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ABSTRACT

DEVELOPMENT OF A PROBABILISTIC MULTI-CLASS MODEL SELECTION

ALGORITHM FOR HIGH-DIMENSIONAL AND COMPLEX DATA

MADELINE AUSDEMORE

2021

The development of quantifiable measures of uncertainty in forensic conclu-

sions has resulted in the debut of several ad-hoc methods for approximating the weight

of evidence (WoE). In particular, forensic researchers have attempted to use similar-

ity measures, or scores, to approximate the weight of evidence characterized by high-

dimensional and complex data.

Score-based methods have been proposed to approximate the WoE for numerous

evidence types (e.g., fingerprints, handwriting, inks, voice analysis). In general, score-

based methods consider the score as a projection onto the real line. For example, the

score-based likelihood ratio evaluates and compares the likelihoods of a score calculated

between two objects in two density functions, based on sampling distributions of the

score under two mutually exclusive propositions. Other score-based methods have been

proposed [6, 7, 31, 82], which do not rely on such a ratio.

This dissertation focuses on a class of kernel-based algorithms that fall in the

latter group of score-based methods, and introduces a model that serves to complete

the class of kernel-based algorithms initiated under NIJ Awards 2009-DN-BX-K234

and 2015-R2-CX-0028, which addressed the “outlier detection” and “common source”

problems, by proposing a fully probabilistic model for addressing the “specific source”

problem. This “specific source” problem is addressed in three progressive models: first,

the problem is addressed for a pair of fixed sources; next, the two-class model is ex-

tended to consider multiple fixed sources; finally, a kernel-based model selection algo-

rithm is developed to consider a single fixed source juxtaposed with multiple random

sources.

This class of algorithms relates pairs of high-dimensional, complex objects
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through a kernel function to obtain a vector of within-source and between-source scores,

and capitalizes on the variability that exists within and between these sets of scores. The

model makes no assumptions about the type or dimension of data to which it can be ap-

plied, and can be tailored to any type of data by modifying the kernel function at the core

of the model. In addition, this algorithm provides a naturally probabilistic, multi-class,

and compact alternative to current kernel-based pattern recognition methods such as

support vector machines, relevance vector machines, and approximate Bayesian com-

putation methods.
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Part I

Introduction
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OVERVIEW OF PART I: INTRODUCTION

The following chapters serve to review the background information that is rele-

vant to reading and understanding the various aspects of this dissertation. Definitions,

propositions, and theorems that may be useful as points of reference throughout the

dissertation are highlighted in grey.

Chapter 1 presents the reader with the fundamentals of kernel theory. In partic-

ular, it introduces the development of kernel theory, starting with the first mentions of

the kernel in the early 1900s, and moves to discuss the properties of the kernel func-

tions used in today’s pattern recognition and machine learning algorithms. Together,

the information considered in this chapter allows for understanding the development

and resulting implications of the class of algorithms discussed, developed and tested

throughout this proposal.

Chapter 2 provides a brief overview of the different frameworks, methods, and

models used to quantify the weight of forensic evidence to bring to light the novelty and

necessity of the proposed algorithm. In addition, this chapter discusses the set of models

that laid the groundwork for the class of algorithms developed in this proposal. These

algorithms are of particular importance in that each builds off of the previous to allow

for developing the final model presented in this proposal. Together, the information

considered in this chapter allows for pondering, discussing, and addressing the problem

at hand.
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Chapter 1

KERNEL METHODS

To facilitate later conversation surrounding the various models overviewed in

Chapter 2, we will review the relevant concepts underlying the theory of kernel func-

tions. In particular, this chapter will discuss the origin and first use of kernel functions,

will present the properties of kernels and how these properties can be leveraged in dif-

ferent scenarios, and will define several types of kernel functions.

1.1 DEVELOPMENT OF KERNEL THEORY

The discussion of kernel functions first began in 1904 with the publication of

David Hilbert’s paper [32] on integral equations (English translation available from

Stewart [80]). In his development, he defines a continuous symmetric function κ (x,x′),

which will be referred to as a kernel function.

Definition 1 (Hilbert’s Kernel Function) Consider the following measure,

κ : X × X 7→ R,

(x,x′) 7→ κ (x,x′) ,

where, given two observations, x and x′, κ returns a real number that describes

the similarity of the two objects. We call the function, κ, a kernel function.

While Hilbert assumed that the function κ was continuous and symmetric, in

1909, James Mercer [45, 89] refined the set of kernel functions to include those func-

tions which are continuous, symmetric, and “of positive type” (e.g., positive semi-

definite). In particular, he showed that functions of this type are able to be represented
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as inner products in another space.

Theorem 1 (Mercer’s Theorem) A continuous, symmetric function κ (x,x′) in

L2(C) has an expansion

κ (x,x′) =
∞∑
k=1

λkek(x)ek(x
′)

if and only if ∫
C

∫
C

κ (x,x′) g(x)g(x′)dxdx′ ≥ 0

for all g ∈ L2(C), where {ek (x)}k is an orthonormal basis of C with correspond-

ing eigenvalues {λk}k ≥ 0, C is a compact subset of Rn, and g is a function that

satisfies
∫
g2(u)du < ∞).

In plain terms, this theorem tells us that any continuous, symmetric, positive

semi-definite function κ(x,x′) is guaranteed to have a representation as an inner prod-

uct in some (not necessarily known) higher dimensional feature space. These higher

dimensional feature spaces, in which the concept of the dot product exists, are called

Hilbert spaces (see Capiński and Kopp [15] for a more in-depth discussion). We can

use this notion to more formally define the concept of a kernel function.

Definition 2 (Mercer’s Kernel Function) Define the mapping of an observation

from its original space X to some Hilbert space H by a function ϕ, such that

ϕ : X 7→ H

x 7→ ϕ(x).

Then the kernel function describing the similarity between two objects x and x′ is

given by

κ (x,x′) = 〈ϕ(x), ϕ(x′)〉,

where 〈·, ·〉 is the inner product, or dot product, between two vectors.

In 1964, Aizerman, Braverman, and Rozonoer [3] extended the results of Mer-

cer’s work to the context of machine learning algorithms. In particular, they replaced
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the “potential function” (i.e., kernel function) in their algorithm with the inner prod-

uct taken in the “linearization space” (i.e., Hilbert space) to prove that their method of

potential functions converged to the linear perceptron algorithm (a supervised binary

classification algorithm in a linear space), developed by Rosenblatt in 1958 [69]. By

realizing the algorithmic implications of Mercer’s theorem, they paved the way for what

is certainly a paramount notion in kernel theory, the aptly named kernel trick (see [12,

33, 65, 91] for alternative definitions).

Proposition 1 (The Kernel Trick) Consider a linear algorithm that is expressed

in terms of inner products. By replacing each inner product with some kernel

function, the algorithm can be executed entirely in the feature space associated

with the considered kernel function without ever visiting that feature space.

This “kernel trick” eschews the need to identify the feature space, project the ob-

servations into this feature space, and compute their inner product in this feature space.

Given that the sought after feature space may very well be of infinite dimensionality (as

is the case with the feature space associated with the Gaussian kernel), forgoing these

calculations is certainly advantageous. Finally, the kernel trick allows for easily devel-

oping new models by replacing one kernel function with another. This is particularly

convenient for applying a given classification or regression model to different types and

dimensions of data.

Although the concept of replacing inner products with their kernel representa-

tions was realized in 1964, the first formal use of this mechanism to design new al-

gorithms did not occur until 1992. In their work, Boser, Guyon, and Vapnik [13] use

kernel functions to extend the results of the Generalized Portrait Method [88] to nonlin-

ear spaces to develop the Support Vector Machine (SVM). This algorithm maximizes

the margin between training data and a decision boundary to obtain the optimal sepa-

rating hyperplane in the feature space. In their development, Boser, Guyon, and Vap-

nik consider various kernel functions. In particular, they consider Radial Basis Kernel

Functions and Polynomial Kernel functions (the forms of these kernels, and others, can

be found in Section 1.2). Although the initial development of SVMs can be traced back
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to the theoretical developments associated with the introduction of statistical learning

theory [87, 88], the work by Boser, Guyon, and Vapnik [13] introduced SVMs in their

current form. In 1995, Cortes and Vapnik [17] extended the results of Boser, Guyon,

and Vapnik [13] by introducing a soft-margin classifier, which allows for considering

misclassified points. Other kernel-based algorithms include kernel principal compo-

nent analysis [75, 76], kernel Fisher discriminant analysis [8, 48, 70], and probabilisitic

SVMs (i.e., Relevance Vector Machines) [85].

The introduction of the SVM laid the foundation for the future of kernel re-

search: in the the past twenty years, researchers have focused on generalizing and ex-

tending the theoretical components of SVMs (e.g., [24, 57, 77–79, 81, 89]); developed

tricks for implementation (e.g., [17, 25, 36, 63, 89]); and applied SVMs to various fields

of research (e.g., [37, 40, 41, 73]).

1.1.1 SUPPORT VECTOR MACHINES: A CLOSER LOOK

SVMs laid the foundation for developing pattern recognition techniques, and

are still considered to be cutting-edge in the fields of pattern recognition and machine

learning. Because they remain a fundamental tool for pattern recognition, we will use

this method as a basis for comparing the effectiveness of the models introduced in this

proposal, and so we use this section to describe SVMs in more detail (for a more in-

depth development, see [89]). We will also use this section to discuss some of the

limitations of SVMs, which are addressed by the models considered in this proposal.

Consider a hyperplane that exists in some inner product space, H, that is defined

by f(z) = 0, where

f(z) = 〈w, ϕ (z)〉+ b, (1.1)

w is a vector that is orthogonal to the hyperplane, ϕ (z) is the input vector z projected

into the Hilbert space H, and b ∈ R is a bias. Several methods have been proposed

that allow for distinguishing between two classes of observations by defining some hy-

perplane that separates their projections into H. For example,Vapnik and Lerner [88],
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and Vapnik and Chervonenkis [86, 87] proposed the Generalized Portrait Method, a

learning algorithm for linearly separable problems. Boser, Guyon, and Vapnik [13] ex-

tended this algorithm to apply to nonlinear problems. Cortes and Vapnik [17] extended

the concept behind these hard margin classifiers to account for points that may be mis-

classified in their soft margin classifier. Though subtly different in their construction,

these algorithms are all based on two fundamental notions relating to the concept of the

margin:

Definition 3 (Margin) The margin is defined as the distance from the separating

hyperplane to the point that lies closest to this hyperplane.

(1) Given a set of hyperplanes that are able to separate some data, there exists an opti-

mal hyperplane that separates the data such that the margin is maximized. Mathe-

matically, this optimal hyperplane is the solution of

max
w∈H,b∈R

min {||ϕ (z)− ϕ (xi) || | ϕ (x) ∈ H, 〈w, ϕ (z)〉+ b = 0, i ∈ {1, . . . , ℓ}} .

That is, given a fixed feature-space transformation ϕ(x) ∈ H, we want to choose b

and w such that the minimum distance of any observation ϕ(xi) in the training set

from the hyperplane defined by the points ϕ(z) is maximized.

(2) The VC dimension of the set of separating hyperplanes decreases as the margin

increases1. The VC dimension is defined as the cardinality of the largest set of

points that can be arranged such that a decision function, f , shatters the points2.

The VC dimension of the set of separating hyperplanes is less than or equal to

n + 1, where n is the dimension of the space [90]. The VC dimension of a set

of functions is responsible for the generalisability of the model. More specifically,
1In particular, the set of hyperplanes is restricted to lying within the area between its closest

points on either side. Consider two points belonging to separate classes. As the distance between
these points increases, the number of potential hyperplanes that may be drawn between them
also increases.

2Consider a set of m points with labels ±1. There exists, at most, 2m ways to separate the
data. If the set of separating hyperplanes is able to realize each of these 2m separations, then
the set of functions shatters the m points. For example, a set of m = 3 points in R2 is able to
be shattered by the set of separating hyperplanes, but a set of m > 3 points is not able to be
shattered by this set of separating hyperplanes. Thus, the VC dimension of the set of separating
hyperplanes in R2 is 3.
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when the VC dimension is small relative to the number of parameters, the machine

becomes more generalisable. Thus, by maximizing the margin, we are effectively

defining the most generalisable learning machine for the considered set of training

data.

The hyperplane which maximizes the margin can be defined by solving a straightfor-

ward quadratic optimization problem.

1.1.1.1 HARD MARGIN SVMs

We begin by considering the development of the hard margin classifier. This

classifier is ideal for situations in which the considered data are completely linearly

separable in some feature space. In particular, it assumes that all points can be correctly

classified. The development of this classifier will allow us to discuss in more detail

the shortfalls of SVMs and how these shortcomings can be addressed by the models

proposed in this dissertation.

In the hard-margin classification problem, we are interested in hyperplanes of

the form (1.1) for which yif(xi) > 0, ∀i. That is, for a given object, the true class,

yi ∈ ±1, and the predicted class, f(xi), are of the same sign, and so the point has

been correctly classified. We can use (1.1) to define the distance of a point xi to the

hyperplane by

yif(xi)

||w||
=

yi (〈w, ϕ (xi)〉+ b)

||w||
. (1.2)

Using (1.2), the maximum margin solution is then found by solving

argmax
w,b

{
1

||w||
min

i
[yi (〈w, ϕ (xi)〉+ b)]

}
. (1.3)

Without loss of generality, we can rescale w and b so that the point closest to the hyper-

plane satisfies

yi (〈w, ϕ (xi)〉+ b) = 1,
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and all other points satisfy

yi [〈w, ϕ (xi)〉 − b] ≥ 1, i ∈ {1, . . . , ℓ}. (1.4)

We call this representation the canonical hyperplane.

Definition 4 (Canonical Hyperplane) The canonical hyperplane is defined such

that the minimum distance between any observation, ϕ(x1), . . . , ϕ(xℓ) and the hy-

perplane defined according to (1.1) by (w, b) ∈ H × R is given by the value

1/||w||. Mathematically, this consists of ensuring that the hyperplane given by

(w, b) satisfies

min
i={1,...,ℓ}

|〈w, ϕ(xi)〉+ b| = 1.

By construction, there will always be at least one point for which (1.4) is true,

and, upon maximizing the margin, there will be at least two points for which (1.4) is

true (i.e., there will exist at least one observation lying on either side of the hyperplane

whose projection onto the hyperplane has length 1). By defining this constraint, the op-

timization problem in (1.3) requires only that we maximize ||w||−1, which is equivalent

to solving

argmin
w

1

2
||w||2.

To solve this quadratic optimization problem, we can introduce the Lagrange

multipliers, αi ≥ 0 for each observation ϕ(xi), i ∈ {1, . . . , ℓ}. Then, rather than at-

tempt to minimize 1
2
||w||2, we can instead define and minimize the Lagrangian, L (w, b,α),

L (w, b,α) =
1

2
||w||2 −

ℓ∑
i=1

αi {yi (〈w, ϕ (xi)〉+ b)− 1} . (1.5)

Minimizing (1.5) is equivalent to minimizing 1
2
||w||2, since the terms αi are defined

such that the additional term,
∑ℓ

i=1 αi {yi (〈w, ϕ (xi)〉+ b)− 1}, is equal to zero. In

particular, if ϕ (xi) lies on the margin, then the term inside the brackets is equal to zero,
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and the value of αi is irrelevant. If ϕ (xi) lies outside of the margin, then αi is equal to

zero.

So, instead of starting from scratch with 1
2
||w||2, in which we know nothing

about w, we can consider L (w, b,α), which permits us to use differentiation tech-

niques so that we can consider the minimum value of ||w|| with respect to our observa-

tions, ϕ(xi), and their known labels, yi. We thus proceed by applying a basic calculus

technique, in which we calculate the derivative of (1.5) with respect to the unknown

parameters, w and b, and set each of these derivatives equal to zero, such that

∂L
∂w

= w −
∑ℓ

i=1 αiyiϕ (xi) = 0 ⇐⇒ w =
∑ℓ

i=1 αiyiϕ (xi) , (1.6)

∂L
∂b

=
∑ℓ

i=1 αiyi = 0. (1.7)

We can now define the dual problem, in which we re-write the original Lagrangian in

(1.5) using the constraints (1.6) and (1.7) that allow for identifying the optimal w, such

that

L̃ (α) =
1

2

ℓ∑
i=1

ℓ∑
i′=1

αiαi′yiyi′ϕ (xi)
′
ϕ (xi′)−

ℓ∑
i=1

αi

{
yi

(〈
ℓ∑

i′=1

αi′yi′ϕ (xi′) , ϕ (xi)

〉
+ b

)
− 1

}

=
1

2

ℓ∑
i=1

ℓ∑
i′=1

αiαi′yiyi′ 〈ϕ (xi) , ϕ (xi′)〉 −
ℓ∑

i=1

αi

{
yi

(
ℓ∑

i′=1

αi′yi′ 〈ϕ (xi′) , ϕ (xi)〉+ b

)
− 1

}

=
1

2

ℓ∑
i=1

ℓ∑
i′=1

αiαi′yiyi′ 〈ϕ (xi) , ϕ (xi′)〉 −
ℓ∑

i=1

αiyi

(
ℓ∑

i′=1

αi′yi′〈ϕ (xi′) , ϕ (xi)〉+ b

)
+

ℓ∑
i=1

αi

=
1

2

ℓ∑
i=1

ℓ∑
i′=1

αiαi′yiyi′κ (xi,xi′)−
ℓ∑

i=1

ℓ∑
i′=1

αiαi′yiyi′κ (xi,xi′) + b

ℓ∑
i=1

αiyi +

ℓ∑
i=1

αi

= −1

2

ℓ∑
i=1

ℓ∑
i′=1

αiαi′yiyi′κ (xi,xi′) +

ℓ∑
i=1

αi. (1.8)

Examining (1.8), we see that we are able to obtain a function that is free of the unknown

parameters w and b, and that does not require defining the function ϕ, and so allows for

directly working with the original observations xi.

Furthermore, by defining the following constraints, we can use quadratic pro-

gramming to solve (1.8), and define the optimal hyperplane using (1.12):

(1) αi ≥ 0: this constraint follows from our original assumption used to define (1.5);
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(2) yif(xi) − 1 ≥ 0: If an observation lies on the margin, then yif(xi) = 1, and so

the assumption is fulfilled. Likewise, if the observation lies outside of the margin,

then yif(xi) > 1, and the assumption is fulfilled;

(3) αi (yif(xi)− 1) = 0: if the observation lies on the margin, the assumption is

fulfilled by (2); if the observation lies outside of the margin, then αi = 0.

Thus, for every observation, either αi = 0, or yif(xi) = 1. We define the points for

which αi 6= 0 to be support vectors, and denote this set using S. We use the set of

points, S, for two purposes. First, we use the results of (1.6) to completely define the

projection of any observation x∗
i′ onto w using only α, and the set of support vectors

S, such that

〈ϕ(xi′),w〉 =
∑
i∈S

αiyiκ (x
∗
i′ ,xi) . (1.9)

Thus, we have eliminated the need to identify w in the feature space. Second, we can

define our bias term, b. By noting that any support vector xi′ ∈ S satisfies yi′f(xi′) = 1,

it follows that

yi′

(∑
i∈S

αiyiκ (xi′ ,xi) + b

)
= 1,

and so, by solving for b, we obtain

b =
1

yi′
−
∑
i∈S

αiyiκ (xi′ ,xi)

= yi′ −
∑
i∈S

αiyiκ (xi′ ,xi) , (1.10)

since yi′ = ±1, ∀x′
i ∈ S . However, to get a more robust estimate of b, we can consider

the average of (1.10) across all support vectors, such that

b =
1

#S
∑
i′∈S

(
yi′ −

∑
i∈S

αiyiκ (xi′ ,xi)

)
, (1.11)

where #S is the cardinality of S, and thus is the number of support vectors in S. Thus,
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by defining the Lagrangian as in (1.8), we can effectively define the optimal hyperplane,

(w, b), that separates a set of observations xi without explicitly defining ϕ.

Finally, we can use (1.6) to define the predicted class of an observation x∗
i′ . In

particular, we consider that

f(x∗
i′) = 〈ϕ(x∗

i′),w〉+ b

=

〈
ϕ(x∗

i′),
∑
i∈S

αiyiϕ(xi)

〉
+ b

=
∑
i∈S

αiyi 〈ϕ(x∗
i′), ϕ(xi)〉+ b

=
∑
i∈S

αiyiκ (x
∗
i′ ,xi) + b. (1.12)

Again, we see that we are working only with the original observations, xi, x∗
i , and do

not need to consider the projection of the data into some feature space.

1.1.1.2 SOFT MARGIN SVMs

In the case where we consider the soft margin classifier, which allows for the

potential of misclassifying points, we follow the same procedure described above for

the hard margin classifier. However, rather than minimize 1
2
||w||2, we seek to maximize

the margin while penalizing points that lie on the wrong side of the optimal hyperplane.

To achieve this, we introduce a slack variable, ξi, for each observation: we define ξi = 0

for correctly classified observations that lie on or outside the margin; 0 < ξi ≤ 1 for

observations that lie within the margin on the correct side of the decision boundary; and

ξi > 1 for observations that are misclassified. This slack variable can be thought of

as a correction term, and we can interpret its value as a function of how far an obser-

vation would need to be moved so that it would be correctly classified. Furthermore,∑ℓ
i=1 ξi can be considered to be an upper bound on the number of misclassified points.
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Incorporating this condition, we thus seek to minimize

1

2
||w||2 + C

ℓ∑
i=1

ξi, , (1.13)

subject to the constraint

yif (ϕ(xi)) ≥ 1− ξi, (1.14)

where the term C > 0 controls the trade-off between the penalty induced by the slack

variable and the margin. The optimization of (1.13) follows the same process as that of

(1.3) for the hard margin optimization, outlined above.

1.1.1.3 LIMITATIONS OF SVMs

The development of hard- and soft-margin SVMs (see, e.g., [13, 17, 86–88])

redefined the way in which the classification of objects is approached. Not only is

the development relatively straightforward, but it also ensures that the best separation

is achieved for the considered data given the considered kernel, and thus ensures a

higher probability of correct classification for future observations. Finally, this class

of algorithms is compelling in that it is not restricted by the type or size of the data.

The use of kernel functions allows any type of data to be considered, regardless of the

dimensionality, quality, or quantity of the data.

These algorithms, however, are susceptible to several shortcomings. First, train-

ing the hard- or soft-margin SVMs may require a large amount of data that is not readily

available to the scientist, as is the case in intelligence and forensic scenarios. It is of-

tentimes the case that the intelligence officer or forensic examiner may have only a

limited number of control observations (in fact, it is not uncommon for an investigation

to have as few as three reference objects that may be used for inferring the source of an

unknown object). In such scenarios, the generalizability of SVMs trained on too few

samples is questionable.

Second, these algorithms do not enjoy a natural extension to the multi-class sce-
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nario: while multi-class versions of these algorithms do exist, they partition the space

in such a way that the entirety of the space is not accounted for, and the resulting infer-

ence may be affected as a result. For example, consider two extensions of the SVM to a

three-class scenario, as portrayed in Figure 1.1. These two classifiers attempt to identify

three regions into which an observation may be classified. However, Figure 1.1 demon-

strates that this is not possible without creating an enigmatic fourth region. Clearly, we

run into troubles whenever an observation is made inside this region.

?

R2

R1

R3

R2

R1

R3

?

Figure 1.1: Ambiguous regions induced by extending SVMs to multi-class scenarios.
Left: Two hyperplanes are used to discriminate objects into three classes. Right: Three
hyperplanes are used to discriminate objects into three classes.

Finally, these algorithms do not allow for probabilistic output. While the rele-

vance vector machine does allow for probabilistic output, it suffers from a complex de-

sign and lengthy training period, and, like its deterministic counterpart, lacks a straight-

forward extension to the multi-class scenario. The models proposed in Parts II and III

of this dissertation address these issues.

1.2 PROPERTIES AND VARIATIONS OF KERNELS

In this section we discuss the properties and variations of kernel functions used

in the types of algorithms described above. In Section 1.1, we noted that any continuous,

symmetric, positive semi-definite function, κ, is a viable kernel that may be used in any

kernel-based algorithm. Given this valid kernel, we can construct new kernels using

this kernel as a base.
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We begin by defining some kernels that arise from the basic definition of a

kernel function (Definition 2): given a kernel function κ (x,x′) = ϕ(x)Tϕ(x′) =

〈ϕ(x), ϕ(x′)〉, we can define a valid kernel by identifying a new function ϕ′ in the

context of the original function ϕ. For example, we can define

κ′
(
x,x′) := f(x)κ

(
x,x′) f(x′)

= f(x)〈ϕ(x), ϕ(x′)〉f(x′)

= 〈f(x)ϕ(x), f(x′)ϕ(x′)〉

= 〈ϕ′(x), ϕ′(x′)〉,

where f is any function. Similarly, we can define

κ′
(
x,x′) := xTAx′

= xTA1/2TA1/2x′

=
(
A1/2x

)T (
A1/2x′

)
= ϕ(x)Tϕ(x)

= 〈ϕ(x), ϕ(x′)〉,

where A is a symmetric, positive-definite matrix, and the function ϕ = A1/2x. These

particular examples arise from the basic properties of an inner product.

We can define an even larger class of kernels by considering the closure proper-

ties of kernel functions. Specifically, we can show that any function that is a product or

sum of a set of valid kernels is itself a valid kernel [12, 33]. Proofs of these properties

can be found in [9].
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Proposition 2 (Closure Properties of Positive Semi-Definite Kernels) Consider

that κi, i ∈ {1, . . . , N} are positive definite kernels mapping from Xi × Xi to R,

where Xi is a nonempty set. Then

(a) If κ(x,x′) := limn→∞ κn (x,x
′) exists for all x,x′, then κ is a positive definite

kernel;

(b) If αi ≥ 0, then
∑N

i=1 αi is a positive definite kernel;

(c) The point-wise product,
∏N

i=1 κi, is a positive definite kernel;

(d) The tensor product κi⊗κi′ is a positive definite kernel on (Xi ×Xi′)×(Xi ×Xi′);

(e) The direct sum κi⊕κi′ is a positive definite kernel on (Xi ×Xi′)× (Xi ×Xi′).

These are the only functions that preserve positive definiteness. Note that, by con-

sidering closure properties (d) and (e) simultaneously, kernels can be defined as

functions of other kernels.

Using the closure properties defined above, we can construct variations of some of the

more popular kernels that are frequently used in various machine learning algorithms.

Consider that κ1 and κ2 are valid kernels in X × X . Then the following are also valid

kernels on (as defined above in Proposition 2):

(i) cκ1 (x,x
′): satisfied by closure property (b), where c ∈ R;

(ii) κ1(x,x
′) + κ2(x,x

′): satisfied by closure property (b);

(iii) κ1(x,x
′)κ2(x,x

′): satisfied by closure property (c);

(iv) q (κ1 (x,x
′)): satisfied by closure properties (b) and (c), where q is a polynomial

with nonnegative coefficients;

(v) exp (κ1 (x,x
′)): satisfied by closure properties (a), (b), and (c);

(vi) κa (xa,x
′
a)κb (xb,x

′
b): satisfied by closure property (d), where x = (xa,xb), and

the functions κa and κb are valid kernel functions over Xa ×Xa and Xb ×Xb;

(vii) κa (xa,x
′
a) + κb (xb,x

′
b): satisfied by closure property (e), where x = (xa,xb),

and the functions κa and κb are valid kernel functions over Xa ×Xa and Xb ×Xb;
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(viii) f (d (x,x′)): satisfied by closure properties (a) and (b), where f is a function on

R+
0 , and d is a metric on X . ;

The kernel given by (viii) is called a stationary kernel [74]. These types of kernels al-

low us to explicitly consider the distance between any two observations, or between an

observation and a central point of interest. The class of stationary kernels can be further

restricted to define a class of radial basis function kernels, which consider the magni-

tude of the distance between two observations. Table 1.1 provides several examples of

radial basis function kernels.

Definition 5 (Stationary Kernel) A stationary kernel is a function that relies on

the distance between the observations x, x′. These kernels are invariant to trans-

lations in the input space.

Definition 6 (Radial Basis Function Kernel) A radial basis function kernel is a

function that relies on the magnitude of the distance between the observations x,

x′. These kernels are a subset of the set of stationary kernels, and so are also

translation invariant.

Kernel Name Kernel Form
Gaussian Kernel exp {−||x− x′||2/σ2}, where σ2 ∈ R+

Exponential Kernel exp {−||x− x′||/2σ2}, where σ ∈ R+

Laplacian Kernel exp {−||x− x′||/σ}, where σ ∈ R+

Power Kernel −||x− x′||d, where d ∈ N
Log Kernel − log

(
||x− x′||d

)
, where d ∈ N

Gaussian Spectral cos (2πµ||x− x′||) exp (−2π2σ2||x− x′||2), where
Kernel µ ∈ R, and σ2 ∈ R+
Cauchy Kernel (1 + σ−2||x− x′||)−1, where σ2 ∈ R+

Student T Kernel
(
1 + ||x− x′||d

)−1, where d ∈ N
Mahalanobis

√
(x− x′)Σ−1 (x− x′), where Σ is a

Kernel positive definite matrix

Table 1.1: Examples of Radial Basis Function Kernels
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Chapter 2

QUANTIFYING THE WEIGHT OF FORENSIC EVIDENCE

Since the institutionalization of modern scientific techniques in criminal investi-

gations in the late 19th century, there has been interest in using statistical techniques to

support the inferences made on sets of forensic evidence (see [83] for a comprehensive

review). From the introduction of the first identification system by Alphonse Bertillon

in 1886 [10], it was only a matter of years before probabilities were being reported in

court [19], and, in 1904, a move towards Bayesian reasoning was proposed [83].

For the better part of a century, legal and scientific scholars have widely ad-

vocated for the use of Bayesian reasoning in handling the uncertainty associated with

determining the source of a piece of forensic evidence [2, 23]. At the core of Bayesian

reasoning lies the Bayes factor, which allows for updating the prior beliefs surrounding

two competing propositions about the source of the evidence. Given two competing

propositions, Hp and Hd
1, regarding the source of a piece of evidence, xu, a Bayes

factor can be assigned, in which the likelihoods under the two propositions, given by

f(·), are compared. In the case where the parameters are known and certain, it is not

necessary to integrate over these parameter spaces, and a likelihood ratio may be con-

sidered instead. Ommen and Saunders [58] show that the Bayes factor converges to the

true likelihood ratio as the amount of available information increases.

1Hp and Hd are typically used by the legal and forensic science communities to represent the
prosecution and defense propositions. Traditionally, the prosecution will take some stance as to
how a piece of evidence is believed to have been generated, while the defense will claim that the
evidence could have been generated by other means. These thought patterns are reflected by
Hp and Hd, respectively.
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Definition 7 (Bayes Factor) The Bayes factor takes the form

BF =

∫
f (xu|Ω,Hp) dΠ(Ω|Hp)∫
f (xu|Ω,Hd) dΠ(Ω|Hd)

,

where f(·) is the likelihood of observing the evidence, Ω is a vector of parameters,

Π is a probability measure over the parameter spaces of Ω, and the uncertainty of

the parameters under Hp and Hd is accounted for by integrating over the parame-

ter space.

