be used to map degrees to cluster indices. Thus, clusters are more evenly filled and at

the same time regions of degree space with high degree probability are more finely sampled.

The dynamical equations (3.2.27)-(3.2.28) are equally valid for describing degree cluster

dynamics with s, t P r1, Ncs and E � CAB, where C and B are cluster versions of their

previous definitions.

To check the effect of varying the number of clusters we generate 20 default matrices

and then generate the corresponding matrix E with varying numbers of clusters (Ncin and

Ncout are equal), then run (3.2.27)-(3.2.28) to a steady state and plot the real part of z

in Fig. 3.3. We see that the order parameter is well approximated using as little as about

Ncin � Ncout � 10 degree clusters. Beyond that, fluctuations between different network

realisations exceed the error introduced by clustering. In our simulations we stick to the

choice of 10 degree clusters per in- and out-degree space.
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Figure 3.3: Real part of z at steady state for 20 different default adjacency matrices (indi-
cated by different colours), as the number of clusters in degree space is varied. Parameters:
η0 � �2,∆ � 0.1,K � 3.

Having performed this clustering, we find that it is possible to represent E using a low-

rank approximation, calculated using singular value decomposition (Sec. 4.1). Thus for a

fixed r we have

E � USV T (3.4.1)

where S is a diagonal matrix with decreasing entries, called singular values, and U and V

are unitary matrices. In Fig. 3.4 we plot the largest 6 singular values of E as a function of

the assortativity coefficient, for the 4 types of assortativity. Even for large |r| the singular

values decay very quickly, thus a low-rank approximation is possible. We choose a rank-3

approximation, so approximate E by

Eprq �
�
u1prq u2prq u3prq

����s1prq 0 0

0 s2prq 0

0 0 s3prq

���

�����������

vT1 prq

vT2 prq

vT3 prq

�����������
(3.4.2)

where ui is the ith column of U , similarly for vi and V , and si is the ith singular value. We
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Figure 3.4: Six largest singular values of the SVD decomposition of E as a function of
assortativity coefficient, for 4 types of assortativity.

have such a decomposition at discrete values of r and use cubic interpolation to evaluate Eprq
for any r. This decomposition means that the multiplication in (3.2.28) can be evaluated

quickly using 3 columns of U and V rather than the full Nc �Nc matrix E.

We note that the components for the approximation of Eprq are calculated once and

then stored, making it very easy to systematically investigate the effects of varying any of

the parameters η0,∆,K and q (governing the sharpness of the pulse function (3.2.3)).

3.5 Results

3.5.1 Excitatory coupling

We take K � 3 to model a network with only excitatory connections. To study the dy-

namical effect of assortativity we generate positive and negative (r � �0.2) assortative

networks of the four possible kinds and follow fixed points of (3.2.27)-(3.2.28) as a func-

tion of η0, and compare results with a neutral (r � 0) network. We use pseudo-arc-length

continuation [Lai14b, Gov00].

To calculate the mean frequency over the network we evaluate z � Bb and then use the

result that if the order parameter at a node is z, then the frequency of neurons at that node

is [Lai15, MPR15]
1

π
Re

�
1� z̄

1� z̄



(3.5.1)
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Averaging these gives the mean frequency.

Results are shown in Figure 3.5, where we see quite similar behaviour in each case:

apart from a bistable region containing two stable and one unstable fixed points, there

is only a single stable fixed point present. Further, the two assortativity types (out,in)

and (out,out) apparently do not affect the dynamics, whereas the saddle-node bifurcations

marking the edges of the bistable region move slightly for (in,out) and significantly for

(in,in) assortativity. Following the saddle-node bifurcations for the latter two cases we

find the results shown in Figure 3.6. We have performed similar calculations for different

networks with the same values of assortativity and found similar results.

3.5.2 Inhibitory coupling

We choose K � �3 to model a network with only inhibitory coupling. Again, we numerically

continue fixed points for zero, positive and negative assortativity (r � 0,�0.2) as η0 is varied

and obtain the curves shown in Figure 3.7. Consider the lower left plot. For large η0 the

system has a single stable fixed point which undergoes a supercritical Hopf bifurcation

as η0 is decreased, creating a stable periodic orbit. This periodic orbit is destroyed in a

saddle-node bifurcation on an invariant circle (SNIC) bifurcation at lower η0, forcing the

oscillations to stop. Decreasing η0 further, two unstable fixed points are destroyed in a

saddle-node bifurcation. In contrast with the case of excitatory coupling, oscillations in

the average firing rate are seen. These can be thought of as partial synchrony, since some

fraction of neurons in the network have the same period and fire at similar times to cause

this behaviour. The period of this macroscopic oscillation tends to infinity as the SNIC

bifurcation is approached, as shown in the inset of the lower left panel in Fig. 3.7.

As in the excitatory case, we see that assortativities of type (out,in) and (out,out) have

no influence on the dynamics in this scenario. However, type (in,out) does have a small

effect, slightly moving bifurcation points (top right panel in Fig. 3.7). Type (in,in) has the

strongest effect, resulting in a qualitative change in the bifurcation scenario for large enough

assortativity: there is a region of bistability between either two fixed points or a fixed point

and a periodic orbit. This is best understood by following the bifurcations in the top panels

of Fig. 3.7 as r is varied, as shown in Figure 3.8. There is one fixed point in regions A, B

and D, and three in region C. For (in,out) assortativity there is a stable periodic orbit in

region B and never any bistability.

We now describe the case for (in,in) assortativity. For negative and zero r the scenario

is the same as for the other three types, but as r is increased there is a Takens-Bogdanov

bifurcation where regions C,D,E and F meet, leading to the creation of a curve of homo-

clinic bifurcations, which is destroyed at another codimension-two point where there is a

homoclinic connection to a non-hyperbolic fixed point [CL90]. There are stable oscillations

in region E, created or destroyed in supercritical Hopf or homoclinic bifurcations. In region
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Figure 3.5: Average firing rate at fixed points of (3.2.27)-(3.2.28) as a function of η0, for
the 4 types of assortativity. For each type of assortativity curves are plotted for r � 0
(black), r � �0.2 (blue) and r � 0.2 (green). Solid lines indicate stable and dashed lines
unstable fixed points. Triangular data points are computed using the full theta neuron
model. Parameters: K � 3,∆ � 0.1.
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Figure 3.6: Continuation of the saddle-node bifurcations seen in the upper two panels of
Fig. 3.5 as r is varied. Curves in Figure 3.5 correspond to vertical slices at r � 0,�0.2. The
network is bistable in region B and has a single stable fixed point in regions A and C.

F there is bistability between two fixed points.

3.6 Discussion

We investigated the effects of degree assortativity on the dynamics of a network of theta

neurons. We used the Ott/Antonsen ansatz to derive evolution equations for an order pa-

rameter associated with each neuron, and then coarse-grained by degree and then degree

cluster, obtaining a relatively small number of coupled ODEs, whose dynamics as parameters

varied could be investigated using numerical continuation. We found that degree assorta-

tivity involving the out-degree of the sending neuron, that is (out,in) and (out,out), has no

effect on the networks’ dynamics. Further, (in,out) assortativity moves bifurcations slightly,

but does not lead to substantial differences in dynamical behaviour. The most significant

effects were caused by creating correlation between in-degrees of the sending and receiving

neurons. For our excitatorially coupled example, positive (in,in) assortativity narrows the

bistable region, whereas negative assortativity widens it (see Fig. 3.6). In the inhibitory

case introducing negative assortativity increased the amplitude of network oscillations and

extended their range to slightly larger η0. On the contrary, positive (in,in) assortativity in

this network has an opposite effect and eventually stops oscillations (see Fig. 3.8).

The most similar work to ours is that of [CHC�17]. These authors also considered a

network of the form (3.2.1)-(3.2.2) and by assuming that the dynamics depend on only a

55



Chapter 3. Degree assortativity

0 1 2 3 4 5 6
0

0.0

0.2

0.4

0.6

0.8

f

r(in,in)

0.5 1.0 1.5

0.02

0.04

0.06

0.08

0 1 2 3 4 5 6
0

0.0

0.2

0.4

0.6

0.8

f

r(in,out)

0 1 2 3 4 5 6
0

0.0

0.2

0.4

0.6

0.8

f

r(out,in)

2 3 4
0

5

10

15

20

T

period

0 1 2 3 4 5 6
0

0.0

0.2

0.4

0.6

0.8

f

r(out,out)
r =-0.2
r =0
r =0.2

Inhibitory coupling ( < 0)

Figure 3.7: Average firing rate at fixed points of (3.2.27)-(3.2.28) as a function of η0, for
the 4 types of assortativity. For each type of assortativity curves are plotted for r � 0
(black), r � �0.2 (blue) and r � 0.2 (green). In addition there are oscillations in certain
regions and dash-dotted lines outline the minimal and maximal firing rate over one period
of oscillation. The (in,in)-plot in the top left corner contains a zoom of rest of the panel,
and the (out,in)-plot contains a subplot with the oscillation’s period for r � 0 and which is
aligned with the outer η0 axis.
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Figure 3.8: Continuation of bifurcations seen in upper panels of Fig. 3.7. Solid black lines
indicate saddle-node bifurcations, dashed blue is a Hopf bifurcation and dashed red a ho-
moclinic bifurcation. Curves in Figure 3.7 can be understood as vertical slices through the
respective plot at r � 0,�0.2. See text for explanation of labels.

neuron’s degree and that the ηj are chosen from a Lorentzian, and using the Ott/Antonsen

ansatz, they derived equations similar to (3.2.27)-(3.2.28). The difference in formulations is

that rather than a sum over entries of E (in (3.2.28)), [CHC�17] wrote the sum as¸
k1

P pk1qapk1 Ñ kq (3.6.1)

where P pkq is the degree distribution and apk1 Ñ kq is the assortativity function, which

specifies the probability of a link from a node with degree k1 to one with degree k (given

that such neurons exist). They then chose a particular functional form for a and briefly

presented the results of varying one type of assortativity (between k1in and kout). In contrast,

our approach is far more general (since any connectivity matrix A can be reduced to the

corresponding E, the only assumption being that the dynamics are determined by a neuron’s

degree). We also show the results of a wider investigation into the effects of assortativity.

