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Abstract

One challenge in miRNA–genes–diseases interaction studies is that it is challenging to find labeled data that indicate a positive or negative
relationship between miRNA and genes. The use of one-class classification methods shows a promising path for validating them. We have
applied two one-class classification methods, Isolation Forest and One-class SVM, to validate miRNAs interactions with the ERBB2 gene
present in breast cancer scenarios using features extracted via sequence-binding. We found that the One-class SVM outperforms the Isolation
Forest model, with values of sensitivity of 80.49% and a specificity of 86.49% showing results that are comparable to previous studies.
Additionally, we have demonstrated that the use of features extracted from a sequence-based approach (considering miRNA and gene sequence
binding characteristics) and one-class models have proven to be a feasible method for validating these genetic molecule interactions.
c⃝ 2021 The Korean Institute of Communications and Information Sciences (KICS). Publishing services by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

MicroRNAs (miRNAs) are small molecules that belong to
the group of non-coding RNA. Their importance is that they
bind to genes for regulating their expression or degrade them.
In some instances, this process is linked to the outcome of
certain diseases, such as tumor growth or certain forms of
cancers [1–5]. Moreover, the study of these units is essential
because they act as biomarkers, which, if targeted and rec-
ognized, could help in the treatment and diagnosis of several
diseases, see Fig. 1. Their study’s complexity lies in that
multiple miRNAs could interact with a targeted gene [3], and
the task of finding or predicting miRNA target genes is not
straightforward [6].

In past years, researchers found that by using Machine
Learning techniques, it was probable to predict these inter-
actions or to classify groups of miRNAs that are likely to
increase or decrease the expression of specific genes [7]. The
use of these computational models has been less time and
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resource consuming than their in-vitro experimentations [8].
However, in some models, e.g., supervised learning for classi-
fication, a set of labeled data should be used to train the model
to discretize when one sample belongs to one class or another.
Although, on many occasions, it is impossible to find labeled
data; or the data from one class is too scarce [7,9–11] that
might lead to a scenario of unbalanced data.

There have been numerous studies of miRNA and RNA
interactions that point to the scarcity of validated data. For
example, [10] described the problem related to predicting
miRNA hairpins derived from mRNA hairpins structures. The
theoretical basis was that miRNA hairpins, with a length of 21
to 25 nucleotides, are obtained from RNA hairpins of 60 to 90
nucleotides long. The difficulty in this scenario was that the
dataset of available miRNA hairpins was moderately limited;
therefore, using a two-class classifier was not possible, being
a feasible option utilizing a one-class model. In this case, one
can find that there existed two main issues, the first one related
to the difficulty of finding labeled data due to the presence
of not validated or weak miRNAs and mRNAs interactions,
and second, we might end up with an unbalanced dataset. In
either way, there is a limiting factor in the direct application
of supervised classifier models.
s and ERBB2 gene interactions based on sequence features for breast cancer scenarios, ICT Express
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Fig. 1. Schematic of the influence of miRNAs when interacting with the
ERBB2 gene, depending on if they are over-expressed or under-expressed,
they could suppress or proliferate malignant tumoral cells [12–14].
Source: Image created with Biorender.com.

Novelty detection or one-class classification is the imple-
entation of computational models that try to find a comple-
entary class by using a dataset in which only one class is

resent. T. Spinosa and de Carvalho’s work used this type
f novelty detection in the field of Bioinformatics [15]. In
heir work, they tested a One-class SVM for detecting ALL-B
eukemia samples in a dataset composed of non-differentiable
lasses of the disease, such as ALL-B, ALL-T, and AML.
heir dataset chosen consisted of limited records, ranging from
7, 27, or 30 registers per each leukemia class, but with a vast
umber of attributes of approximately 7000 features. Consider-
ng their results, for the AML type, the obtained accuracy was
pproximately 85% for the regular class and 60% for the class
ontaining most outliers. We can also mention the work of [11]
nd Yousef et al. [7], where the authors tried different types of
ne-class models to predict the presence of miRNAs by using
eatures such as the secondary structure or gene sequence
nformation. The authors supported the use of one class model
ecause it is usually a complicated and a biased procedure
o obtain negative data based on the positive miRNAs class.
or validating their proposal, they predicted a set of miRNAs

hat were related to the Epstein Barr Virus. They obtained, by
sing One-class SVM, values of sensitivity of 72% and 99%
f specificity using the secondary structure features in Human
ata. However, information about the hyperparameters tuning
f this model was not explicitly mentioned in the research.