Definition 8 (Likelihood Ratio) The likelihood ratio takes the form

LR =
f (xu|Ω0,Hp)

f (xu|Ω0,Hd)
,

where Ω0 denotes the set of known parameters.

It is important to note that the Bayes factor is not an intrinsic property of the

evidence in itself, and that there is no true or universal Bayes factor for a given piece

of evidence. Surely, different weights will be assigned to the same evidence if differ-

ent propositions are considered. Moreover, even if a fixed pair of alternative propo-

sitions is considered, different scientists may assign different weights based on their

personal handling of the available evidentiary material. For example, the evidence may

be characterized using different types of features or measured using different analyt-

ical techniques (e.g., glass fragments may be characterized by their refractive index,

by their elemental composition, or by their chemical structure), the data may be sum-

marized or organized in different ways (e.g., while Neumann, Evett, and Skerrett [50]

describe a method to characterize the spatial relationships between fingerprint minutiae

using triangles, and then use these triangles to assign probability distributions to the

minutiae constellations, it is certainly possible to characterize the spatial relationships

between minutiae in many other ways), or different assumptions may be used to model

the distributions of the measured characteristics (e.g., given a set of observations, one

scientist may elect to rely on normality assumptions, while another scientist may elect

to consider a non-parametric model).
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It is apparent that there exists an element of subjectivity is assigning the weight

of evidence. Indeed, a probability can represent the degree of belief of an individual

regarding some event (see, e.g., [30, 34, 35, 42, 72]). Nevertheless, the subjectivity of

the resulting weights of evidence is not meant to suggest or justify that probability can

be arbitrarily assigned, or that it reflects sloppy thinking [42, 84]. Personal probabilities

must be coherent (e.g., self-consistent, free of inherent contradictions, do not impose a

guaranteed loss [66, 68]) and follow the ordinary axioms of probability.

Updating prior beliefs using the Bayes factor or likelihood ratio allows for ob-

taining posterior beliefs about the source of a piece of evidence. These posterior beliefs

are probabilistic in nature, and do not equate to categorical decisions. However, by us-

ing a loss function, these posterior probabilities can be used to reach a conclusion. This

process is described in the forensic context by Biedermann, Bozza, and Taroni [11].

Proponents of Bayesian reasoning argue that this path is the only logical and coherent

process that exists for making inferences and updating personal beliefs in forensic sci-

ence. They do, however, go on to argue that, in casework, forensic scientists do not

possess the information that would allow them to assign prior beliefs to the considered

propositions, and so they should limit themselves to reporting only the Bayes factor,

and leave the triers of fact (e.g., jurors, judges) to complete the remainder of the infer-

ence process. The challenge for forensic scientists, therefore, lies in assigning Bayes

factors to various types of evidence (e.g., fibres, paints, dust, footwear impressions,

fingerprints, tool marks).

2.1 TWO FRAMEWORKS FOR ASSIGNING THE WEIGHT OF EVIDENCE

Ommen, Saunders, and Neumann [59] describe two classes of problems in

which a forensic scientist may be tasked to assign a Bayes factor: an examiner may op-

erate within the context of the “common source” framework; or he may operate within

the context of the “specific source” framework. Each of these frameworks is particular

to its set of circumstances, and results in a specific Bayes factor. The next two sections

serve to explain these frameworks. See Neumann and Ausdemore [49] for a comparison
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of these frameworks via a simple simulation scenario.

2.1.1 THE COMMON SOURCE FRAMEWORK

In the common source framework, the examiner evaluates whether it is likely

that two pieces of forensic evidence have originated from the same source or from

different sources, without formally specifying which sources are considered.

Definition 9 (Common Source Framework) In the common source framework,

the forensic examiner aims to make inference on the source of two sets of trace

samples, Xu1 and Xu2 , to determine if they originate from a common, but un-

known, source. This context considers the following pair of propositions:

HpCS
: Xu1 and Xu2 originate from a common, but unknown, source;

HdCS
: Xu1 and Xu2 originate from two different, but unknown, sources.

In this scenario, the true source of each piece of evidence is considered to be a random

source from a population of potential sources. Under HpCS
, the source of the two pieces

of evidence is the same random source, while under HdCS
, the two pieces of evidence

correspond to their own distinct random sources.

As an example of this scenario, Neumann and Ausdemore [49] consider a simple

univariate setting to explore some of the properties of this likelihood ratio. In particular,

they define a pair of generative models using hierarchical random effects models, such

that
xu1 = µ+ d1 + u1, where d1 ∼ N

(
0, σ2

d

)
and u1 ∼ N

(
0, σ2

u1

)
;

xu2 = µ+ d2 + u2, where d2 ∼ N
(
0, σ2

d

)
and u2 ∼ N

(
0, σ2

u2

)
,

(2.1)

where µ is the mean of the population of potential sources, d1 and d2 are random effects

due to the sources, and u1 and u2 are random effects due to objects within sources.

Consider that we have observed two sets of red automotive paint chips at two

different crime scenes, and that we are interested in determining if these two sets of

red paint chips originated from the same car (which remains unidentified), or if they

originated from two different cars in the population of potential cars. In this scenario,

µ represents the mean of the distribution of the characteristics of the paint of all cars in
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the population; d1 and d2 represent the deviations between the overall mean of the pop-

ulation, µ, and the characteristics of the unknown first and second sources of red paint;

and u1 and u2 are random effects that affect the final presentation of the characteristics

of the paint chips that result from the two different transfers of paint. The random ef-

fects u1 and u2 may be distinct since the transfer of the two evidentiary objects xu1 and

xu2 may be affected by different sets of factors. For example, consider that two differ-

ent sections on the car were damaged (for example, the hood of the car, and the rear

bumper). It is likely that the paint in these two locations exhibit different characteristics

(e.g., there may exist subtle changes in the paint due to varied sun exposure at these two

locations on the car).

Under HpCS
, the two pieces of evidence originate from the same unknown

source, and so d1 = d2. However, given that the paint chips may have been transferred

under varying conditions, it is not necessarily true that σ2
u1

= σ2
u2

. Under HdCS
, the two

pieces of evidence originate from two different, but unknown, sources, and so d1 6= d2.

Furthermore, given that xu1 and xu2 did not originate from the same source, they are

independent. Given the above generative models, the joint distributions of xu1 and xu2

under HpCS
and HdCS

are distributed according to a Multivariate Normal distribution,

and are respectively given by

xu1

xu2

∣∣∣∣HpCS
∼ MVN


µ

µ

 ,

σ2
d + σ2

u1
σ2
d

σ2
d σ2

d + σ2
u2


 ;

xu1

xu2

∣∣∣∣HdCS
∼ MVN


µ

µ

 ,

σ2
d + σ2

u1
0

0 σ2
d + σ2

u2


 .

(2.2)

Taking the view that forensic evidence must be evaluated within a Bayesian paradigm,

the weight of evidence should be quantified using a Bayes factor (or, when parameters

are known, using a likelihood ratio). The common source likelihood ratio takes the

form

LRCS =
f (xu1 , xu2|Ω0,HpCS

)

f (xu1 , xu2|Ω0,HdCS
)
=

f (xu1 , xu2 |Ω0,HpCS
)

f (xu1|Ω0,HdCS
) f (xu2|HdCS

)
. (2.3)



23

2.1.2 THE SPECIFIC SOURCE FRAMEWORK

In the specific source framework, the examiner evaluates whether it is likely that

a piece of forensic evidence has originated from a particular known source.

Definition 10 (Specific Source Framework) In the specific source framework, the

forensic examiner aims to make inference on the source of a set of trace samples

Xu to determine if it originates from the specified known source that produced a set

of control material Xs. This context considers the following pair of propositions:

HpSS
: Xu originates from the known source that produced Xs;

HdSS
: Xu originates from an unknown source, different from the source

H1SS
: that produced Xs.

In this scenario, the source that produced the control material is identified and so can

be considered fixed. Under HpSS
, the source that produced the evidence is considered

to be the source that produced the control material, while under HdSS
, the source that

produced xu is unknown, and is considered to be a random source from a population

of potential sources, different from the undisputed source that produced the control

material.

As in the common source scenario, Neumann and Ausdemore [49] consider

a simple univariate setting to explore some of the properties of this likelihood ratio.

However, in the specific source scenario, the generative models differ depending on

whether HpSS
or HdSS

is considered. Under HpSS
, when the evidence originates from

the same source as the considered control material, the generative models take the form

of two simple random effects models, such that

xu = µd + u, where u ∼ N
(
0, σ2

u

)
;

xs = µd + s, where s ∼ N
(
0, σ2

s

)
,

(2.4)

where µd represents the mean for the considered specific source, and u and s are random

effects corresponding to the trace and control samples.
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Under HdSS
, the generative model for the control material is the same as under

HpSS
(indeed, there is no dispute that xs originates from the considered known source!);

however, the generative model for the trace material is now given by a hierarchical

random effects model to reflect that the true source of xu is unknown in a population of

potential sources. Thus, under HdSS
, the generative models are given by

xu = µ+ d+ u where d ∼ N
(
0, σ2

d

)
, and u ∼ N

(
0, σ2

u

)
;

xs = µd + s, where s ∼ N
(
0, σ2

s

)
,

(2.5)

where µ is the mean of the population of potential sources, d is a random effect due

to the unknown source, and s and u are random effects corresponding to the trace and

control samples.

Consider that we have now observed a single set of red automotive paint chips.

In this scenario, we are interested in determining if this set of paint chips originated

from a particular car, from which we have observed a control sample. In this scenario,

µd represents the mean of the distribution of the characteristics of the considered car;

µ represents the mean of the distribution of the characteristics of all cars in the popula-

tion; d represents the deviation between the overall mean of the population, µ, and the

characteristics of the unknown car; and u and s are random effects that affect the final

presentation of the characteristics of the paint chips that result from the two different

transfers of paint.

Under HpSS
, the trace and control materials are independent, given µd. Under

HdSS
, the trace and control materials are independent since they are not from the same

source. Given the above generative models for the specific source scenario, the joint dis-

tributions of xu and xs under HpSS
and HdSS

are distributed according to a Multivariate
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Normal distribution, and are respectively given by

xu

xs

∣∣∣∣HpSS
∼ MVN


µd

µd

 ,

σ2
u 0

0 σ2
s


 ;

xu

xs

∣∣∣∣HdSS
∼ MVN


 µ

µd

 ,

σ2
d + σ2

u 0

0 σ2
s


 .

(2.6)

As in the common source framework, the weight of evidence should be quantified using

a Bayes factor (or, when the parameters are known, using a likelihood ratio). The

specific source likelihood ratio takes the form

LRSS =
f (xu, xs|Ω0,HpSS

)

f (xu, xs|Ω0,HdSS
)
=

f (xu|Ω0,HpSS
)

f (xu|Ω0,HdSS
)
. (2.7)

2.1.3 COMPARING THE TWO FRAMEWORKS

It is important to note that the Bayes factors that result from the common source

and specific source frameworks in (2.3) and (2.7) are indeed different, even when the

same information is considered, and thus lead to different interpretations of the results

of forensic examinations.

Neumann and Ausdemore [49] show that the likelihood ratios in (2.3) and (2.7)

converge only when the variance of the source of either xu1 or xu2 in (2.3) and the

variance of the suspect in (2.7) are negligible; otherwise, substituting one framework

for the other is inappropriate. This assumption is satisfied in very few scenarios. Figure

1 in [49] is reproduced as Figure 2.1 below. These experiments demonstrate that the

likelihood ratios of the common and specific source scenarios are undeniably different!

Regardless of the context in which the examiner is operating, it is critical that the

resulting Bayes factor be relevant to the scenario at hand, and be appropriately defined

for the evidence being considered. In the vast majority of cases, the interests of the

criminal justice system fall under the span of the specific source scenario, and the aim
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of this thesis is to develop a probabilistic model for this context. This is not to say that

the common source scenario is not relevant. Indeed, determining whether two pieces

of evidence were made by the same unknown source may be pertinent to intelligence

investigations which aim to connect multiple crime scenes. Armstrong [5] develops

a useful kernel-based model for making inference on the source of two sets of trace

objects under the common source scenario.
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Figure 2.1: Convergence of the common source likelihood ratio to the specific source
likelihood ratio. Columns: the left column reports the results when xu and xs have
been sampled under HpSS ; the right column reports the results when xu and xs have
been sampled under HdSS

. Rows: (a) the source of the control object is common in the
population and has some variance; (b) the source of the control object is rare in the
population and has some variance; (c) the source of the control objects is common and
has virtually no variance.
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2.2 A SCORE-BASED APPROACH

While forensic scientists have been assigning Bayes factors to simple forms of

forensic evidence (e.g., single DNA profiles) for many years, only anecdotal attempts

have been made to assign Bayes factors to complex forms of forensic evidence (e.g.,

handwriting evidence, fingerprint evidence). Assigning Bayes factors to complex forms

of evidence requires defining reasonable and appropriate likelihood functions to repre-

sent the joint distributions of heterogeneous and high-dimensional feature vectors. Un-

fortunately, it is often impossible to assign probability measures for these sorts of data,

and so assigning Bayes factors or performing any other likelihood-based inference is

impossible. Consequently, the forensic scientists reporting on these types of evidence

are left without means to support their assessments of the probative value of the evi-

dence.

In an attempt to bypass the need to work with intractable likelihood functions,

researchers have concentrated on the use of scores to reduce the complexity and dimen-

sionality of the problem. A score can have two interpretations: it can be interpreted

as a summary statistic resulting from the comparison of two objects; or it can be in-

terpreted as the scalar projection that results from the inner product of two vectors. In

the first case, we talk about (dis)similarity functions, δ (·, ·) with real-valued output,

while in the second case, we talk about kernel functions, κ (·, ·), as described above in

Section 1.1. The primary difference between δ and κ is that δ can be any function with

real-valued output, while κ must be a positive semi-definite, continuous, symmetric

function (see Theorem 1 and Definition 2 in Section 1.1). Both functions map complex

random vectors from their natural space to the real line, R, and both offer great flexi-

bility to researchers. These scores allow researchers to measure the “distance” between

two objects, such that the value representing the distance is minimized (or maximized)

when two objects originate from the same source, and is maximized (or minimized)

when they originate from different sources, and to express the level of (dis)similarity

between pairs of objects as a univariate continuous random variable, whose probabil-



29

ity distribution is significantly more convenient to model than the distribution of the

original vectors of observations.

2.2.1 SCORE-BASED LIKELIHOOD RATIOS

Initial attempts to circumvent the complexity of the original data gave rise to a

family of ad-hoc methods, dubbed “score-based likelihood ratios”. The first members

of this family were presented in the late 1990’s and early 2000’s in the fields of speaker

recognition and fingerprint evidence (see, e.g., [20, 21, 27–29, 46, 47, 51, 52]). Dif-

ferent constructions of score-based likelihood ratios have been proposed over the years,

and their use in case work has been advocated for, especially in Europe [22]. These

models first compare two objects to obtain a score using some (dis)similarity metric.

The likelihood of this score is then evaluated using a pair of density functions based on

the sampling distributions of the score under two mutually exclusive propositions. The

ratio of these densities is then reported as the “score-based likelihood ratio”.

Figure 2.2 shows two sampling distributions for a pair of propositions formu-

lated under the specific source scenario. Given a (dis)similarity score, δ (xu, xs) = 3,

the density of this score is evaluated under the sampling distribution defined for Hp

(solid black line) and under the sampling distribution defined for Hd (dashed black

line). In this scenario, the resulting score-based likelihood ratio would support Hp,

since the density of δ (xu, xs) = 3 is greater for the sampling distribution defined under

Hp than under the sampling distribution defined under Hd.

Some commonly described score-based likelihood ratios are the common source

score-based likelihood ratio, the asymmetric specific source score-based likelihood ra-

tio, the trace-anchored specific source score-based likelihood ratio, and the suspect-

anchored specific source score-based likelihood ratio. Unfortunately, each of these

proposed methods suffers from limitations, and so is inappropriate for reporting the

weight of evidence: the common source score-based likelihood ratio does not account

for the rarity of the trace objects; the asymmetric specific source score-based likelihood

ratio does not consider the same evidence in the numerator and denominator; the trace-
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anchored specific source score-based likelihood ratio reduces to the actual likelihood

(and so is not so score-based afterall); and the suspect-anchored score-based likelihood

ratio is not coherent2. Neumann and Ausdemore [49] present these score-based likeli-

hoods and their limitations in more detail. Furthermore, they show that convergence of

the score-based likelihood ratios to the “true” likelihood ratio only occurs under very

specific conditions (e.g., when the variance of the considered source in the specific

source scenario is negligible.)
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Figure 2.2: Score-based likelihood ratio obtained by calculating the ratio of the densities
of a summary statistic for an observed pair of trace and control objects, δ (xu, xs), in
the sampling distributions defined under Hp and Hd.

2.2.2 OTHER SCORE-BASED METHODS

Using kernels to express the similarity of pairs of objects and to reduce the di-

mension of the data is not unique to score-based likelihood ratios. Other nonparametric

methods that use these scores for model selection have been proposed [33], and include

approximate Bayesian computation (ABC) methods [18, 67], SVMs [89, 90] (intro-

duced in Chapter 1), and relevance vector machines (RVMs) [64, 85]. Unfortunately,

applying these models to the types of data encountered in forensic science, and, more

2The inverse of the Bayes factor corresponds to the amount of support for the alternative
proposition. This is not the case for specific source score-based likelihood ratios.
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generally, in pattern recognition, is not straightforward. ABC methods require assum-

ing generative models and using sufficient summary statistics, and ideally rely on an

infinite number of resampling simulations. In practice, these assumptions are not re-

alistic: generative models for high-dimensional, heterogenous data may not exist, or

may be too complex to implement; it is not possible to define what “sufficiency” means

for these types of data; and the number of simulations is necessarily limited. In addi-

tion, most ABC algorithms require defining arbitrary thresholds that allow for assessing

whether resampled datasets are sufficiently similar to the observed dataset. However,

as the dimension of the data increases, the curse of dimensionality may imply that

no observations are “similar enough” to the original data. RVM and SVM algorithms

require complex and computationally expensive optimization procedures (as seen in

Chapter 1), in part due to the repeated inversion of the Gram matrix [12, 33], and do

not have a natural extension to the multi-class scenario. Finally, SVMs do not allow for

likelihood-based inference [33, 89, 90].

2.3 A NEW CLASS OF SCORE-BASED MODELS

In the last decade, a new class of algorithms has been introduced. While this

class of algorithms is score-based in nature due to its reliance on kernel functions, it

maintains the ability to make appropriate likelihood based inference. We wish to capi-

talize on these properties to calculate Bayes factors for complex data, particularly when

few data are observed.

In 2014, Gantz and Saunders [26] developed a method that allows for assigning

a parametric model to the joint distribution of pairwise scores between multiple objects

that are known to originate from a single source. In practice, this algorithm can be used

to make inference on whether a new (set of) object(s) originates from the same source

as a set of control objects, as is the case in one-class classification or anomaly detection

algorithms [1, 7].

Although this proposed model cannot be used directly for model selection,

the authors showed that this new class of algorithms is particularly suited for high-
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dimensional hypothesis testing (Armstrong et al. [6] demonstrated the usefulness of

this model). In addition, this approach allows for a limited number of assumptions,

each of which are usually satisfied in high-dimensional situations, and relies on a min-

imal number of parameters, which may be estimated with closed-form solutions. Fi-

nally, the approach allows for simultaneously classifying a set of objects. While the

aforementioned algorithms use pairwise comparisons between multiple objects from

each considered source to train or learn the parameters of the algorithms (as in SVMs

or RVMs), they consider objects to be classified as being independent from one an-

other. The class of algorithms introduced by Gantz and Saunders [26] and implemented

by Armstrong et al. [6] makes it possible to perform model selection on a joint set of

observations3.

2.3.1 A COMMON SOURCE MODEL-SELECTION ALGORITHM

In 2018, Armstrong [5] expanded this class of algorithms by introducing a

method that enables model selection in the common source scenario for stationary ker-

nels. In particular, this model is used to determine whether two sets of trace objects are

simple random samples from a common, but unknown, source in a population of po-

tential sources (see Definition 9 for a formal statement of the propositions considered

in the common source framework). The model enables a fully Bayesian treatment of

non-nested model selection, and, in particular, can be used to quantify the weight of

high-dimensional and heterogeneous forms of forensic evidence (e.g., chemical spec-

tra, pattern evidence). Specifically, given two sets of trace objects, xu1 and xu2 , this

method allows for selecting between the models

Hp: . xu1 and xu2 originate from a common but unknown source in the population of

potential sources;

Hd: xu1 and xu2 originate from two different but unknown sources in the population

of potential sources.

3Computational developments initially explored in [53].
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Proceeding in the manner of Gantz and Saunders [26], Armstrong [5] assigns a

parametric model to the joint distribution of pairwise scores, s, between multiple ob-

jects that are known to originate from a single source. More specifically, an observation

sij,i′j′ of s is given by sij,i′j′ = κ (xij,xi′j′), where κ (·, ·) is a kernel function as defined

in Definition 2 in Section 1.1, and

sij,i′j′ =


θb + bi + b′i + dii′ + ti:ij + ti:i′j′ + ti′:ij + ti′:i′j + wij + wi′j′ + eiji′k′ , i 6= i′

θw + wij + wi′j′ + eiji′j′ , i = i′,

such that s ∼ MVN (θ,Σ), where Σ := BB′σ2
b+DD′σ2

d+TT ′σ2
t +WW ′σ2

b+Iσ2
e .

The design matrices given by B, D, T and W capture distinct random effects that ex-

ist within the score model. The rows of each of the design matrices consist of all
(
nn0

2

)
possible pairwise comparisons of ij and i′j′, where n is the number of random sources

considered in the population, and n0 is the number of objects observed per source. The

columns of B, D, T and W , however, vary according to the effect being described:

the design matrix B describes the between-source effects (bi, bi′); the design matrix

D describes the source interaction that exists between-source comparisons, (dii′); the

design matrix T describes the interaction that exists between the sources and their sam-

ples (ti:ij, ti:i′j′ , ti′:ij, ti′:i′j′); the design matrix W describes the within-source effects

(wij, wi′j′). Armstrong [5] provides a more in-depth look at these matrices.

To select between the two models presented above, Armstrong [5] proposes to

evaluate a Kernel Bayes Factor, K.

Definition 11 (Kernel Bayes Factor) The Kernel Bayes Factor allows for select-

ing between two mutually exclusive models based on a set of scores obtained by a

kernel function, and is given by

KCS =

∫
Ω
f (s|Ω,Hp) dΠ(Ω|Hp)∫

Ω
f (s|Ω,Hd) dΠ(Ω|Hd)

(2.8)

where Ω is the set of parameters characterizing the likelihood functions of s under

Hp and Hd, and Π is a probability measure over the parameter spaces of Ω.

Evaluating (2.8) then requires studying Ω := {θb, θw, σ2
b , σ

2
d, σ

2
t , σ

2
w, σ

2
e} under the two
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models, Hp, and Hd. However, following Ommen, Saunders, and Neumann [59], Arm-

strong [5] shows that, in the common source scenario and for a perfectly balanced

sample, this Bayes factor can be evaluated using (2.9), which requires estimating the

parameters only under Hd,

KCS =

∫
Ω

fp (sm|sn,Ω)

fd (sm|sn,Ω)
dΠ(Ω|s,Hd) , (2.9)

where sm is vector of scores that considers comparisons that include at least one trace

object and sn is the vector of scores that consider comparisons between control objects.

Armstrong [5] shows that the likelihood can be decomposed into independent

sums of squares. He shows that closed-form solutions exist for the parameters of the

model, and shows that the distributions of the parameters can be studied by defining a

Markov Chain Monte Carlo (MCMC) sampler. Using this technique, posterior samples

of the parameters are obtained by sampling from π (Ω|s,Hd). This sampling technique

is described in detail in [5, Section 5.6]. More recently, Ausdemore et al. [7] made the

process more computationally efficient.

By developing this common source model, Armstrong [5] bolstered the work

of Gantz and Saunders [26] to allow for selecting between models via a kernel Bayes

factor, and laid the necessary foundation for developing the specific source model. In

particular, this development will be particularly useful in developing the final algorithm

in the class of algorithms constructed throughout this dissertation.

2.3.2 A TWO-STAGE APPROACH

In 2020, Ausdemore et al. [7] implemented the work of Gantz and Saunders [26]

using a two-stage framework. This model is the first step towards defining a specific-

source model selection algorithm and lays the groundwork for developing the class

of algorithms discussed in this dissertation in that it allows for obtaining a proxy of the

Bayes factor in the specific source scenario. Given a set of M trace objects, xu, assumed

to originate from a single, unknown source, a set of N control objects xs, originating

from a specific source of interest, S, and a sample of sources from a relevant population
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of potential sources, A, they are interested in making inference on the source of the set

of trace objects. Formally, they consider the following mutually exclusive propositions:

Hp : xu is a simple random sample from S;

Hd : xu is a simple random sample from another source in the population represented

by A.

To make inference on the source of xu, they revisit the two-stage approach,

formally introduced by Parker [60, 61], and Parker and Holford [62]. This two-stage

inference framework consists of a similarity stage and a discrimination stage. In the

similarity stage, the goal is to compare the characteristics of the trace and control ob-

jects, and determine if they are indistinguishable. In the discrimination stage, the goal is

to determine the rarity of the characteristics observed in the first stage in the population

of potential sources (i.e., determine the match probability).

To address the similarity stage, Ausdemore et al. [7] develop a generic α−level

test that relies on a kernel function to measure the level of similarity between pairs of

high-dimensional, heterogeneous, and complex data. Given two vectors of measure-

ments, xi and xj , representing the observations made on two objects i, j, sampled from

the same random source, a kernel function κ, is used to measure their level of similar-

ity, and report it as a score, sij . In the spirit of Gantz and Saunders [26] and Armstrong

et al. [6], Ausdemore et al. [7] choose to represent this score as a linear random effects

model, given by

sij = κ (xi,xj) = θ + ai + aj + εij,

where θ is the expected value of the score between any two objects from the same

considered source, ai, aj
iid∼ N(0, σ2

a) are random effects representing the contributions

of the ith and jth objects, and εij
iid∼ N(0, σ2

e) is a lack of fit term. Given M trace

objects and N control objects from a source of interest, they define the vector of scores

sm+n = (sm, sn)
′, where sm and sn are defined as in Section 2.3.1. Given that all

N control objects originate from a single source, the multivariate representation and
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distribution of sn are given by

sn = θ1n + Pa+ ε, sn ∼ MVN (θ1n,Σn×n) ,

where 1n is a one vector of length n, P is an n × N design matrix (where each row

represents an i, j combination consisting of ones in the ith and jth columns and zeros

elsewhere), a is the vector of random effects for the considered objects, ε is the vector

of εij corresponding to each pair of objects, and Σn×n = PP ′σ2
a. + Inσ

2
e . Using this

definition and distributional assumption, they define they hypotheses H0 and H1 as:

H0: The M trace objects have the same characteristics as the N control objects, and

so

(
sm
sn

)
|Ψ ∼ MVN

(
θ1m+n,QQ′σ2

a + Im+nσ
2
e

)
.

= MVN

θ1m+n,

Σm×m Σm×n

Σn×m Σn×n




where Ψ = {θ, σ2
a, σ

2
e}, and Q is a design matrix of the same construction as P ,

but with dimensions corresponding to the length of the vector (sm, sn)
′.

H1: The M trace objects have different characteristics than the N control objects, and

so sm has some other distribution.

To design their test statistic, Ausdemore et al. [7] begin by considering the con-

ditional likelihood of the vector of scores involving at least one trace object, given the

vector of scores involving only control objects, L (sm|sn,Ψ). The test statistic is then

defined by

T (sm, sn,Ψ) = Pr (L (sm|sn,Ψ) ≥ L (s∗m|sn,Ψ)) .

where s∗m is a random vector of scores calculated between pairs of objects involv-

ing at least one trace object when the trace and control objects truly originate from

the source of interest. Using this test statistic, they decide to reject H0 at a specific
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α−level if
∫
T (sm, sn,Ψ) dπ (Ψ|sn) ≤ c(α), in which the uncertainty associated with

the model parameters has been integrated out, and c(α) is a constant chosen to satisfy

Pr (T (sm, sn,Ψ) ≤ c(α)) ≤ α. The processes for estimating
∫
T (sm, sn,Ψ) dπ (Ψ|sn)

and for obtaining c (α) are found in more detail in [7].

By applying their model to a set of Fourier-Transform Infrared spectroscopy

(FTIR) spectra of paint chips from cans of common household paint, Ausdemore et al.

[7] demonstrate that their proposed approach works well with the number of samples

commonly encountered in forensic science.

2.3.3 A SPECIFIC SOURCE MODEL SELECTION ALGORITHM

A specific source model selection algorithm is missing from the class of models

outlined above. This dissertation introduces a model that serves to complete this class

of kernel-based algorithms (initiated under NIJ Awards 2009-DN-BX-K234, which ad-

dressed the outlier detection problem [26], and 2015-R2-CX-0028, which addressed the

common source problem [5]), by proposing a fully probabilistic model for addressing

the specific source problem in forensic science.

To define the model necessary for assigning a Bayes factor, we proceed by de-

signing a series of three progressive models: first, we develop the model for a fixed

pair of sources; we then extend the two-class model to consider a set (with cardinality

greater than 2) of fixed sources; finally, we design a kernel-based model selection algo-

rithm that considers a single suspected source against a population of multiple random

sources and that allows for assigning the Bayes factor in (2.8). The remainder of this

dissertation will use the concepts introduced in Chapters 1 and 2 to develop the set of

models described in Section 2.3.
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Part II

A Two-Class Model Selection

Algorithm for High-Dimensional

and Complex Data
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OVERVIEW OF PART II: A TWO-CLASS MODEL SELECTION ALGORITHM

FOR HIGH-DIMENSIONAL AND COMPLEX DATA

In this part, we develop the theory and implementation for a two-class kernel-

based model-selection algorithm. In Chapter 3, we define the problem and develop

the algorithm that allows for determining which of two classes is more likely to have

produced a set of trace objects. In addition, we propose a method for studying the

parameters of the proposed model, and a sampling algorithm that can be used to study

the distributions of the considered parameters.

In Chapter 4, we implement the proposed model on the MNIST hand-written

digits data that is commonly used to evaluate the performance of pattern recognition

algorithms.