This alternative presentation also explains why E can be well approximated with a

low-rank approximation. If the in- and out-degrees of a single neuron are independent,

P pk1q � Pipk1inqPopk1outq, and with neutral assortativity, apk1 Ñ kq � k1outkin{pNxkyq. Thus

¸
k1

P pk1qapk1 Ñ kqHpbpk1q; qq � kin
Nxky

¸
k1out

¸
k1in

k1outPipk1inqPopk1outqHpbpk1out, k1inq; qq (3.6.2)
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This term contributes to the input current to a neuron with degree k � pkin, koutq, but is

independent of kout. Thus the state of a neuron depends only on its in-degree, so

¸
k1

P pk1qapk1 Ñ kqHpbpk1q; qq � kin
N

¸
k1in

Pipk1inqHpbpk1inq; qq (3.6.3)

Comparing with (3.2.28) we see that E � cTd where c � pk1
in, k

2
in . . . k

Nkin

in q{N and d �
pPipk1

inq, Pipk2
inq . . . , PipkNkin

in qq, that is E is a rank-one matrix. Varying assortativity within

the network is then a perturbation away from this, with the effects appearing in the second

(and third) singular values in the SVD decomposition of E.

A limitation of our study is that we considered only networks of fixed size with the same

distributions of in- and out-degrees, and a specific distribution of these degrees. However,

our approach does not rely on this and could easily be adapted to consider other types of

networks, although we expect it to become less valid as both the average degree and number

of neurons in the network decrease. We have also only considered theta neurons, but since

a theta neuron is the normal form of a type I neuron, we expect similar networks of other

type I neurons to behave similarly to the networks considered here. The approach presented

here could also be used to efficiently investigate the effects of correlated heterogeneity, where

either the mean or width of the distribution of the ηj is correlated with a neuron’s in- or

out-degree [SSTR13, SSSG13, CGDM13]. We could also consider assortativity based on

a neuron’s intrinsic drive (ηj) [SRO15] rather than its degrees, or correlations between an

individual neuron’s in- and out-degree [VHT13, LS10, MHT17, VR19, NFS�17].
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Numerical methods

4.1 Singular value decomposition

Studying large or detailed systems often involves big matrices. Performing algebraic oper-

ations with them can become computationally costly and thus time consuming. Especially

in cases where matrix entries show an inherent relation to one another, it can be feasible

to approximate such a matrix. The singular value decomposition (SVD)[GR71] refers to a

factorization of a matrix E P RN � RN into three factors

E � USV T . (4.1.1)

The matrices U and V are orthonormal. They consist of sets of N orthonormal basis

functions ui and vi with ui � uj � vi � vj � δij . With S we denote a diagonal matrix

with decreasing entries, called singular values. There are several ways of computing such a

decomposition [Wat91]. Having this particular shape, the matrix E can be expressed as

E �
Ņ

i�1

sipui � viq. (4.1.2)

As ui and vi are normalised, the relevance of the ith term can be estimated by the size

of si. If the singular values decrease quickly enough, one can approximate the sum in

Equation 4.1.2 by neglecting all terms but the M first, which are the M most relevant

terms:

E �
M̧

i�1

sipui � viq. (4.1.3)
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The approximated matrix will show key features of the original one as depicted in Figure 4.1.

M=2 M=10

M=30
original 

 (400*400 pixel)

Figure 4.1: Demonstration of approximating a matrix using SVD. The original matrix
storing grey values of a 400x400 pixel image is illustrated in the bottom right corner. Using
as little as M � 2 basis functions only very basic features are captured in the approximation.
One can observe how details increase with larger values of M .

Matrix-vector multiplication One advantage of having E in the form of Equation 4.1.3

is the computational efficiency when multiplying E with a vector p P RN . In general, E � p
will require N2 multiplications and the same number of additions. Utilising an approximated

E we write

E � p �
M̧

i�1

sipui � viq � p (4.1.4)

�
M̧

i�1

siui pvi � pqloomoon
PR

, (4.1.5)

where vi � p gets computed first and the result is then multiplied with si and subsequently

with each component of ui. This procedure requires only MpN � 2q multiplications and
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MN additions. In section 3, we use N � 100 and M � 3, and therefore the approximated

multiplication requires almost two orders of magnitude fewer operations.

4.2 Pseudo arc-length continuation

Suppose we study a dynamical system db
dt � F pb, xq, where b is a multi-dimensional vector of

variables and x a parameter of the system. Often, steady state solutions (fixed points) and

their dependence on system parameters are of interest. If we are unable to solve F pb, xq � 0

analytically, numerical time integration can help to find stable solutions. In case of a more

complex structured phase space and depending on initial conditions, we may even find

several of those solutions for a given set of parameters. However, in general it will not be

possible to compute unstable solutions. For a range of parameters x the equation F pb, xq � 0

describes a curve of solutions. It is a tedious procedure to run a time integration for each

value of x, since the system has to reach equilibrium which may take a lot of time. A

clever simplification of this lengthy brute-force procedure is the scheme presented below. It

is based on finding a solution close to a known one by stepping along the tangent of the

solution curve and employing Newton’s method to quickly converge towards a steady state

solution. This method is called Pseudo arc-length continuation. In addition to its efficiency

it allows to find unstable solutions as well. In this section we will have a look at it in detail

following [Lai14b] and discuss how it can be used to track bifurcation points when varying

a second parameter. The latter will be similar to [SBRP�02], with the difference of using

pseudo arc-length instead of zero-order continuation.

4.2.1 Single parameter

Consider a system described by a set of variables b P RN . Its dynamics depend on a

parameter x and read
db

dt
� F pb, xq (4.2.1)

such that for all steady state solutions

F pb, xq � 0 (4.2.2)

Eventually, we are interested in a curve or series of points for which Equation 4.2.2 holds.

The scheme starts with a time integration where x � x0 leads us to a stable steady state

b0. The point pb0, x0q is the first on the curve of interest as depicted in Figure 4.2. Note

that the vertical axis represents the space of b which is RN where N can be larger than 1.

Next, we find the tangent vector p 9b0, 9x0q. With Fb and Fx being the partial derivatives

of F with respect to b and x respectively, and evaluated at pb0, x0q, we compute the null-

vector of the matrix pFb|Fxq using singular value decomposition, where we take the vector
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Figure 4.2: Schematic illustration of pseudo arc-length continuation. Starting from an initial
point pb0, x0q one follows p 9b0, 9x0q, the tangent of the curve F pb, xq, for a chosen length ∆s.

From that point pbp0q1 , x
p0q
1 q we use Newton’s method to find another stationary solution

pb1, x1q under the constraint that we only go along a line perpendicular to the tangent.

corresponding to the smallest singular value. Note, that this vector has to be normalised to

length 1. Subsequently, we make a step of size ∆s from pb0, x0q along the tangent p 9b0, 9x0q
to

b
p0q
1 � b0 � 9b0∆s (4.2.3)

x
p0q
1 � x0 � 9x0∆s (4.2.4)

This point is quite close to a steady state such that we can use it as starting point to employ

Newton’s method for a quicker convergence compared to time integration. To guarantee that

the scheme indeed converges to a point a bit further down the curve, an additional constraint

is applied: we require the solution of each Newton iteration pbpiq1 , x
piq
1 q to lie on a hyperplane

perpendicular to the tangent p 9b0, 9x0q with distance ∆s, thus

∆s �
�
pbpiq1 � b0q
pxpiq1 � x0q

�
�
�
9b0

9x0

�
or (4.2.5)

0 � pbpiq1 � b0qT 9b0 � pxpiq1 � x0qT 9x0 �∆s (4.2.6)

where T refers to transpose.
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4.2. Pseudo arc-length continuation

Newton’s Method for solving F pb1, x1q � 0 under the constraint (4.2.6) reads�
b
pi�1q
1

x
pi�1q
1

�
�

�
b
piq
1

x
piq
1

�
� J�1

piq

�
F pbpiq1 , x

piq
1 q

pbpiq1 � b0qT 9b0 � pxpiq1 � x0qT 9x0 �∆s

�
(4.2.7)

where

Jpiq �
�
Fb Fx
9b0 9x0

�
(4.2.8)

evaluated at pbpiq1 , x
piq
1 q. The index i runs from 0 to M � 1, the number of iterations for

which we assume the system has converged and we define pbpMq
1 , x

pMq
1 q :� pb1, x1q.

From here we repeat the procedure and gain pb2, x2q and so on. The stability of each

steady state can be concluded from the eigenvalues of Fb.

Differentiating the complex conjugate Having said that b P RN , we realise that the

state vector of an ensemble network or degree mean field is actually complex, since the

imaginary unit appears in its dynamical equation. Let β be such a state vector with β P CL

where L is the number of neurons in the case of ensemble equations, or the number of

distinct degrees, degree clusters or virtual degrees in a degree mean field system. In general,

complex dynamical equations pose no problem, but the mean field dynamics of a theta

neuron network include the complex conjugate of state variables, which is a non-analytical

function and thus not complex differentiable. A solution is provided by separating the set

of complex variables in twice as many real states b P R2L, where 2L � N . Let

bRe � Re pβq and bIm � Im pβq (4.2.9)

such that

b �
�
bRe

bIm

�
(4.2.10)

and

Bb
Bt �

��Re
�
Bβ
Bt

	
Im

�
Bβ
Bt

	� (4.2.11)

This workaround allows one to use the pseudo arc-length continuation scheme as described

above.

Null vector direction Gaining the tangent (or null vector) from Singular Value Decom-

position it may not point in the desirable direction, but the opposite. Computing the first

tangent p 9b0, 9x0q, we simply make sure that its last component 9x0 is positive (negative) if we
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would like to trace the continuation curve in positive (negative) x direction.