Concerning the use of Machine Learning classifiers to
alidate miRNAs involved in Breast Cancer scenarios, we can
ention the work of [5]. This study used a dataset obtained

rom the National Cancer Institute’s Genomic Data Commons
ata Portal [16], which contained samples from 1207 patients
ith 1881 miRNA features. The samples contained 1103 tu-
oral samples, seven metastatic, and 104 healthy ones. In this

esearch, we observed a disbalance between the number of
atient records and the number of features, being the latter
ne which outperforms in quantity to the patients’ records. For
hat reason, the authors proposed the use of feature selection
echniques such as Information Gain, Chi-Squared, or Least
bsolute Shrinkage and Selection Operator (Lasso) for choos-

ng the most relevant miRNAs which served as features for an

VM and Random Forest classifiers [5].
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Fig. 2. Potential miRNA and gene sequences binding features like energy
released, complementarity score, and coupling region can be used as input
features for the proven models.

In the study of miRNA and mRNA interactions, two signif-
icant approaches exist: one relates to the study of their char-
acteristics of the sequences involved in the binding, such as
pairing sites, accessibility, or evolutionary conservation data;
and the second approach considers the negative correlation
present in the expression levels of miRNA and mRNAs [17]. In
this research, we will be using the sequence-based technique,
see Fig. 2. We found a limited set of studies regarding the
validation of miRNAs–mRNA interactions in cancer scenarios
using features obtained from the sequence interactions. For ex-
ample, we found the use of unsupervised models in the studies
of [11] and Yousef et al. [7]. Additionally, we encountered the
research of [9], where they proposed a mix of supervised and
unsupervised techniques for miRNA target prediction, but the
final results obtained were advocated towards the use of SVM
supervised binary classifiers.

Additionally, a drawback in the study of miRNA and gene
interaction is that it is not straightforward to obtain samples
from the positive (or negative) class in the right proportion [9,
18]; having the risk of ending up with an imbalanced dataset
classification scenario. Still, these situations influence the use
of binary classification models by utilizing a mix of techniques
to obtain the negative interactions class.

In this research, we used two well-known techniques: Iso-
lation Forest [19] and One-class SVM [20], for our one class
model classification. Concerning the miRNA and gene interac-
tions’ sequence features present in these associations, we will
use the data available from mirWalk [21,22], in contraposition
to the use of gene expression levels as in [7,9–11], which could
lead to cases of unbalanced data. mirWalk is based on the
sequence-based approach for retrieving miRNAs interactions
being the number of features available to be manageable for
our purposes. For validation purposes, by using metrics such
as precision or specificity, we had to manipulate our dataset
for obtaining a small subset of the negative class. To accom-
plish this, we decided to test an approach that consisted of
using those interactions between miRNAs and mRNAs, which
present weak interactions supported by the available studies or
do not have supporting evidence, e.g., obtained by prediction
methods, but not validated by wet-lab experiments. For experi-
mentation purposes, the miRNAs we selected interact with the
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Fig. 3. Depiction of the methodology followed. The binding sequence
features are extracted from mirWalk [36], and the evidence of strong and
weak interactions is extracted from miRTargetLink [23], both serve as inputs
for the one-class models.

ERBB2 gene, which is a gene that could lead to breast cancer
scenarios when altered in its expression. The data obtained for
our experiments was validated from miRNAs gene interaction
tools, such as mirTargetLink [23].

2. Materials and methods

2.1. Methodology

The steps we have followed entail two main parts. The
first one is related to the miRNA–mRNA sequence binding
characteristics extracted from mirWalk [36], and the second
step is to gather a set of miRNA that interacts with the ERBB2
gene; we obtained this set from miRTargetLink [23]. From this
set, we extracted a subset of them to form a small validation
subset (25% of the total miRNAs extracted) that will serve
as a negative class, see Fig. 3. The criteria for choosing
the elements of this validation subset was to consider those
miRNAs that had weak or no interactions validated by the
literature. This schema will allow us to obtain the necessary
metrics, such as sensitivity and specificity, to validate the
interactions between miRNAs and the ERBB2 gene.