In Chapter 5 we discuss the benefits and limitations of the proposed two-class

model.
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Chapter 3

DEFINING THE TWO-CLASS MODEL-SELECTION PROBLEM

We begin by considering a two-class scenario, in which we are interested in

defining which of two specific, fixed sources is more likely to have produced a set of

objects of unknown but common origin. That is, given two sets of objects, X1 and X2,

where each set of objects is known to have originated from one of two distinct sources,

and a set of objects, Xu, of unknown origin but known to have originated from one of

the two sources that produced the objects observed in X1 and X2, we are interested in

determining which of the two sources is most likely to have generated the set of objects

observed in Xu. Formally, we are interested in determining if

H1 : Xu is a simple random sample from the source that produced X1;

H2 : Xu is a simple random sample from the source that produced X2.

Oftentimes, differentiating between these propositions can be reduced to a sim-

ple classification or model-selection problem that can be addressed using machine learn-

ing or likelihood-based techniques. However, when we are faced with high-dimensional,

complex, heterogenous data and limited sample sizes, the process is not so straight-

forward: small sample sizes rule out many machine learning techniques, and high-

dimensional, complex, or heterogenous data make it impossible to assign the necessary

probability measures for assigning Bayes factors or performing any other likelihood-

based inference.

We propose a model that leverages the properties of kernel functions (see Chap-

ter 1) to obtain a vector of scores, s, that characterizes pairwise comparisons of all
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objects observed in X1, X2, and Xu. This vector consists of within-source scores,

which arise when compared objects originate from a common source, and between-

source scores, which arise when compared objects originate from different sources. The

model capitalizes on the variability that exists within and between these sets of scores to

address the above inference question. Because the method relies on a kernel function,

the method can be tailored to any type of data by merely modifying this function, and

the remaining inference process remains the same. Furthermore, the model makes only

one assumption, which can be satisfied through the design of the kernel function.

3.1 PROBLEM STATEMENT

Consider two sets of exchangeable observations, X1 and X2, made on two dis-

tinguishable sets of objects, and the set of exchangeable observations, Xu, made on

objects of common but unknown origin. The sets X1 and X2 are considered to be sets

of control objects, while the set Xu is considered to be a set of test objects. We define

the sets X1, X2, and Xu as being simple random samples,

X1 := {x1,1, x1,2, . . . , x1,n0} ,

X2 := {x2,1, x2,2, . . . , x2,n0} ,

Xu := {xu,1, xu,2, . . . , xu,nu} ,

where the sets of control objects consist in n0 objects from their respective sources, and

the set of test objects consists in nu objects known to originate from one of the two

sources represented by the observations in X1 or X2. We are interested in quantifying

the extent of support provided to H1 and H2 above.

Rather than consider the observations themselves, we instead consider the vec-

tor of all pairwise scores, s ∈ RN , N =
(
2n0+nu

2

)
, obtained by comparing the m-

dimensional observations in the sets X1, X2, and Xu via some kernel,

κ : Rm 7→ R,

sij,i′j′ := κ (xij ,xi′j′) = 〈ϕ (xij) , ϕ (xi′j′)〉 i, i′ ∈ {1, 2, u}, j, j′ ∈ {1, . . . , max{n0, nu}},
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where ϕ is a mapping into some separable, high-dimensional Hilbert space [12, 65, 71,

74]. That is, sij,i′j′ is the score obtained by comparing object xij to object xi′j′ using

some kernel function, κ, as defined in Definition 2 in Section 1.1.

We define our kernel such that our vector of scores is distributed according to a

Multivariate Normal distribution, with

s ∼ MVN (θ,Σ) , (3.1)

where θ is the vector of mean terms, and Σ is the covariance matrix associated with

the vector of scores (see Section 9.5 and Chapter 10 for a discussion on the validity

of this assumption, and the implications when this assumption does not hold). These

parameters will collectively be referred to as Ω := {θ,Σ}, and will be more explicitly

defined as we move through the chapter. We can define the Bayes factor in terms of the

Multivariate Normal Likelihood and the associated parameter Ω, such that

Λ =

∫
Ω
ℓ (s|Ω,H1) dΠ(Ω|H1)∫

Ω
ℓ (s|Ω,H2) dΠ(Ω|H2)

:=

∫
Ω1

ℓ (s|Ω1) dΠ(Ω1)∫
Ω2

ℓ (s|Ω2) dΠ(Ω2)
. (3.2)

It is worth noting that there exist differences between Ω1 and Ω2. While the

individual elements of each of the parameters θ1, θ2, Σ1, and Σ2 are restricted to the

same set of potential values, the structures of the mean vectors and covariance matrices

depend on whether H1 or H2 is being considered: if H1 is being considered, then the

parameter Ω1 considers that the set of unknown object Xu originates from the source

that produced X1, and so scores of the form suj,1j′ , suj,uj′ will all be considered as

“within-source 1” scores, and scores of the form suj,2j′ will be considered as “between-

source” scores; likewise, if H2 is being considered, then the parameter Ω2 considers

that the set of unknown object Xu originates from the source that produced X2, and

so scores of the form suj,2j′ , suj,uj′ will all be considered as “within-source 2” scores,

and scores of the form suj,1j′ will be considered as “between-source” scores. Figure 3.1
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shows the differences in the covariance structures when H1 is considered versus when

H2 is considered for a non-stationary kernel (3.5) when n0 = 5 and nu = 3. We see

that the elements take on different values in different positions. In addition, the similar

color palettes between the two images indicate that the individual elements in the two

matrices take on values from the same set of parameter values.

Σ1 Σ2

Figure 3.1: Covariance matrix structure under H1 (left) and H2 (right) when scores are
calculated using a non-stationary kernel (3.5) when n0 = 5 and nu = 3. Comparisons
that consider scores between control objects appear in the upper left corner. Compar-
isons that consider scores between trace objects are given in the lower right corner.
Comparisons that involve trace and control objects are given in the upper right and
lower left corners. Like colors indicate like values between the two covariance matrices,
and so we see that the objects that consider scores between control objects have identical
covariances under Σ1 and Σ2, while the scores that consider trace objects have different
covariances under Σ1 and Σ2.

3.1.1 COVARIANCE STRUCTURE FOR THE OBJECT MODEL

We can investigate the covariance structure for a vector of scores by considering

a univariate object-based model. Consider an object xij defined in terms of the linear

model given by

xij = µi + eij, (3.3)

where µi is the overall mean of class i ∈ {1, 2}, and eij ∼ N (0, σ2) when i = 1, and

eij ∼ N (0, τ 2) when i = 2. Scores can be studied by choosing the following stationary
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and non-stationary kernels, given by s
′

ij,i′j′ and s∗ij,i′j′ , respectively:

s
′

ij,i′j′ := (xij − xi′j′)
2 (3.4)

s∗ij,i′j′ := xijxi′j′ . (3.5)

We can directly examine the mean and covariance terms associated with these

two kernels by calculating the various terms that arise from the different possible score

combinations. Table 3.1 provides the different parameter values under the two kernel

functions given in (3.4) and (3.5) above.

Description of Considered Scores Score 1 Score 2 Stationary Kernel (3.4) Non-Stationary Kernel (3.5)
Expected Value Terms
Within Source 1 1112 – 2σ2 µ2

1

Within Source 2 2122 – 2τ 2 µ2
2

Between Source 1221 – (µ1 − µ2)
2 + σ2 + τ 2 µ1µ2

Covariance Terms
Both Within Source 1, Two Common
Objects 1112 1112 8σ4 2µ2

1σ
2 + σ4

Both Within Source 2, Two Common
Objects 2122 2122 8τ 4 2µ2

2τ
2 + τ 4

Both Within Source 1, One Common
Object 1112 1113 2σ4 µ2

1σ
2

Both Within Source 2, One Common
Object 2122 2123 2τ 4 µ2

2τ
2

Both Within Source 1, No Common
Objects 1112 1314 0 0

Both Within Source 2, No Common
Objects 2122 2324 0 0

Both Between Source, Two Common
Objects 1121 1121 4 (µ1 − µ2)

2 (σ2 + τ 2)+2 (σ2 + τ 2)
2 µ2

1τ
2 + µ2

2σ
2 + σ2τ 2

Both Between Source, One Common
Object from Source 1 1121 1122 4 (µ1 − µ2)

2 σ2 + 2σ4 µ2
2σ

2

Both Between Source, One Common
Object from Source 2 1121 1221 4 (µ1 − µ2)

2 τ 2 + 2τ 4 µ2
1τ

2

Both Between Source, No Common
Objects 1121 1222 0 0

Within Source 1, Between Source, One
Common Object from Source 1 1112 1121 2σ4 µ1µ2σ

2

Within Source 2, Between Source, One
Common Object from Source 2 2122 1121 2τ 4 µ1µ2τ

2

Within Source 1, Between Source, No
Common Objects 1112 1321 0 0

Within Source 1, Within Source 2, No
Common Objects 1112 2122 0 0

Table 3.1: Expected value and covariance terms obtained for the object-based model for
each type of score comparison when a stationary kernel (e.g., (3.4)) and non-stationary
kernel (e.g., (3.5)) are considered. Column one provides descriptions of each type of
comparison that may be observed; columns two and three provide examples of indices
for scores that could be compared in each situation; columns four and five present the
parameter values obtained under the stationary and non-stationary kernels given by
(3.4) and (3.5).

Table 3.1 indicates that the covariance structure varies depending on whether a

stationary or non-stationary kernel is used to obtain the vector of scores, s. For exam-
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ple, we see that there are ten unique terms that arise when a stationary kernel is consid-

ered, versus twelve unique terms that arise when a non-stationary kernel in considered.

Furthermore, we have that some of the stationary terms are relatively straightforward

functions of each other (e.g., 2σ4 is a fraction of 8σ4). In addition, the covariance terms

that arise when a non-stationary kernel is considered depend much more on the means

of the different sources. Finally, we note that the zeros occur in the same positions for

the stationary and non-stationary kernels.

3.1.2 DEFINING A SCORE-BASED MODEL

Suppose, now, that we expand upon (3.1) and define our vector of scores such

that

s ∼ MVN (θ,Σ) =⇒ sij,i′j′ ∼ N
(
θii′ , σ

2
ii′

)
=⇒ sij,i′j′ − θii′

σii′
∼ N (0, 1) , (3.6)

where the parameters θii′ and σii′ are the means and variances associated with the dif-

ferent comparisons that may be considered by a given score. That is, each score in the

vector of scores is either a within-source 1 comparison, a within-source 2 comparison,

or a between-source 1 and 2 comparison. For example, consider a score sij,i′j′ in which

i = i′ = 1, and so θii′ gives us the expected value of scores that compare any two

objects in X1. Likewise, when i = i′ = 2, θii′ gives us the expected value of scores that

compare any two objects in X2. Finally, when i 6= i′, θii′ gives us the expected value

of the scores that compare an object in X1 to an object in X2. We can thus consider

θii′ ∈ {θ11, θ22, θ12}, corresponding respectively to the three scenarios previously de-

scribed. The parameter σii′ can similarly be defined for standard deviations, such that

σii′ ∈ {σ11, σ22, σ12}.

From here, following the work of Gantz and Saunders, and Armstrong [5, 6, 26],

we choose to define the standardized scores from (3.6) according to a random effects

model
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sij,i′j′ − θii′

σii′
= aij + ai′j′ + εij,i′j′ , (3.7)

where aij and ai′j′ are random source effects, such that aij, ai′j′
iid∼ N (0, σ2

a), and εij,i′j′

is a lack-of-fit term, such that εij,i′j′
iid∼ N (0, σ2

e). Furthermore, from (3.6), we have

that 2σ2
a + σ2

e = 1. Finally, we rewrite the model in terms of sij,i′j′ , such that

sij,i′j′ = θii′ + σii′ (aij + ai′j′ + εij,i′j′) ,

and so, given the distributional assumptions associated with (3.6) and (3.7), we define

the distribution of our vector of scores to be

s ∼ MVN
(
θ, ∆

(
PP ′σ2

a + Iσ2
e

)
∆′) , (3.8)

where θ is a vector of length N of the mean terms given by θii′ , and ∆ is an N × N

diagonal matrix of the standard deviations given by σii′ . The design matrix P describes

the effects of the objects being compared on the score for each score considered in the

vector s. For each of the 2n0+nu rows of P , a one is placed in the columns associated

with the labels of the objects being compared in that row, and zeros are placed in the

remaining columns. For example, given a score s12,21, the columns of P corresponding

to the second object from source 1, and the first object from source 2 would be assigned

a value of one, while the remaining positions in the row would be assigned a value of

zero. Finally, I is the N ×N identity matrix.

The likelihood function for s in the numerator and denominator of (3.2) can

be represented using the distribution given in (3.8). As explained in the introduction of

Section 3.1, we have that the structure of the mean vector and covariance matrix depend

on whether Hp or Hd is being considered (see, e.g., Figure 3.1).

It is worth noting that the covariance matrix defined in (3.8) is not equivalent

to that of the object model described in Section 3.1.1. First, the covariance matrix in
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Section 3.1.1 includes 7 unique covariance terms for the stationary kernel and 9 unique

covariance terms for the non-stationary kernel, while the covariance matrix given in

(3.8) includes 8 unique covariance terms (see Table 3.2). This is due to the fact that the

covariance matrix in Section 3.1.1 considers a single term, σ12 to describe the relation-

ship that occurs when a score involves an object from source 1 and an object from source

2. For the covariance matrix in (3.8) to coincide with that defined in Section 3.1.1, we

would need to define two terms, σ12 and σ21, that describe the effect when the object in

common between two scores comes from source 1 versus from source 2. For example,

consider a pair of scores, s11,12 and s11,21. To appropriately capture the covariance that

exists between these two scores would require defining a term σ12, since the common

object between the scores comes from source 1. Likewise, a pair of scores, s11,21 and

s21,22, would require defining a term σ21, since the common object between the scores

comes from source 2. Thus, the covariance terms of the score model in rows 7-9, 11,

and 12 of Table 3.2 do not necessarily have a direct counterpart in the object model.

However, despite these discrepancies, we choose to move forward with the

model given by (3.8). While the covariance matrices of the object and score models

may not be exactly the same, their structures under H1 and H2 remain sufficiently sim-

ilar. Furthermore, as we will see below, an elegant solution exists for studying the

parameters of the model given by (3.8).
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Description of Considered Scores Score 1 Score 2 Object Model (3.5) Score Model (3.8)
Covariance Terms
Both Within Source 1, Two Common
Objects 1112 1112 2µ2

1σ
2 + σ4 σ2

11 (2σ
2
a + σ2

e)

Both Within Source 2, Two Common
Objects 2122 2122 2µ2

2τ
2 + τ 4 σ2

22 (2σ
2
a + σ2

e)

Both Within Source 1, One Common
Object 1112 1113 µ2

1σ
2 σ2

11σ
2
a

Both Within Source 2, One Common
Object 2122 2123 µ2

2τ
2 σ2

22σ
2
a

Both Within Source 1, No Common
Objects 1112 1314 0 0

Both Within Source 2, No Common
Objects 2122 2324 0 0

Both Between Source, Two Common
Objects 1121 1121 µ2

1τ
2 + µ2

2σ
2 + σ2τ 2 σ2

12 (2σ
2
a + σ2

e)

Both Between Source, One Common
Object from Source 1 1121 1122 µ2

2σ
2 σ2

12σ
2
a

Both Between Source, One Common
Object from Source 2 1121 1221 µ2

1τ
2 σ2

12σ
2
a

Both Between Source, No Common
Objects 1121 1222 0 0

Within Source 1, Between Source, One
Common Object from Source 1 1112 1121 µ1µ2σ

2 σ12σ11σ
2
a

Within Source 2, Between Source, One
Common Object from Source 2 2122 1121 µ1µ2τ

2 σ12σ22σ
2
a

Within Source 1, Between Source, No
Common Objects 1112 1321 0 0

Within Source 1, Within Source 2, No
Common Objects 1112 2122 0 0

Table 3.2: Comparison of Covariance terms in Object Model defined according to (3.5),
and Score Model defined according to (3.8). We see that there are two obvious scenarios
(rows 8 and 9) in which the covariance term given by the score model is not equivalent
to that given by the object model.

3.2 MODEL DEVELOPMENT

Evaluating the likelihood ratio in (3.2) requires estimating the parameters θ11,

θ22, θ12, σ11, σ22, σ12, σ2
a, and σ2

e using the information contained in the vector of scores,

s. To study these parameters, we subset the vector of scores to define sc, which includes

only the comparisons between control objects in X1 and X2, and so is a vector of length

Nc =
(
2n0

2

)
. We can then use sc to define the total sums of squares

SSTot = (sc − θc)
′ [∆c∆

′
c]
−1

(sc − θc),

=
(
∆−1

c (sc − θc)
)′ (

∆−1
c (sc − θc)

)
(3.9)
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where θc is the Nc vector of score means, θii′ , and ∆c is the Nc × Nc diagonal matrix

of the score standard deviations, σii′ , associated with the scores sc.

Now, Cochran’s theorem [16] provides us with a means to decompose this sum

of squares into several independent sums of squares.

Theorem 2 (Cochran’s Theorem) Let x be a p × 1 random vector distributed

according to a multivariate normal distribution with mean vector 0 and covariance

matrix I . That is, x ∼ MVN (0, I). In addition, let

p∑
i=1

x2
i = q1 + · · ·+ qK ,

where the qk are quadratic forms in x, where qk = x′Akx ∈ R, where
∑K

k=1Ak =

I , and rk is the rank of Ak.

Then a necessary and sufficient condition that q1, . . . , qK are independently dis-

tributed χ2 distributions with degrees of freedom r1, . . . , rK is that

p = r1 + · · ·+ rK .

Cochran [16] proved this result for central χ2 distributions. Notable devel-

opments of this theorem include: the extension to the non-central case, i.e., x ∼

MVN (µ, I), by Madow [43]; the extension to positive definite covariance matrices,

i.e., x ∼ MVN (0,Σ), by Ogawa [55, 56]; the extension to consider non-zero mean

vectors alongside positive definite covariance matrices, i.e., x ∼ MVN (µ,Σ), by

Ogasawara and Takahashi [54]. Anderson and Styan [4] survey these results, as well as

other implications and consequences of these theorems.

The extension proven by Ogawa [54] allows us to apply Cochran’s Theorem to

s̃ = (∆−1
c (sc − θc)), and rewrite (3.9) as

SSTot = s̃′Is̃ = s̃′

[
Nc∑
l=1

vlv
′
l

]
s̃ (3.10)

where {vl}l, l = 1, . . . , Nc is any orthonormal basis for RNc . Furthermore, consider the

following three idempotent design matrices B11, B22, and B12:
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B11: The Nc×Nc diagonal matrix with one’s in the first
(
n0

2

)
positions of the diagonal

and zero’s in the remaining Nc −
(
n0

2

)
positions;

B22: The Nc×Nc diagonal matrix with zero’s in the first
(
n0

2

)
positions of the diagonal,

one’s in the second
(
n0

2

)
positions, and zero’s in the remaining n2

0 positions;

B12: The Nc ×Nc diagonal matrix with zero’s in the first n
(
n0

2

)
positions and one’s in

the remaining n2
0 positions.

Since B11, B22, and B12 sum to the identity matrix, we have that

SSTot = s̃′ (B11 +B22 +B12) I (B11 +B22 +B12) s̃

= s̃′B11IB11s̃+ s̃′B22IB22s̃+ s̃′B12IB12s̃

= s̃′B11

[
Nc∑
l=1

v11lv
′
11l

]
B11s̃+ s̃′B22

[
Nc∑
l=1

v22lv
′
22l

]
B22s̃+ s̃′B12

[
Nc∑
l=1

v12lv
′
12l

]
B12s̃

= SS11 + SS22 + SS12 (3.11)

where {v11l}l, {v22l}l, and {v12l}l, l = 1, . . . , Nc, are different orthonormal bases

spanning RNc , and will be discussed in more detail in later sections. The matrices Bii′ ,

ii′ ∈ {11, 22, 12}, effectively activate different parts of the vector s̃c according to the

different source comparisons. In particular, we have that

(1) B11s̃c allows us to consider only the positions of s̃c that correspond to the within-

source one comparisons, so that s̃′cB11s̃c gives us the sum of squares for within-

source one comparisons. Recall that B11IB11 = B11, and note that B11 has rank

r11 =
(
n0

2

)
.

(2) B22s̃c allows us to consider only the positions of s̃c that correspond to the within-

source two comparisons, so that s̃′cB22s̃c gives us the sum of squares for within-

source two comparisons. Recall that B22IB22 = B22, and note that B22 has rank

r22 =
(
n0

2

)
.

(3) B12s̃c allows us to consider only the positions of s̃c that correspond to the between-

source one and two comparisons, so that s̃′cB12s̃c gives us the sum of squares for
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between-source comparisons. Recall that B12IB12 = B12, and note that B12 has

rank r12 = n2
0.

Thus, we have defined the total sums of squares in terms of the various source compar-

isons that exist within our vector of scores. Bearing in mind that the goal is to find a

way to estimate the parameters of the distribution given in (3.8), we note that this de-

composition of the total sums of squares allows us to independently study the mean and

standard deviation terms, θii and σii, associated with their respective source compar-

isons. Note that we can choose the orthonormal bases in (3.11) to be any orthonormal

bases, and, in particular, we can choose these orthonormal bases to be the normalized

eigenvectors of the following three matrices:

V11 := B11

(
PcP

′
cσ

2
a + Icσ

2
e

)
B11, (3.12)

V22 := B22

(
PcP

′
cσ

2
a + Icσ

2
e

)
B22, (3.13)

V12 := B12

(
PcP

′
cσ

2
a + Icσ

2
e

)
B12. (3.14)

First, choosing V11, V22, and V12 to be any function of Σc := PcP
′
cσ

2
a + Icσ

2
e is

advantageous in that it introduces the parameters σ2
a and σ2

e , and so provides a means for

studying these parameters. Second, defining V11, V22, and V12 in terms of B11, B22, and

B12 allows us to take the relevant parts of Σc with respect to each source comparison

by activating only the rows and columns of Σc corresponding to the considered source

comparison.
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V11

Eigenvalue (ν11l) Multiplicity (mν11l
) Eigenvectors (v11l)

2 (n0 − 1)σ2
a + σ2

e 1 v11l such that V11v11l = ν111v11l
(n0 − 2)σ2

a + σ2
e n0 − 1 v11l such that V11v11l = ν112v11l

σ2
e

(
n0

2

)
− n0 v11l such that V11v11l = ν113v11l

0 Nc −
(
n0

2

)
v11l such that V11v11l = ν114v11l

V22

Eigenvalue (ν22l) Multiplicity (mν22l
) Eigenvectors (v22i)

2 (n0 − 1)σ2
a + σ2

e 1 v22l such that V22v22l = ν221v22l
(n0 − 2)σ2

a + σ2
e n0 − 1 v22l such that V22v22l = ν222v22l

σ2
e

(
n0

2

)
− n0 v22i such that V22v22l = ν223v22l

0 Nc −
(
n0

2

)
v22i such that V22v22l = ν224v22l

V12

Eigenvalue (ν12l) Multiplicity (mν12l
) Eigenvectors (v12l)

2n0σ
2
a + σ2

e 1 v12l such that V12v12l = ν121v12l
n0σ

2
a + σ2

e 2n0 − 2 v12l such that V12v12l = ν122v12l
σ2
e (n0 − 1)2 v12l such that V12v12l = ν123v12l
0 Nc − n2

0 v12l such that V12v12l = ν124v12l

Table 3.3: Eigenstructure of design matrices V11, V22, and V12 in (3.12), (3.13), and
(3.14)

We can study the eigenstructure of Bii′ (PcP
′
cσ

2
a + Icσ

2
e)Bii′ , ii′ ∈ {11, 22, 12},

for each source comparison (see Table 3.3). This study reveals the presence of multiple

subspaces for each of the considered eigenspaces, and allows us to decompose each of

the sums of squares in (3.11) as another sum of squares. In particular, we have that

s̃′cB11

[
Nc∑
l=1

v11lv
′
11l

]
B11s̃c = s̃′cB11

v111v
′
111

+

n0∑
l=2

v11lv
′
11l

+

(
n0
2

)∑
l=n0+1

v11lv
′
11l

+

Nc∑
l=
(
n0
2

)
+1

v11lv
′
11l

B11s̃c

= s̃′cB11

v111v
′
111

+

n0∑
l=2

v11lv
′
11l

+

N11∑
l=n0+1

v11lv
′
11l

B11s̃c,

where N11 =
(
n0

2

)
is the number of eigenvectors associated with non-zero eigenvalues,

and is also the number of “interesting” eigenvectors, v11l . In particular, we have that

the first N11 eigenvectors have N11 non-zero elements in their first N11 rows, while the

remaining Nc − N11 eigenvectors are vectors of zeros, each with one element equal to

one. The elements that are equal to one correspond to the dimensions whose associated

eigenvalues are zero. These vectors form the standard basis for the null space of the

corresponding matrix, and correspond to the rows of B11 that are equal to the zero
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B11 B22 B12

V11 V22 V12

B11 B22 B12

V11 V22 V12

Figure 3.2: Heat maps for Bii′ matrices (top) and eigenvectors of associated Vii′ matri-
ces (bottom). The

(
n0

2

)
×
(
n0

2

)
and n2

0 × n2
0 patchworks in the first

(
n0

2

)
and n2

0 columns
correspond to eigenvectors with non-zero elements. The remaining columns correspond
to vectors with one non-zero element (in red), and are associated with zero-valued eigen-
values.

vector. The first column of Figure 3.2 displays the heat maps of B11 (top) and of the

matrix of eigenvectors of V11 (bottom). Note that the N11 × N11 patchwork matrix

corresponds to the non-zero rows of B11, and the orthonormal basis for the null space

of V11 corresponds to the zero-valued rows of B11. Because the placements of the

nonzero elements in these eigenvectors correspond to the zero elements of the diagonal

in B11, the product of B11 with this set of eigenvectors results in a zero-valued sum of

squares.

Similarly, for B22, we have

s̃′cB22

[
Nn∑
l=1

v22lv
′
22l

]
B22s̃c = s̃′cB22

v221v
′
221

+

n0∑
l=2

v22lv
′
22l

+

(
n0
2

)∑
l=n0+1

v22lv
′
22l

+

Nc∑
l=
(
n0
2

)
+1

v22lv
′
22l

B22s̃c

= s̃′cB22

v221v
′
221

+

n0∑
l=2

v22lv
′
22l

+

N22∑
l=n0+1

v22lv
′
22l

B22s̃c,

where N22 =
(
n0

2

)
is the number of eigenvectors associated with non-zero eigenvalues,

and is also the number of “interesting” eigenvectors, v22l . In particular, we have that the
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first N22 eigenvectors have N22 non-zero elements in their N11 + 1 through N11 +N22

rows, while the remaining Nc − N22 eigenvectors are vectors of zeros, each with one

element equal to one. The elements that are equal to one correspond to the dimensions

whose associated eigenvalues are zero. These vectors form the standard basis for the

null space of the corresponding matrix, and correspond to the rows of B22 that are equal

to the zero vector. The second column of Figure 3.2 displays the heat maps of B22 (top)

and of the matrix of eigenvectors of V22 (bottom). Note that the N22 × N22 patchwork

matrix corresponds to the non-zero rows of B22, and the orthonormal basis for the null

space of V22 corresponds to the zero-valued rows of B22. Because the placements of the

nonzero elements in these eigenvectors correspond to the zero elements of the diagonal

in B22, the product of B22 with this set of eigenvectors results in a zero-valued sum of

squares.

Finally, for B12, we have

s̃′cB12

[
Nn∑
l=1

v12lv
′
12l

]
B12s̃c = s̃′cB12

v121v
′
121

+

(
n0
2

)
−1∑

l=2

v12lv
′
12l

+

n2
0∑

l=
(
n0
2

)v12lv
′
12l

+

Nc∑
l=n2

0+1

v12lv
′
12l

B12s̃c

= s̃′cB12

v121v
′
121

+

(
n0
2

)
−1∑

l=2

v12lv
′
12l

+

N12∑
l=
(
n0
2

)v12lv
′
12l

B12s̃c.

where N12 = n2
0 is the number of eigenvectors associated with non-zero eigenvalues,

and is also the number of “interesting” eigenvectors, v12l . In particular, we have that

the first N12 eigenvectors have N12 non-zero elements in their last N12 rows, while the

remaining Nc − N12 eigenvectors are vectors of zeros, each with one element equal to

onefavorable. The elements that are equal to one correspond to the dimensions whose

associated eigenvalues are zero. These vectors form the standard basis for the null

space of the corresponding matrix, and correspond to the rows of B12 that are equal

to the zero vector. The third column of Figure 3.2 displays the heat maps of B12 (top)

and of the matrix of eigenvectors of V12 (bottom). Note that the N12 × N12 patchwork

matrix corresponds to the non-zero rows of B12, and the orthonormal basis for the null

space of V12 corresponds to the zero-valued rows of B12. Because the placements of the
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nonzero elements in these eigenvectors correspond to the zero elements of the diagonal

in B12, the product of B12 with this set of eigenvectors results in a zero-valued sum of

squares. favorable This decomposition is favorable in that studying the relevant parts

of the eigen-decomposition of Σc is equivalent to studying the eigen-decomposition of

the relevant parts of Σc. That is,

s̃′cB11

[
Nc∑
l=1

v11lv
′
11l

]
B11s̃c = s̃′11

[
N11∑
l=1

v∗
11l

v∗
11l

′

]
s̃11

s̃′cB22

[
Nc∑
l=1

v22lv
′
22l

]
B22s̃c = s̃′22

[
N22∑
l=1

v∗
22l

v∗
22l

′

]
s̃22

s̃′cB12

[
Nc∑
l=1

v12lv
′
12l

]
B12s̃c = s̃′22

[
N12∑
l=1

v∗
12l

v∗
12l

′

]
s̃12

where v∗
11l

are the eigenvectors of the N11×N11 matrix formed by considering the non-

zero rows of the columns associated with the non-zero eigenvalues of V11 (given by the

1 : N11 rows and 1 : N11 columns of V11), v∗
22l

are the eigenvectors of the N22 × N22

matrix formed by considering the non-zero portions of the columns associated with the

non-zero eigenvalues of V22 (given by the (N11 + 1) : (N11 +N22) rows and 1 : N22

columns of V22), and v∗
12l

are the eigenvectors of the N12 ×N12 matrix formed by con-

sidering the non-zero portions of the columns associated with the non-zero eigenvalues

of V12 (given by the (N22 + 1) : Nn rows and 1 : N12 columns of V12). This is equiv-

alent to considering only the indices of Σc that correspond to each source comparison.