Throughout the scheme, we might face a null vector pointing just backwards, subsequently

leading to either going back along the curve or stepping back and forth at that point in

space. Consider step i on the curve. To avoid this behaviour we compute the scalar product

of the current null vector p 9bi, 9xiq and the previous one p 9bi�1, 9xi�1q. If the product is   0

we multiply p 9bi, 9xiq by �1:

p 9bi, 9xiq � p 9bi�1, 9xi�1q
$&%¥ 0 : use p 9bi, 9xiq
  0 : use � p 9bi, 9xiq

(4.2.12)

4.2.2 Saddle-node bifurcation

With an extended set of equations we can use pseudo arc-length continuation to track

saddle-node bifurcations as a function of a second parameter y. At a saddle-node there is a

single eigenvalue λ � 0 with associated eigenvector n. Thus we characterise this bifurcation

by

F � 0 (4.2.13)

Fbn � 0 (4.2.14)

n2 � 1 � 0 (4.2.15)

where F and Fb are evaluated at pb, x, yq. Equation 4.2.13 is the necessary condition for

a stationary solution. Equation 4.2.14 gives the null-vector n of the dynamical matrix Fb,

or in other words the eigenvector corresponding to a zero eigenvalue. To ensure we exclude

the trivial solution n � 0, n has to have an arbitrary non-zero length, for example 1 like in

Equation 4.2.15. It has been proven to be advantageous to include n in the set of variables

to be continued by the scheme, rather than to repeatedly compute it from Fb. Therefore

our variables are pb,n, x, yq P R2N�2.

Suppose we have found a saddle node bifurcation at pb0, x0, y0q. We compute the null-

vector of Fbpb0, x0, y0q to gain the full set of initial variables pb0,n0, x0, y0q. In principle, we

proceed exactly as above with the difference of an extended set of variables and equations.

The first derivatives of Equation 4.2.13-4.2.15 with respect to all independent variables and

parameters read��� Fb Fn Fx Fy
BFbn
Bb

BFbn
Bn

BFbn
Bx

BFbn
By

Bn2�1
Bb

Bn2�1
Bn

Bn2�1
Bx

Bn2�1
By

���

��� Fb 0 Fx Fy
BFbn
Bb Fb

BFbn
Bx

BFbn
By

0 2n 0 0

�� (4.2.16)

and by computing the null-vector of this matrix we gain the tangent p 9b0, 9n0, 9x0, 9y0q. The
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4.2. Pseudo arc-length continuation

initial values for Newton’s method are

b
p0q
1 � b0 � 9b0∆s (4.2.17)

n
p0q
1 � n0 � 9n0∆s (4.2.18)

x
p0q
1 � x0 � 9x0∆s (4.2.19)

y
p0q
1 � y0 � 9y0∆s (4.2.20)

Now, we solve simultaneously Equation 4.2.13-4.2.15 and the perpendicular hyperplane con-

straint

0 � pbpiq1 � b0qT 9b0 � pnpiq1 � n0qT 9n0 � pxpiq1 � x0qT 9x0 � pypiq1 � y0qT 9y0 �∆s (4.2.21)

� g
piq
1 (4.2.22)

by computing several iterations of

������
b
pi�1q
1

n
pi�1q
1

x
pi�1q
1

y
pi�1q
1

������

������
b
piq
1

n
piq
1

x
piq
1

y
piq
1

������ J�1
piq

�������
F

Fbn
piq
1�

n
piq
1

	2

� 1

g
piq
1

������, (4.2.23)

where

Jpiq �

������
Fb 0 Fx Fy

BFbn
piq
1

Bb Fb
BFbn

piq
1

Bx
BFbn

piq
1

By

0 2n
piq
1 0 0

9b0 9n0 9x0 9y0

����� (4.2.24)

with F, Fb, Fx, and Fy being evaluated at pbpiq1 , x
piq
1 , y

piq
1 q.

Once the scheme is converged to pb1,n1, x1, y1q we repeat the whole process to find

pb2,n2, x2, y2q and so on. Note that g
piq
1 is specific to step 1 and has to be updated for each

step.

4.2.3 Hopf bifurcation

At a Hopf bifurcation, a pair of complex conjugate eigenvalues crosses the imaginary axis

and has zero real part λ1{2 � �iω with associated eigenvector c�id. They can be sufficiently
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described by the following equations:

F � 0 (4.2.25)

Fbc� ωd � 0 (4.2.26)

Fbd� ωc � 0 (4.2.27)

φ � c� 1 � 0 (4.2.28)

φ � d � 0 (4.2.29)

with F and Fb being evaluated at pb, x, yq and where φ is a constant vector. The first

equation specifies an equilibrium point in general. The second and third equation state

that the eigenvalue has no real part, whereas the fourth and fifth equation lock phase and

amplitude of the eigenvector. In total the system consists of 3N � 2 equations and the

solution vector is pb, c,d, ω, x, yq P R3N�3. Note that for ω � 0, two of the above equations

become redundant and the system is equivalent to the previous ones where we followed a

saddle-node bifurcation.

Assume an initial point of bifurcation at pb0, x0, y0q. We compute the eigenvalues of

Fbpb0, x0, y0q and find ω0 and its corresponding eigenvector c0 � id0. The constant vector

φ is chosen to be c0, which means it does not change as we determine new points along

the curve. Analogous to Equation 4.2.16 we build a matrix of derivatives of the system

(4.2.25)-(4.2.29) ��������
Fb 0 0 0 Fx Fy
BFbc
Bb Fb ω d BFbc

Bx
BFbc
By

BFbd
Bb �ω Fb �c BFbd

Bx
BFbd
By

0 φ 0 0 0 0

0 0 φ 0 0 0

������� (4.2.30)

and calculate its normalised null-vector to get the tangent p 9b0, 9c0, 9d0, 9ω0, 9x0, 9y0q. Note that

the entry ω is actually ω � IN , with IN being the N �N identity matrix. A step of size ∆s

along this tangent leads us to

b
p0q
1 � b0 � 9b0∆s (4.2.31)

c
p0q
1 � c0 � 9c0∆s (4.2.32)

d
p0q
1 � d0 � 9d0∆s (4.2.33)

ω
p0q
1 � ω0 � 9ω0∆s (4.2.34)

x
p0q
1 � x0 � 9x0∆s (4.2.35)

y
p0q
1 � y0 � 9y0∆s (4.2.36)
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4.3. Gaussian quadrature

from where we apply several iterations of Newton’s method. We not only seek to solve equa-

tions (4.2.25)-(4.2.29), but also add a constraint to ensure the solution is on the hyperplane

perpendicular to the tangent as done in the previous sections 4.2.1 and 4.2.2, which reads

in this case

0 � pbpiq1 � b0qT 9b0 � pcpiq1 � c0qT 9c0 � pdpiq1 � d0qT 9d0 � pωpiq1 � ω0qT 9ω0

� pxpiq1 � x0qT 9x0 � pypiq1 � y0qT 9y0 �∆s

� g
piq
1

(4.2.37)

Newton’s method can then be formulated as�����������

b
pi�1q
1

c
pi�1q
1

d
pi�1q
1

ω
pi�1q
1

x
pi�1q
1

y
pi�1q
1

����������
�

�����������

b
piq
1

c
piq
1

d
piq
1

ω
piq
1

x
piq
1

y
piq
1

����������
� J�1

piq

�����������

F

Fbc
piq
1 � ωd

piq
1

Fbd
piq
1 � ωc

piq
1

φ � cpiq1 � 1

φ � dpiq1 � 1

g
piq
1

����������
(4.2.38)

where

Jpiq �

�����������

Fb 0 0 0 Fx Fy
BFbc

piq
1

Bb Fb ω d
piq
1

BFbc
piq
1

Bx
BFbc

piq
1

By
BFbd

piq
1

Bb �ω Fb �cpiq1
BFbd

piq
1

Bx
BFbd

piq
1

By

0 φ 0 0 0 0

0 0 φ 0 0 0
9b0 9c0

9d0 9ω0 9x0 9y0

����������
(4.2.39)

with F, Fb, Fx, and Fy being evaluated at pbpiq1 , x
piq
1 , y

piq
1 q.

Once converged to pb1, c1,d1, ω1, x1, y1q, one can progress with the next step, keeping in

mind that g
piq
1 needs to be altered every step and then updated at each iteration.

4.3 Gaussian quadrature

Well known as an approximation for integrals, n-point Gaussian quadrature can also be

utilised to approximate a large sum over N terms with a sum over many fewer, n, terms

Ņ

i�1

fpkiq �
ņ

j�1

wjfpk̃jq with N " n (4.3.1)
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where we evaluate the same function at a new set of arguments k̃j and weight those values

with the respective wj .

Consider the set orthogonal polynomials

〈qµpkq, qνpkq〉 � 0 if µ � ν (4.3.2)

with the scalar product

〈qµpkq, qνpkq〉 �
Ņ

i�1

qµpkiqqνpkiq (4.3.3)

It can be shown that if the n nodes k̃j are chosen to be the roots of qnpkq, then there exist

weights wj such that the approximation is exact for all polynomials up to degree 2n� 1.

There are several methods to determine such a set of polynomials. We make use of the

three-term recurrence relation as it provides an efficient way to compute the weights as well.

Three-Term Recurrence Relation Polynomials get iteratively constructed as follows

qµ�1pkq � pk � αµqqµpkq � βµqµ�1pkq (4.3.4)

where

αµ � 〈k � qµpkq, qµpkq〉
〈qµpkq, qµpkq〉 (4.3.5)

βµ � 〈qµpkq, qµpkq〉
〈qµ�1pkq, qµ�1pkq〉 (4.3.6)

beginning with

q�1pkq � 0 and q0pkq � 1 (4.3.7)

Among the several options to compute the nodes k̃j and weights wj from those n polynomials

the Golub-Welsch Algorithm is the most popular one.
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4.3. Gaussian quadrature

Golub-Welsch Algorithm The authors of [GW69] form the matrix

J �

��������������

α0

?
β1 0 0 . . . 0?

β1 α1

?
β2 0 . . . 0

0
?
β2 α2

?
β3 . . . 0

...
...

0 . . .
a
βn�3 αn�3

a
βn�2 0

0 . . . 0
a
βn�2 αn�2

a
βn�1

0 . . . 0 0
a
βn�1 αn�1

�������������
(4.3.8)

and consider the eigenvalues and normalised eigenvectors of J , that is Jφj � λjφj . The

eigenvalues λj turn out to be the roots of qnpkq and are consequently k̃j . The weights are

computed by

wj � pkN � k1q
�
φ
p1q
j

	2

(4.3.9)

where φ
p1q
j is the first component of the eigenvector.
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Chapter 5

Python3 module: ThetaNet

All results for this thesis have been computed using Python3 scripts. The core functionality

is available as an open source module called ThetaNet on github: https://github.com/

cblasche/ThetaNet.