After we got these subsets, we will apply an Isolation forest
model for checking the presence of outliers in our dataset
considering all the samples. These outliers would represent
mRNA and miRNA interactions that are weak among these
components and match the miRNAs interactions we chose
for the validation subset. For comparison purposes, we will
apply a One-class SVM classifier also to check the presence
of outliers. It is valuable to mention that we will consider these
outliers are weak interactions between mRNA and miRNA
components. With the metrics obtained from both one-class
models, we will compare them using a confusion matrix and
the metrics of precision, specificity, sensitivity, and F1-score.
Also, it is valuable to keep in mind that these models only
need one class for training, and any other data found (outliers)
that it is not enclosed in the boundaries could be considered
anomalies. The creation of validation or test subset was only
3

to apply the metrics mentioned above. A similar methodology
can be found in the work of Eude and Chang [37].

As an additional detail, it is valuable to mention that
both one-class models will be fitted or trained in the strong
interaction datasets and then tested in the created validation
subset to find outliers. We hypothesize that there should be
a scarce presence of outliers in the training set, while in the
second dataset that contains weak interactions, we hope to find
more than half of the presence of outliers. We will validate our
results by analyzing a generated confusion matrix with their
metrics of accuracy, precision, recall, and F1-score and check
some of the outliers found via a literature review.

2.2. Dataset extraction and samples division in classes

We will use the data downloaded from the mirWalk [36]
web page for our experimental part. mirWalk is a dataset
that enables to download miRNA–mRNA interactions, both
predicted and validated by wet-lab experiments. The format
of their downloaded data is in CSV, and it gives us a set of
attributes that appear in sequence interactions between miRNA
and mRNA as described in the research works of Stitch
et al. [38] and [21,22,39]. Most of the features that appear in
mirWalk were extracted from the TarPmirR software [40].

As a sample gene for our experimentation purposes, we
decided to choose the ERBB2 gene, a molecule that appears
in distinct types of breast cancer scenarios. Regarding the
miRNAs that interact with the ERBB2, we have downloaded
a list of miRNA with strong or weak evidence and predicted
interactions from miRTargetLink Human [23]. In some cases,
we could not find the miRNA–mRNA interaction because the
gene name ERBB2 was not present in the file. In this case, we
searched for the ERBB2 gene’s aliases by using the GeneCards
database (https://www.genecards.org/). The complete list of
miRNAs, evidence support type according to [23], gene name
or alias, and literature reference that points to its relationship
with the gene of study is in Table 1.

From this point, we proceed to analyze if there were outliers
in our dataset using a boxplot diagram; the results from this
examination confirmed the presence of these anomalies. At
this point, it is worthy of mentioning that those miRNA and
mRNA interactions with weak evidence would be considered
as our subset of artificial data. This data is sometimes be
generated using the real data and checking if it is possible to
use a one-class classifier to detect those data points that would
not belong to our main class, and per se could be considered
outliers.

Considering the features obtained from mirWalk, we de-
cided to work with the quantitative features and drop the
irrelevant features. The features not selected were: mirnaid,
refseqid, genesymbol, seed (because all the obtained values
were set up as one), position (it gave us the position of the
longest consecutive pairs [40]. The values could be 3 UTR
(Untranslated region), 5 UTR or CDS (Coding sequence), it
was a categorical value), validated (It contains all validated
interactions that are present in mirTarBase [41], some data was
missing), TargetScan, and miRDB (both of them pointed out if

https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.genecards.org/


J. Gutiérrez-Cárdenas and Z. Wang ICT Express xxx (xxxx) xxx

v
t
t

Table 1
miRNA and ERBB2 interactions with type of evidence supporting according to miRTargetLink [23]. The data
is divided in strong and weak interactions.