That is, v∗
11l

are the eigenvectors of

Σ11 := P11P
′
11σ

2
a + I11σ

2
e , (3.15)

the matrix formed by considering the rows of Σc associated with within-source one

comparisons; v∗
22l

are the eigenvectors of

Σ22 := P22P
′
22σ

2
a + I22σ

2
e , (3.16)

the matrix formed by considering the rows of Σc associated with within-source two
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comparisons; and v∗
12l

are the eigenvectors of

Σ12 := P12P
′
12σ

2
a + I12σ

2
e , (3.17)

the matrix formed by considering the rows of Σc associated with between source com-

parisons. In addition, we have that s̃11 =
(
∆−1

11 (s11 − θ111N11)
)
, where ∆11 is the

N11 ×N11 portion of ∆n that considers σ2
11, s̃22 =

(
∆−1

22 (s22 − θ221N22)
)
, where ∆22

is the N22 × N22 portion of ∆n that considers σ2
22, and s̃12 = (∆−1

12 (s12− θ121N12)),

where ∆12 is the N12 ×N12 portion of ∆n that considers σ2
12.

Σ11

Eigenvalue (ν11l) Multiplicity (mν11l
) Eigenvectors (v∗

11l
)

2 (n0 − 1)σ2
a + σ2

e 1 v∗
111

:=
1N11√
N11

(n0 − 2)σ2
a + σ2

e n0 − 1 v∗
11l

such that Σ11v
∗
11l

= ν112v
∗
11l

σ2
e N11 − n0 v∗

11l
such that Σ11v

∗
11l

= ν113v
∗
11l

Σ22

Eigenvalue (ν22l) Multiplicity (mν22l
) Eigenvectors (v∗

22l
)

2 (n0 − 1)σ2
a + σ2

e 1 v∗
221

:=
1N22√
N22

(n0 − 2)σ2
a + σ2

e n0 − 1 v∗
22l

such that Σ22v
∗
22l

= ν222v
∗
22l

σ2
e

(
n0

2

)
− n0 v∗

22l
such that Σ22v

∗
22l

= ν223v
∗
22l

Σ12

Eigenvalue (ν12l) Multiplicity (mν12l
) Eigenvectors (v∗

12l
)

2n0σ
2
a + σ2

e 1 v∗
121

:=
1N12√
N12

n0σ
2
a + σ2

e 2n0 − 2 v∗
12l

such that Σ12v
∗
12l

= ν122v
∗
12l

σ2
e (n0 − 1)2 v∗

12l
such that Σ12v

∗
12l

= ν123v
∗
12l

Table 3.4: Eigenstructure of design matrices Σ11, Σ22, and Σ12 in (3.15), (3.16), and
(3.17)

These results follow from using the Bii′ matrices to activate certain areas of the

vector s̃c and the matrices V11, V22, and V12, i.e., introducing Bii′ allows us to activate

the parts of s̃c and Σc that correspond to the different source comparisons. Rather

than consider a sparse Nc vector alongside a sparse Nc × Nc matrix, we can directly

consider the interesting parts of the vector and matrix by considering the associated Nii′-

dimensional vector and Nii′ × Nii′ matrix, ii′ ∈ {11, 22, 12}. Thus, we can explicitly

define the source comparison sums of squares such that
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SS11 =
(
∆−1

11 (s11 − θ111N11
)
)′ (

v∗
111v

∗
111

′) (∆−1
11 (s11 − θ111N11

)
)
+

(
∆−1

11 (s11 − θ111N11
)
)′( n0∑

l=2

v∗
11l

v∗
11l

′

)(
∆−1

11 (s11 − θ111N11
)
)
+ (3.18)

(
∆−1

11 (s11 − θ111N11
)
)′( N11∑

l=n0+1

v∗
11l

v∗
11l

′

)(
∆−1

11 (s11 − θ111N11
)
)
,

SS22 =
(
∆−1

22 (s22 − θ221N22)
)′ (

v∗
221v

∗
221

′) (∆−1
22 (s22 − θ221N22)

)
+

(
∆−1

22 (s22 − θ221N22
)
)′( n0∑

l=2

v∗
22l

v∗
22l

′

)(
∆−1

22 (s22 − θ221N22
)
)
+ (3.19)

(
∆−1

22 (s22 − θ221N22
)
)′( N22∑

l=n0+1

v∗
22l

v∗
22l

′

)(
∆−1

22 (s22 − θ221N22
)
)
,

and

SS12 =
(
∆−1

12 (s12 − θ121N12)
)′ (

v∗
121v

∗
121

′) (∆−1
12 (s12 − θ121N12)

)
+

(
∆−1

12 (s12 − θ121N12
)
)′(n0

2 )−1∑
l=2

v∗
12l

v∗
12l

′

(∆−1
12 (s12 − θ121N12

)
)
+ (3.20)

(
∆−1

12 (s12 − θ121N12)
)′ N12∑

l=(n0
2 )

v∗
12l

v∗
12l

′

(∆−1
12 (s12 − θ121N12)

)
,

where the degrees of freedom for each line of (3.18), (3.19), and (3.20) are equal to the

multiplicities of the associated eigenvalues in Table 3.4, and the total sum of squares

remains as in (3.9). It is trivial to show that
∑3

l=1 mν11l
+
∑3

l=1mν22l
+
∑3

l=1mν12l
=

Nc.

In the following sections, we analyze the three terms that make up each of the

sums of squares defined in (3.18), (3.19), and (3.20), so that we can write each term

without the use of eigenvectors, and more efficiently estimate the model parameters.
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3.2.1 ALTERNATIVE REPRESENTATION OF SS11

We begin by studying the terms in SS11, given by (3.18). All developments can

be found in Appendix A. We can re-write the first term as

(s11 − θ111N11
)
′
∆−1′

111
v∗
111v

∗
111

′∆−1
11 (s11 − θ111N11

) =
N11

σ2
11

(s11 − θ11)
2
, (3.21)

where s11 is the average score observed for within-source comparisons from source 1.

Next, we consider the structure of the sum given by ∆−1′

11

[∑n0

l=2 v
∗
11l
v∗
11l

′]∆−1
11 .

Following the development by [6], we can write this second sum of squares as

s′11∆
−1′

11

[
n0∑
l=2

v∗
11l

v∗
11l

′

]
∆−1

11 s11 =
(n0 − 1)2

σ2
11(n0 − 2)

n0∑
j=1

(
s
(1j)
11 − s11

)2
, (3.22)

:= SSW11

where s(1j)11 , j ∈ {1, . . . , n0} is the mean value of scores that compare object j in source

1 to any other object in source 1, and s11 is as in (3.21). The final result, given by (3.22),

gives the within-source sum of squares for the within-source-one model, SSW11 . By

considering this term in conjunction with the total sums of squares for the considered

model, SSTot11 = 1
σ2
11

∑n0−1
j=1

∑n0

j′=j+1 (s1j,1j′ − s11)
2 (this is the sum of the last two

terms in (3.18)), we can obtain an eigenvector-free estimate of the last bracketed term

in SS11 by considering SSTot11 − SSW11 (see Table 3.5).

Following Cochran’s theorem [16] and the development in Section 3.2, we have

that each sum of squares in SS11 is an independent central χ2-distribution with degrees

of freedom equal to the multiplicity of the eigenvalue, ν11l , associated with the consid-

ered sum (see Table 3.4). We can study these terms to obtain the expected mean sums

of squares. Generally speaking, if we have any sum of squares term, SS, associated

with the eigenvalue λ whose multiplicity is mλ, then we have

SS

V ar[SS]
∼ χ2

dfSS
=⇒ SS

λ
∼ χ2

df=mλ
,
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such that,

E
[
SS

λ

]
= mλ ⇐⇒ E [SS] = λmλ

⇐⇒ E [MS] = λ.

Thus, the expected value of a sum of squares divided by its degrees of freedom corre-

sponds to the corresponding eigenvalue. Applying these results to the three terms that

comprise SS11 in (3.18), we obtain the results presented in Table 3.5.

Source of Variance df SS MS E(MS)
Within Source n0 − 1 SSW11 MSW11 =

SSW11

n0−1
(n0 − 2)σ2

a + σ2
e

Error N11 − n0 SSE11 = SSTot11 − SSW11 MSE11 =
SSE11

N11−n0
σ2
e

Table 3.5: ANOVA table corresponding to SS11

3.2.2 ALTERNATIVE REPRESENTATION OF SS22

Next, we move to study the terms in SS22, given by (3.19). All developments

can be found in Appendix B. We proceed in the same manner as in Section 3.2.1. We

re-write the first term as

(s22 − θ221N22)
′
∆−1′

22 v∗
221v

∗
221

′∆−1
22 (s22 − θ221N22) =

N22

σ2
22

(s22 − θ22)
2
, (3.23)

where s22 is the average score observed for within-source comparisons from source 2.

Next, we consider the structure of the sum given by ∆−1′

22

[∑n0

l=2 v
∗
22l
v∗
22l

′]∆−1
22 .

Again, we can write this second sum of squares as the within-source sum of squares,

SSW22 , for the the within-source-two model

s′22∆
−1′

22

[
n0∑
l=2

v∗
22l

v∗
22l

′

]
∆−1

22 s22 =
(n0 − 1)2

σ2
22(n0 − 2)

n0∑
j=1

(
s
(2j)
22 − s22

)2
(3.24)

:= SSW22

where s(2j)22 , j ∈ {1, . . . , n0} is the mean value of scores that compare object j in source

2 to any other object in source 2, and s22 is as in (3.23). Again, by considering this
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term in conjunction with the total sum of squares for the considered model, given by

SSTot22 = 1
σ2
22

∑n0−1
j=1

∑n0

j′=j+1(s2j,2j′ − s22)
2 (this is the sum of the last two terms in

(3.19)), we can obtain an eigenvector-free estimate of the last bracketed term in SS22.

By using the results presented in Section 3.2.1, we obtain the following results.

Source of Variance df SS MS E(MS)
Within Source n0 − 1 SSW22 MSW22 =

SSW22

n0−1
(n0 − 2)σ2

a + σ2
e

Error N22 − n0 SSE22 = SSTot22 − SSW22 MSE22 =
SSE22

N22−n0
σ2
e

Table 3.6: ANOVA table corresponding to SS22

Note that the results presented in table 3.6 are identical to those presented in table 3.5.

This phenomenon arises from the balanced nature of the design.

3.2.3 ALTERNATIVE REPRESENTATION OF SS12

Finally, we consider the terms in SS12, given by (3.20). All developments can

be found Appendix C. We proceed in the same manner as in Sections 3.2.1 and 3.2.2.

As before, we begin by re-writing the first term as

(s12 − θ121N12)
′
∆−1′

12 v∗
121v

∗
121

′∆−1
12 (s12 − θ121N12) =

N12

σ2
12

(s12 − θ12)
2
, (3.25)

where s12 is the average score observed for between-source comparisons between sources

1 and 2.

Next, we consider the structure of ∆−1′

12

[∑2n0−1
l=2 v∗

12l
v∗′
12l

]
∆−1

12 . Again, we can

write this second sum of squares as the within-source sum of squares, SSW12 for the

between-source model

s′12∆
−1′

12

[
2n0−1∑
l=2

v∗
12l

v∗′

12l

]
∆−1

12 s12 =
n2
0

σ2
12n0

n0∑
j=1

[(
s
(1j)
12 − s12

)2
+
(
s
(2j′ )

12 − s12

)2]
(3.26)

= SSW12

where s
(1j)
12 , j ∈ {1, . . . , n0}, is the mean value of scores that compare object j in

source 1 to any other object in source 2, s
(2j′ )

12 , j′ ∈ {1, . . . , n0}, is the mean value of

scores that compare object j′ in source 2 to any other object in source 1, and s12 is as
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in (3.25). Finally, by considering this term in conjunction with the total sum of squares

for the considered model, given by SSTot12 = 1
σ12

∑n0

j=1

∑n0

j′=1 (s1j,2j′ − s12)
2 (this is

the sum of the last two terms in (3.20)), we can obtain an eigenvector-free estimate of

the final bracketed term in SS12. By using the results of Cochran’s theorem presented

in Section 3.2.1, we obtain the following results.

Source of Variance df SS MS E(MS)
Within Source 2n0 − 2 SSW12 MSW12 =

SSW12

2n0−2
n0σ

2
a + σ2

e

Error (n0 − 1)2 SSE12 = SSTot12 − SSW12 MSE12 =
SSE12

(n0−1)2
σ2
e

Table 3.7: ANOVA table corresponding to SS12

3.3 PARAMETER ESTIMATION

At this point, we would like to use the results presented in Sections 3.2.1, 3.2.2,

and 3.2.3 to estimate the parameters of our model; however, given the dependencies that

exist between the various developments, we must resort to sampling methods to obtain

posterior samples of the model parameters. In particular, we use a Gibbs sampler with

a Metropolis-Hastings step to study the distributions of our various parameters [14, 44].

Before defining the Gibbs sampler, we must first assign posterior distributions to the

model parameters (development of posterior distributions for σ2
e , θii′ , and σ2

ii′ can be

found in Appendix F).

We begin by assigning posterior distributions for the variance terms, σ2
a and σ2

e .

Because we have the constraint that 2σ2
a + σ2

e = 1 (see (3.6) in Section 3.1.2), we

can define a posterior distribution for one variance term, obtain posterior samples from

this distribution, and directly obtain the associated value of the other. In this case, we

choose to obtain posterior samples of σ2
e , so as to exploit all information available in

Tables 3.5, 3.6, and 3.7. The value of σ2
a := (1− σ2

e)/2 then follows directly.

To define the posterior distribution of σ2
e , we begin by collecting all sums of

squares terms defined in Tables 3.5, 3.6, and 3.7 to capitalize on all information related
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to the value of σ2
e . We have that

SSW11

(n0 − 2)σ2
a + σ2

e

=
SSW11

(n0 − 2)
(

1−σ2
e

2

)
+ σ2

e

∼ χ2
df=n0−1

SSE11

σ2
e

∼ χ2
df=N11−n0

SSW22

(n0 − 2)σ2
a + σ2

e

=
SSW22

(n0 − 2)
(

1−σ2
e

2

)
+ σ2

e

∼ χ2
df=n0−1

SSE22

σ2
e

∼ χ2
df=N22−n0

SSW12

n0σ2
a + σ2

e

=
SSW12

n0

(
1−σ2

e

2

)
+ σ2

e

∼ χ2
df=2n0−2

SSE12

σ2
e

∼ χ2
df=(n0−1)2 ,

and so we define

MSe =
SSW11

C2
+

SSW22

C2
+

SSW12

C1
+

SSE11

C3
+

SSE22

C3
+

SSE12

C3

∼ χ2
df=(n0−1)+(n0−1)+(2n0−2)+(N11−n0)+(N22−n0)+(n0−1)2 ,

(3.27)

where

C1 = n0

(
1− σ2

e

2

)
+ σ2

e C2 = (n0 − 2)
(

1−σ2
e

2

)
+ σ2

e C3 = σ2
e .

We can simplify (3.27) by considering a common denominator, such that

MSe =
C1C3 (SSW11 + SSW22) + C2C3 (SSW12) + C1C2 (SSE11 + SSE22 + SSE12)

C1C2C3

∼ χ2

df=(2n0
2 )−3

.

We now define the posterior distribution for the variance term, σ2
e by considering a χ2

likelihood for the MSe term, and assuming a Beta prior (since we have the constraint

that σ2
e ≤ 1), such that

π
(
σ2
e |MSe, αe, βe

)
∝ χ2

(
MSe|σ, σ2

e , αe, βe

)
B
(
σ2
e |αe, βe

)
. (3.28)

where the dependence on σ := {σii′}ii′ in (3.28) is inherent in the construction of MSe

as a sum of the various sum of squares terms defined in Section 3.2.

Next, we assign the posterior distributions for the mean parameters, θ11, θ22, and
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θ12, by considering Multivariate Normal likelihoods and assuming Normal priors, with

mean ϕii′ and variance ωii′ , such that

π
(
θ11|s11, σ11, σ

2
a, σ

2
e , ϕ11, ω11

)
∝ MVN

(
s11|θ11, σ11, σ

2
a, σ

2
e , ϕ11, ω11

)
N (θ11|ϕ11, ω11) ; (3.29)

π
(
θ22|s22, σ22, σ

2
a, σ

2
e , ϕ22, ω22

)
∝ MVN

(
s22|θ22, σ22, σ

2
a, σ

2
e , ϕ22, ω22

)
N (θ22|ϕ22, ω22) ; (3.30)

π
(
θ12|s12, σ12, σ

2
a, σ

2
e , ϕ12, ω12

)
∝ MVN

(
s12|θ12, σ12, σ

2
a, σ

2
e , ϕ12, ω12

)
N (θ12|ϕ12, ω12) , (3.31)

where the resulting posterior distributions of equations (3.29), (3.30), and (3.31) are

Normally distributed. The parameters of the posterior distribution of θ11 are given by

µ11p =
1′
N11

Σ−1
11 s11 + ϕ11

1′
N11

Σ−1
11 1N11ω11 + 1

σ2
11p =

ω11

1′
N11

Σ−1
11 1N11ω11 + 1

,

the parameters of the posterior distribution of θ22 are given by

µ22p =
1′
N22

Σ−1
22 s22 + ϕ22

1′
N22

Σ−1
22 1N22

ω22 + 1
σ2
22p =

ω22

1′
N22

Σ−1
22 1N22

ω22 + 1
,

and the parameters of the posterior distribution of θ12 are given by

µ12p =
1′
N12

Σ−1
12 s12 + ϕ12

1′
N12

Σ−1
12 1N12

ω12 + 1
σ2
12p =

ω12

1′
N12

Σ−1
12 1N12

ω12 + 1
.

Finally, we define the posterior distributions for the variance terms, σ2
11, σ

2
22,

and σ2
12, by considering Multivariate Normal likelihoods and assuming Inverse-Gamma

priors with hyperparameters αii′ and βii′ , such that

π(σ2
11|s11, θ11, σ2

a, σ
2
e , α11, β11) ∝ MVN (s11|σ11, θ11, σ

2
a, σ

2
e , α11, β11)IG(σ2

11|α11, β11); (3.32)

π(σ2
22|s22, θ22, σ2

a, σ
2
e , α22, β22) ∝ MVN (s22|σ22, θ22, σ

2
a, σ

2
e , α22, β22)IG(σ2

22|α22, β22); (3.33)

π(σ2
12|s12, θ12, σ2

a, σ
2
e , α12, β12) ∝ MVN (s12|σ12, θ12, σ

2
a, σ

2
e , α12, β12)IG(σ2

12|α12, β12), (3.34)
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where the resulting posterior distributions of (3.32), (3.33), and (3.34) are distributed

according to Inverse Gamma distributions. The parameters of the posterior distribution

of σ2
11 are given by

α11p =
N11

2
+ α11 β11p =

1

2
(s11 − θ111N11

)
′
Σ−1

11 (s11 − θ111N11
) + β11,

the parameters of the posterior distribution of σ2
22 are given by

α22p =
N22

2
+ α22 β22p =

1

2
(s22 − θ221N22

)
′
Σ−1

22 (s22 − θ221N22
) + β22,

and the parameters of the posterior distribution of σ2
12 are given by

α12p =
N12

2
+ α12 β12p =

1

2
(s12 − θ121N12)

′
Σ−1

12 (s12 − θ121N12) + β12.

The equations given by (3.32), (3.33), and (3.34) provide us with samples from the

posterior distribution of the variances, σ2
11, σ2

22, and σ2
12. We, however, are interested in

the standard deviation terms, σ11, σ22, and σ12, and so we simply take the square root

of the sampled variance terms to obtain samples of the standard deviation terms. The

resulting inference is not affected.

Note that each of the distributions given in (3.28) through (3.33) depends on the

value of at least one other parameter; therefore, we must rely on sampling techniques

to study the distributions of the model parameters. We construct the following Gibbs

sampler, described in Algorithm 1.
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Algorithm 1: Gibbs sampler for generating posterior samples from the
distributions of the model parameters

Data: Initial values for all parameters at t = 0; values for hyperparameters
Result: Posterior samples for all parameters
for t ∈ 1 : T iterations do

1. Draw σ
2(t)
e |s,MS

(t−1)
e ,σ(t−1), αe, βe from the distribution defined in (3.28);

2. Define σ
2(t)
a = (1− σ

2(t)
e )/2 ;

3. Draw θ
(t)
11 |s11, σ

(t−1)
11 , σ

2(t)
a , σ

2(t)
e , ϕ11, ω11 from the distribution defined in

(3.29);
4. Draw θ

(t)
22 |s22, σ

(t−1)
22 , σ

2(t)
a , σ

2(t)
e , ϕ22, ω22 from the distribution defined in

(3.30);
5. Draw θ

(t)
12 |s12, σ

(t−1)
12 , σ

2(t)
a , σ

2(t)
e , ϕ12, ω12 from the distribution defined in

(3.31);
6. Draw σ

2(t)
11 |s11, θ(t)11 , σ

2(t)
a , σ

2(t)
e , α11, β11 from the distribution defined in (3.32);

7. Draw σ
2(t)
22 |s22, θ(t)22 , σ

2(t)
a , σ

2(t)
e , α22, β22 from the distribution defined in (3.33);

8. Draw σ
2(t)
12 |s12, θ(t)12 , σ

2(t)
a , σ

2(t)
e , α12, β12 from the distribution defined in (3.34);

end

Because the distribution defined for σ2
e in (3.28) is not readily known, we cannot di-

rectly sample from this distribution. As a result, the first step in Algorithm 1 is not

so straightforward - indeed, obtaining a sample from the posterior distribution of σ2
e

requires introducing a Metropolis-Hastings algorithm [14, 44]. This procedure is sum-

marized in Algorithm 2.

Algorithm 2: Metropolis-Hastings algorithm for obtaining a sample
from the posterior distribution of σ2

e

Data: Value of σ2(t−1)
e ; values for hyperparameters αe, βe

Result: Posterior sample of σ2(t)
e

1. Sample a candidate value, σ2∗
e ∼ B(2, σ−2(t−1)

e );
2. Calculate the value of MS∗

e using the candidate value σ2∗
e using (6.22);

3. Calculate the value of MS
(t−1)
e using the current value σ

2(t−1)
e (6.22);

4. Evaluate the density, f∗, at σ2∗
e using the hyperparameters αe and βe, the value of

MS∗
e , and (3.28);

5. Evaluate the density, f (t−1), at σ2(t−1)
e using the hyperparameters αe and βe, the

value of MS
(t−1)
e , and (3.28);

6. Calculate the probability of acceptance, pacc = f∗

f (t−1)

B(σ2(t−1)|2,σ−2∗)
B(σ2∗|2,σ−2(t−1))

7. Generate a random probability, p∗ ∼ U(0, 1);
8. If pacc ≥ p∗, then define σ

2(t)
e := σ2∗

e ; otherwise define σ
2(t)
e := σ

2(t−1)
e ;

Now that we have identified a method for obtaining samples of the parameters

used to define θ,∆, σ2
a, and σ2

e , we can assign the kernel Bayes factor,
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K =

∫
ℓ (st|Ω1) π (Ω1)∫
ℓ (st|Ω2) π (Ω2)

, (3.35)

≈
1
T

∑T
t=1 ℓ

(
st|Ω(t)

1

)
1
T

∑T
t′=1 ℓ

(
st|Ω(t′)

2

) (3.36)

where st is the vector of scores that consider at least one trace object, the subscripts

on Ω correspond to the model being considered, and Ω(t) are posterior samples of the

parameters obtained using Algorithm 1. We consider the conditional log-likelihood of

the scores that consider objects of unknown origin from the set Xu, st, rather than the

joint log likelihood of s, so as to not recycle the information contained in the scores sc,

which are used to sample the parameter values.

By constructing the vector of scores such that (3.8) is satisfied, we can define

κ (xij,xi′j′) using virtually any type of kernel, so long as we adhere to the constraints

outlined in Section 3.1.

3.4 RECOVERING THE MODEL PARAMETERS

We now move to study the ability of the Gibbs sampler defined in Algorithm 1

to recover the true model parameters in an ideal situation. We consider the performance

of the model when objects are generated using the object model and the associated

scores are calculated using the non-stationary kernel (product of pairs of objects) given

in (3.5), and when scores are sampled directly from the proposed model given in (3.8).

We begin by considering the scenario in which scores are obtained by calcu-

lating the product of pairs of objects generated from the object model described in

Section 3.1.1. Doing so requires defining two mean terms, µ1 and µ2, and two variance

terms σ2 and τ 2, associated with the error terms, e1j and e2j in (3.3). As an example,

we consider µ1 = 3, µ2 = 5, σ2 = 0.15, and τ 2 = 0.23. From Table 3.2 we have that

µ11 = 9, µ22 = 25, µ12 = 15, σ2
11 = 2.72 and σ2

22 = 11.55.

We sample objects according to (3.3) to obtain 100 vectors of scores using (3.5).
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Then, using the model proposed above, we attempt to recover the model parameters

(µ11, µ22, µ12, σ11, and σ22). Table 3.8 (column 1) shows the model’s ability to recover

the model parameters in this scenario.

We also consider the scenario in which the scores are sampled directly accord-

ing to (3.8). In this case, we directly build the mean vector and the covariance matrix

by using the values of the parameters µ11, µ22, µ12, σ11 and σ22 reported in the previous

paragraph. Note that we do not include a “true” value for σ12, given the discrepan-

cies described in Section 3.1.2. Instead, we use the parameters recovered for the object

model to reasonably define σ2
12 = 3. After defining these parameters, we directly sam-

ple 1000 score vectors from the model given in (3.8). The results of these experiments

are presented below in Table 3.8 (column 2).

Parameter n0 Object Model Proposed Model
µ11 = 9 5 9.00 8.94

10 8.95 8.97
15 8.96 9.00

µ22 = 25 5 25.09 25.01
10 24.94 25.27
15 25.05 25.08

µ12 = 15 5 15.02 14.95
10 14.94 15.04
15 14.98 15.02

σ2
11 = 2.72 5 2.44 2.72

10 3.04 2.68
15 3.26 2.78

σ2
22 = 11.55 5 8.93 11.52

10 8.51 11.00
15 8.63 11.86

Table 3.8: Parameters recovered for the object model (see Section 3.1.1) and the pro-
posed model (3.8) for n0 = 5, 10, and 15 control objects.

Table 3.8 demonstrates that the parameters are better recovered when the scores

are directly generated from the model given by (3.8), than when they are generated from

the object model. This is to be expected. This is particularly true when we consider the

different variance terms, σ2
11 and σ2

22 (overall, there does not seem to be any issues

with the model’s ability to recover the mean parameters, µ11, µ22, and µ12, under either
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scenario). There are two items worth noting when we recover the parameters for scores

generated using the object model. First, the initial variances defined by σ and τ do

influence the ability of the model to accurately recover the parameters. That is, when

there exists large variation within a group of objects, the model does experience more

difficulties in recovering the variance terms σ2
11 and σ2

22.
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Chapter 4

IMPLEMENTING THE TWO-CLASS MODEL-SELECTION

ALGORITHM

4.1 CONSIDERING THE MNIST HANDWRITTEN DIGIT DATA

In this section, we apply the proposed model to the pervasive MNIST Hand-

written Digit Data [39] to obtain some preliminary results. The MNIST Handwritten

Digit Data consists in approximately 70,000 observations of handwritten digits. Each

observation is a 28× 28 pixel image of an integer, 0 through 9.

We analyze the performance of our model and compare its performance to that

of the classic Support Vector Machine (SVM) (we use the ksvm() function from the

kernlab package [38]), typically used for binary classification [12, 65, 74, 89, 90]. The

methods are inherently similar in that they both rely on calculating the inner products

between vectors in some feature space, and reduce the dimension of the information

that is stored and used to make a decision. However, while an SVM uses optimization

to characterize an optimal hyperplane in some high-dimensional feature space using a

set of support vectors, and classifies new observations according to which side of the

hyperplane they lie on (see Section 1.1.1), the proposed model directly studies the pa-

rameters of the Multivariate Normal distribution that characterizes the vector of scores,

and evaluates a Bayes Factor that compares the likelihood of observing the vector of

trace scores under each of the considered models, H1 and H2. Finally, the SVM con-

siders some subset of the original vectors (i.e., the support vectors) to classify a new

point, while the proposed model considers a set of only 8 parameters, regardless of the

dimension, type, or quantity of data considered.
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According to the literature, the digit pairs 3 and 5, 2 and 6, and 7 and 9 are, typ-

ically, the most difficult for the SVM to distinguish. Thus, we have elected to compare

the abilities of the proposed model and an SVM to differentiate between the digits 3

and 5. For each model, we consider a radial basis function kernel, given that this kernel

has been shown to work well for SVMs on this data set.

4.1.1 ASSESSING MODEL PERFORMANCE

To assess the performance of the model, we consider a series of simulations in

which we consider n0 = 5, 10, and 15 control objects per source, and nu = 3 trace

objects. For a series of simulations, we consider the performance of the models when a

fixed set of control objects is considered alongside 200 sets of trace objects (100 from

each source). That is, for a single iteration, we sample n0 control objects from sources

1 and 2 (digits 3 and 5), and 100 sets of nu trace objects from each source, for a total

of 200 sets of trace objects. The two sets of n0 control objects are used to determine

the source of the 200 sets of trace objects. This process is repeated 100 times, and the

average performance is assessed. The results are presented in Table 4.1.

n0
SVM

(Overall Performance)
SVM

(Triplet Performance)
SVM

(Voting Performance)
Proposed

Model Performance
5 73.18% 48.22% 74.90% 68.22%
10 78.34% 55.85% 85.68% 81.87%
15 83.50% 62.48% 89.32% 87.35%

Table 4.1: Performance of SVM versus two-class Model when n0 = 5, 10, and 15 control
objects and nu = 3 trace objects for 100 iterations of the experiment. The overall
performance of the SVM gives the average percentage of correct classifications. The
triplet performance of the SVM gives the average percentage of sets of nu that were
correctly classified in their entirety. The voting performance of the SVM gives the
percentage of sets of nu that would be correctly classified if a voting system were used
to determine the class of the set of trace objects. The performance of the Proposed
model gives the average percentage of sets of nu that were correctly classified.

The results in Table 4.1 present the results of the experiment described above.

We see that, as the number of control objects increases, the rates of correct classification

increase across all columns. Notably, Table 4.1 indicates that when we consider n0 = 5

control objects, the overall performance of the SVM slightly out-performs the perfor-

mance of the proposed model. However, when we compare the triplet performance of
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the SVM to that of the proposed model, we see that the proposed model drastically

out-performs the SVM. When we move to consider n0 = 10 and 15 control objects,

the proposed model outperforms the SVM both in terms of overall performance, and in

terms of the triplet performance. We do note, however, that when a voting system is

used to classify the set of trace objects (For example, suppose that the SVM classifies

the three trace objects as 3, 3, 5. Under the voting system, the entire set of trace objects

would be assigned class 3. Likewise, should the SVM classify the three trace objects

as 5, 3, 5, the entire set of trace objects would be assigned class 5), we see a more

comparable performance. In particular, we see that the difference between the voting

performance of the SVM and the performance of the proposed model decreases as we

move from n0 = 5 control objects to n0 = 15 control objects.