The ThetaNet module comprises the following features:

� Create correlated (Gaussian copula) and uncorrelated degree sequences

� Create adjacency matrices, remove self- and multi-edges, manipulate degree assorta-

tivity

� Integrate networks of theta neurons

� Integrate degree mean field dynamics of theta neuron networks

� Numerically continue solutions with respect to coupling strength, intrinsic excitability,

and degree correlation/assortativity

It is licenced under the GNU General Public License v2.0.

Installation

If you do not have Python3 installed yet, get it from https://www.python.org/downloads/.

� Install the package setuptools from https://pypi.org/project/setuptools/ or if

you have the pip installed run:

pip3 install setuptools

� Download the repository from https://github.com/cblasche/thetanet or if you

have git installed run:
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Chapter 5. Python3 module: ThetaNet

git clone https :// github.com/cblasche/thetanet

� In the same folder as above run:

python3 setup.py install

Structure

� thetanet.dynamics contains differential equations and integrator setup for a network

of Theta neurons, the ensemble equations and the mean field equations.

� thetanet.generate holds functions to generate degree sequences, adjacency matri-

ces and assortativity functions. Additionally, there are functions to compute degree

correlations and assortativity coefficients.

� thetanet.continuation stores various continuation schemes.

� thetanet.utils has functions around the topics: correlated probability function, poly-

nomial chaos expansion, and singular value decomposition.

Parameter file

Due to the larger number of parameters in functions related to the dynamics, that is time

integration or continuation, we require a parameter file. For convenience, the file is chosen

to be a python file, for example the file found in the repository “example/parameters.py”.

If stored in the same folder as the main script it is imported and renamed by

import parameters as pm

We can now pass all parameters at once to a function and access single parameters using

the “dot”-operator.

def f(pm):

print("Number of neurons:", pm.N)

This example illustrates that variable names in the parameter file have to match the specific

ones used in the ThetaNet module. Those names can be found when inspecting the source

code or in the example parameter file. Often it is feasible to alter parameters within your

execution script, which can be done simply by:

pm.N = 1000

f(pm)

# >>> Number of neurons: 1000

pm.N = 2000

f(pm)

# >>> Number of neurons: 2000
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5.1. thetanet.generate

5.1 thetanet.generate

Sequences Suppose we would like to create degree squences for N neurons from a given

degree space and distribution with a certain degree correlation ρ. We write

# modules

import numpy as np

import thetanet as tn

# degree space

k_in = np.arange (200, 400)

k_out = np.copy(k_in)

# marginal power law degree distribution

P_k_in = k_in.astype(float)**( -3)

P_k_in /= P_k_in.sum()

P_k_out = np.copy(P_k_in)

# correlated degree distribution

rho = 0.4

P_k_func = tn.utils.bivar_pdf_rho(k_in , P_k_in , k_out , P_k_out)

P_k = P_k_func(rho)

# degree sequences

N = 1000

K_in , K_out = tn.generate.degree_sequence_copula(P_k , N, k_in , k_out)

Configuration model Having the sequences one can generate adjacency matrices em-

ploying the configuration model. Consider a simple network with no self- and multi-edges

and (in,out) assortativity. The convention is that an edge Aij is directed from neuron j

to neuron i. Degree assortativity of type (in,out) means correlation between the properties

in-degree of the sending neuron (j) and out-degree of the receiving neuron (i); hence the

ThetaNet naming j prop and i prop.

# for a simple network

A = tn.generate.configuration_model(K_in , K_out)

# for a network containing self - and multi -edges

A = tn.generate.configuration_model(K_in , K_out , simple=False)

# for a simple assortative network

r = 0.3

j_prop = ’in’

i_prop = ’out’

A = tn.generate.configuration_model(K_in , K_out , r, i_prop , j_prop)

Internal operations can also be called explicitly on an existing matrix A.
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tn.generate.remove_self_edges(A)

tn.generate.remove_multi_edges(A)

tn.generate.assortative_mixing(A, r, i_prop , j_prop)

# assortative mixing will create multi -edges , which can also be kept

tn.generate.assortative_mixing(A, r, i_prop , j_prop , eliminate_multi_edges=

False)

Chung-Lu model We can also employ the Chung-Lu model. To achieve a non-vanishing

assortativity, we either perturb the target connection probabilities with a parameter c or

create a neutral network and apply the mixing algorithm.

# perturb connectivity probability

c = 2

A = tn.generate.chung_lu_model(K_in , K_out , c, i_prop , j_prop)

# apply mixing algorithm

A = tn.generate.chung_lu_model(K_in , K_out)

tn.generate.assortative_mixing(A, r, i_prop , j_prop)

Measures There are functions implemented to compute the degree correlation ρ and the

assortativity coefficient r from matrices and sequences.

# degree correlation rho

rho = tn.generate.rho_from_sequences(K_in , K_out)

rho = tn.generate.rho_from_matrix(A)

# assortativity coefficient r

r = tn.generate.r_from_matrix(A, i_prop , j_prop)

Assortativity function ThetaNet supports three different approaches when computing

degree mean field equations where each requires a different assortativity function.

1. The assortativity function of the authors of [CHC�17] depends on the assortativity

parameter c and utilizes the full degree space.

a = tn.generate.a_func_linear(k_in , k_out , P_k , N, c, i_prop , j_prop)

# or without assortativity

a = tn.generate.a_func_linear(k_in , k_out , P_k , N)

2. In case of large degree spaces it may be useful to coarse-grain the degree space first and

simulate a network of virtual degrees of size Nµin
�Nµout

. This approach additionally

requires the degree probability of those virtual degrees as well as weights to accurately

approximate sums over the degree space.
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# virtual degrees and their weights

N_mu_in = 10

k_v_in , w_in , q_in = tn.utils.three_term_recursion(N_mu_in , k_in , P_k_in)

k_v_out , w_out = np.copy((k_v_in , w_in))

w = np.outer(w_in , w_out)

# virtual degree distribution

import scipy.interpolate as si # required for 2d interpolation

P_k_v_func = lambda rho: si.interp2d(k_in , k_out , P_k_func(rho))(k_v_in ,

k_v_out)

P_k_v = P_k_v_func(rho)

# virtual degree space: assortativity function

a_v = tn.generate.a_func_linear(k_v_in , k_v_out , w*P_k_v , N, c, i_prop ,

j_prop)

3. The third approach is used in [BML20], where the adjacency matrix A is transformed

by matrix multiplication into E � CAB. Here, introducing degree clusters can be

a favourable option when dealing with large degree spaces. The number of clusters

are Ncin and Ncout
. There are two implemented ways to create the binning of the

degree space, either “linear” or using the cumulated sum of the degree probability

(“cumsum”).

N_c_in , N_c_out = 10, 10

E, B, c_in , c_out = tn.generate.a_func_transform(A, N_c_in , N_c_out ,

mapping=’cumsum ’)

The variables c in and c out are representative degrees of the respective cluster.

5.2 thetanet.dynamics

Full neuronal model Suppose we want to integrate the full Theta neuron model, where

each neuron gets assigned a node in the network. The parameter file requires the definition

of A and N as well as the following variables:

# coupling strength

kappa = 3

# pulse function

n = 2 # sharpness parameter

d_n = 2 ** n * (np.math.factorial(n)) ** 2 \

/ float(np.math.factorial (2 * n)) # normalisation factor

Gamma = tn.dynamics.degree_network.Gamma(n) # ensemble coefficients

# eta’s drawn from Lorentzian (Cauchy) distribution

from scipy.stats import cauchy
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eta_0 = -2 # centre of distribution

delta = 0.1 # width of distribution

eta = cauchy.rvs(eta_0 , delta , size=N)

# time

t = np.linspace(0, 30, 1000)

After having defined all parameters in parameters.py we simply call:

import thetanet as tn

import paramters as pm

# start from uniformly distributed angles

theta_t = tn.dynamics.node_network(pm) # axis 0: time , axis 1: neurons

# start from last time step

theta_t = tn.dynamics.node_network(pm , init=theta_t [-1])

# integrate ensemble equations

z_t = tn.dynamics.node_network_mean(pm)

Degree mean field The degree mean field can be computed utilizing one of three ap-

proaches related to the respective assortativity function.

1. Additionally, for a full degree space integration the parameter file has to contain the

assortativity function a and degree probability P k:

import thetanet as tn

import parameters as pm # parameter file additionally requires: a, P_k

pm.degree_approach = ’full’

# start from zero

b_t = tn.dynamics.degree_network.integrate(pm) # axis 0: time , axis 1:

degrees

# start from last time step

b_t = tn.dynamics.node_network(pm, init=b_t[-1])

Often, the dynamics will only depend on the in-degree such that it is sufficient to

neglect out-degrees. This can be done by choosing

degree_approach = ’full_in_only ’

2. The same applies to virtual degrees, except that we require a v, w and P k v in the

parameter file and

degree_approach = ’virtual ’

# or for only considering in -degrees

degree_approach = ’virtual_in_only ’
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3. For the third approach note that the structure in E can be well approximated by

utilizing singular value decomposition, which we want to do in this case. In the

parameter file where E is defined we add:

# for rank 3 approximation

usv = tn.utils.usv_from_E(E)

# for arbitrary rank m

m = 5

usv = tn.utils.usv_from_E(E, m=m)

This approach is selected by

degree_approach = ’transform ’

5.3 thetanet.continuation

The continuation submodule allows one to continue steady state solution in various ways

using pseudo arc-length continuation. The following methods are only available for the

degree mean field dynamics, although ensemble equations of the neuronal network could

theoretically be continued. Just like in the previous section for the degree mean field we

specify degree approach to be either virtual or transform. In both cases, we can continue

solutions when varying coupling strength κ and parameters of the distribution η0 and ∆.

The virtual approach When choosing ρ or c as continuation variable, a respective

function has to be defined in the parameter file

# for node correlation rho

w_func = tn.utils.bivar_pdf_rho(k_v_in , w_in , k_v_out , w_out)

# such that w = w_func(rho)

# for assortativity r, or c respectively

a_v_func = lambda c: tn.generate.a_func_linear_r(k_v_in , k_v_out , w, N, c,

i_prop , j_prop)

# such that a_v = a_v_func(c)

The transform approach We have seen in the dynamics section, that this mean field

approach relies on SVD and we have to provide vectors and singular values u, s and v.