miRNA Evidence miRNA Evidence miRNA Evidence

hsa-miR-125a-5p Strong [14,24] hsa-miR-323b-5p Strong [25] hsa-miR-124-3p Weak [26]
hsa-miR-125b-5p Strong [27] hsa-miR-331-3p Strong [28] hsa-miR-326 NA [29]
hsa-miR-134-5p Strong [30] hsa-miR-375-3p Strong [31] hsa-miR-4326 Weak [32]
hsa-miR-193a-5p Strong [33] hsa-miR-375-5p Strong [31] hsa-miR-670-3p NA
hsa-miR-199b-5p Strong [13] hsa-miR-498-3p Strong [34] hsa-miR-6739-3p Weak
hsa-miR-205-5p Strong [12] hsa-miR-498-5p Strong [34]
hsa-miR-25-3p Strong [1] hsa-miR-541-3p Strong [35]
hsa-miR-552-3p Strong [4]
Table 2
Confusion matrix for the Isolation Forest and One-Class SVM models.

Isolation Forest One-Class SVM

True
positive

True
negative

True
positive

True
negative

Predicted positive 87 18 99 5
Predicted negative 36 19 24 32

Table 3
Metrics obtained from the Isolation Forest and One Class SVM.

Model Accuracy Sensitivity Specificity F1-Score

Isolation Forest 66.25% 70.73% 51.35% 76.32%
One Class SVM 81.88% 80.49% 86.49% 87.22%

the data was validated with some of these databases). We will
perform tests using all the remaining features and a subset of
the features for validation purposes, as mentioned, for exam-
ple, in the work of [7,11]. Additionally, we had to normalize
our data, and for this purpose, we use a standard scalar which
empirically is the same as the z-score normalization with zero
degrees of freedom.

2.3. One-class models application and hyperparameters
tuning

We decided to apply first the model of Isolation forest
to check the presence of outliers. The metric used for hy-
perparameter tuning was the weighted F1-score. After testing
a list of probable hyperparameters, we ended up with the
results showed in Table 2. We set it up in 30% regarding the
contamination level, which we knew beforehand that it was ap-
proximately the number of miRNAs and ERBB2 interactions
with weak support from the literature. We followed a similar
procedure for the use of One-class SVM but using the Grid
Search algorithm in this case with cross-validation of ten folds.

We had to perform two additional modifications before us-
ing the Grid Search algorithm. First, we needed to have a sort
of labeling for our outputs in the training and testing sets for
fitting our model. For that reason, we put a value of +1 to those
samples that presented a strong verified miRNA and mRNA
interaction and a value of −1 for those that presented a weak
erified interaction. At this point, it is valuable to remember
hat One class SVM works with only one dataset that has all
he elements of the same class. If we would have an exact
4

Table 4
Selected Hyperparameters for the Isolation forest and One Class SVM.

Hyperparameter Isolation Forest One Class SVM

Number of trees 20
Number of features 70%
Number of samples 30 –
Bootstrap True –
Contamination True –
Kernel – RBF
ν – 0.17163
γ – 0.1

division of knowing which class is, for example, positive and
which one is negative, then we could have reduced our solution
to a two-class classifier and use a supervised technique. The
second modification we made was choosing the best metric
for the Grid Search algorithm’s scoring function. In this case,
we were not able to use precision or accuracy because we
were dealing with an unsupervised model, so we decided to
choose a model based on the F1-score, which relates to the
precision and recall metrics, with a weighted average of the
obtained results from each of the outputs derived from each
one of the cross-validation cases. For the scoring function
to pass to our Grid Search algorithm, we have used the F1-
score [42], which is suitable for binary classification with
imbalanced data. After applying the Grid Search algorithm and
validating via a manual selection, we found a list of the best
hyperparameters; see Table 4.

About our dataset division, we divide it into a training
dataset, with 123 miRNA and mRNA interactions, and a val-
idation or test dataset with 37 interactions. In a first moment,
we apply the One-class SVM to the dataset that contained
only the train set for outliers detection to detect novelties
within it, and then in a second scenario, we train our model
with approximately 70% of samples of all the data (positive
validated training data), and then applied this fitted model to
the validation or test set. This last procedure allowed us to
obtain a confusion matrix for validation purposes and calculate
our model’s metrics.