Finally, it is worth mentioning that the computational cost associated with each

model is different. Overall, the SVM is more computationally efficient. At this time, we

cannot directly compare the two models: first, the SVM package used in this experiment

is coded in C, while the proposed model is coded in R; second, the SVM is not Bayesian,

while the proposed model is, and so some inherent computational costs exist. That being

said, if a Bayesian alternative of the SVM were considered alongside the proposed

model, we can speculate that the SVM would remain more computationally efficient,

since the proposed model involves inverting a covariance matrix, which is a step that is

not required by the SVM.
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Chapter 5

DISCUSSION ON THE TWO-CLASS MODEL SELECTION

ALGORITHM

In this part, we considered the development for a two-class classification algo-

rithm that allows for making inference on the source of a set of test objects known to

originate from one of two potential sources. This method is novel in that it allows for

classifying the complete set of objects at once, rather than classifying each object in

turn. This method relies on a kernel function, which allows for considering virtually

any set of high-dimensional, complex, heterogeneous data as a single vector of real-

valued scores between observations by merely modifying the kernel to accommodate

the considered data. In addition, our method is particularly well-suited for scenarios in

which a limited number of observations are available for consideration.

An evaluation of the performance of the proposed model indicates that the model

performs well when as few as 5 control objects are considered for each source. As we

increase the number of control objects per source, the model’s performance continues

to improve, though at an increased computational cost. Operationally speaking, there

is not much benefit from considering more than 10 control objects per source in that

the prediction ability of the model does not significantly improve in considering more

control objects, and that the computational cost of the algorithm remains manageable

at n0 = 10 control objects. Finally, comparing the performance of the proposed model

to that of the traditional SVM indicates that the proposed method has superior classi-

fication ability. This performance indicates that the model works well in the two class

scenario, and that extension to the multi-class scenario is reasonable.
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Part III

A Multi-Class Model-Selection

Algorithm for High-Dimensional

and Complex Data
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OVERVIEW OF PART III: A MULTI-CLASS MODEL SELECTION ALGORITHM

FOR HIGH-DIMENSIONAL AND COMPLEX DATA

In this part, we develop the theory and implementation for an n-class kernel-

based model-selection algorithm. In Chapter 6, we define the problem and develop the

algorithm that allows for determining which of n classes is more likely to have produced

a set of trace objects. In addition, we propose a method for studying the parameters of

the proposed model, and a sampling algorithm that can be used to study the distributions

of the considered parameters.

In Chapter 7, we implement the proposed model on the MNIST hand-written

digits data that is commonly used to evaluate the performance of pattern recognition

algorithms.

In Chapter 8 we discuss the benefits and limitations of the proposed n-class

model.
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Chapter 6

DEFINING THE MULTI-CLASS MODEL-SELECTION PROBLEM

We move to extend the results of the two-class model-selection algorithm to

propose an n-class model selection algorithm that allows for simultaneously determin-

ing the class of a set of objects. Given n sets of n0 objects, {Xi}ni=1, where each set

of objects is known to have originated from n distinct sources, and a set of nu objects,

Xu, known to have originated from one of the n sources that produced the objects ob-

served in {Xi}ni=1, we are interested in determining which of the n sources is most

likely to have generated the set of objects observed in Xu. Formally, we are interested

in determining if

H1 : Xu is a simple random sample from the source that produced X1;

H2 : Xu is a simple random sample from the source that produced X2;

...

Hn : Xu is a simple random sample from the source that produced Xn.

As discussed in Chapter 3, differentiating between these propositions cannot

be reduced down to a simple classification or model-selection problem that can be ad-

dressed using machine learning or likelihood-based techniques. As before, small sam-

ple sizes rule out many machine learning techniques, and high-dimensional, complex,

or heterogenous data make it impossible to assign the necessary probability measures

for assigning Bayes factors or performing likelihood-based inference.

We propose a model that leverages the properties of kernel functions (see Chap-
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ter 1) to obtain a vector of scores, s, that characterizes pairwise comparisons of all

objects observed in {Xi}ni=1 and Xu. This vector consists of within-source scores,

which arise when compared objects originate from a common source, and between-

source scores, which arise when compared objects originate from different sources.

The model capitalizes on the variability that exists within and between these sets of

scores to address the above inference question. Because the method relies on a kernel

function, the method can be tailored to any type of data by merely modifying this func-

tion, and the overall inference process remains the same. Furthermore, the model relies

only one assumption, which can be satisfied through the design of the kernel function.

6.1 PROBLEM STATEMENT

Consider n sets of exchangeable observations, X1,X2, . . . ,Xn, made on n dis-

tinguishable sets of objects, and the set of exchangeable observations, Xu, made on

objects of common but unknown origin. The sets X1,X2, . . . ,Xn are considered to be

sets of control objects, while the set Xu is considered to be a set of test objects. We

define the sets X1,X2, . . . ,Xn and Xu as being simple random samples,

X1 := {x1,1,x1,2, . . . ,x1,n0},

X2 := {x2,1,x2,2, . . . ,x2,n0},
...

Xn := {xn,1,xn,2, . . . ,xn,n0},

Xu := {xu,1,xu,2, . . . ,x1,nu},

where the sets of control objects consist of n0 objects from their respective sources,

and the set of test objects consists in nu objects known to originate from one of the n

sources represented by the observations in X1,X2, . . . , or Xn. We are interested in

quantifying the extent of support provided to H1, . . . , Hn above.

Rather than consider the observations themselves, we instead consider the vec-

tor of all pairwise scores, s ∈ RN , N =
(
nn0+nu

2

)
, obtained by comparing the m-
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dimensional observations in the sets {Xi}ni=1 and Xu via some kernel,

κ : Rm 7→ R,

κ (xij,xi′j′) = 〈ϕ (xij) , ϕ (xi′j′)〉 i, i′ ∈ {1, . . . , n, u}, j, j′ ∈ {1, . . . , max{n0, nu}},

where ϕ is a mapping into some separable, high-dimensional Hilbert space [12, 65, 71,

74]. As before, sij,i′j′ is the score obtained by comparing object xij to object xi′j′ using

some kernel function κ (see Definition 2 in Section 1.1).

We define our kernel function such that our vector of scores is distributed ac-

cording to a Multivariate Normal distribution, with

s ∼ MVN (θ,Σ) (6.1)

where θ is the vector of the mean terms, and Σ is the covariance matrix associated with

the vector of scores (see Section 9.5 and Chapter 10 for a discussion on the validity

of this assumption, and the implications when this assumption does not hold). These

parameters will collectively be referred to as Ω := {θ,Σ}, and we will more explicitly

define θ and Σ as we move through the chapter. We can assign the posterior proba-

bility that the set of trace objects Xu was generated by the source characterized by the

objects in the set Xi in terms of the Multivariate Normal Likelihood and the associated

parameter Ω, such that

π (Hi|s,Ω) =
π (Hi)

∫
Ω
ℓ (s|Ω,Hi) dΠ(Ω)∑n

i′=1 π (Hi′)
∫
Ω
ℓ (s|Ω,Hi′) dΠ(Ω)

=
π (Hi)

∫
Ωi

ℓ (s|Ωi) dΠ(Ωi)∑n
i′=1 π (Hi′)

∫
Ωi′

ℓ (s|Ωi′) dΠ(Ωi′)
(6.2)

It is worth noting that there exist differences between Ωi, i = {1, . . . , n}. While

the individual elements of each of the parameters θi and Σi are restricted to the same

set of potential values, the structures of the mean vectors and covariance matrices de-

pend on which Hi is being considered. That is, when Hi is being considered, then the

parameter Ωi considers that the set of unknown objects Xu originates from the source
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of the objects contained in Xi. Then, scores of the form suj,uj′ , and suj,ij′ will all be

considered as “within-source” scores, and scores suj,i′j′ will be considered as “between-

source” scores.

6.1.1 COVARIANCE STRUCTURE FOR THE OBJECT MODEL

As before, we can investigate the covariance structure for a vector of scores by

considering a univariate object-based model. Consider an object xij defined in terms of

the linear model given by

xij = µi + eij, (6.3)

where µi is the overall mean of class i ∈ {1, 2, . . . , n}, and eij ∼ N (0, σ2
i ). Scores

can be studied by choosing the stationary and non-stationary kernels (first presented in

Section 3.1.1 as (3.4) and (3.5)), given by s′ij,i′j′ and s∗ij,i′j′ , respectively:

s′ij,i′j′ := (xij − xi′j′)
2 (6.4)

s∗ij,i′j′ := xijxi′j′ . (6.5)

As before, we can directly examine the mean and covariance terms associated

with these two kernels by calculating the various terms that arise from the different

possible score combinations. Table 6.1 provides the different parameter values under

the two kernel functions, (6.4) and (6.5) given above.

Table 6.1 indicates that the covariance structure varies depending on whether a

stationary or non-stationary kernel is used to obtain the vector of scores, s. For example,

we see that there are five unique covariance scenarios that can occur when a stationary

kernel is considered, versus six unique covariance scenarios that can occur when a non-

stationary kernel is considered. Furthermore, we have that some of the terms associated

with the stationary kernel are relatively straightforward functions of each other (e.g.,

2σ4
i is a fraction of 8σ4

i ). In addition, the covariance terms that arise when a non-

stationary kernel is considered depend much more on the means of the different sources.
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Finally, we note that the zeros occur in the same positions for the stationary and non-

stationary kernels.

Description of Considered Scores Score 1 Score 2 Stationary Kernel (6.4) Non-Stationary Kernel (6.5)
Expected Value Terms
Within Source i1i2 – 2σ2

i µ2
i

Between Source i1i′1 – (µi − µi′)
2 + σ2

i + τ 2i µiµi′

Covariance Terms
Both Within Source, Two Common
Objects i1i2 i1i2 8σ4

i 2µ2
iσ

2
i + σ4

i

Both Within Source, One Common Ob-
ject i1i2 i1i3 2σ4

i µ2
iσ

2
i

Both Within Source, No Common Ob-
jects i1i2 i3i4 0 0

Both Between Source, Two Common
Objects i1i′1 i1i′1 4 (µi − µi′)

2 (σ2
i + σ2

i′) + 2 (σ2
i + σ2

i′)
2 µ2

iσ
2
i′ + µ2

i′σ
2
i + σ2

i σ
2
i′

Both Between Source, Two Common
Sources, One Common Object from
Source i

i1i′1 i1i′2 4 (µi − µi′)
2 σ2

i + 2σ4
i µ2

i′σ
2
i

Both Between Source, One Common
Source, One Common Object from
Source i

i1i′1 i1i
′′
1 4(µi − µi′ )(µi − µi′′ )σ

2
i + 2σ4

i µi′µi′′σ
2
i

Both Between Source, No Common
Objects i1i′1 i2i′2 0 0

Both Between Source, No Common
Sources i1i′1 i

′′
1i

′′′
1 0 0

Within Source i, Between Source, One
Common Object from Source i

i1i2 i1i′1 2σ4
i µiµi′σ

2
i

Within Source i, Between Source, No
Common Objects i1i2 i3i′1 0 0

Within Source i, Between Source, No
Common Sources i1i2 i′1i

′′
1 0 0

Within Source i, Within Source i′, No
Common Objects i1i2 i′1i′2 0 0

Table 6.1: Expected value and covariance terms obtained for the object-based model for
each type of score comparison when a stationary kernel (e.g., (6.4)) and non-stationary
kernel (e.g., (6.5)) are considered. Column one provides descriptions of each type of
comparison that may be observed; columns two and three provide examples of indices
for scores that could be compared in each situation; columns four and five present the
parameter values obtained under the stationary and non-stationary kernels given by
(6.4) and (6.5).

6.1.2 DEFINING A SCORE-BASED MODEL

Suppose, now, that we expand upon (6.1) and define our vector of scores such

that

s ∼ MVN (θ,Σ) =⇒ sij,i′j′ ∼ N
(
θii′ , σ

2
ii′

)
=⇒ sij,i′j′ − θii′

σii′
∼ N (0, 1) (6.6)

where the parameters θii′ and σii′ are the means and variances associated with the dif-

ferent comparisons that may be considered by a given score. That is, each score in the

vector of scores is either a within-source i comparison, or a between source i and i′
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comparison. For example, consider a score sij,i′j′ in which i = i′, and so θii′ gives us

the expected value of scores that compare any two objects in Xi. Likewise, when i 6= i′,

θii′ gives us the expected value of the scores that compare an object in Xi to an object

in Xi′ . The parameter σii′ can be similarly defined for the standard deviation terms.

From here, following the work of Gantz and Saunders, and Armstrong [5, 6,

26], and the development in Section 3.1.2, we choose to define the standardized scores

from (6.6) according to a random effects model

sij,i′j′ − θii′

σii′
= aij + ai′j′ + εij,i′j′ , (6.7)

where, as before, aij and ai′j′ are random effects such that aij , ai′j′ ∼ N (0, σ2
a), and

εij,i′j′ is a lack-of-fit term, such that εij,i′j′ ∼ N (0, σ2
e). Furthermore, from (6.6), we

have that 2σ2
a + σ2

e = 1. Finally, we rewrite the model in terms of sij,i′j′ , such that

sij,i′j′ = θii′ + σii′ (aij + ai′j′ + εij,i′j′) ,

and so, given the distributional assumptions associated with (6.6) and (6.7), we define

the distribution of our vector of scores to be

s ∼ MVN
(
θ,∆

(
PP ′σ2

a + Iσ2
e

)
∆′) , (6.8)

where θ is a vector of length N of the mean terms given by θii′ , and ∆ is an N × N

diagonal matrix of the standard deviation terms given by σii′ . The design matrix P

describes the effects of the objects being compared for each score considered in the

vector s. As before, for each of the nn0 + nu rows of P , a one is placed in the columns

associated with the labels of the objects being compared in that row, and zeros are

placed in the remaining columns.

The likelihood function in the numerator and denominator of (6.2) can be rep-

resented using the distribution given in (6.8). As explained in the introduction of Sec-

tion 6.1, we have that the structure of the mean vector and covariance matrix depend on
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which Hi is being considered. See Figure 3.1 for an example when n = 2 classes.

Description of Considered Scores Score 1 Score 2 Object Model (6.5) Score Model (6.8)
Covariance Terms
Both Within Source, Two Common
Objects i1i2 i1i2 2µ2

iσ
2
i + σ4

i σ2
ii (2σ

2
a + σ2

e)

Both Within Source, One Common Ob-
ject i1i2 i1i3 µ2

iσ
2
i σ2

iiσ
2
a

Both Within Source, No Common Ob-
jects i1i2 i3i4 0 0

Both Between Source, Two Common
Objects i1i′1 i1i′1 µ2

iσ
2
i′ + µ2

i′σ
2
i + σ2

i σ
2
i′ σ2

ii′ (2σ
2
a + σ2

e)

Both Between Source, Two Common
Sources, One Common Object from
Source i

i1i′1 i1i′2 µ2
i′σ

2
i σ2

ii′σ
2
a

Both Between Source, One Common
Source, One Common Object from
Source i

i1i′1 i1i
′′
2 µi′µi′′σ

2
i σii′σii′′σ

2
a

Both Between Source, No Common
Objects i1i′1 i2i′2 0 0

Both Between Source, No Common
Sources i1i′1 i

′′
1i

′′′
1 0 0

Within Source i, Between Source, One
Common Object from Source i

i1i2 i1i′1 µiµi′σ
2
i σii′σiiσ

2
a

Within Source i, Between Source, No
Common Objects i1i2 i3i′1 0 0

Within Source i, Between Source, No
Common Sources i1i2 i′1i

′′
1 0 0

Within Source i, Within Source i′, No
Common Objects i1i2 i′1i′2 0 0

Table 6.2: Comparison of Covariance terms in Object Model defined according to (6.5),
and Score Model defined according to (6.8).

As in the two class model, it is worth noting that the covariance matrix defined

in (6.8) is not equivalent to that of the object model described in Section 6.1.1. This is

due to the fact that the covariance matrix in Section 6.1.1 considers a single term σii′ to

describe the relationship that occurs when a score involves an object from source i and

an object from source i′. For the covariance matrix in (6.8) to coincide with that defined

in Section 6.1.1, we would need to define two terms, σii′ and σi′i, that describe the effect

when the object in common between two scores comes from source i versus from source

i′. For example, consider a pair of scores si1,i2 and si1,i′1. To appropriately capture the

covariance that exists between these two scores would require defining a term σii′ , since

the common object between the scores comes from source i. Likewise, a pair of scores,

si1,i′1 and si′1,i′2, would require defining a term σi′i, since the common object between

the scores comes from source i′. Note that such a pair of standard deviation terms would

need to be defined for each of the
(
n
2

)
possible combinations of sources. As a result, the



82

covariance terms of the score model in rows 4-6 and 9 of Table 6.2 do not necessarily

have a direct counterpart in the object model.

However, despite these discrepancies, we choose to move forward with the

model given by (6.8). While the covariance matrices of the object and score models

may not be exactly the same, their structures under each Hi remain sufficiently similar.

Furthermore, as we will see below, an elegant solution exists for studying the parame-

ters of the model given by (6.8).

6.2 MODEL DEVELOPMENT

Assigning the posterior probability in (6.2) requires estimating the parameters

{θii′}ii′ , {σii′}ii′ , σ2
a, and σ2

e using the information contained in the vector of scores s.

To study these parameters, we follow the development described in Part II, and subset

the vector of scores to define sc, which includes only the comparisons between the

control objects contained in the sets {Xi}ni=1, and so is a vector of length Nc =
(
nn0

2

)
.

We can then use sc to define the total sum of squares

SSTot = (sc − θc)
′ [∆c∆

′
c]
−1

(sc − θc)

=
(
∆−1

c (sc − θc)
)′ (

∆−1
c (sc − θc)

)
(6.9)

where θc is the Nc vector of score means, θii′ , and ∆c is the Nc × Nc diagonal matrix

of the score standard deviations, σii′ , associated with the scores sc.

Following the development in Section 3.2, we apply Cochran’s theorem (see

Theorem 2 in Section 3.2) to s̃ = (∆−1
c (sc − θc)), and rewrite (6.9) as

SSTot = s̃′Is̃ = s̃′

[
Nc∑
l=1

vlv
′
l

]
s̃ (6.10)

where {vl}l, l = 1, . . . , Nc is any orthonormal basis for RNc . Furthermore, we consider

a set of n+
(
n
2

)
diagonal design matrices, Bii′ , i, i′ ∈ {1, . . . , n}. Each of these matrices

is an idempotent Nc×Nc matrix whose diagonal matrix can be partitioned into n+
(
n
2

)
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segments.

The first n segments are each of length
(
n0

2

)
, and are each associated with one

considered source. The remaining
(
n
2

)
segments are each of length n2

0, and are each

associated with one of the possible combinations of sources. Note that n
(
n0

2

)
+
(
n
2

)
n2
0 =

Nc. When we are considering a within-source comparison (i = i′), the matrix Bii

has ones in the segment of length
(
n0

2

)
that correspond to the ith source, and zeros

elsewhere. When we are considering a between-source comparison (i 6= i′), the matrix

Bii′ has ones in the segment of length n2
0 corresponding to the comparison between

source i and i′, and zeros elsewhere.

As an example, let n = 3, n0 = 4. Then we have n +
(
n
2

)
= 6 matrices,

consisting of n = 3 within source matrices, B11, B22, B33, and
(
n
2

)
= 3 between source

matrices, B12, B13, B23. These six matrices are displayed in Figures 6.1 and 6.2. Since

B11, B12, . . . , B22, . . . , Bnn sum to the identity matrix, we have that

SSTot = s̃′

(∑
i,i′

Bii′

)
I

(∑
i,i′

Bii′

)
s̃

= s̃′

(∑
i,i′

Bii′IBii′

)
s̃

= s̃′

(∑
i,i′

Bii′

[
Nc∑
l=1

vii′v
′
ii′

]
Bii′

)
s̃

=
∑

i∈{1,...,n}

SSii +
∑

i<i′∈{1,...,n}

SSii′ (6.11)

where {vii′l
}, l = 1, . . . , Nc are different orthonormal bases spanning RNc , and will be

discussed in more detail in later sections. The matrices Bii′ effectively activate different

parts of the vector s̃c according to the different source comparisons. In particular, we

have:

(1) Biis̃c allows us to consider only the positions of s̃c that correspond to some within-

source comparison, so that s̃cBiis̃c gives us the corresponding within-source sum

of squares. Recall that BiiIBii = Bii, and note that Bii has rank rii =
(
n0

2

)
.

(2) Bii′ s̃c allows us to consider only the positions of s̃c that correspond to some between-
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source comparison, so that s̃cBii′ s̃c gives us the corresponding between-source sum

of squares. Recall that Bii′IBii′ = Bii′ , and note that Bii′ has rank rii′ = n2
0.

Thus, we have defined the total sums of squares in terms of the various source compar-

isons that exist within our vector of scores. Bearing in mind that the goal is to find a

way to estimate the parameters of the distribution given in (6.8), we note that this de-

composition of the total sums of squares allows us to independently study the mean and

variance terms, θii′ and σii′ , associated with their respective source comparisons. Note

that we can choose the orthonormal bases in (6.11) to be any orthonormal bases, and,

in particular, we can choose these orthonormal bases to be the normalized eigenvectors

for the following matrices. We choose to define

Vii := Bii

(
PcP

′
cσ

2
a + Icσ

2
e

)
Bii (6.12)

for the matrices Vii, corresponding to within-source comparisons, and

Vii′ := Bii′
(
PcP

′
cσ

2
a + Icσ

2
e

)
Bii′ (6.13)

for the matrices Vii′ corresponding to between-source comparisons.

As in Section 3.2, choosing Vii and Vii′ to be a function of Σc := PcP
′
cσ

2
a+Icσ

2
e

is advantageous in that it introduces the parameters σ2
a and σ2

e , and so provides a means

for studying these parameters. Second, defining Vii and Vii′ in terms of Bii and Bii′

allows us to take the relevant parts of Σc with respect to each source comparison by

activating only the rows and columns of Σc corresponding to the considered source

comparison.
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Vii

Eigenvalue (νiil) Multiplicity (mνiil
) Eigenvectors (viil)

2 (n0 − 1)σ2
a + σ2

e 1 viil such that Viiviil = νii1viil
(n0 − 2)σ2

a + σ2
e n0 − 1 viil such that Viiviil = νii2viil

σ2
e

(
n0

2

)
− n0 viil such that Viiviil = νii3viil

0 Nc −
(
n0

2

)
viil such that Viiviil = νii4viil

Vii′

Eigenvalue (νii′l) Multiplicity (mνii′
l

) Eigenvectors (vii′l)
2n0σ

2
a + σ2

e 1 vii′l such that Vii′vii′l = νii′1vii′l
n0σ

2
a + σ2

e 2n0 − 2 vii′l such that Vii′vii′l = νii′2vii′l
σ2
e (n0 − 1)2 vii′l such that Vii′vii′l = νii′3vii′l
0 Nc − n2

0 vii′l such that Vii′vii′l = νii′4vii′l

Table 6.3: Eigenstructure of design matrices for within-source comparisons, Vii, and
between-source comparisons, Vii′ in (6.12) and (6.13)

We can study the eigenstructure of the matrices Bii′ (PcP
′
cσ

2
a + Icσ

2
e)Bii′ for

each source comparison (see Table 6.3). This study reveals the presence of multiple

subspaces for each of the considered eigenspaces. This allows us to decompose each of

the sums of squares in (6.11) as another sum of squares. For within-source comparisons,

we have that

s̃cBii

[
Nc∑
l=1

viilv
′
iil

]
Biis̃c = s̃cBii

vii1v
′
ii1 +

n0∑
l=2

viilv
′
iil +

(n0
2
)∑

l=n0+1

viilv
′
iil +

Nc∑
l=(n0

2
)

viilv
′
iil

Biis̃c

= s̃cBii

vii1v
′
ii1 +

n0∑
l=2

viilv
′
iil +

Nii∑
l=n0+1

viilv
′
iil

Biis̃c,

where Nii =
(
n0

2

)
∀i is the number of eigenvectors associated with non-zero eigenval-

ues, and is also the number of “interesting” eigenvectors viil . In particular, we have

that the elements that are equal to one correspond to the dimensions whose associated

eigenvalues are zero. These vectors form the standard basis for the null space of the

corresponding matrix, and correspond to the rows of Bii that are equal to the zero vec-

tor. As an example, we consider the matrices that result when n = 3 and n0 = 4. The

first row of Figure 6.1 displays the heat maps of B11, B22, and B33. The second row

displays the heat maps of the matrices of eigenvectors of V11, V22, and V33. Note that

the Nii×Nii patchwork matrices within each of the Vii matrices correspond to the non-

zero rows of the corresponding Bii matrices. Because the placements of the nonzero
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elements in these eigenvectors correspond to the zero elements of the diagonals in the

associated Bii matrices, the product of the Bii matrix with these sets of eigenvectors

results in a zero-valued sum of squares.

B11 B22 B33

V11 V22 V33

Figure 6.1: Heat maps for within-source Bii matrices (top) and eigenvectors of associated
Vii matrices (bottom) when n = 3 and n0 = 4. The Nii × Nii patchworks correspond
to eigenvectors with non-zero elements. The remaining columns correspond to vectors
with one non-zero element (in red), and are associated with zero-valued eigenvalues.

Similarly, for between-source comparisons, we have that

s̃cBii′

[
Nc∑
l=1

vii′
l
v′
ii′

l

]
Bii′ s̃c = s̃cBii′

vii′1
v′
ii′1

+

(n0
2
)−1∑

l=2

vii′
l
v′
ii′

l
+

n2
0∑

l=(n0
2
)

vii′
l
v′
ii′

l
+

Nc∑
l=n2

0+1

vii′
l
v′
ii′

l

Bii′ s̃c

= s̃cBii′

vii′1
v′
ii′1

+

(n0
2
)−1∑

l=2

vii′
l
v′
ii′

l
+

Nii′∑
l=(n0

2
)

vii′
l
v′
ii′

l

Bii′ s̃c

where Nii′ = n2
0∀ii′ is the number of eigenvectors associated with non-zero eigenval-

ues, and is also the number of “interesting” eigenvectors vii′l
. In particular, we have

that the elements that are equal to one correspond to the dimensions whose associated

eigenvalues are zero. These vectors form the standard basis for the null space of the cor-

responding matrix, and correspond to the rows of Bii′ that are equal to the zero vector.
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The first row of Figure 6.2 displays the heat maps of B12, B13, and B23. The second

row displays the heat maps of the matrices of eigenvectors of V12, V13, and V23. Note

that the Nii′ × Nii′ patchwork matrices within each of the Vii′ matrices correspond to

the non-zero rows of the corresponding Bii′ matrices. Because the placements of the

nonzero elements in these eigenvectors correspond to the zero elements of the diago-

nals in the associated Bii′ matrices, the product of the Bii′ matrix with these sets of

eigenvectors results in a zero-valued sum of squares.

B12 B13 B23

V12 V13 V23

Figure 6.2: Heat maps for the between-source Bii′ matrices (top) and eigenvectors of the
associated Vii′ matrices (bottom) when n = 3 and n0 = 4. The Nii′ ×Nii′ patchworks in
the correspond to eigenvectors with non-zero elements. The remaining columns corre-
spond to vectors with one non-zero element (in red), and are associated with zero-valued
eigenvalues.

This decomposition is favorable in that studying the relevant parts of the eigen-

decomposision of Σc is equivalent to studying the eigen-decomposision of the relevant

parts of Σc. That is,
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s̃′cBii

[
Nn∑
l=1

viilv
′
iil

]
Biis̃c = s̃′ii

[
Nii∑
l=1

v∗
iil
v∗′

iil

]
s̃ii

s̃′cBii′

[
Nn∑
l=1

vii′l
v′
ii′l

]
Bii′ s̃c = s̃′ii′

Nii′∑
l=1

v∗
ii′l
v∗′

ii′l

 s̃ii′

where v∗
iil

are the eigenvectors of the Nii ×Nii matrix formed by considering the non-

zero rows of the columns associated with the non-zero eigenvalues of Vii, and v∗
ii′ are

the eigenvectors of the Nii′ ×Nii′ matrix formed by considering the non-zero portions

of the columns associated with the non-zero eigenvalues of Vii′ . This is equivalent to

considering only the indices of Σc that correspond to each source comparison. That is,

v∗
iil

are the eigenvectors of

Σii := PiiP
′
iiσ

2
a + Iiiσ

2
e , (6.14)

the matrix formed by considering the rows of Σc associated with some within-source

comparison, and v∗
ii′l

are the eigenvectors of

Σii′ := Pii′Pii′σ
2
a + Iii′σ

2
e , (6.15)

the matrix formed by considering the rows of Σc associated with some between-source

comparison. In addition, we have that s̃ii = (∆ii (sii − θii1Nii
)), where ∆ii is the

Nii × Nii portion of ∆c that considers σii, and s̃ii′ =
(
∆ii′

(
sii′ − θii′1Nii′

))
, where

∆ii′ is the Nii′ ×Nii′ portion of ∆n that considers σii′ .
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Σii

Eigenvalue (νiil) Multiplicity (mνiil
) Eigenvectors (v∗

iil
)

2 (n0 − 1)σ2
a + σ2

e 1 v∗
ii1

:=
1Nii√
Nii

(n0 − 2)σ2
a + σ2

e n0 − 1 v∗
iil

such that Σiiv
∗
iil

= νii2v
∗
iil

σ2
e Nii − n0 v∗

iil
such that Σiiv

∗
iil

= νii3v
∗
iil

Σii′

Eigenvalue (νii′l) Multiplicity (mνii′
l

) Eigenvectors (v∗
ii′l

)

2n0σ
2
a + σ2

e 1 v∗
ii′1

:=
1Nii′√
Nii′

n0σ
2
a + σ2

e 2n0 − 2 v∗
ii′l

such that Σii′v
∗
ii′l

= νii′2v
∗
ii′l

σ2
e (n0 − 1)2 v∗

ii′l
such that Σii′v

∗
ii′l

= νii′3v
∗
ii′l

Table 6.4: Eigenstructure of design matrices Σii, and Σii′ in (6.14) and (6.15)

These results follow from using the Bii and Bii′ matrices to activate certain

areas of the vector s̃c and the matrices Vii, Vii′ , i.e., introducing the matrices Bii and

Bii′ allows us to activate the parts of s̃c and Σc that correspond to the different source

comparisons. Rather than considering a sparse Nc vector alongside a sparse Nc × Nc

matrix, we can directly consider the interesting parts of the vector and matrix by con-

sidering the associated Nii− or Nii′−dimensional vector and Nii × Nii or Nii′ × Nii′

dimensional matrix. Thus, we can explicitly define the sums of squares such that

SSii =
(
∆−1

ii (sii − θii1Nii
)
)′ (

v∗
ii1v

∗
ii1

′) (∆−1
ii (sii − θii1Nii

)
)
+

(
∆−1

ii (sii − θii1Nii
)
)′( n0∑

l=2

v∗
iil
v∗
iil

′

)(
∆−1

ii (sii − θii1Nii
)
)
+ (6.16)

(
∆−1

ii (sii − θ221Nii
)
)′( Nii∑

l=n0+1

v∗
iil
v∗
iil

′

)(
∆−1

ii (sii − θii1Nii
)
)
,

for within-source comparisons and

SSii′ =
(
∆−1

ii′

(
sii′ − θii′1Nii′

))′ (
v∗
ii′1

v∗
ii′1

′
) (

∆−1
ii′

(
sii′ − θii′1Nii′

))
+

(
∆−1

ii′

(
sii′ − θii′1Nii′

))′(n0
2 )−1∑
l=2

v∗
ii′l
v∗
ii′l

′

(∆−1
ii′

(
sii′ − θii′1Nii′

))
+ (6.17)

(
∆−1

ii′

(
sii′ − θ121Nii′

))′ Nii′
l∑

l=(n0
2 )

v∗
ii′l
v∗
ii′l

′

(∆−1
ii′

(
sii′ − θii′1Nii′

))
,



90

for between-source comparisons, where the degrees of freedom for each line of (6.16)

and (6.17) are equal to the multiplicities of the associated eigenvalues in Table 6.4, and

the total sum of squares remains as in (6.9). It is trivial to show that

n∑
i=1

[
3∑

l=1

mνiil

]
+

n−1∑
i=1

n∑
i′=i+1

[
3∑

l=1

mνii′
l

]
= Nc

In the following sections, we analyse the three terms that make up the sums of squares

defined in (6.16) and (6.17) so that we can write each term without the use of eigenvec-

tors.