Degree correlation and assortativity are implicit variables and thus we interpolate between

different matrices with different values of ρ and r. Suppose we have generated a list of

adjacency matrices A list according to a list of assortativity values r list, then we can

pack the SVD essentials in a file containing all relevant data.

import numpy as np
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# generate B, c_in , c_out from an arbitrary adjacency matrix of A_list

B, c_in , c_out = tn.generate.a_func_transform(A_list [0], pm.N_c_in , pm.

N_c_out)[1:]

# decomposition

e_list = tn.utils.essential_list_from_data(A_list , pm.N_c_in , pm.N_c_out)

np.savez(’svd_list ’, u=e_list [0], s=e_list [1], v=e_list [2], r_list=r_list ,

B=B, c_in=c_in , c_out=c_out)

In the parameter file we load the file “svd list.npz” and create a function, such that usv can

be computed for an arbitrary r within the range of r list.

svd_list = np.load(’svd_list.npz’)

usv_func = tn.utils.usv_func_from_svd_list(svd_list)

# such that usv = usv_func(r)

If one is interested in altering ρ the same process applies. There is no separate function

implemented to do so, instead A list has to be a list of adjacency matrices with different

degree correlation according to r list, which is actually a list of ρ values.

Due to the nature of this approach ρ and any kind of r can only be continued one at a

time.

5.3.1 Single-parameter continuation

For the scheme we define necessary functions as stated above and several parameters in the

parameter file

# variable to be continued can be ’kappa ’, ’eta_0 ’, ’delta ’, ’rho’ or ’r’

c_var = ’kappa’

c_ds = 0.05 # step size

c_steps = 40 # number of steps

c_n = 7 # number of Newton iterations

The Newton method will break as soon as a certain precision is achieved, so c n will only

mark the maximum number of iterations. If the scheme never reaches the maximum number

of steps it will be break and return the steps done so far. With the internal convention of

the parameter being labelled as x we compute a continuation curve as follows

import parameters as pm

import thetanet as tn

# starting with a time integration from b=0 to a stable fixed point

b_x , x, stable = tn.continuation.single_param(pm)

# b_x; axis 0: curve , axis 1: degrees

# x; continuation variable along the continued curve

# starting at the end of the the first curve

b_x , x, stable = tn.continuation.single_param(pm, init_b=b_x[-1], init_x=x

[-1], init_stability=stable [-1])
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Note that by default the scheme uses an adaptive step size, such that the second piece of

the curve starts most likely not with step size c ds=0.05. If necessary, it can be reset by

calling pm.c ds=0.05 in between.

5.3.2 Saddle-node bifurcation tracking

In the event of a saddle-node bifurcation occurring along the continuation curve, we can track

it when varying a second parameter, for example r. Therefore we define in the parameter

file

c_var2 = ’r’ # 2nd continuation variable

And in the main script we call

import parameters as pm

import thetanet as tn

# computing a continuation curve

b_x , x, stable = tn.continuation.single_param(pm)

# stability change indicates a potential saddle -node bifurcation

sn_list = np.where(stable [:-1] != stable [1:]) [0]

# considering only the first one here

sn = sn_list [0]

# reset stepsize

pm.c_ds = 0.05

# internally y is used as label for second parameter

init_b = b_x[sn]

init_x = x[sn]

init_y = pm.r

# continue saddle -nodes

b_xy , x, y = tn.continuation.saddle_node(pm , init_b , init_x , init_y)

# for further continuation of the curve it may be handy to use full states

including the null vector

bnxy1 = tn.continuation.saddle_node(pm, init_b , init_x , init_y ,

full_state_output=True)

bnxy2 = tn.continuation.saddle_node(pm, init_full_state=bnxy1 ,

full_state_output=True)

The full continuation state contains the real parts of b followed by the imaginary parts of b,

some internal null vector and the two parameters x and y. They can be accessed as follows

# with N being the number of virtual degrees or degree clusters

b_xy = tn.continuation.complex_unit(bnxy1 [:2*N])

x = bnxy1[-2]
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y = bnxy1[-1]

5.3.3 Hopf bifurcation tracking

There is another scheme implemented if the change of stability in a continuation curve occurs

due to a Hopf bifurcation. We proceed very much in analogy to saddle-node bifurcation

tracking, but eventually we call

b_xy , x, y = tn.continuation.hopf(pm, init_b , init_x , init_y)

# or using full_output

bcdoxy = tn.continuation.hopf(pm, init_b , init_x , init_y , full_state_output=

True)

When using full state output=True the function returns a larger vector since this scheme

continues an imaginary eigenvalue �o and its complex eigenvector c�id instead of the former

null vector.

# with N being the number of virtual degrees or degree clusters

b_xy = tn.continuation.complex_unit(bcdoxy [:2*N])

x = bcdoxy [-2]

y = bcdoxy [-1]

5.4 thetanet.utils

In this submodule, there are auxiliary functions and routines we have already used to some

extent.

Three-Term-Recursion The Three-Term-Recursion function takes the maximal poly-

nomial power Nµ as input, as well the space k and the weight function P pkq. It returns the

Nµ roots of the highest polynomials, the respective weights and a list of polynomials from

a constant up to order Nµ.

k_v , w, q = tn.utils.three_term_recursion(N_mu , k, P_k)

Bivariate probability density function ThetaNet incorporates a Gaussian copula based

implementation of correlating marginal probability density functions. Let pdf y and pdf z

be two independent probability density functions of the variables y and z, respectively. Make

sure they each sum up to 1. We correlate them by setting the correlation rho gauss to a

value between -1 and 1, where we keep in mind that the actual correlation will be slightly

different.

pdf_yz = tn.utils.bivar_pdf(pdf_y , pdf_z , rho_gauss)
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# getting N samples from it, these will be indices

ind_y , ind_z = sample_from_bivar_pdf(pdf , N)

y_sample = y[ind_y]

z_sample = z[ind_z]

# or similarly use

y_sample , z_sample = sample_from_bivar_pdf(pdf , N, y, z)

Singular Value Decomposition Several functions of this submodule have been used

above already. Given a matrix E, we can do the following

# computing the largest m singular values and respective vectors

u, s, v = usv_from_E(E, m=3)

# reconstructing an approximate E

E_rank3 = E_from_usv(u, s, v)

Depending on the size of E the tuple pu, s, vq can still be large and it may be favourable

to fit polynomials through u and v. In ThetaNet we will refer to the set of polynomial

coefficients and singular values as “essentials” due the small size of this set.

# c_in and c_out being the cluster degrees - gained from a_func_transform ()

u_coeff , s, v_coeff = essentials_from_usv(u, s, v, c_in , c_out , deg_k =3)

# compute polynomial approximations

u_poly , s, v_poly = usv_from_essentials(u_coeff , s, v_coeff , c_in , c_out)

Eventually, the idea of transforming a matrix A into E � CAB and applying SVD as well

as a polynomial fit is packed into the following function:

u_coeff_list , s_list , v_coeff_list = essential_list_from_data(A_list , N_c_in ,

N_c_out , deg_k=3, m=3, mapping=’cumsum ’)

It is feasible to save these minimal lists together with some more variables which are vital for

reconstruction and usage, that is the degree clusters c in, c out, the list of corresponding

assortativity values r list and the transformation matrix B.

# save

np.savez(’svd_list ’, u=e_list [0], s=e_list [1], v=e_list [2], r_list=r_list ,

B=B, c_in=c_in , c_out=c_out)

# load

svd_list = np.load(’svd_list.npz’)

Given the essential lists, we can fit an according set by interpolating coefficients for a certain

assortativity.

# interpolating essentials for a desired r and computing u,s,v

u_coeff , s, v_coeff = essential_fit(u_coeff_list , s_list , v_coeff_list ,

r_list , r)
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usv = usv_from_essentials(u_coeff , s, v_coeff , c_in , c_out)

# or equivalent

usv_func = tn.utils.usv_func_from_svd_list(svd_list)

usv = usv_func(r)

5.5 Example

Suppose we were to investigate the effects of in-/out-degree correlation within a neuron on

the network dynamics. That is we want to reproduce Figure 2.6 and Figure 2.7 by utilising

the transform approach. The files can be found in the example folder of the repository

(https://github.com/cblasche/ThetaNet/tree/master/example).

parameters.py

We begin with creating a file where we define parameters as in Section 2:

import numpy as np

import thetanet as tn

""" Degree space and probability

"""

N = 2000 # number of neurons

k_in_min = 100 # lowest occurring node degree

k_in_max = 400 # highest occurring node degree

k_in = np.arange(k_in_min , k_in_max + 1)

N_k_in = len(k_in)

k_out = np.copy(k_in)

N_k_out = len(k_out)

P_k_in = k_in.astype(float) ** (-3)

P_k_in = P_k_in / np.sum(P_k_in) # to have sum(P_k)=1

P_k_out = np.copy(P_k_in)

k_mean = np.sum(k_in * P_k_in) # average value of node degrees

""" Degree network

"""

degree_approach = ’transform ’

N_c_in = 10 # number of degree clusters

N_c_out = N_c_in
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""" Neuron dynamics

"""

# coupling strength

kappa = 1.5

# pulse function

n = 2 # sharpness parameter

d_n = 2**n * (np.math.factorial(n)) ** 2 /\

float(np.math.factorial (2*n)) # normalisation factor

Gamma = tn.dynamics.degree_network.Gamma(n) # ensemble coefficients

# eta’s drawn from Lorentzian ( Cauchy ) distribution

eta_0 = 0 # centre of distribution

delta = 0.05 # width of distribution

# time

t = np.linspace(0, 30, 1000)

""" Continuation

"""

c_var = ’eta_0’ # parameter for single parameter continuation

c_var2 = ’rho’ # additional parameter for bifurcation tracking

c_ds = -0.05 # step size

c_steps = 80 # number of steps

c_n = 7 # number of Newton iterations

c_pmap = False # continue poincare -map?

create svd list.py

Since we eventually continue solutions with respect to the correlation ρ, a parameterized

connectivity Epρq, or to be precise its singular value decomposition upρq, spρq, and vpρq,
will be required. The following file creates a list of decompositions at certain values of ρ

and saves it under the name svd list.npz:

import parameters as pm

import thetanet as tn

import numpy as np

def main():

def A_of_rho(rho):

P_k = tn.utils.bivar_pdf(pm.P_k_in , pm.P_k_out , rho_gauss=rho)