3. Results

3.1. Comparison of isolation forest vs one-class SVM

In the confusion matrices in Table 2, corresponding to
Isolation Forest and One-class SVM models, the True Positives
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represented those miRNAs that interact with the ERBB2 gene,
while the True Negatives are those miRNAs in which there is
no strong evidence of their interaction with the gene ERBB2.
Concerning the results of the metrics shown in Table 3, we
believe that the Accuracy use as a sole metric for comparing
these models is relatively inaccurate. The reason is that an
analysis of the rate of true positive and false negatives should
also be considered for obvious reasons, i.e., medical systems.
Additionally, we considered the F1-score as a well-suited met-
ric in cases like the described when we can have an imbalanced
dataset. By comparing our both one class models, Isolation and
One-class SVM, we found that the SVM model ruled out the
Isolation Forest, with values of 81.88% in terms of Accuracy,
and an F1-score of 87.22% compared with the values obtained
of 66.25% 76.32% for the mentioned metrics to name a few.

4. Discussion and conclusions

In this paper, we have used a One-class SVM for finding
miRNA and mRNA interactions when one has only a unique
set of data to extract these relationships, and it is not possible
to find a set of genes that could act as a second class to be
used as in regularly supervised classifiers. Until the moment
of writing the present article, we could not find evidence of the
use of one-class classifiers to study miRNA and mRNA inter-
actions by using features of the mRNA–miRNA sequences for
breast cancer scenarios. Tran et al. [21] and Yousef et al. [11],
made a closer proposal, where one-class classifiers were used
to predict miRNA hairpins or miRNAs prediction by using
sequence characteristics in contraposition to gene expression
data.

We also found that, even though the one-class models
are oriented to anomaly detection in imbalanced datasets and
for unsupervised learning, some authors like [21] also use
a subset of the training data to be converted into test data.
In the end, this trick is useful for applying metrics such as
precision or F1-score for validating our results; and it seems
helpful when there in not a straightforward method to generate
this information Yousef et al. [7,11]. A similar approach was
used in our proposal because we used as testing data samples
that had weak verified breast cancer correlations considered
the literature reviewed. In the end, this was considered our
negative samples dataset.

The results obtained in similar scenarios [11] found that
the one-class models tested have a higher sensitivity and
low specificity compared to the common two-class supervised
models. The experiments they performed was to detect miR-
NAs in the Epstein Barr Virus. The results of the sensitivity
criteria for the different one-class models were in the range of
82% approximately, with no information about the specificity
metric. However, our one-class SVM model obtained values of
80.49% in sensitivity and 86.49% in specificity, giving more
stable results.

We have shown that it is possible to obtain relatively good
accuracy and F1-scores of 81.88% and 87.22%. Respectively,
that allowed us to find interesting relationships between miR-
NAs and an ERBB oncogene, which could be the initial
5

point for further studies. When we examined the results after
applying the One-class SVM to the training set, we found
approximately 19.51% of outliers; even though they had strong
supporting evidence, we decided to find in the literature what
was occurring with these samples. For example, we found that
the hsa-miR-25-3p in our dataset has nine different ways of
interacting with the ERBB2 gene, but only one of them was
a false negative. A similar situation occurred with the hsa-
miR-125a-5p in which one interaction out of ten available,
was marked as a false negative. One point to consider is that
a miRNA could bind to different sections of the mRNA or
even given other values of some features as free energy, stem-
loop, or flanking conservation; that could have influenced the
final classification of these miRNAs. Maybe the generation of
a voting system, like the one used in a KNN model, would
help obtain the miRNA’s final classification as an outlier.

Concerning the results obtained by using Isolation Forest
compared with One-class SVMs, we could argue that the
former’s relatively low performance is related to how Ran-
dom Forest performs its classification. As we know, Random
Forests tend to divide the space in sort of rectangular sections,
while an SVM model could have smooth separating spaces via
the use of different types of kernels. This situation in which
an SVM model performs better than RF in genomic data was
mentioned in [43], and it would be interesting to do more
research in this direction.

As a concluding remark, this study’s importance is to moti-
vate the study and the use of unsupervised learning techniques
along with datasets such as mirWalk [36] to find interesting
miRNA and mRNA interactions. In contraposition to super-
vised techniques in those cases where labeled data is not
feasible or the process of distinction between classes is a hard
one.
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