6.2.1 ALTERNATIVE REPRESENTATION OF WITHIN-SOURCE SUMS OF

SQUARES

We begin by studying the individual terms in the within-source sums of squares

terms of the form given by (6.16). All developments can be found in Appendix D. We

re-write the first term as

(sii − θii1Nii
)
′
∆−1′

ii v∗
ii1v

∗′

ii1∆ii (sii − θii1Nii
) =

Nii

σ2
ii

(sii − θii)
2
, (6.18)

where sii is the average score observed for the within-source comparisons from source

i. Recall that Nii =
(
n0

2

)
, ∀i ∈ {1, . . . , n}.

Next, we consider the structure of the sum given by ∆−1′

ii

[∑n0

l=2 v
∗
iil
v∗′
iil

]
∆−1

ii .

Following the development by [6], we can write this second sum of square as

s′ii∆
−1′

ii

[
n0∑
l=2

v∗
iil
v∗
iil

′

]
∆−1

ii sii =
(n0 − 1)

2

σ2
ii (n0 − 2)

n0∑
j=1

(
s
(ij)
ii − sii

)2
(6.19)

:= SSWii

where s
(ii)
ij

, i ∈ {1, . . . , n}, j ∈ {1, . . . , n0} is the mean value of scores that compare

object j in source i to any other object in source i, and sii is as in (6.18). The final re-
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sult, given by (6.19), gives the within-source sum of squares for within-source i model.

By considering this term in conjunction with the total sum of squares for the consid-

ered model, SSTotii =
1
σ2
ii

∑n0−1
j=1

∑n0

j′=j+1 (sij,ij′ − sii)
2 (this is the sum of the last two

terms in (6.16)), we can obtain an eigenvector-free estimate of the last term in SSii by

considering SSTotii −SSWii
(see Table 6.5). By using the results of Cochran’s theorem

presented in Section 3.2.1, we obtain the following results.

Source of Variance df SS MS E(MS)
Within Source n0 − 1 SSWii

MSWii
=

SSWii

n0−1
(n0 − 2)σ2

a + σ2
e

Error Nii − n0 SSEii
= SSTotii − SSWii

MSEii
=

SSEii

Nii−n0
σ2
e

Table 6.5: ANOVA table corresponding to within-source sums of squares, SSii

6.2.2 ALTERNATIVE REPRESENTATION OF BETWEEN-SOURCE SUMS OF

SQUARES

Finally, we move to consider the terms in the between-source sums of squares

terms of the form given by (6.17). All developments can be found in Appendix E. As

in the common-source sums of squares development, we rewrite the first term as

(
sii′ − θii′1Nii′

)′
∆−1′

ii′ v∗
ii′1

v∗′

ii′1
∆−1

ii′

(
sii′ − θii′1Nii′

)
=

Nii′

σ2
ii′

(sii′ − θii′)
2
, (6.20)

where sii′ is the average score observed for between-source comparisons between sources

i and i′.

Next, we consider the structure of the sum given by ∆−1
ii′

[∑2n0−1
l=2 v∗

ii′l
v∗′
ii′l

]
∆−1

ii′ .

As before, we can write this second sum of squares as

s′ii′∆
−1′

ii′

[
2n0−1∑
l=2

v∗
ii′l

v∗
ii′l

′
]
∆−1

ii′ sii′ =
n2
0

σ2
ii′n0

 n0∑
j′=1

(
s
(ij)
ii′ − sii′

)2
+

n0∑
j=1

(
s
(i′

j′ )

ii′ − sii′

)2
 (6.21)

:= SSWii′
,

where s
(ij)
ii′ , i ∈ {1, . . . n}, j ∈ {1, . . . , n0} is the mean value of scores that compare

object j in source i to any object in source i′, s
(i′

j′ )

ii′ is the mean value of scores that

compare object j′ in source i′ to any object in source i, and sii′ is as in (6.20). The
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final result, given by (6.21), gives the within-source sum of squares for between-source

i, i′ comparisons. By considering this term in conjunction with the total sum of squares

for the considered model, SSTotii′
= 1

σ2
ii′

∑n0−1
j=1

∑n0

j′=1 (sij,i′j′ − sii′)
2, we can define

an eigenvector-free estimate of the last term in SSii′ by considering SSTotii′
− SSWii′

.

By using the results of Cochran’s theorem presented in Section 3.2.1, we obtain the

following results.

Source of Variance df SS MS E(MS)

Within Source 2n0 − 2 SSWii′
MSWii′

=
SSWii′
2n0−2

n0σ
2
a + σ2

e

Error (n0 − 1)2 SSEii′
= SSTotii′

− SSWii′
MSEii′

=
SSEii′
(n0−1)2

σ2
e

Table 6.6: ANOVA table corresponding to between-source sums of squares, SSii′

6.3 PARAMETER ESTIMATION

At this point, we would like to use the results presented in Sections 6.2.1 and 6.2.2

to estimate the parameters of our model; however given the dependencies that exist

between the various parameters, we must resort to sampling methods to obtain poste-

rior samples of the model parameters. In particular, we use a Gibbs sampler with a

Metropolis-Hastings step to study the distributions of our various parameters [14, 44].

Before defining the Gibbs sampler, we must first assign posterior distributions to the

model parameters (development of posterior distributions for {θii′}ii′ , {σii′}ii′ , and σ2
e

can be found in Appendix F).

We begin by assigning posterior distributions for the variance terms, σ2
a and σ2

e .

Because we have the constraint that 2σ2
a + σ2

e = 1 (see (6.6) in Section 6.1.2), we can

define a posterior distribution for one variance term, obtain posterior samples from this

distribution, and directly obtain the associated value of the other. In this case, we choose

to obtain posterior samples of σ2
e , so as to exploit all information available in Tables 6.5

and 6.6. The value of σ2
a = (1− σ2

e)/2 follows directly.

To define the posterior distribution of σ2
e , we begin by collecting all sums of

squares terms defined in Tables 6.5 and 6.6 to capitalize on all information related to
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the value of σ2
e . We have that

SSWii

(n0 − 2)σ2
a + σ2

e

=
SSWii

(n0 − 2)
(

1−σ2
e

2

)
+ σ2

e

∼ χ2
df=n0−1

SSEii

σ2
e

∼ χ2
df=Nii′−n0

,

for each of the n within-source comparison sums of squares terms and

SSWii′
n0σ2a+σ2

e
=

SSWii′

n0

(
1−σ2

e
2

)
+σ2

e

∼ χ2
df=2n0−2

SSEii′
σ2
e

∼ χ2
df=(n0−1)2 ,

for each of the
(
n
2

)
between-source comparison sums of squares terms, and so we define

MSe =

n∑
i=1

(
SSWii

C2
+

SSEii

C3

)
+

n−1∑
i=1

n∑
i′=2

(
SSWii′

C1
+

SSEii′

C3

)

∼ χ2

df=n((n0−1)+(Nii′−n0))+(n2)((2n0−2)+(n0−1)2)
,

(6.22)

where

C1 = n0

(
1− σ2

e

2

)
+ σ2

e C2 = (n0 − 2)

(
1− σ2

e

2

)
+ σ2

e C3 = σ2
e

We can simplify (6.22) by considering a common denominator, such that

MSe =
C1C3

(∑n
i=1 SSWii

)
+ C2C3

(∑n−1
i=1

∑n
i′=2 SSWii′

)
+ C1C2

(∑n
i=1 SSEii +

∑n−1
i=1

∑n
i′=2 SSEii′

)
C1C2C3

∼ χ2

df=(nn0
2
)−(n

2
)−n

.

We now find the posterior distribution for the variance term σ2
e by considering a χ2

likelihood for the MSe term, and assuming a Beta prior (since we have the constraint

that σ2
e ≤ 1), such that

π
(
σ2
e |MSe,σ, αe, βe

)
∝ χ2

(
MSe|σ2

e ,σ, αe, βe

)
B
(
σ2
e |αe, βe

)
, (6.23)

where the dependence of MSe on σ := {σii′}ii′ , i, i′ ∈ {1, . . . , n}, in (6.23) results

from the construction of MSe as a sum of the various sum of squares terms defined in
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Section 6.2.

Next, we assign the posterior distributions for each of the mean parameters θii′ ,

i, i′ ∈ {1, . . . , n}, by considering a Multivariate Normal likelihood, and assuming a

Normal prior with mean ϕii′ and variance ωii′ such that

π
(
θii′ |sii′ , σii′ , σ

2
a, σ

2
e , ϕii′ , ωii′

)
∝ MVN

(
sii′ |θii′ , σii′ , σ

2
a, σ

2
e , ϕii′ , ωii′

)
N (θii′ |ϕii′ωii′) (6.24)

where the resulting posterior distribution is Normally distributed. The parameters of

the posterior distribution of θii′ are given by

µii′p
=

1′
Nii′

Σ−1
ii′ sii′ + ϕii′

1′
Nii′

Σ−1
ii′ 1Nii′ωii′ + 1

σ2
ii′p

=
ωii′

1′
Nii′

Σ−1
ii′ 1Nii′ωii′ + 1

.

Finally, we find the posterior distributions for each of the variance terms σii′ by

considering a Multivariate Normal likelihood, and assuming an Inverse-Gamma prior

such that

π
(
σii′ |sii′ , θii′ , σ2

a, σ
2
e , αii′ , βii′

)
∝ MVN

(
sii′ |σii′ , θii′ , σ

2
a, σ

2
e , αii′ , βii′

)
IG
(
σ2
ii′ |αii′ , βii′

)
(6.25)

where the resulting posterior distribution is distributed according to an Inverse Gamma

distribution. The parameters of the posterior distribution of σ2
ii′ are given by

αii′p
=

Nii′

2
+ αii′ βii′p

=
1

2

(
sii′ − θii′1Nii′

)′
Σ−1

ii′

(
sii′ − θii′1Nii′

)
+ βii′ .

The equation given by (6.25) provides us with samples from the posterior distri-

bution of the variance term, σ2
ii′ . We, however, are interested in the standard deviation

term, σii′ , and so we simply take the square root of the sampled variance term to obtain

samples of the standard deviation term. The resulting inference is not affected.

We note that each of the distributions described in (6.23), (6.24), and (6.25)

depends on the value of at least one other parameter; therefore, we must rely on sam-



95

pling techniques to study the distributions of the model parameters. We construct the

following Gibbs sampler, described in Algorithm 3.

Algorithm 3: Gibbs sampler for generating posterior samples from the
distributions of the model parameters

Data: Initial values for all parameters at t = 0; values for hyperparameters
Result: Posterior samples for all parameters
for t ∈ 1 : T iterations do

1. Draw σ
2(t)
e |s,MS

(t−1)
e ,σ(t−1), αe, βe from the distribution defined in

(6.23);
2. Calcualte σ

2(t)
a = (1− σ

2(t)
e )/2 ;

for i, i′ ∈ {1, . . . , n} sources do
3. Draw θ

(t)
ii′ |sii′ , σ

(t−1)
ii′ , σ

2(t)
a , σ

2(t)
e , ϕii′ , ωii′ from the distribution

defined in (6.24);
4. Draw σ

2(t)
ii′ |sii′ , θ(t)ii′ , σ

2(t)
a , σ

2(t)
e , αii′ , βii′ from the distribution defined

in (6.25);
end

end

Because the posterior distribution defined for σ2
e in (6.23) is not readily avail-

able, we cannot directly sample from this distribution. As a result, the first step in

Algorithm 3 is not so straightforward - indeed, obtaining a sample from the posterior

distribution of σ2
e requires introducing a Metropolis-Hastings algorithm [14, 44]. This

procedure is summarized in Algorithm 4.

Algorithm 4: Metropolis-Hastings algorithm for obtaining a sample
from the posterior distribution of σ2

e

Data: Value of σ2(t−1)
e ; values for hyperparameters αe, βe

Result: Posterior sample of σ2(t)
e

1. Sample a candidate value, σ2∗
e ∼ B(2, σ−2(t−1)

e );
2. Calculate the value of MS∗

e using the candidate value σ2∗
e using (6.22);

3. Calculate the value of MS
(t−1)
e using the current value σ

2(t−1)
e using (6.22);

4. Evaluate the posterior density of σ2∗
e , f ∗, using the hyperparameters αe and

βe, the value of MS∗
e , and (6.23);

5. Evaluate the posterior density of σ2(t−1)
e , f (t−1), using the hyperparameters

αe and βe, the value of MS
(t−1)
e , and (6.23);

6. Calculate the probability of acceptance, pacc = f∗

f (t−1)

B(σ2(t−1)|2,σ−2∗)
B(σ2∗|2,σ−2(t−1))

7. Generate a random probability, p∗ ∼ U(0, 1);
8. If pacc ≥ p∗, then define σ

2(t)
e := σ2∗

e ; otherwise define σ
2(t)
e := σ

2(t−1)
e ;
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Now that we have identified a method for obtaining samples of the parameters

used to define θ, ∆, σ2
a, and σ2

e , we can assign a posterior probability,

π (Hi|st, sc,Ω) =
π (Hi)

∫
Ωi

ℓ (st|Ωi, sc) dΠ(Ωi|sc)∑n
i′=1 π (Hi′)

∫
Ωi′

ℓ (st|Ωi′ , sc) dΠ(Ωi′ |sc)
(6.26)

≈
π (Hi)

1
T

∑T
t=1 ℓ

(
st|Ω(t)

i , sc

)
∑n

i′=1

(
π (Hi′)

1
T

∑T
ti′=1 ℓ

(
st|Ω

(ti′ ),sc
i′

)) (6.27)

where st is the vector of scores that consider at least one trace object, the subscripts

on H and Ω correspond to the model being considered, and Ω(t) are posterior samples

of the parameters obtained using Algorithm 3. We consider the conditional posterior

probability of the scores that consider objects of unknown origin from the set Xu, st,

rather than the joint posterior probability of s, so as not to recycle the information

contained in the vector of score sc, which are used to sample the parameter values.
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Chapter 7

IMPLEMENTING THE MULTI-CLASS MODEL SELECTION

ALGORITHM

In this section, we again apply the proposed model to the MNIST Handwritten

Digit Data [39]. The MNIST Handwritten Digit Data consists of approximately 70,000

observations of handwritten digits. Each observation is a 28 × 28 pixel image of an

integer, 0 through 9.

As in the two-class scenario, we analyse the performance of our model and

compare its performance to an SVM (we use the ksvm() function from the kernlab

package [38]), typically used for binary classification [12, 65, 74, 89, 90]. We have

elected to compare the abilities of the proposed model and an SVM to differentiate

between the digits 3, 5, 6, 8, and 9. For each model, we consider a radial basis function

kernel, given that this kernel has been shown to work well for SVMs on this data set.

To assess the performance of the model, we consider a series of simulations in

which we consider n0 = 5, 10, and 15 control objects per source, and nu = 3 trace

objects. For a series of simulations, we consider the performance of the models when

a fixed set of control objects is considered alongside 125 sets of trace objects (25 from

each source). That is, for a single iteration, we sample n0 control objects from sources

1 through 5 (digits 3, 5, 6, 8 and 9), and 25 sets of nu trace objects from each source,

for a total of 125 sets of trace objects. The two sets of n0 control objects are used to

determine the source of the 125 sets of trace objects. This process is repeated 100 times,

and the average performance is assessed. The results are presented in Table 7.1.
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n0
SVM

(Overall Performance)
SVM

(Triplet Performance)
SVM

(Voting Performance)
Proposed

Model Performance
5 63.65% 9.58% 23.88% 61.56%
10 73.07% 15.30% 28.00% 77.90%
15 76.67% 16.68% 29.08% 81.26%

Table 7.1: Performance of SVM versus multi-class model when n0 = 5, 10, and 15
control objects and nu = 3 trace objects for 125 iterations of the experiment. The
overall performance of the SVM gives the average percentage of correct classifications.
The triplet performance of the SVM gives the average percentage of sets of nu that were
entirely correctly classified. The voting performance of the SVM gives the percentage
of sets of nu that would be correctly classified if a voting system were used to determine
the class of the set of trace objects. The performance of the Proposed model gives the
average percentage of sets of nu that were correctly classified.

The results in Table 7.1 present the results of the experiment described above.

We see that, as the number of control objects increases, the rates of correct classifica-

tion increase across all columns. Notably, Table 7.1 indicates that when we consider

n0 = 5 control objects, the overall performance of the SVM is approximately the same

as the performance of the proposed model. However, when we compare the triplet per-

formance or voting performance of the SVM to that of the proposed model, we see

that the proposed model drastically out-performs the SVM. When we move to consider

n0 = 10 and n0 = 15 control objects, the proposed model outperforms the SVM in

terms of overall performance, in terms of triplet performance and in terms of voting

performance. Thus, we see that the proposed model far outperforms the SVM when it

comes to classifying the entire set of trace objects.

Finally, as in the two-class scenario, it is worth mentioning that the computa-

tional cost associated with each model is different. Overall, the SVM is more compu-

tationally efficient. At this time, we cannot directly compare the two models: first, the

SVM package used in this experiment is coded in C, while the proposed model is coded

in R; second, the SVM is not Bayesian, while the proposed model is, and so some

inherent computational costs exist. That being said, if a Bayesian alternative of the

SVM were considered alongside the proposed model, we can speculate that the SVM

would be more computationally efficient, since the proposed model involves inverting

a covariance matrix, which is a step that is not required by the SVM.
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Chapter 8

EVALUATING THE MULTI-CLASS MODEL SELECTION

ALGORITHM

In this part, we considered the development for a multi-class, n > 2 classifi-

cation algorithm that allows for making inference on the source of a set of test objects

known to originate from one of n potential sources. This method is novel in that it

allows for classifying the complete set of objects at once, rather than classifying each

object in turn. This method relies on a kernel function, which allows for considering

virtually any set of high-dimensional, complex, heterogeneous data as a single vector

of real-values scores between observations by merely modifying the kernel to accom-

modate the considered data. In addition, our method is particularly well-suited for

scenarios in which a limited number of observations are available for consideration, as

is oftentimes the case in forensic scenarios.

An evaluation of this performance of the proposed model indicates that the

model performs just as well as the SVM when n0 = 5 control objects are consid-

ered, and surpasses the performance of the SVM when n0 = 10 control objects are

considered. In addition, the performance of the model is not affected as the number

of considered sources increases. We do note, however, that the computational time

increases drastically as n increases, more-so than when n0 or nu increase.

The performance of this model indicates that the model works well in the multi-

class scenario, and that it is reasonable to move on to consider the full model, in which

we wish to determine whether an object is more likely to originate from a given source

than from a random source in a population of potential sources.
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Part IV

A Population-Based Model

Selection Algorithm
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OVERVIEW OF PART IV: A POPULATION-BASED MODEL SELECTION

ALGORITHM FOR HIGH-DIMENSIONAL AND COMPLEX DATA

In this part, we develop the theory and implementation for a model-selection

algorithm that considers a putative source versus a population of random sources. In

Chapter 9, we define the problem and develop the algorithm that allows for determining

whether a specific putative source is more likely to have produced a set of trace objects

than some other random source in a population of potential sources. In addition, we

propose a method for studying the parameters of the proposed model, and a sampling

algorithm that can be used to study the distributions of the considered parameters. In

addition, we consider the ability of the model to recover the parameters under a fixed

scenario, and we investigate the scenarios in which the Normality assumption becomes

reasonable.

In Chapter 10, we conduct a series of simulations to assess the performance of

the model as we vary the number of random sources used to characterize the population

and the number of objects considered per random source. In addition, we evaluate the

proposed model using a forensic dataset consisting in FTIR spectra of paint chips.

In Chapter 11 we discuss the benefits and limitations of the proposed population-

based model.
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Chapter 9

DEFINING THE POPULATION-BASED MODEL-SELECTION

PROBLEM

We conclude this dissertation by considering a population-based scenario in

which we are interested in determining whether a specific, fixed source is more likely to

have produced a set of objects of unknown but common origin. That is, given a set of n0

objects known to have originated from a known source of interest, Xk, a set, P , con-

sisting of several sets of n0 objects, X1, . . . ,Xr, known to have originated from some

other random source in a population of potential sources, and a set of nu objects, Xu of

common but unknown origin, we are interested in determining whether the source that

produced the objects in Xk is more likely to have produced the set of trace objects Xu

than some other random source in the population of potential sources. Formally, we are

interested in determining if

Hp: Xu is a simple random sample from the source that produced Xk;

Hd: Xu is a simple random sample from some other random source in a population

of potential sources characterized by P .

As discussed in Chapter 3, differentiating between these propositions cannot

be reduced to a simple classification or model-selection problem that can be addressed

using machine learning or likelihood-based techniques. As before, small sample sizes

rule out many machine learning techniques, and high-dimensional, complex, or het-

erogenous data make it impossible to assign the necessary probability measures for

assigning Bayes factors, or performing likelihood-based inference.
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We propose a model that leverages the properties of kernel functions (see Chap-

ter 1) to obtain a vector of scores, s, that consists in all pairwise comparisons of all

objects observed in Xk, P , and Xu. This vector consists of within-source scores,

which arise when compared objects originate from a common source, and between-

source scores, which arise when compared objects originate from two different sources.

The model capitalizes on the variability that exists within and between these sets of

scores to address the above inference question. Because the method relies on a kernel

function, the method can be tailored to any type of data by merely modifying this func-

tion, and the overall inference process remains the same. Furthermore, the model relies

on a single assumption, which can be satisfied through the design of the kernel function.

9.1 PROBLEM STATEMENT

Consider a set of exchangeable observations, Xk, made on objects known to

have been produced by a known, suspected source, a set, P , consisting in r sets,

X1, . . . ,Xr, of exchangeable observations from r random sources from the population

of potential sources, and the set of exchangeable observations, Xu, made on objects of

common but unknown origin. The sets Xk and P are considered to be sets of control

objects, while the set Xu is considered to be a set of test objects. We define the sets

Xk, X1, . . . ,Xr, and Xu as being simple random samples,
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Xk := {xk,1,xk,2, . . . ,xk,n0};

X1 := {x1,1,x1,2, . . . ,x1,n0};

X2 := {x2,1,x2,2, . . . ,x2,n0};
...

Xp := {xp,1,xp,2, . . . ,xp,n0};
...

Xr := {xr,1,xr,2, . . . ,xr,n0};

Xu := {xu,1,xu,2, . . . ,xu,nu};

where the sets of control objects consist in n0 objects from their respective sources, and

the set of test objects consists in nu objects known to originate from either the puta-

tive source characterized by Xk, or by some other source in a population of potential

sources, characterized by P := {X1, . . . ,Xr}. We are interested in quantifying the

extent of the support provided to Hp and Hd above.

Rather than consider the observations themselves, we instead consider the vec-

tor of all pairwise scores, s ∈ RN , N =
(
(r+1)n0+nu

2

)
, obtained by comparing the

observations in the sets Xk, P , and Xu via some kernel,

κ : Rm 7→ R,

κ (xij,xi′j′) = 〈ϕ (xij) , ϕ (xi′j′)〉 i, i′ ∈ {1, . . . , r, k, u}, j, j′ ∈ {1, . . . , max{n0, nu}},

where ϕ is a mapping into some separable, high-dimensional Hilbert space [12, 65, 71,

74]. As before, sij,i′j′ is the score obtained by comparing object xij to object xi′j′ using

some kernel function, κ (see Definition 2 in Section 1.1).

We define our kernel function such that our vector of scores is distributed ac-
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cording to a Multivariate Normal distribution, with

s ∼ MVN (θ,Σ) , (9.1)

where θ is the vector of the mean terms, and Σ is the covariance matrix associated with

the vector of scores (see Section 9.5 and Chapter 10 for a discussion on the validity

of this assumption, and the implications when this assumption does not hold). These

parameters will collectively be referred to as Ω := {θ,Σ}, and we will more explicitly

define θ and Σ as we move through the chapter. We can assign a Bayes Factor in terms

of the Multivariate Normal Likelihood and the associated parameter Ω, such that

Λ =

∫
Ω
ℓ (s|Ω,Hd) dΠ(Ω|Hp)∫

Ω
ℓ (s|Ω,Hd) dΠ(Ω|Hd)

:=

∫
Ωp

ℓ (s|Ωp) dΠ(Ωp)∫
Ωd

ℓ (s|Ωd) dΠ(Ωd)
. (9.2)

It is worth noting that there exist differences between Ωp and Ωd. While the

individual elements of each of the parameters (θp and θd, and Σp and Σd) are restricted

to the same set of potential values, the structures of the mean vectors and covariance

matrices depend on which proposition is being considered. That is, when Hp is being

considered, then the parameter Ωp considers that the set of unknown objects, Xu, orig-

inates from the putative source that produced the objects in Xk. Likewise, when Hd

is being considered, then the parameter Ωd considers that the set of unknown objects

originates from some other random source in a population of potential sources charac-

terized by P . Under Hp, scores that consider at least one trace object and that are of

the form suj,uj′ or skj,uj′ , are considered to be within-source scores, while those of the

form suj,pj′ , p ∈ {1, . . . , r}, are considered to be between-source scores. In the same

way, under Hd, scores that consider at least one trace object and that are of the form

suj,uj′ are considered to be within-source scores, while those of the form skj,uj′ or suj,pj′

are considered to be between-source scores.

Due to the nature of this problem, we consider two types of within- and between-
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source scores. That is, rather than consider within-source i, as in the previous two mod-

els, we consider that scores may be within the putative source (in which two objects

from the putative source are compared), within random sources from the population

(in which two objects from the same random source in the population are compared),

between the putative source and a random source from the population (in which an ob-

ject from the putative source is compared to an object from a random source used to

characterize the population), or between population source (in which two objects arise

from different random sources used to characterize the population). Bearing this in

mind, then, under Hp, scores of the form suj,uj′ or skj,uj′ are considered to be scores

within the putative source, and scores of the form suj,pj′ are considered to be between

the putative source and the population, while under Hd, scores of the form suj,uj′ are

considered to be within a random source from the population, scores of the form skj,uj′

are considered to be between the putative source and a random source from the popu-

lation, and scores of the form suj,pj′ are considered to be between two random sources

from the population.

9.1.1 COVARIANCE STRUCTURE OF THE OBJECT MODEL

In the previous model, we investigated the covariance structure for a vector of

scores by considering a single univariate object-based model. In this scenario, however,

we consider a pair of univariate object-based models, in which the linear model is con-

tingent upon whether the object, xij , is randomly sampled from the population, or from

the known and fixed putative source. In the case where an object is sampled from a

randomly selected source in a population of potential sources, we consider a term xpj

defined in terms of the linear model given by

xpj = µ+ θp + εpj, (9.3)

where µ is the overall mean of the population, θp is the difference between the overall

mean of the population, µ, and that of the individual source randomly sampled from

the population, µ + θp, p ∈ {1, . . . , r}, such that θ ∼ N (0, τ 2), and εpj is a lack of fit
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term, such that εpj ∼ N (0, σ2). In the case where an object is sampled from the fixed,

putative source, we consider a term xkj defined in terms of the linear model given by

xkj = µk + εkj, (9.4)

where µk is the overall mean of the putative source, and εkj is a lack of fit term, such

that εkj ∼ N (0, ρ2). We proceed by studying covariance structure of scores obtained

under the non-stationary kernel (first presented in Sections 3.1.1 and 6.1.1 as (3.5) and

(6.5), respectively), given by

s∗ij,i′j′ := xijxi′j′ . (9.5)

As before, we can directly examine the mean and covariance terms associated

with this kernel by calculating the various terms that arise from the different possi-

ble score combinations. Table 9.1 provides the different parameter values under (9.5).