K_in , K_out = tn.generate.degree_sequence_copula(P_k , pm.N,

pm.k_in , pm.k_out , console_output=False)

A = tn.generate.chung_lu_model(K_in , K_out)

return A
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rho_list = np.linspace (-0.99, 0.99, 6)

A_list = np.asarray ([ A_of_rho(rho) for rho in rho_list ])

e_list = tn.utils.essential_list_from_data(A_list , pm.N_c_in , pm.N_c_out)

B, c_in , c_out = tn.generate.a_func_transform(A_list [0], pm.N_c_in ,

pm.N_c_out)[1:]

np.savez(’svd_list ’, u=e_list [0], s=e_list [1], v=e_list [2],

r_list=rho_list , B=B, c_in=c_in , c_out=c_out)

if __name__ == ’__main__ ’:

main()

eta 0 continuation.py

The next file continues the stable solution for η0 � 0 to negative η0 for three different

correlations and then produces a figure comparable to Figure 2.6:

import parameters as pm

import thetanet as tn

import numpy as np

from matplotlib import pyplot as plt

def main():

# make usv_func in parameter.py available

svd_list = np.load(’svd_list.npz’)

pm.usv_func = tn.utils.usv_func_from_svd_list(svd_list)

pm.B = svd_list[’B’]

def continue_and_plot(rho , c):

# update values in the parameter file

pm.rho = rho

pm.usv = pm.usv_func(pm.rho)

pm.ds = -0.05

pm.eta_0 = 0

# run continuation and compute average firing frequency

b, x, stable = tn.continuation.single_param(pm)

z = pm.B.dot(b.T).mean (0)

f = 1 / np.pi * ((1 - z) / (1 + z)).real

# slicing unstable and stable parts for plots

sn = (np.where(stable [1:] != stable [: -1])[0] + 1).tolist ()

f = [f[i:j] for i, j in zip ([0] + sn, sn + [None])]

x = [x[i:j] for i, j in zip ([0] + sn, sn + [None])]
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Figure 5.1: This figure shows three continuation curves for (from left to right) ρ̂ � 0.55,
ρ̂ � 0, and ρ̂ � �0.7. Using the transform approach, results are very well in agreement
with Figure 2.6. Note that here we are using ρ̂ and not ρ.

stable = [stable[i:j] for i, j in zip ([0] + sn , sn + [None])]

# plot

ls_dict = {0.: ’--’, 1.: ’-’}

for ff, xx, ss in zip(f, x, stable):

plt.plot(xx , ff, ls=ls_dict[ss[0]], c=c)

# continuation for 3 rho values and plot them in assigned colours

[continue_and_plot(rho , c) for rho , c in zip([-0.7, 0, 0.55] , [’r’, ’k’,

’b’])]

plt.axis([-0.7, -0.2, 0, 0.4])

plt.xlabel(r’$\eta_0$ ’)

plt.ylabel(’f’)

plt.show()

if __name__ == ’__main__ ’:

main()

The result is illustrated in Figure 5.1.

85



Chapter 5. Python3 module: ThetaNet

bifurcation tracking.py

To reproduce Figure 2.7 we run the following code:

import parameters as pm

import thetanet as tn

import numpy as np

from matplotlib import pyplot as plt

def main():

# make usv_func in parameter.py available

svd_list = np.load(’svd_list.npz’)

pm.usv_func = tn.utils.usv_func_from_svd_list(svd_list)

init_rho = -0.8

pm.rho = init_rho

pm.usv = pm.usv_func(pm.rho)

b, x, stable = tn.continuation.single_param(pm)

sn = (np.where(stable [1:] != stable [: -1]) [0] + 1).tolist ()

def continue_and_plot(i):

pm.c_ds = 0.05 # continue from init_rho to positive direction

pm.c_steps = 130

x_sn , y_sn = tn.continuation.saddle_node(pm, init_b=b[i], init_x=x[i

], init_y=init_rho)[1:]

plt.plot(x_sn , y_sn , c=’k’)

[continue_and_plot(i) for i in sn]

plt.axis([-0.7, -0.3, -0.8, 0.8])

plt.xlabel(r’$\eta_0$ ’)

plt.ylabel(r’$\hat{\rho}$’)

plt.show()

if __name__ == ’__main__ ’:

main()

The plot is shown in Figure 5.2.
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Figure 5.2: We find the results to be similar to Figure 2.7. Again, we are using ρ̂ instead of
ρ.
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Chapter 6

Conclusion and discussion

Networks of neurons form dynamical systems and exhibit activity even in the absence of

external stimuli. Novel imaging techniques have made it possible to create neural connec-

tivity maps of small brain regions, yet the interplay between structure and observed neural

dynamics remains poorly understood. To advance this understanding, in this thesis we have

explored how self-sustained activity changes with degree correlations.

Our investigations employed the theta neuron model and derived degree mean equations

using Ott/Antonsen theory. For degree correlations within neurons (Chapter 2), we followed

previous studies using a plausible probability function in order to model the the likelihood

of connections between respective degrees. This has been done with the intention to reduce

the number of variables in our system. That is starting from N neurons one would end up

with K in �Kout degrees, with K in (Kout) being the number of distinct in- (out-) degrees.

Depending on the network configuration this can actually increase complexity. However,

we identified those restrictions for which the dynamical equations become independent of

out-degrees and how the in-degree space can be sampled best. Ultimately, we found that the

overall dynamics could be described surprisingly well with a very small number of “virtual

degrees”. The results we obtained for degree correlation within neurons are in agreement

with simulations using a more realistic neuron model, and with other studies: Positive

correlation increases the mean firing rate, whereas negative correlation does the opposite.

When turning to degree assortativity in Chapter 3, we found the previous mean field

approach to be rather inaccurate, especially for strongly assortative networks. Instead of

being based on an approximate assortativity function, our approach is derived from an ad-

jacency matrix. We therefore developed an algorithm to manipulate these matrices in order

to increase or decrease assortativity. Translating the system into a degree mean field, the

number of variables, again, changes from N to K in �Kout, but can also be reduced further

to a small number of degrees representing a degree cluster, similar to the “virtual degrees” of
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Chapter 2. We showed how to parameterize the degree connectivity matrix and applied nu-

merical continuation with respect to assortativity. The mean field derivation we present has

proven to be a powerful framework with great potential for application to any feature that

can be incorporated in an adjacency matrix. Our investigation in the four different kinds

of degree assortativity revealed that (out,in)- and (out,out)-assortativity have no influence

at all on the overall dynamics of a neuronal network. For the chosen parameters in this

work we observed only minor changes for (in,out)-assortativity whereas (in,in)-assortativity

had a stronger impact on the system’s dynamics. We have been able to verify mean field

results with full theta neuron network simulations, but can hardly relate them to other

studies, since degree assortativity in directed networks has not been studied in such isolated

conditions before.

Our developed approach of averaging ensemble equations to derive a mean field model

can be easily applied to other models or different features, as we shall see below.

Winfree oscillators In this work we only considered type I neurons close to the transition

between resting and firing. In a regime far from this point of bifurcation when neurons are

constantly firing, they can be modelled as oscillators, e.g. using the Winfree model, which

reads for N oscillators
dθj
dt

� ηj � Spθjq Kxky
Ņ

n�1

AjnP pθnq (6.0.1)

with j � 1, . . . , N and the phase response curve (PRC)

Spθq � dβrsinpβq � sinpθ � βqs; β P r0, π{2s and

» 2π

0

pSpθqq2 dθ � 1 (6.0.2)

For parameter β P r0, π{2q the PRC models a type II behaviour, whereas β � π{2 corre-

sponds to type I neurons. The instantaneous coupled pulse of the form

P pθq � aqp1� cos θqq; q P t2, 3, . . . u and

» 2π

0

Pqpθqdθ � 2π (6.0.3)

implies an action potential at π � 0.

When drawing the natural frequencies ηj from a Lorentzian distribution gpη|η0,∆q, we

can apply the Ott/Anstonsen ansatz in a similar fashion as in Chapter 3. Consider an

infinite ensemble of networks with the same connectivity Ajn where each network’s set tηju
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is drawn from gpηq. We follow [Lai17] and write

dzj
dt

� dβe
�iβ

2
Jj � riη0 �∆� i sinpβqdβJjs zj � dβe

iβ

2
Jjz

2
j (6.0.4)

(6.0.5)

with

Jj � K

xky
Ņ

n�1

Ajnaq

� pC0 �
q̧

p�1

pCp pzpn � z̄pnq
�

(6.0.6)

where z̄ is the complex conjugate of z, and

xCp � q̧

k�0

ķ

m�0

δk�2m,pq!

2kpq � kq!m!pk �mq! (6.0.7)

The system (6.0.4)-(6.0.6) is amenable to the application of our theory in Section 3.2.2,

that is we average all oscillators with the same degree. Let z be the vector of all oscillator

ensemble states zj , bs the average of all zj sharing the same degree, and b the respective

vector. The index s runs through all Nk distinct in- and out-degree tuples k of the network.

We can formally write b � Cz and thus the dynamical equations are

dbs
dt

� dβe
�iβ

2
J̃s �

�
iη0 �∆� i sinpβqdβ J̃s

�
bs � dβe

iβ

2
J̃sb

2
s (6.0.8)

(6.0.9)

with

J̃s � K

xky
Nķ

t�1

Estaq

� pC0 �
q̧

p�1

pCp �bpt � b̄pt
��

(6.0.10)

where E � CAB and CB � INk
, the Nk � Nk identity matrix. Thus, we can simulate a

network of Winfree oscillators with a given adjacency matrix using a reduced set of mean

field equations.