In particular, Table 9.1 indicates that we have 4 unique expected value terms and 23

unique covariance terms under the considered non-stationary kernel. Note that we con-

sider only the stationary kernel for this model. Given that the stationary kernel yielded

duplicate term in Parts II and III, and so failed to capture all covariance elements under

a more complex kernel, we elect to move forward using only the non-stationary kernel

described in (9.5).
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Description of Considered Scores Score 1 Score 2 Non-Stationary Kernel (9.5)
Expected Value Terms
Within Two Random Sources p1p2 - µ2 + τ 2

Within Putative Source k1k2 - µ2
k

Between Two Random Sources p1p′2 - µ2

Between Putative and Random Sources k1p1 - µµp

Covariance Terms
Both Within Putative Source, Two Common Objects k1k2 k1k2 2µ2

kρ
2 + ρ4

Both Within Putative Source, One Common Object k1k2 k1k3 µ2
kρ

2

Both Within Putative Source, No Common Objects k1k2 k3k4 0
Both Within Random Source, Two Common Objects, Two Common Sources p1p2 p1p2 2τ 2 (τ 2 + 2µ2 + σ2) + 2µ2σ2

Both Within Random Source, One Common Object, Two Common Sources p1p2 p1p3 2τ 2 (τ 2 + σ2)+µ2 (4τ 2 + σ2)
Both Within Random Source, No Common Objects, Two Common Sources p1p2 p3p4 2τ 4 + 4µ2τ 2

Both Within Random Sources, No Common Objects, No Common Sources p1p2 p′1p′2 0
Both Between Putative and Random Sources, Two Common Objects, Two
Common Sources k1p1 k1p1 (ρ2 + µ2

k) (σ
2 + τ 2) + µ2ρ2

Both Between Putative and Random Sources, One Common Object from
Source k, Same Random Source k1p1 k1p2 µ2ρ2 + µ2

kτ
2

Both Between Putative and Random Source, One Common Object from
Source k, Different Random Sources k1p1 k1p′1 µ2ρ2

Both Between Putative and Random Source, One Common Object from
Source p

k1p1 k2p1 µ2
k (τ

2 + σ2)

Both Between Putative and Random Sources, No Common Objects, Two
Common Sources k1p1 k2p2 µ2

kτ
2

Both Between Putative and Random Sources, No Common Objects, Putative
Source in Common k1p1 k2p′2 0

Both Between Random Sources, Two Common Objects p1p′1 p1p′1 (τ 2 + σ2 + 2µ2) (τ 2 + σ2)
Both Between Random Sources, One Common Object, Two Common Sources p1p′1 p1p′2 2µ2τ 2 + µ2σ2 + τ 4

Both Between Random Sources, One Common Object, One Common Source p1p′2 p1p′′1 µ2 (τ 2 + σ2)
Both Between Random Sources, No Common Objects, Two Common Sources p1p′1 p2p′2 2µ2τ 2

Both Between Random Sources, No Common Objects, One Common Source p1p′1 p2p′′1 µ2τ 2

Both Between Random Sources, No Common Objects, No Common Sources p1p′1 p′′1p′′′1 0
Within Putative Source, Within Random Source, No Common Objects k1k2 p1p2 0
Within Putative Source, Between Putative and Random Source, One Common
Object k1k2 k1p1 µµkρ

2

Within Putative Source, Between Putative and Random Source, No Common
Objects k1k2 k3p1 0

Within Random Source, Between Putative and Random Source, One Common
Object, One Common Source p1p2 k1p1 µµk (2τ

2 + σ2)

Within Random Source, Between Putative and Random Source, No Common
Objects, One Common Source p1p2 k1p3 2µµkτ

2

Within Random Source, Between Putative and Random Source, No Common
Objects, No Common Sources p1p2 k1p′1 0

Between Putative and Random Source, Between Random Sources, One Com-
mon Object, One Common Source k1p1 p1p′1 µµk (τ

2 + σ2)

Between Putative and Random Source, Between Random Sources, No Com-
mon Objects, One Common Source k1p1 p2p′1 µµkτ

2

Between Putative and Random Source, Between Random Sources, No Com-
mon Objects, No Common Sources k1p1 p′1p′′1 0

Within Random Sources, Between Random Sources, One Common Object,
One Common Source p1p2 p1p′1 µ2 (2τ 2 + σ2)

Within Random Sources, Between Random Sources, No Common Objects,
One Common Source p1p2 p3p′1 2µ2τ 2

Within Random Sources, Between Random Sources, No Common Objects, No
Common Sources p1p2 p′1p′′1 0

Table 9.1: Expected value and covariance terms obtained for the object-based model for
each type of score comparison when a non-stationary kernel (e.g., (9.5)) is considered.
Column one provides descriptions of each type of comparison that may be observed;
columns two and three provide examples of indices for scores that could be compared
in each situation; column four presents the parameter values obtained under the non-
stationary kernel given by (9.5).
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9.1.2 DEFINING A SCORE-BASED MODEL

Suppose, now, that we expand upon (9.1) and define our vector of scores such

that

s ∼ N (θ,Σ) =⇒ sij,i′j′ ∼ MVN
(
θii′ , σ

2
ii′

)
=⇒ sij,i′j′ − θii′

σii′
∼ N (0, 1) (9.6)

where the parameters θii′ and σii′ , ii′ ∈ {kk, kP,PP ,PP ′}1, are the means and

standard deviations associated with the different comparisons that may be considered

by a given score. That is, each score in the vector of scores is either one of two possi-

ble within-source scores, or one of two possible between-source scores. For example,

consider a score sij,i′j′ in which i = i′ = k, and so θii′ gives us the expected value of

scores that compare any two objects in Xk. Likewise, when i = i′ = P , θii′ gives us

the expected value of scores that compare any two objects in Xp ∈ P . When i 6= i′,

i = k, i′ = P , θii′ gives us the expected value of scores that compare an object in Xk

to an object in P . Finally, when i 6= i′, i = P, i′ = P ′, θii′ gives us the expected

value of scores that compare two objects from different random sources in P . Thus, we

consider θii′ ∈ {θkk, θkP , θPP , θPP′}. The parameter σii′ can be equivalently defined

for the standard deviation terms.

From here, following the work of Gantz and Saunders, and Armstrong [5, 6, 26],

and the development in Sections 3.1.2 and 6.1.2, we choose to define the standardized

scores from (9.6) according to a random effects model

sij,i′j′ − θii′

σii′
= aij + ai′j′ + bi + bi′ + ci + di:ij + di:i′j′ + di′:ij + di′:i′j′ + eij,i′j′ , (9.7)

1The set P is the set of r random sources, {X1, X2, . . . , Xr} used to characterize the pop-
ulation. When used as a subscript, it indicates that we are considering all random sources
p ∈ {1, . . . , r} simultaneously, as opposed to considering a single random source, denoted by p.
For example, we could consider the vector of scores spp, which considers only the within-source-
p comparisons. Alternatively, we could consider the vector of scores sPP , which considers all
within-source comparisons in the population. Likewise, we could consider the vector of scores
skp, which would compare observations from source k to the observations from source p. In the
same way, we could consider the vector of scores skP , which would compare the observations
from source k to any other source in the population of potential sources.
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where aij and ai′j′ are random object effects with aij, ai′j′ ∼ N (0, σ2
a), bi, bi′ are

random population source interaction effects with bi, bi′ ∼ N (0, σ2
b ), ci is a random

putative source interaction effect with ci ∼ N (0, σ2
c ), di:ij , di:i′j′ , di′:ij , and di′:i′j′ are

random source-object interaction effects with di:ij, di:i′j′ , di′:ij, di′:i′j′ ∼ N (0, σ2
d), and

eij,i′j′ is a lack-of-fit term with eij,i′j′ ∼ N (0, σ2
e). Considering the structure of these

matrices (see Figures 9.1, 9.2, 9.3, and 9.4), and following (9.6), we have that 2σ2
a +

σ2
c + 4σ2

d + σ2
e = 2σ2

a + 2σ2
b + 4σ2

d + σ2
e = 1. Finally, we rewrite the model in terms of

sij,i′j′ , such that

sij,i′j′ = θii′ + σii′ (aij + ai′j′ + bi + bi′ + ci + di:ij + di:i′j′ + di′:ij + di′:i′j′ + eij,i′j′) ,

and so, given the distributional assumptions associated with (9.6) and (6.7), we define

the distribution of our vector of scores to be

s ∼ MVN
(
θ,∆

(
PP ′σ2

a +QQ′σ2
b +RR′σ2

c + TT ′σ2
d + Iσ2

e

)
∆′) , (9.8)

where θ is a vector of length N of the mean terms given by θii′ , and ∆ is an N × N

diagonal matrix of the standard deviations given by σii′ . The matrix I is the N × N

identity matrix. The design matrices P , Q, R, and T each describe an effect the

different scores considered in the vector s. Each of these design matrices is constructed

by individually considering the potential source combinations that are of interest for

the effect being considered. The following sections outline the construction of these

matrices.

9.1.2.1 DESIGN MATRIX P

The ((r + 1)n0 + nu) ×
(
(r+1)n0

2

)
design matrix P describes the effects of the

objects being compared on the score for each score considered in the vector s. The rows

of P consist in all pairwise combinations of all ((r + 1)n0 + nu) objects, while the

columns of P consist in the objects themselves (e.g., k1, k2, . . . , kn0, 11, 12, . . . , 1n0,

. . . , r1, . . . , rn0) . To construct the design matrix P requires considering three sub-
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components of the overall P matrix. We will refer to these as Pk, PP , and Pk,P . Each

of these three matrices is of the same dimension as P , and the columns of the matrices

are of the same organizational structure. Considering different combinations of these

matrices allows us to construct the full design matrix , PP ′.

The design matrix Pk is constructed by considering only those rows whose as-

sociated scores consider two objects from the putative source. For the rows of Pk that

consider a within-putative source score, a value of 1 is placed in the columns corre-

sponding to the considered objects, and a value of 0 is placed in the remaining columns.

For example, given a score sk1,k2, the columns associated with the first and second ob-

jects from the putative sources (i.e., “k1”, “k2”) are assigned a value of 1, and all other

columns are assigned a value of 0.

The design matrix PP is constructed by considering only those rows whose

associated scores consider two objects from the population, regardless of whether or

not those objects arise from the same source within the population. For the rows of

PP that consider two objects from the population, a value of 1 is placed in the columns

corresponding to the considered objects, and a value of 0 is placed in the remaining

columns. For example, given a score sp1,p2, the columns associated with the first and

second objects from source p in the population (i.e., “p1”, “p2”) are assigned a value

of 1, and all other columns are assigned a value of 0. Likewise, given a score sp1,p′1, the

columns associated with the first objects from sources p and p′ in the population (i.e.,

“p1”, “p′1”) are assigned a value of 1, and all other columns are assigned a value of 0.

Finally, the design matrix Pk,P is constructed by considering only those rows

whose associated scores consider an object from the putative source alongside an object

from the population. For the rows of Pk,P that consider scores of this type, a value of

1 is placed in the columns corresponding to the considered objects, and a value of 0 is

placed in the remaining columns. For example, given a score sk1,p1, the columns associ-

ated with the first objects from the putative source and from source p in the population

(i.e., “k1”, “p1”) are assigned a value of 1, and all other columns are assigned a value

of 0.
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We can then use these three matrices to construct our final design matrix, given

by PP ′. Specifically, PP ′ is defined by considering all pairwise combinations of Pk,

PP , and Pk,P . That is,

PP ′ := PkP
′
k + PPP ′

P + Pk,PP ′
k,P +

(
PkP

′
k,P + Pk,PP ′

k

)
+
(
PPP ′

k,P + Pk,PP ′
P

)
.

Figure 9.1 portrays the resulting PP ′ matrix, along with the five different combinations

of the three sub-matrices matrices used to construct PP ′.

9.1.2.2 DESIGN MATRIX Q

The ((r + 1)n0 + nu)× (r+1) design matrix Q describes the effect of random

sources from the population of potential sources on the score for each score consid-

ered in the vector s. The rows of Q consist in all ((r + 1)n0 + nu) objects, while the

columns of Q consist in the r + 1 sources being considered (e.g., k, 1, . . . , p). To con-

struct the design matrix Q requires considering two sub-design matrices of the overall

Q matrix. We will refer to these as QP and Qk,P . Note that we do not need to con-

sider Qk, since we are looking at the effect of the random sources from the population

of potential sources. This pair of matrices is of the same dimension as Q, and the

columns of the matrices are of the same organizational structure. Considering different

combinations of these matrices allows us to construct the full design matrix, QQ′.

The design matrix QP is constructed by considering only those rows whose

associated scores consider two objects from the population, regardless of whether or

not those objects arise from the same source within the population. For the rows of QP

that consider two objects from the same random source in the population of potential

sources, a value of
√
2 is placed in the columns corresponding to the source of the

considered objects, and a value of 0 is placed in the remaining columns. For the rows

of QP that consider two objects from different random sources in the population of

potential sources, a value of 1 is placed in the columns corresponding to the sources

of the considered objects, and a value of 0 is placed in the remaining columns. For

example, given a score sp1,p2, where both objects are from random source p in the



113

(a) PP ′

(b) PkP
′
k (c) PPP ′

P (d) Pk,PP ′
k,P

(e) PkP
′
k,P + Pk,PP ′

k (f) PPP ′
k,P + Pk,PP ′

P

Figure 9.1: Heat maps of design matrix PP ′ and sub-design matrices used to construct
PP ′. (a) Final design matrix, PP ′. (b) Sub-design matrix, PkP

′
k, depicting the effect

of considering two pairs of objects from the putative source. (c) Sub-design matrix,
PPP ′

P , depicting the effect of considering two pairs of objects from the population. (d)
Sub-design matrix, Pk,PP ′

k,P , depicting the effect of considering two pairs of objects
that consider an object from the putative source alongside an object from the popu-
lation. (e) Sub-design matrix, PkP

′
k,P + Pk,PP ′

k, depicting the effect of considering a
pair of objects from the putative source alongside a pair of objects that considers one
object from the putative source and one object from the population. (f) Sub-design
matrix, PPP ′

k,P + Pk,PP ′
P , depicting the effect of considering a pair of objects from

the population alongside a pair of objects that considers one object from the population
and one object from the putative source.



114

population, the columns associated with source p are assigned a value of
√
2, and all

other columns are assigned a value of 0. Similarly, given a score sp1,p′1, where the two

objects come from different random sources in the population, the columns associated

with sources p and p′ are assigned a value of 1, and all other columns are assigned a

value of 0. Note that when the two considered objects arise from the same random

source, only one position in the row is non-zero, while when the two considered objects

arise from different random sources, two positions in the row are non-zero.

The design matrix Qk,P is constructed by considering only those rows whose

associated scores consider an object from the putative source alongside an object from

the population. For the rows of Qk,P that consider an object from the putative source

alongside an object from the population, a value of 1 is placed in the columns corre-

sponding to the sources of the two objects, and a value of 0 is placed in the remaining

columns. For example, given a score sk1,p1, the rows associated with sources k and p

are assigned a value of 1, and all other columns are assigned a value of 0.

We can use these two matrices to construct our final design matrix, given by

QQ′. Specifically QQ′ is defined by considering combinations of QP and Qk,P . That

is,

QQ′ := QPQ′
P +

(
QPQ′

k,P +Qk,PQ′
P

)
Figure 9.2 portrays the resulting QQ′ matrix, along with the two different combinations

of the sub-matrices matrices used to construct QQ′.

9.1.2.3 DESIGN MATRIX R

The ((r + 1)n0 + nu) ×
((

r+1
2

)
+ (r + 1)

)
design matrix R describes the ef-

fect of the putative source on the score for each score considered in the vector s.

The rows of R consist in all ((r + 1)n0 + nu) objects, while the columns of R con-

sist in the
((

r+1
2

)
+ (r + 1)

)
potential combinations of sources being considered (e.g.,

kk, k1, k2, . . . , k.r, 1.1, 2.2, . . . , r.r, 1.2, 1.3, . . . , 1.r, . . . , r− 1.r). To construct the de-

sign matrix R requires considering two sub-design matrices of the overall R matrix.
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(a) QQ′

(b) QPQ′
P (c) QPQ′

k,P +Qk,PQ′
P

Figure 9.2: Heat maps of design matrix QQ′ and sub-design matrices used to construct
QQ′. (a) Final design matrix, QQ′. (b) Sub-design matrix, QPQ′

P , depicting the
effect of considering two pairs of objects from the population. (c) Sub-design matrix,
PPP ′

k,P +Pk,PP ′
P , depicting the effect of considering a pair of objects from the popu-

lation alongside a pair of objects that considers one object from the population and one
object from the putative source.
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We will refer to these as Rk and Rk,P . Note that we do not need to consider RP ,

since we are looking at the effect of the putative source. This pair of matrices is of

the same dimension as R, and columns of the matrices are of the same organizational

structure. Considering different combinations of these matrices allows us to construct

the full design matrix RR′.

The design matrix Rk is constructed by considering only those rows whose

associated scores consider two objects from the putative source. For the rows of Rk

that consider two objects from the putative source, a value of 1 is placed in the columns

corresponding to the source combination of the considered objects, and a value of 0

is placed in the remaining columns. For example, given a score sk1,k2, the column

associated with the within-putative source combination (i.e., “k.k′′) is assigned a value

of 1, and all other columns are assigned a value of 0. Note that all scores that are

considered by this matrix will result in a value of 1 in this particular column, with a

value of 0 in all other columns.

The design matrix Rk,P is constructed by considering only those rows whose

associated scores consider an object from the putative source alongside an object from

the population of potential sources. For the rows of Rk,P that consider an object from

the putative source alongside an object from the population, a value of 1 is placed in the

columns corresponding to the sources of the two objects, and a value of 0 is placed in

the remaining columns. For example, given a score sk1,p1, the column associated with

the source combination of k and p (e.g, “k.p′′) is assigned a value of 1, and all other

columns are assigned a value of 0.

We can use these two matrices to construct our final design matrix, given by

RR′. Specifically, RR′ is defined by considering combinations of Rk and Rk,P . That

is

RR′ := RkR
′
k +Rk,PR′

k,P

Figure 9.3 portrays the resulting RR′ matrix, along with the two different combinations

of the sub-matrices matrices used to construct RR′.
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(a) RR′

(b) RkR
′
k (c) Rk,PR′

k,P

Figure 9.3: Heat maps of design matrix RR′ and sub-design matrices used to construct
RR′. (a) Final design matrix, RR′. (b) Sub-design matrix, RkR

′
k, depicting the effect

of considering two pairs of objects from the putative source. (c) Sub-design matrix,
Rk,PR′

k,P , depicting the effect of considering two pairs of objects that consider an
object from the putative source alongside an object from the population.
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9.1.2.4 DESIGN MATRIX T

The ((r + 1)n0 + nu)×((r + 2) ((r + 1)(n0) + nu)) design matrix T describes

the interaction effect of the objects and the sources on the score for each score consid-

ered in the vector s. The rows of T consist in all ((r + 1)n0 + nu) objects, while the

columns of T consist in the ((r + 2) ((r + 1)(n0) + nu)) combinations of sources and

objects being considered (e.g., k : k1, k : k2, . . . , k : kn0, k : 11, . . . , k : rn0, 1 :

k1, . . . 1 : rn0, . . . , p : k1, . . . , p : rn0, . . . , r : k1, . . . , r : rn0). To construct the design

matrix T requires considering four sub-design matrices of the overall T matrix. We will

refer to these as Tk, TPw , TPb
, and Tk,P . These matrices are of the same dimension

as T , and the columns are of the same organizational structure. Considering different

combinations of these matrices allows us to construct the full design matrix TT ′.

The design matrix Tk is constructed by considering only those rows whose as-

sociated scores consider two objects from the putative source. For the rows of Tk that

consider two objects from the putative source, a value of
√
2 is placed in the columns

associated with the source and object combinations of the score being considered, and

a value of 0 is placed in the remaining columns. For example, given a score sk1,k2, the

columns associated with the considered source and objects (i.e., k : k1, k : k2) are

assigned a value of
√
2, and all other columns are assigned a value of 0.

The design matrix TPw is constructed by considering only those rows whose

associated scores consider two objects from the same random source in the population

of potential sources. For the rows of TPw that consider two objects from the same

random source, a value of
√
2 is placed in the columns associated with the source and

object combinations of the score being considered, and a value of 0 is placed in the

remaining columns. For example, given a score sp1p2, the columns associated with the

considered source and objects (i.e., p : p1, p : p2) are assigned a value of
√
2, and all

other columns are assigned a value of 0.

The design matrix TPb
is constructed by considering only those rows whose

associated scores consider two objects from two different random sources in the popu-

lation of potential sources. For the rows of TPb
that consider two objects from two dif-
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ferent random sources, a value of 1 is placed in the columns associated with the source

and object combinations of the score being considered, and a value of 0 is placed in the

remaining columns. For example, given a score sp1p′1, the columns associated with the

considered sources and objects (i.e., p : p1, p : p′2, p′ : p1, p′ : p′2) are assigned a value

of 1, and all other columns are assigned a value of 0.

Finally, the design matrix Tk,P is constructed by considering only those rows

whose associated scores consider an object from the putative source alongside an object

from the population of potential sources. For the rows of Tk,P that consider an object

from the putative source alongside an object from the population, a value of 1 is placed

in the columns associated with the source and object combinations of the score being

considered, and a value of 0 is placed in the remaining columns. For example, given a

score sk1,p1, the columns associated with the considered sources and objects (i.e., k : k1,

k : p1, p : k1, p : p1) are assigned a value of 1, and all other columns are assigned a

value of 0.

We can use these matrices to construct our final design matrix, given by TT ′.

Specifically, TT ′ is defined by considering combinations of Tk, TPw , TPb
, and Tk,P .

That is

TT ′ := TkT
′
k + TPwT

′
Pw

+ TPb
T ′

Pb
+ Tk,PT ′

k,P +
(
TkT

′
k,P + Tk,PT ′

k

)
+(

(TPw + TPb
)T ′

k,P + Tk,P (TPw + TPb
)
)
+
(
TPwT

′
Pb

+ TPb
T ′

Pw

)
Figure 9.4 portrays the resulting TT ′ matrix, along with the different combinations of

the sub-matrices matrices used to construct TT ′.
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(a) TT ′

(b) TkT
′
k (c) TPwT ′

Pw
(d) TPb

T ′
Pb

(e) Tk,PT ′
k,P

(f) TkT
′
k,P + Tk,PT ′

k (g) TPwT ′
Pb

+ TPb
T ′

Pw
(h)

(
TPw + TPb

)
T ′
k,P +

Tk,P

(
TPw + TPb

)′
Figure 9.4: Heat maps of design matrix TT ′ and sub-design matrices used to construct
TT ′. (a) Final design matrix, TT ′. (b) Sub-design matrix, TkT

′
k, depicting the effect

of considering two pairs of objects from the putative source. (c) Sub-design matrix,
TPwT

′
Pw

, depicting the effect of considering two pairs of objects from the same random
source in the population. (d) Sub-design matrix, TPb

T ′
Pb

, depicting the effect of consid-
ering two pairs of objects from different random sources in the population. (e) Sub-design
matrix, Tk,PT ′

k,P , depicting the effect of considering two pairs of objects that consider an
object from the putative source alongside an object from the population. (f) Sub-design
matrix, TPwT

′
Pb

+ TPb
T ′

Pw
, depicting the effect of considering a pair of objects from

the same source in the population alongside a pair of objects from two different sources
in the population. (g) Sub-design matrix, (TPw + TPb

)T ′
k,P + Tk,P (TPw + TPb

), de-
picting the effect of considering a pair of objects from the population alongside a pair
of objects that considers one object from the putative source and one object from the
population.
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The likelihood function in the numerator and denominator of (9.2) can be rep-

resented using the distribution given in (6.1). As explained in the introduction of Sec-

tions 3.1.1 and 6.1.1, we have that the structure of the mean vector and covariance ma-

trix depend on whether Hp or Hd is being considered. See Figure 3.1 in Section 3.1.1

for an example when we consider two fixed classes.

As in the two class model, it is worth noting that the covariance matrix defined

in (9.8) is not equivalent to that of the object model described in Section 9.1.1. This is

due to the fact that the covariance matrix in Section 9.1.1 considers a single term σii′

to describe the relationship that occurs when a score involves an object from source i

and an object from source i′. For the covariance matrix in (9.8) to coincide with that

defined in Section 9.1.1, we would need to define two terms, σii′ and σi′i, that describe

the effect when the object in common between two scores comes from source i versus

from source i′. For example, consider a pair of scores sk1,p1 and sk1,p2. To appropriately

capture the covariance that exists between these two scores would require defining a

term σkp, since the common object between the two scores comes from the putative

source k. Likewise, a pair of scores, sk1,p2 and sk2,p1, would require defining a term σpk,

since the common object between the scores comes from the random source, p, from

the population. As a result, the covariance terms of the score model in rows 9 and 11

of Table 9.2 do not necessarily have a direct counterpart in the model. Due to a similar

phenomenon, we have that the covariance terms of the score model in rows 17 and 18

in Table 9.2 are also lacking a direct counterpart.

However, despite these discrepancies, we choose to move forward with the

model given by (9.8). While the covariance matrices of the object and score models

may not be exactly the same, their structures under Hp and Hd remain sufficiently sim-

ilar. Furthermore, as we will see below, an elegant solution exists for studying the

parameters of the model given by (9.8).
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Description of Considered Scores Score 1 Score 2 Object Model (9.5) Score Model (9.8)
Covariance Terms
Both Within Putative Source, Two Common Objects k1k2 k1k2 2µ2

kρ
2 + ρ4 σkk (2σ

2
a + σ2

c + 4σ2
d + σ2

e)σkk

Both Within Putative Source, One Common Object k1k2 k1k3 µ2
kρ

2 σkk (σ
2
a + σ2

c + 2σ2
d)σ

2
kk

Both Within Putative Source, No Common Objects k1k2 k3k4 0 0
Both Within Random Source, Two Common Objects, Two Com-
mon Sources p1p2 p1p2 2τ 2 (τ 2 + 2µ2 + σ2) + 2µ2σ2 σpp (2σ

2
a + 2σ2

b + 4σ2
d + σ2

e)σpp

Both Within Random Source, One Common Object, Two Common
Sources p1p2 p1p3 2τ 2 (τ 2 + σ2) + µ2 (4τ 2 + σ2) σpp (σ

2
a + 2σ2

b + 2σ2
d)σpp

Both Within Random Source, No Common Objects, Two Common
Sources p1p2 p3p4 2τ 4 + 4µ2τ 2 σpp (2σ

2
b )σpp

Both Within Random Sources, No Common Objects, No Common
Sources p1p2 p′1p′2 0 0

Both Between Putative and Random Sources, Two Common Ob-
jects, Two Common Sources k1p1 k1p1 (ρ2 + µ2

k) (σ
2 + τ 2) + µ2ρ2 σkp (2σ

2
a + σ2

c + 4σ2
d + σ2

e)σkp

Both Between Putative and Random Sources, One Common Object
from Source k, Same Random Source k1p1 k1p2 µ2ρ2 + µ2

kτ
2 σkp (σ

2
a + σ2

c + 2σ2
d)σkp

Both Between Putative and Random Source, One Common Object
from Source k, Different Random Sources k1p1 k1p′1 µ2ρ2 σkp (σ

2
a + σ2

d)σkp

Both Between Putative and Random Source, One Common Object
from Source p

k1p1 k2p1 µ2
k (τ

2 + σ2) σkp (σ
2
a + σ2

c + 2σ2
d)σkp

Both Between Putative and Random Sources, No Common Objects,
Two Common Sources k1p1 k2p2 µ2

kτ
2 σkp (σ

2
c )σkp

Both Between Putative and Random Sources, No Common Objects,
Putative Source in Common k1p1 k2p′2 0 0

Both Between Random Sources, Two Common Objects p1p′1 p1p′1 (τ 2 + σ2 + 2µ2) (τ 2 + σ2) σpp′ (2σ
2
a + 2σ2

b + 4σ2
d + σ2

e)σpp′

Both Between Random Sources, One Common Object, Two Com-
mon Sources p1p′1 p1p′2 2µ2τ 2 + µ2σ2 + τ 4 σpp′ (σ

2
a + 2σ2

b + 2σ2
d)σpp′

Both Between Random Sources, One Common Object, One Com-
mon Source p1p′2 p1p′′1 µ2 (τ 2 + σ2) σpp′ (σ

2
a + σ2

b + σ2
d)σpp′′

Both Between Random Sources, No Common Objects, Two Com-
mon Sources p1p′1 p2p′2 2µ2τ 2 σpp′ (2σ

2
b )σpp′

Both Between Random Sources, No Common Objects, One Com-
mon Source p1p′1 p2p′′1 µ2τ 2 σpp′ (2σ

2
b )σpp′

Both Between Random Sources, No Common Objects, No Common
Sources p1p′1 p′′1p′′′1 0 0

Within Putative Source, Within Random Source, No Common Ob-
jects k1k2 p1p2 0 0

Within Putative Source, Between Putative and Random Source,
One Common Object k1k2 k1p1 µµkρ

2 σkk

(
σ2
a +

√
2σ2

d

)
σkp

Within Putative Source, Between Putative and Random Source,
No Common Objects k1k2 k3p1 0 0

Within Random Source, Between Putative and Random Source,
One Common Object, One Common Source p1p2 k1p1 µµk (2τ

2 + σ2) σpp

(
σ2
a +

√
2σ2

b +
√
2σ2

d

)
σkp

Within Random Source, Between Putative and Random Source, No
Common Objects, One Common Source p1p2 k1p3 2µµkτ

2 σpp

(√
2σ2

b

)
σkp

Within Random Source, Between Putative and Random Source, No
Common Objects, No Common Sources p1p2 k1p′1 0 0

Between Putative and Random Source, Between Random Sources,
One Common Object, One Common Source k1p1 p1p′1 µµk (τ

2 + σ2) σkp (σ
2
a + σ2

d)σpp′

Between Putative and Random Source, Between Random Sources,
No Common Objects, One Common Source k1p1 p2p′1 µµkτ

2 σkp (σ
2
b )σpp′

Between Putative and Random Source, Between Random Sources,
No Common Objects, No Common Sources k1p1 p′1p′′1 0 0

Within Random Sources, Between Random Sources, One Common
Object, One Common Source p1p2 p1p′1 µ2 (2τ 2 + σ2) σpp (2σ

2
a + 2σ2

b + 4σ2
d + σ2

e)σpp′

Within Random Sources, Between Random Sources, No Common
Objects, One Common Source p1p2 p3p′1 2µ2τ 2 σpp

(√
2σ2

b

)
σpp′

Within Random Sources, Between Random Sources, No Common
Objects, No Common Sources p1p2 p′1p′′1 0 0

Table 9.2: Comparison of Covariance terms in Object Model defined according to (9.5),
and Score Model defined according to (9.8).

9.2 MODEL DEVELOPMENT

Assigning the Kernel Bayes Factor in (9.2) requires estimating the parameters

{θii′}ii′ , {σii′}ii′ , σ2
a, σ2

b , σ2
c , σ2

d and σ2
e using the information contained in the vector of

scores, s. To study these parameters, we follow the development described in Parts II

and III, and subset the vector of scores to define sc, which includes only the comparisons

between the control objects contained in the sets Xk and P , and so is a vector of length
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Nc =
(
(r+1)n0

2

)
. We can then use sc to define the total sum of squares

SSTot = (sc − θc)
′ [∆c∆

′
c]
−1

(sc − θc)

=
(
∆−1

c (sc − θc)
)′ (

∆−1
c (sc − θc)

)
(9.9)

where θc is the Nc vector of score means, θii′ , and ∆c is the Nc × Nc diagonal matrix

of the score standard deviations, σii′ , associated with the scores sc.

Following the development in Sections 3.2 and 6.2, we apply Cochran’s theorem

(see Theorem 2 in Section 3.2) to s̃ = (∆−1
c (sc − θc)), and rewrite (9.9) as

SSTot = s̃Is̃ = s̃

[
Nc∑
l=1

vlv
′
l

]
s̃ (9.10)

where {vl}l, l = 1, . . . , Nc is any orthonormal basis for RNc . Furthermore, we consider

a set of (r+1)+
(
r+1
2

)
diagonal design matrices, Bii′ , i, i′ ∈ {1, . . . , r, k}. Each of these

matrices is an idempotent Nc×Nc matrix whose diagonal matrix can be partitioned into

(r + 1) +
(
r+1
2

)
segments. Of these segments, (r + 1) segments are of length

(
n0

2

)
, and

are each associated with a single source, 1, . . . , r, k. The remaining
(
r+1
2

)
segments are

each of length n2
0, and are each associated with one of the possible combinations of

sources. Note that (r + 1)
(
n0

2

)
+
(
r+1
2

)
n2
0 = Nc. When we are considering a within-

source comparison (i = i′), the matrix Bii has ones in the segment of length
(
n0

2

)
along the diagonal that corresponds to the ith source, and zeros elsewhere. When we

are considering a between-source comparison (i 6= i′), the matrix Bii′ has ones in the

segment of length n2
0 along the diagonal corresponding the the comparison between

source i and i′, and zeros elsewhere2.