Gap junction coupling In addition to synaptic coupling, neurons are known to interact

through gap-junctions as well. That is a neuron’s membrane voltage is influenced by a near-

by neuron. This type of connectivity can be incorporated in a network of N theta neurons

as follows [Lai15]:

dθj
dt

� 1� cos θj � κ sinpθjq � p1� cos θjqpηj � κ

xky
Ņ

n�1

Λjnqpθnqq (6.0.11)
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with

qpθq � sinpθq
1� cospθq � ε

and 0   ε ! 1 (6.0.12)

where j � 1, . . . , N and κ is the gap junction coupling strength. The function qpθq approxi-

mates the membrane voltage tanpθ{2q of a QIF neuron. The adjacency matrix Λjn describes

which neurons are close enough together to be coupled through gap junctions. Since gap

junctions depend only on absolute distance, we find this type of network to be undirected

and neurons are described only by a degree k instead of a tuple of in- and out-degree. Again,

we can make use of the Ott/Antonsen ansatz and derive ensemble equations if the set tηju
is drawn from a Lorentzian gpη|η0,∆q [Lai15]:

dzj
dt

� pκ� iqpzj � 1q2
2

� ipzj � 1q2
2

�
η0 � i∆� κ

xky
Ņ

n�1

ΛjnQpznq
�

(6.0.13)

(6.0.14)

with

Qpznq �
8̧

m�1

pcmzmn � c̄mz̄
m
n q (6.0.15)

where

cm � i
�
ρm�1 � ρm�1

�
2pρ� 1� εq and ρ �

a
2ε� ε2 � 1� ε (6.0.16)

Again, we compute the variable bs by averaging all ensemble variables zj sharing the same

degree k, where s is the index of k in the discrete degree space. With b and z being the

respective vectors we have b � Cz and arrive at

dbs
dt

� pκ� iqpbs � 1q2
2

� ipbs � 1q2
2

�
η0 � i∆� κ

xky
Nķ

t�1

EstQpbtq
�

(6.0.17)

(6.0.18)

with

Qpbtq �
8̧

m�1

pcmbmt � c̄mb̄
m
t q (6.0.19)

and s running through the Nk indices of distinct degrees k. The degree connectivity is

E � CΛB and CB � INk
.
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Those two examples illustrate the straightforward application of the methods we devel-

oped in Section 3.2. Despite evidence of neuronal networks comprising both inhibitory and

excitatory connections, we decided to simplify the model network to assume that it is com-

posed of purely the one type or the other. Incorporating a network with both populations

interacting can be done in a straightforward manner using these frameworks. A future study

could formulate an excitability mean field, or a mixture of both. Thus, structural network

features with respect to those properties could be investigated in a very efficient manner.
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[MBL20] S. Means, C. Bläsche, and C. Laing. A permutation method for network

assembly. To appear in PLoS One, 2020.

[MHT17] M. B. Martens, A. R. Houweling, and P. H. Tiesinga. Anti-correlations

in the degree distribution increase stimulus detection performance in noisy

spiking neural networks. Journal of Computational Neuroscience, 42(1):87–

106, 2017.

[ML81] C. Morris and H. Lecar. Voltage oscillations in the barnacle giant muscle

fiber. Biophysical Journal, 35(1):193 – 213, 1981.
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Appendix A

Matrix creation

A.1 Configuration model

The configuration model is a rather precise and deterministic way of constructing an ad-

jacency matrix. Consider a directed network of N nodes with degrees k � pkin, koutq and

probability P pkq. Sampling N tuples from P pkq leads us to the starting point: the degree

sequence ppkin
i , k

out
i qqNi�1.

In order to create edges, we provide a list of ingoing half-edges or stubs and another list

of outgoing counterparts, each of length Ne. Let us denote those lists as sequences piine qNe
e�1

and piout
e qNe

e�1, where iine is the node index of the incoming side of edge e and outgoing for

iout
e , respectively. To construct piine qNe

e�1 we simply attach N sequences each consisting of the

kin
i repeated value i and equivalent for out-degrees:

piine qNe
e�1 �

�
piqkinij�1

	N
i�1

and piout
e qNe

e�1 �
�
piqkouti

j�1

	N
i�1

. (A.1.1)

We form edges by pairing up members of those sequences into one sequence of tuples

ppiine , iout
e qqNe

e�1. Note that one sequence needs to be shuffled, in order to avoid any kind

of correlations.

We were already assuming that each stub sequence has lengthNe, which is not necessarily

the case. Sampling from P pkq will only provide two sequences, where N in
e � °N

i�1 k
in
i and

Nout
e � °N

i�1 k
out
i might be close, but not equal. For the configuration model it is necessary

to have a matching number of in- and out-stubs. We can insure this by sampling again and

again, until we draw two sequences with equal sums. This process can be tedious for large

numbers of N . Alternatively, if the difference d � |N in
e � Nout

e | falls below a threshold,

say some fraction of N , we deterministically modify both sequences by picking d{2 nodes

in both in- and out-degree sequence and lower, or increase respectively, their degree by 1.
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Appendix A. Matrix creation

Be aware that nodes with minimal or maximal degree should not be chosen to perform this

correction to ensure they are still within the degree space. The adjacency matrix A can be

constructed straightforwardly from the edge sequence by adding 1 for each edge piine , iout
e q

to the matrix entry Apiine , iout
e q.

A.2 Chung Lu model and degree assortativity

The Chung Lu approach is probabilistic, easy to implement and efficient. In addition,

the sums of in- and out-degree sequence do not have to be equal and one can introduce

assortativity straight away. But all these desirable assets come at a price. The degree

distribution in the final network only roughly resembles the initial degree probability P pkq
and it gets altered further the more degree assortative we want the network to be.

In order to construct an adjacency matrix from the degree sequence ppkin
i , k

out
i qqNi�1, we

compute a target matrix holding the probabilities to connect nodes based on their degrees,

which reads

Tij �
kin
i k

out
j

N 〈k〉
, (A.2.1)

with N being the number of nodes and 〈k〉 being the mean degree. Comparison with a

N -by-N uniform random matrix Uij P r0, 1s yields the adjacency matrix

Aij �
$&%1, if Tij ¡ Uij and

0, otherwise.
(A.2.2)

In this manner adjacency matrices of neutral assortativity can be constructed very efficiently.

The authors of [CHC�17] propose a modified target matrix according to their assortativity

function. Sticking to the convention used in the assortativity definition (3.3.2), i.e. α, β P
rin, outs, we implement pα, βq assortativity by simply adding a scalable term and have

Tij �
kin
i k

out
j � c �

�
kαj � 〈skα〉

	�
kβi �

〈
rkβ

〉	
N 〈k〉

. (A.2.3)

The mean value over edges poses an irritating issue, since there are no edges at this

stage. One solution could be to create a neutral assortative adjacency matrix first and

use it to compute those mean values. Another option is to compute them from the degree

distributions directly. Consider that the number of available edges is Ne � N 〈k〉 where 〈k〉
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A.2. Chung Lu model and degree assortativity

is given by

〈k〉 �
Nkin¸
i�1

P inpkin
i qkin

i �
Nkout¸
i�1

P outpkout
i qkout

i (A.2.4)

and marginal distributions are projections of P pkq

P inpkinq �
Nkout¸
i�1

P pkin, kout
i q; P outpkoutq �

Nkin¸
i�1

P pkin
i , k

outq. (A.2.5)

We compute the mean values by going through all edges, while counting, say all in-degrees of

the receiving nodes and subsequently dividing by the number of edges. This can be written

as

〈
rkin

〉 � °Ne

e�1
rkin
e

Ne

Having NP inpkin
i q nodes in the network with in-degree kin

i , means we will find kin
i edges for

each of them, being in total NP inpkin
i qkin

i . For every edge of that kind we add kin
i to the

count, thus we write

�
°Nkin

i�1 NP inpkin
i qkin

i � kin
i

N 〈k〉

�
°Nkin

i�1 P inpkin
i q � pkin

i q2
〈k〉

. (A.2.6)

For the out-degrees of the receiving nodes we have

〈
rkout

〉 � °Ne

e�1
rkout
e

Ne

�
°Nkin

i�1 P inpkin
i qkin

i � kout
i

〈k〉
, (A.2.7)

where kout
i has to be expressed in terms of kin

i , thus

kout
i �

°Nkout

j�1 P pkin
i , k

out
j qkout

j

P inpkin
i q

. (A.2.8)

Inserting (A.2.8) in (A.2.7) results in

〈
rkout

〉 � °Nkin

i�1

°Nkout

j�1 P pkin
i , k

out
j qkin

i k
out
j

〈k〉
. (A.2.9)
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750 1000 1250 1500 1750 2000 2250
k in

0.000

0.001

0.002

0.003

0.004

0.005

r(in-in) = -0.00028

r(out-in) = -0.00017

r(in-out) = -0.00039

r(out-out) = 0.00015

c = 0
P in(k in)
normed histogram of k in

Figure A.1: Comparison of the target in-degree probability and the normalised histogram
of in-degrees in a network constructed using the Chung Lu method. Parameters are: kin P
r750, 2000s and P inpkinq � k�3.

Equivalently, the edge mean values of sending nodes read

〈
skout

〉 � °Nkout

i�1 P outpkout
i q � pkout

i q2
〈k〉

(A.2.10)

〈
skin

〉 � °Nkout

i�1

°Nkin

j�1 P pkin
j , k

out
i qkin

j k
out
i

〈k〉
. (A.2.11)

Note that (A.2.9) and (A.2.11) are equal and thus 〈rkout〉 � 〈
skin

〉
. Furthermore, without

node correlation we have P pkin, koutq � P inpkinqP outpkoutq and all four mean values are 〈k〉.
As mentioned earlier, the downside of this approach is that the degree distributions only

roughly capture the initial degree probability, see Figure A.1 for the case c � 0 – meaning

no degree assortativity. Introducing assortativity, we find that the distribution gets altered

significantly. An example for (out,in) assortativity is given in Figure A.2.
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normed histogram of k in
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Figure A.2: When introducing degree assortativity using the Chung Lu method, we find the
assortativity coefficients rpα, βq are altered only in the desired component, (out,in) in this
example. Albeit, the degree distributions become significantly disturbed the larger we set
the tuning parameter c. Parameters are chosen as in Figure A.1.
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Appendix B

Applying Ott/Antonsen theory

to theta neurons

Luke et al.[LBS13] have demonstrated how the Ott/Antonsen ansatz can be applied to an

all-to-all coupled network of N heterogeneous theta neurons in the limit of N Ñ �8. In

this work we have made use of their theory twice and derived two different frameworks

for structured neuronal network: one following Chandra et al. [CHC�17] and one using an

ensemble approach (Section 3.2). Below, we want to follow the calculations for the latter in

more detail.

B.1 The ansatz and the system

Given a heterogeneous network structure, we find it useful to consider an infinite ensemble

of networks, where each member has the same adjacency matrix [BAO11]. The neuronal

networks within this ensemble differ from another with respect to their intrinsic excitability

η, i.e. the excitability ηj of neuron j across the ensemble is captured in the distribution

gpηjq. In this infinite limit we can describe neuron j with a probability function fjpθj , ηj , tq,
which captures the likelihood to have the intrinsic excitability ηj and to be in the state θj

at time t. The time evolution of this probability is governed by the continuity equation

Bfjpθj , ηj , tq
Bt � B

Bθj tvjfjpθj , ηj , tqu � 0 (B.1.1)

where the velocity field vj of the neuronal state θj is the continuous version of a theta neuron

and reads

vj � 1� cos θj � p1� cos θjq pηj � Ijq (B.1.2)
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Appendix B. Applying Ott/Antonsen theory to theta neurons

with synaptic current

Ijptq � K

xky
Ņ

n�1

Ajn

» �8

�8

» 2π

0

Pqpθnqfnpθn, ηn, tqdθndηn (B.1.3)

Ott and Antonsen [OA08] studied a system of all-to-all coupled Kuramoto oscillators and

were able to solve the continuity equation using a Poisson kernel as probability function.

This ansatz works for theta neurons as well and is typically written in the form of a Fourier

series

fjpθj , ηj , tq � gpηjq
2π

�
1�

8̧

k�1

tαjpηj , tqukeikθj �
8̧

k�1

tᾱjpηj , tquke�ikθj
�

(B.1.4)

where ᾱ denotes the complex conjugate of α. To ensure convergence of the series, the

coefficients are required to fulfill |αjpηj , tq| ¤ 1. For each neuron, the θ dependence is given

by two parameters, the real and the imaginary part of αpηj , tq. In assuming Eq. (B.1.4), we

restrict a general Fourier series with arbitrary coefficients to a very special form: the kth

coefficient is the kth power of some complex function αpηj , tq. Below, we show under which

condition this two-dimensional sub-manifold is invariant.

B.2 Synaptic current in an ensemble

In Eq. (B.1.3) we integrate over the pulse function Pqpθnq which we have introduced in

Eq.1.2.13. The parameter q models the pulse’s sharpness. In the mean field, we weight this

function with probability fnpθn, ηn, tq and compute the mean field pulse functionHpαnpηn, tq; qq

Hpαnpηn, tq; qq �
» �8

�8

» 2π

0

aqp1� cos θnqq gpηnq
2π

�
1�

8̧

k�1

tαnpηn, tqukeikθn � c.c.

�
dθndηn

(B.2.1)

where c.c. denotes the complex conjugate of the previous term. We follow So et al.[SLB14],

apply the binomial theorem twice, and rewrite

p1� cos θnqq �
q̧

l�0

ļ

m�0

Dlme
ipl�2mqθn (B.2.2)

with

Dlm � q!p�1ql
2lpq � lq!m!pl �mq! (B.2.3)
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B.3. Coefficient constrains – the dynamical equation

This allows the integration over θn in Eq. (B.2.1):

Hpαnpηn, tq; qq �
» �8

�8

gpηnqaq
�
C0 �

q̧

r�1

Crtαnpηn, tqur � c.c.

�
dηn (B.2.4)

where

Cr �
q̧

l�0

ļ

m�0

δl�2m,rDlm (B.2.5)

By choosing the intrinsic excitability of neuron n across the ensemble to be drawn from a

Lorentzian distribution gpηn|η0,∆q with mean η0 and half-width at half-maximum ∆

gpηn|η0,∆q � 1

π

∆

pη � η0q2 �∆2
(B.2.6)

we can carry out the η-integral using the residue theorem and evaluating the function at

the pole η0 � i∆

Hpzn; qq � aq

�
C0 �

q̧

r�1

Crpzrn � z̄rnq
�

(B.2.7)

where zn � ᾱnpη0 � i∆, tq. In general, the distribution parameters η0 and ∆ can be set

independently for each neuron, i.e. distinct η0n and ∆n. However, in this work, we assume

the same Lorentzian distribution for all neurons.

B.3 Coefficient constrains – the dynamical equation

We now turn to the continuum equation of the probability function. Before we insert the

Ott/Antonsen ansatz in the continuum equation, the velocity field is best expressed in

sinusoidally coupled form as in [LBS13]

v � he�iθj � d� h̄eiθj (B.3.1)

with

h � �1

2
p1� ηj � Ijq and d � 1� ηj � Ij (B.3.2)

Note that h and d are independent of θj . We substitute Eq. (B.3.1) and Eq. (B.1.4) in

Eq. (B.1.1), reindex where appropriate, and obtain

�
9αj � i

�
h̄� dαj � hα2

j

�� � 8̧

k�1

kαk�1
j eikθj �

8̧

k�1

kᾱk�1
j e�ikθj

�
looooooooooooooooooooooomooooooooooooooooooooooon

�0

� 0 (B.3.3)
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Appendix B. Applying Ott/Antonsen theory to theta neurons

Due to the “seemingly miraculous coincidence”[MS09] of having the term in the left bracket

as a common factor in the sum, we find a condition for αjpηj , tq. It is a differential equation

and constitutes the dynamics of the sub-manifold

9αjpηj , tq � �i �h̄� dαjpηj , tq � hαjpηj , tq2
�

(B.3.4)

B.4 Dynamics of the complex order parameter

Typically, one is interested in the mean firing rate or the order parameter itself. Therefore,

we compute

» �8

�8

» 2π

0

eiθjfjpθj , ηj , tqdθjdηj �
» �8

�8

» 2π

0

eiθj
gpηnq

2π

�
1�

8̧

k�1

tαjpηj , tqukeikθj � c.c.

�
dθjdηj

(B.4.1)

�
» �8

�8

gpηnqᾱjpηj , tqudηj (B.4.2)

� ᾱjpη0 � i∆, tq (B.4.3)

� zj (B.4.4)

Conveniently, we find that the coefficient evaluated at the singularity ᾱjpη0� i∆q actually is

the complex order parameter describing the averaged (across the infinite ensemble) dynamics

of neuron j. Thus, Eq. (B.3.4) is most relevant for ηj � η0 � i∆ and reads in this case

9zj � i
�
h� dzj � h̄z2

j

�
(B.4.5)

� �ipzj � 1q2
2

� pzj � 1q2
2

r�∆� iη0 � iJjs (B.4.6)

with

Jj � K

xky
Ņ

n�1

AjnHpzn; qq (B.4.7)

The system (B.4.6)-(B.4.7) is a closed dynamical system only depending on all the zj .

Solutions can not leave this 2N -dimensional sub-manifold, hence it is said to be invariant.
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Appendix C

Algorithms

The following algorithms are developed to alter the adjacency matrix, while leaving the

degree distribution untouched. Algorithm 1 removes self-edges and Algorithm 2 multi-

edges. Algorithm 3 alters an adjacency matrix towards a desired degree assortativity. The

four different assortativity coefficients might not be reached without affecting each other. In

this case the algorithm has to be applied iteratively to each of the four cases after another

until the desired values are reached.

113



Appendix C. Algorithms

Algorithm 1: Remove self-edges.
Remove self-edges from adjacency matrix A. Pick for each self-edge a random edge
from the network and reconnect those two without introducing new multi-edges.

1 create list of edges: res;
2 create list of indices of self-edges in res: rss;
3 foreach s in rss with es � pi, iq do
4 ainit � Aii;
5 while Aii � ainit do
6 pick random index r for res with er � pk, lq;
7 /* avoid new multi-connections */

8 if Ail � 0 and Aki � 0 then
9 /* disconnect old edges */

10 Aii � Aii � 1;
11 Akl � Akl � 1;
12 /* connect new edges */

13 Ail � Ail � 1;
14 Aki � Aki � 1;
15 /* update [e] */

16 er � pi, lq;
17 es � pk, iq;
18 end

19 end

20 end
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Algorithm 2: Remove multi-edges.
Remove multi-edges from adjacency matrix A. Pick for each multi-edge a random
edge from the network and reconnect those two without introducing new self- or
multi-edges.

1 create list of edges: res;
2 create list of indices of multi-edges in res: rms;
3 foreach m in rms with em � pi, jq do
4 /* check if (i,j) is still a multi-edge */

5 if Aij ¡ 1 then
6 ainit � Aij ;
7 while Aij � ainit do
8 pick random index r for res with er � pk, lq;
9 /* avoid new self-connections */

10 if i � l and j � k then
11 /* avoid new multi-connections */

12 if Ail � 0 and Akj � 0 then
13 /* disconnect old edges */

14 Aij � Aij � 1;
15 Akl � Akl � 1;
16 /* connect new edges */

17 Ail � Ail � 1;
18 Akj � Akj � 1;
19 /* update [e] */

20 er � pi, lq;
21 em � pk, jq;
22 end

23 end

24 end

25 end

26 end
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Algorithm 3: Assortative mixing.
Randomly pair up all Ne edges of the network with adjacency matrix A and reconnect
them at once where preferable with respect to target assortativity rtarget. Repeat the
process until the assortativity coefficient lies within the tolerance. Once overshooting
the target coefficient, interpolate the length of a shortened list of edge pairs and
reconnect those.

1 /* compute difference in assortativity */

2 ∆r � rtarget � rpAq;
3 while |∆r| ¡ tolerance do
4 pair up all edges rpi, jq, pk, lqs;
5 /* compute whether each pair should be reconnected */

6 s∆r � rtrue: if reconnection will minimise ∆r; false: otherwises;
7 /* trial reconnection */

8 A� � copypAq;
9 reconnect edges in A� according to s∆r;

10 ∆r� � rtarget � rpA�q;
11 if signp∆r�q � signp∆rq then
12 /* r(A�) is already beyond the target: */

13 /* limit number of edges for reconnection process */

14 interpolation data Γ: p0, rpAqq, pNe{2, rpA�qq;
15 while |∆r�| ¡ tolerance do
16 interpolate pL, rtargetq using Γ;
17 slimit � rtrue: list index   L; false: list index ¡ Ls;
18 /* trial selection and reconnection */

19 s� � s∆r ^ slimit;
20 A� � copypAq;
21 reconnect edges in A� according to s�;
22 add pL, rpA�qq to Γ;
23 ∆r� � rtarget � rpA�q;
24 end

25 end
26 A � A�;
27 ∆r � ∆r�;

28 end
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