As an example, let r = 3, n0 = 5. Then we have (r + 1) +
(
r+1
2

)
= 10

matrices consisting of r + 1 = 4 within source matrices, Bkk, B11, B22, B33, and

2Note that the indices i, i′ are not considered jointly, as in (9.6). In this case, we are consid-
ering matrices Bii′ for all possible source combinations, rather than just the different types of
source comparisons that exist. That is, instead of consider a single matrix for all

(
r
2

)
possible

combinations between the random sources, we consider
(
r
2

)
individual Bii′ matrices. Decon-

structing the sums of squares in this manner allows us to obtain an elegant eigen-decomposition
in which the eigenvalues are straightforward functions of the terms σ2

a, σ2
b , σ2

c , σ2
d, and σ2

e , as we
will see later in the chapter.
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(
r+1
2

)
= 6 between source matrices, Bk1, Bk2, Bk3, B12, B13, B23. These 10 matrices

are displayed in Figures 9.5 and 9.6. Since Bk1, . . . ,Bkr,B11,B12, . . . ,Brr sum to the

identity matrix, we have that

SSTot = s̃′

∑
i,i′

Bii′

 I

∑
i,i′

Bii′

 s̃

= s̃′

∑
i,i′

Bii′I
∑
i,i′

Bii′

 s̃

= s̃′

∑
i,i′

Bii′

[
Nc∑
l=1

vii′l
v′
ii′l

]∑
i,i′

Bii′

 s̃

=
∑

i=k,1,...,r

SSii +
∑

i<i′∈{k,1...,r}

SSii′ (9.11)

where {vii′l
}l, l = 1, . . . , Nc, are different orthonormal bases spanning RNc , and will be

discussed in more detail in later sections. The matrices Bii′ effectively activate different

parts of the vector s̃c according to the different source comparisons. In particular, we

have:

(1) Bkks̃c allows us to consider only the positions of s̃c that correspond to compar-

isons that exist within the putative source, so that s̃′cBkks̃c gives us the within-

source sum of squares corresponding to the putative source. Recall that BkkIBkk =

Bkk, and note that Bkk has rank rkk =
(
n0

2

)
.

(2) Bpps̃c allows us to consider only the positions of s̃c that correspond to com-

parisons that exist within one of the random sources from the population of

potential sources that is being considered, so that s̃′cBpps̃c gives us the within-

source sum of squares corresponding to that particular random source. Recall that

BppIBpp = Bpp. Note that we have r different Bpp matrices, p ∈ {1, . . . , r},

where each matrix Bpp has rank rpp =
(
n0

2

)
.

(3) Bkps̃c allows us to consider only the positions of s̃c that correspond to compar-

isons that exist between objects from the putative source and from one of the

random sources from the population of potential sources that is being considered,

so that s̃′cBkps̃c gives us the between-source sum of squares corresponding to the
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putative source and the considered random source. Recall that BkpIBkp = Bkp.

Note that we have r different Bkp matrices, p ∈ {1, . . . , r}, where each matrix

Bkp has rank rkp = n2
0.

(4) Bpp′ s̃c allows us to consider only the positions of s̃c that correspond to com-

parisons that exist between objects from two different random sources from the

population of potential sources, so that s̃′cBpp′ s̃c gives us the between-source

sum of squares corresponding to the two considered random sources. Recall that

Bpp′IBpp′ = Bpp′ . Note that we have
(
r
2

)
different Bpp′ matrices, p 6= p′ ∈

{1, . . . , r}, where. each matrix Bpp′ has rank rpp′ = n2
0.

Thus, we have defined the total sums of squares in terms of all source comparisons that

exist within our vector of scores. Bearing in mind that the goal is to find a way to esti-

mate the parameters of the distribution given in (9.8), we note that this decomposition

of the total sums of squares allows us to independently study the mean and standard

deviation terms, θii′ and σii′ , associated with their respective source comparisons. Note

that we can choose the orthonormal bases in (9.11) to be any orthonormal bases, and,

in particular, we can choose these orthonormal bases to be the normalized eigenvectors

for the following matrices, V . We choose to define

Vii = Bii

(
PcP

′
cσ

2
a +QcQ

′
cσ

2
b +RcR

′
cσ

2
c + TcT

′
cσ

2
d + Icσ

2
e

)
Bii (9.12)

for the matrices Bii, i ∈ {k, 1, . . . , r}, corresponding to the within-source comparisons,

and

Vii′ = Bii′
(
PcP

′
cσ

2
a +QcQ

′
cσ

2
b +RcR

′
cσ

2
c + TcT

′
cσ

2
d + Icσ

2
e

)
Bii′ (9.13)

for the matrices Bii′ , i 6= i′ ∈ {k, 1, . . . , r}, corresponding to the between-source com-

parisons, where the subscript c on the matrices in (9.12) and (9.13) are of the same

structure as the design matrices described in Section 9.1.2, but have a dimension cor-

responding to that of the score vector sc that considers only comparisons between two
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control objects.

As in Section 3.2 and 6.2, choosing Vii and Vii′ to be a function of Σc :=

PcP
′
cσ

2
a+QcQ

′
cσ

2
b +RcR

′
cσ

2
c +TcT

′
cσ

2
d+Icσ

2
e is advantageous in that it introduces the

parameters σ2
a, σ2

b , σ2
c , σ2

d, and σ2
e , and so provides a means for studying these parame-

ters. Second, defining Vii and Vii′ in terms of Bii and Bii′ allows us to take advantage

of the relevant parts of Σc with respect to each source comparison by activating only

the rows and columns of Σ corresponding to the considered source comparison.

Vkk

Eigenvalue (νkkl) Multiplicity (mνkkl
) Eigenvectors (vkkl)

2 (n0 − 1)σ2
a +

(
n0

2

)
σ2
c + 2 (2n0 − 2)σ2

d + σ2
e 1 vkkl such that Vkkvkkl = νkk1vkkl

(n0 − 2)σ2
a + 2 (n0 − 2)σ2

d + σ2
e n0 − 1 vkkl such that Vkkvkkl = νkk2vkkl

σ2
e

(
n0

2

)
− n0 viil such that Vkkvkkl = νkk3vkkl

0 Nc −
(
n0

2

)
vkkl such that Vkkvkkl = νkk4vkkl

Vkp

Eigenvalue (νkpl) Multiplicity (mνkpl
) Eigenvectors (vkpl)

2n0σ
2
a + n2

0σ
2
c + 4n0σ

2
d + σ2

e 1 vkpl such that Vkpvkpl = νkp1vkpl
n0σ

2
a + 2n0σ

2
d + σ2

e 2n0 − 2 vkpl such that Vkpvkpl = νkp2vkpl
σ2
e (n0 − 1)2 vkpl such that Vkpvkpl = νkp3vkpl
0 Nc − n2

0 vkpl such that Vkpvkpl = νkp4vkpl
Vpp

Eigenvalue (νppl) Multiplicity (mνppl
) Eigenvectors (vppl)

2(n0 − 1)σ2
a +

(
n0

2

)
σ2
c + 2(2n0 − 2)σ2

d + σ2
e 1 vppl such that Vppvppl = νpp1vppl

(n0 − 2)σ2
a + 2(n0 − 2)σ2

d + σ2
e n0 − 1 vppl such that Vppvppl = νpp2vppl

σ2
e

(
n0

2

)
− n0 vii′l such that Vii′vii′l = νii′3vii′l

0 Nc −
(
n0

2

)
vii′l such that Vii′vii′l = νii′4vii′l

Vpp′

Eigenvalue (νpp′l) Multiplicity (mνpp′
l

) Eigenvectors (vpp′l)
2n0σ

2
a + n2

0σ
2
c + 4n0σ

2
d + σ2

e 1 vkpl such that Vpp′vpp′l = νpp′1vpp′l
n0σ

2
a + 2n0σ

2
d + σ2

e 2n0 − 2 vpp′l such that Vpp′vpp′l = νpp′2vpp′l
σ2
e (n0 − 1)2 vkpl such that Vpp′vpp′l = νpp′3vpp′l
0 Nc − n2

0 vkpl such that Vpp′vpp′l = νpp′4vpp′l

.

Table 9.3: Eigenstructure of design matrices for within-source comparisons, Vkk and
Vpp, and between-source comparisons, Vkp and Vpp′ , as described in (9.12) and (9.13)

We can study the eigenstructure of the matrices Bii′(PcP
′
cσ

2
a + QcQ

′
cσ

2
b +

RcR
′
cσ

2
c +TcT

′
cσ

2
d + Icσ

2
e)Bii′ for each source comparison (see Table 9.3). This study

reveals the presence of multiple subspaces for each of the considered eigenspaces. This

allows us to further decompose each of the sums of squares in (9.11) as another sum of
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squares. For those within-source comparisons, we have that

s̃cBii

[
Nc∑
l=1

viilv
′
iil

]
Biis̃c = s̃cBii

v11l +

n0∑
l=2

viilv
′
iil

+

(n0
2 )∑

l=n0+1

viilviil +

Nc∑
l=(n0

2 )

viilviil

Biis̃c

= s̃cBii

[
v11l +

n0∑
l=2

viilv
′
iil

+

Nii∑
l=n0+1

viilviil

]
Biis̃c

where Nii =
(
n0

2

)
is the number of eigenvectors associated with non-zero eigenval-

ues, and is also the number of “interesting” eigenvectors vii. In particular, we have

that the elements that are equal to one correspond to the dimensions whose associated

eigenvalues are zero. These vectors form the standard basis for the null space of the

corresponding matrix, and correspond to the rows of Bii that are equal to the zero vec-

tor. As an example, we consider the matrices that result when n = 3 and n0 = 4. The

first column of Figure 9.5 and the first three columns of Figure 9.6 display the heat

maps of Bkk and of the matrix of eigenvectors Vkk for comparisons within the putative

source, and of B11, B22 and B33, and of the matrices of eigenvectors V11, V22 and

V33 for comparisons within the random sources, respectively. Note that the Nii × Nii

patchwork matrices with each of the Vii matrices correspond to the nonzero rows of

the corresponding Bii matrices. Because the placements of the nonzero elements in

these eigenvectors correspond to the zero elements of the diagonals in the associated

Bi matrices, the product of the Bii matrix with these sets of eigenvectors results in a

zero-valued sum of squares.
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Similarly, for between-source comparisons, we have

s̃cBii′

[
Nc∑
l=1

vii′l
v′
ii′l

]
Bii′ s̃c = s̃cBii′

v11l +

(n0
2 )−1∑
l=2

vii′l
v′
ii′l

+

n2
0∑

l=(n0
2 )

vii′l
vii′l

+

Nc∑
l=n2

0

vii′l
vii′l

Bii′ s̃c

= s̃cBii′

v11l +

(n0
2 )−1∑
l=2

vii′l
v′
ii′l

+

Nii′∑
l=(n0

2 )

vii′l
vii′l

Bii′ s̃c

where Nii′ = n2
0 is the number of eigenvectors associated with non-zero eigenvalues,

and is also the number of “interesting” eigenvectors vii′l
. In particular, we have that the

elements that are equal to one correspond to the dimensions whose associated eigen-

values are zero. These vectors form the standard basis for the null space of the corre-

sponding matrix, and correspond to the rows of Bii′ that are equal to the zero vector.

The second, third, and fourth columns of Figure 9.5 and the last three columns of Fig-

ure 9.6 display the heat maps of Bk1, Bk2 and Bk3 and of the matrix of eigenvectors

Vk1, Vk2 and Vk3 for comparisons within the putative source, and of V12, B13 and B23,

and of the matrices of eigenvectors V12, V13 and V23 for comparisons within the random

sources, respectively. Note that the Nii′ × Nii′ patchwork matrices within each of the

Vii′ matrices correspond to the nonzero rows of the corresponding Bii′ matrices. Be-

cause the placements of the nonzero elements in these eigenvectors correspond to the

zero elements of the diagonals in the associated Bii′ matrices, the product of the Bii′

matrix with these sets of eigenvectors results in a zero-valued sum of squares.



130

B
11

B
22

B
33

B
12

B
13

B
23

V
11

V
22

V
33

V
12

V
13

V
23

Fi
gu

re
9.

6:
H

ea
t

m
ap

s
fo

r
th

e
m

at
ric

es
of

th
e

ei
ge

nv
ec

to
rs

as
so

ci
at

ed
w

ith
ra

nd
om

so
ur

ce
m

at
ric

es
B

p
p
′

m
at

ric
es

(t
op

)
an

d
m

at
ric

es
of

as
so

ci
at

ed
ei

ge
nv

ec
to

rs
of

V
p
p
′

(b
ot

to
m

)
w

he
n
p
,p

′
∈

{1
,.
..
,r
},

n
=

3
an

d
n
0
=

4
.

T
he

N
p
p
′
×

N
p
p
′

pa
tc

hw
or

ks
co

rr
es

po
nd

to
ei

ge
nv

ec
to

rs
w

ith
no

n-
ze

ro
el

em
en

ts
.

T
he

re
m

ai
ni

ng
co

lu
m

ns
co

rr
es

po
nd

to
ve

ct
or

s
w

ith
on

e
no

n-
ze

ro
el

em
en

t
(in

re
d)

,a
nd

ar
e

as
so

ci
at

ed
w

ith
ze

ro
-v

al
ue

d
ei

ge
nv

al
ue

s.



131

This decomposition is favorable in that studying the relevant parts of the eigen-

decomposition of Σc is equivalent to studying the eigen-decomposition of the relevant

parts of Σc. That is,

s̃cBii

[
Nc∑
l=1

viilv
′

iil

]
Biis̃c = s̃ii

[
Nii∑
l=1

v∗
iil
v∗′
iil

]
s̃ii

s̃cBii′

[
Nc∑
l=1

vii′l
v

′

ii′l

]
Bii′ s̃c = s̃ii′

[
Nii′∑
l=1

v∗
ii′l
v∗′
ii′l

]
s̃ii′

where v∗
iil

are the eigenvectors of the Nii ×Nii matrix formed by considering the non-

zero rows of the columns associated with the non-zero eigenvalues of vii, and v∗
ii′l

are

the eigenvectors of the Nii′ ×Nii′ matrix formed by considering the non-zero portions

of the columns associated with the non-zero eigenvalues of vii′ This is equivalent to

considering only the indices of Σc that correspond to each source comparison. That is,

v∗
iil

are the eigenvectors of

Σii := PiiP
′
iiσ

2
a +QiiQ

′
iiσ

2
b +RiiR

′
iiσ

2
c + TiiT

′
iiσ

2
d + Iiiσ

2
e , (9.14)

the matrix formed by considering the rows of Σc associated with some within-source

comparison, and vii′l
are the eigenvectors of

Σii′ := Pii′P
′
ii′σ

2
a +Qii′Q

′
ii′σ

2
b +Rii′R

′
ii′σ

2
c + Tii′T

′
ii′σ

2
d + Iii′σ

2
e , (9.15)

the matrix formed by considering the rows of Σc associated with some between-source

comparison. In addition, we have that s̃ii = (∆ii (sii − θii1Nii
)), where ∆ii is the

Nii × Nii portion of ∆c that considers σii, and s̃ii′ =
(
∆ii′

(
sii′ − θii′1Nii′

))
, where

∆ii′ is the Nii′ ×Nii′ portion of ∆c that considers σii′ .
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Σkk

Eigenvalue (νkkl) Multiplicity (mνkkl
) Eigenvectors (vkkl)

2 (n0 − 1)σ2
a +

(
n0

2

)
σ2
c + 2 (2n0 − 2)σ2

d + σ2
e 1 vkk1 :=

1Nkk√
Nkk

(n0 − 2)σ2
a + 2 (n0 − 2)σ2

d + σ2
e n0 − 1 vkkl such that Vkkvkkl = νkk2vkkl

σ2
e

(
n0

2

)
− n0 viil such that Vkkvkkl = νkk3vkkl

Σkp

Eigenvalue (νkpl) Multiplicity (mνkpl
) Eigenvectors (vkpl)

2n0σ
2
a + n2

0σ
2
c + 4n0σ

2
d + σ2

e 1 vkp1 :=
1Nkp√
Nkp

n0σ
2
a + 2n0σ

2
d + σ2

e 2n0 − 2 vkpl such that Vkpvkpl = νkp2vkpl
σ2
e (n0 − 1)2 vkpl such that Vkpvkpl = νkp3vkpl

Σpp

Eigenvalue (νppl) Multiplicity (mνppl
) Eigenvectors (vppl)

2(n0 − 1)σ2
a +

(
n0

2

)
σ2
c + 2(2n0 − 2)σ2

d + σ2
e 1 vpp1 :=

1Npp√
Npp

(n0 − 2)σ2
a + 2(n0 − 2)σ2

d + σ2
e n0 − 1 vppl such that Vppvppl = νpp2vppl

σ2
e

(
n0

2

)
− n0 vii′l such that Vii′vii′l = νii′3vii′l

Σpp′

Eigenvalue (νpp′l) Multiplicity (mνpp′
l

) Eigenvectors (vpp′l)

2n0σ
2
a + n2

0σ
2
c + 4n0σ

2
d + σ2

e 1 vpp′1 :=
1Npp′√
Npp′

n0σ
2
a + 2n0σ

2
d + σ2

e 2n0 − 2 vpp′l such that Vpp′vpp′l = νpp′2vpp′l
σ2
e (n0 − 1)2 vkpl such that Vpp′vpp′l = νpp′3vpp′l

.

Table 9.4: Eigenstructure of design matrices, Σkk,Σpp,Σkp and Σpp′ in (9.14) and (9.15)

These results follow from using the Bii and Bii′ matrices to activate certain

areas of the vector s̃c and the matrices Vii, Vii′ , i.e., introducing the matrices Bii and

Bii′ allows us to activate the parts of s̃c and Σc that correspond to the different source

comparisons. Rather than consider a sparse Nc vector alongside a sparse Nc×Nc matrix,

we can directly consider the interesting parts of the vector and matrix by considering the

associated Nii− or Nii′− dimensional vector, and Nii ×Nii or Nii′ ×Nii′ dimensional

matrix. Thus, we can explicitly define the sums of squares such that

SSii =
(
∆−1

ii (sii − θii1Nii)
)′ (

v∗
ii1v

∗
ii1

′) (∆−1
ii (sii − θii1Nii)

)
+

(
∆−1

ii (sii − θii1Nii
)
)′( n0∑

l=2

v∗
iil
v∗
iil

′

)(
∆−1

ii (sii − θii1Nii
)
)
+ (9.16)

(
∆−1

ii (sii − θ221Nii
)
)′( Nii∑

l=n0+1

v∗
iil
v∗
iil

′

)(
∆−1

ii (sii − θii1Nii
)
)
,
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for within-source comparisons and

SSii′ =
(
∆−1

ii′

(
sii′ − θii′1Nii′

))′ (
v∗
ii′1

v∗
ii′1

′
) (

∆−1
ii′

(
sii′ − θii′1Nii′

))
+

(
∆−1

ii′

(
sii′ − θii′1Nii′

))′(n0
2 )−1∑
l=2

v∗
ii′l
v∗
ii′l

′

(∆−1
ii′

(
sii′ − θii′1Nii′

))
+ (9.17)

(
∆−1

ii′

(
sii′ − θ121Nii′

))′ Nii′
l∑

l=(n0
2 )

v∗
ii′l
v∗
ii′l

′

(∆−1
ii′

(
sii′ − θii′1Nii′

))
,

for between-source comparisons, where the degrees of freedom for each line of (9.16)

and (9.17) are equal to the multiplicities of the associated eigenvalues in Table 9.4, and

the total sum of squares remains as in (9.9). It is trivial to show that

r+1∑
i=1

[
3∑

l=1

mνiil

]
+

r∑
i=1

r+1∑
i′=i+1

[
3∑

l=1

mνii′
l

]
= Nc.

In the following sections, we analyse the three terms that make up the sums of squares

defined in (9.16) and (9.17) so that we can write each term without the use of eigenvec-

tors.

9.2.1 ALTERNATIVE REPRESENTATION OF WITHIN-SOURCE SUMS OF

SQUARES INVOLVING THE PUTATIVE SOURCE

We begin by studying the individual terms in the within-source sum of squares

for the putative source. This sum of squares follows the form given by (9.16), which

is composed of three sums of squared terms. The developments for these terms follow

those presented in Appendix D. We re-write the first term as

(skk − θkk1Nkk
)
′
∆−1′

kk v∗
kk1

v∗′

kk1
∆kk (skk − θkk1Nkk

) =
Nkk

σ2
kk

(s̄kk − θkk)
2 (9.18)

:= SSMkk
,

where s̄kk is the average score observed for the within-source comparisons from the

putative source, k. Recall that Nkk =
(
n0

2

)
.

Next, we consider the structure of the sum given by ∆−1′

kk

[∑n0

l=2 v
∗
kkl

v∗′
kkl

]
∆−1

kk .
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Following the development by [6], we can write this second sum of squares as

s′
kk∆

−1′

kk

[
n0∑
l=2

v∗
kkl

v∗′

kkl

]
∆−1

kk skk =
(n0 − 1)2

σ2
kk(n0 − 2)

n0∑
j=1

(
s̄
(kj)
kk − s̄kk

)2
(9.19)

:= SSWkk
,

where s̄
(kj)
kk is the mean value of scores that compare object j from the putative source,

k, to any other object in the putative source, k, and s̄kk is as in (9.18). The final result,

given by (9.19), gives the within-source sum of squares for the putative source model.

By considering this term in conjunction with the total sum of squares from the consid-

ered model, SSTotkk = 1
σ2
kk

∑n0

j=1

∑n0−1
j′=j+1 (skj,kj′ − s̄kk)

2 (this is the sum of the last

two terms in (9.16)), we can obtain an eigenvector-free estimate of the last term in SSkk

by considering SSTotkk − SSWkk
(see Table 9.5). By using the results of Cochran’s

theorem presented in Section 3.1.2, we obtain the following results.

Source of Variance df SS MS E(MS)

Within Source n0 − 1 SSWkk
MSWkk

=
SSWkk
n0−1 (n0 − 2)σ2

a + 2(n0 − 2)σ2
d + σ2

e

Error Nkk − n0 SSEkk
= SSTotkk − SSWkk

MSEkk
=

SSEkk
Nkk−n0

σ2
e

Table 9.5: ANOVA table corresponding to within-source sums of squares for the putative
source, SSkk.

9.2.2 ALTERNATIVE REPRESENTATION OF BETWEEN-SOURCE SUMS OF

SQUARES INVOLVING THE PUTATIVE SOURCE AND A RANDOM

SOURCE FROM THE POPULATION

Next, we consider the terms in the between-source sums of squares terms of

the form given by (9.17) that consider one object from the putative source compared to

one object from a random source in the population. The developments for these terms

follow those presented in Appendix E. As in the previous sums of squares development,

we can rewrite the first term as

(
skp − θkP1Nkp

)′
∆−1′

kp v∗
kp1

v∗′

kp1
∆−1

kp

(
skp − θkP1Nkp

)
=

Nkp

σ2
kP

(s̄kp − θkP)
2 (9.20)

:= SSMkp
,
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where s̄kp is the average score observed for between-source comparisons that consider

an object between the putative source, k, and from a random source from the population,

p ∈ {1, . . . , r}. Recall that Nkp = n2
0.

Next, we consider the structure of the sum given by ∆−1
kp

[∑2n0−1
l=2 v∗

kpl
v∗′
kpl

]
∆−1

kp .

As before, we can write this second sum of squares as

s′kp∆
−1′

kp

[
2n0−1∑
l=2

v∗
kpl

v∗′
kpl

]
∆−1

kp skp =
n2
0

σ2
kPn0

 n0∑
j=1

(
s̄
(kjp)

kp − s̄kp

)2
+

n0∑
j′=1

(
s̄
(kpj′ )

kp − s̄kp

)2 (9.21)

= SSWkp
,

where s̄
(kj)
kp , p ∈ {1, . . . , r}, j ∈ {1, . . . , n0}, is the mean value of scores that compare

object j in source k to any object in source p, s̄
(pj′ )

kp , p ∈ {1, . . . , r}, j′ ∈ {1, . . . , n0}

is the mean value of scores that compare object j′ in source p to any object in source

k, and s̄kp is as in (9.20). The final result given by (9.21), gives the within-source

sum of squares for the between-source k, p comparisons. By considering this term

in conjunction with the total sum of squares for the considered model, SSTotkp =

1
σ2
kP

∑n0−1
j=1

∑n0

j′=1 (skj,pj′ − s̄kp)
2, we can define an eigenvector-free estimate of the last

term in SSkp by considering SSTotkp − SSWkp
. By using the results of Cochran’s theo-

rem presented in Section 3.1.2, we obtain the following results.

Source of Variance df SS MS E(MS)

Within Source 2n0 − 2 SSWkp
MSWkp

=
SSWkp

2n0−2 n0σ
2
a + 2n0σ

2
d + σ2

e

Error (n0 − 1)2 SSEkp
= SSTotkp − SSWkp

MSEkp
=

SSEkp

(n0−1)2
σ2
e

Table 9.6: ANOVA table corresponding to within-source sums of squares for the putative
source and random sources from the population, SSkp.

9.2.3 ALTERNATIVE REPRESENTATION OF WITHIN-SOURCE SUMS OF

SQUARES INVOLVING RANDOM SOURCES FROM THE POPULATION

We now move to study the individual terms in the within-source sum of squares

for random sources from the population. This sum of squares follows the form given by

(9.16), which is composed of three sums of squared terms. The developments for these
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terms follow those presented in Appendix D. We re-write the first term as

(
spp − θPP1Npp

)′
∆−1′

pp v∗
pp1

v∗′

pp1
∆pp

(
spp − θPP1Npp

)
=

Npp

σ2
PP

(s̄pp − θPP)
2 (9.22)

:= SSMpp
,

where s̄pp is the average score observed for the within-source comparisons from random

sources from the population, p ∈ {1, . . . , r}. Recall that Npp =
(
n0

2

)
.

Next, we consider the structure of the sum given by ∆−1′
pp

[∑n0

l=2 v
∗
ppl
v∗′
ppl

]
∆−1

pp .

Following the development above, we can write this second sum of squares as

s′pp∆
−1′

pp

[
n0∑
l=2

v∗
ppl

v∗′

ppl

]
∆−1

pp spp =
(n0 − 1)2

σ2
PP(n0 − 2)

n0∑
j=1

(
s̄(pj)
pp − s̄pp

)2
(9.23)

:= SSWpp
,

where s̄
(pj)
pp is the mean value of scores that compare object j from the considered ran-

dom source, p, to any other object from the considered random source, p, and s̄pp is as

in (9.22). The final result, given by (9.23), gives the within-source sum of squares for

the random sources model. By considering this term in conjunction with the total sum

of squares from the considered model, SSTotpp = 1
σ2

PP

∑n0

j=1

∑n0−1
j′=j+1 (spj,pj′ − s̄pp)

2

(this is the sum of the last two terms in (9.16)), we can obtain an eigenvector-free esti-

mate of the last term in SSpp by considering SSTotpp −SSWpp (see Table 9.7). By using

the results of Cochran’s theorem presented in Section 3.1.2, we obtain the following

results.

Source of Variance df SS MS E(MS)

Within Source n0 − 1 SSWpp MSWpp =
SSWpp

n0−1 (n0 − 2)σ2
a + 2(n0 − 2)σ2

d + σ2
e

Error Npp − n0 SSEpp = SSTotpp − SSWpp MSEpp =
SSEpp

Npp−n0
σ2
e

Table 9.7: ANOVA table corresponding to within-source sums of squares for the putative
source, SSpp.
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9.2.4 ALTERNATIVE REPRESENTATION OF BETWEEN-SOURCE SUMS OF

SQUARES INVOLVING RANDOM SOURCES FROM THE POPULATION

Next, we consider the terms in the between-source sums of squares terms of the

form given by (9.17) random sources in the population. The developments for these

terms follow those presented in Appendix E. As above, we can rewrite the first term as

(
spp′ − θPP′1Npp′

)′
∆−1′

pp′ v
∗
pp′1

v∗′
pp′1

∆−1
pp′

(
spp′ − θPP′1Npp′

)
=

Npp′

σ2
PP′

(s̄pp′ − θPP′)2(9.24)

:= SSMpp′ , (9.25)

where s̄pp′ is the average score observed for between-source comparisons that consider

objects from random sources from the population, p 6= p′ ∈ {1, . . . , r}. Recall that

Npp′ = n2
0.

Next, we consider the structure of the sum given by ∆−1
pp′

[∑2n0−1
l=2 v∗

pp′l
v∗′
pp′l

]
∆−1

pp′ .

As before, we can write this second sum of squares as

s′
pp′∆

−1′
pp′

[
2n0−1∑
l=2

v∗
pp′

l
v∗′
pp′

l

]
∆−1

pp′spp′ =
n2

0

σ2
PP′n0

 n0∑
j′=1

(
s̄
(pp′

j′ )

pp′ − s̄pp′

)2

+

n0∑
j=1

(
s̄
(pjp

′)
pp′ − s̄pp′

)2

(9.26)

= SSWkp
,

where s̄
(pj)
pp′ , p, p′ ∈ {1, . . . , r}, j ∈ {1, . . . , n0} is the mean value of scores that

compare object j in source p to any object in source p′, s̄
(p′

j′ )

pp′ , j′ ∈ {1, . . . , n0} is

the mean value of scores that compare object j′ in source p′ to any object in source

p, and s̄pp′ is as in (9.24). The final result given by (9.26), gives the within-source

sum of squares for the between-source p, p′ comparisons. By considering this term

in conjunction with the total sum of squares for the considered model, SSTotpp′
=

1
σ2

PP′

∑n0−1
j=1

∑n0

j′=1 (spj,p′j′ − s̄pp′)
2, we can define an eigenvector-free estimate of the

last term in SSpp′ by considering SSTotpp′
− SSWpp′

. By using the results of Cochran’s

theorem presented in Section 3.1.2, we obtain the following results.
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Source of Variance df SS MS E(MS)

Within Source 2n0 − 2 SSWpp′ MSWpp′ =
SSWpp′
2n0−2 n0σ

2
a + 2n0σ

2
d + σ2

e

Error (n0 − 1)2 SSEpp′ = SSTotpp′ − SSWpp′ MSEpp′ =
SSEpp′

(n0−1)2
σ2
e

Table 9.8: ANOVA table corresponding to within-source sums of squares for random
sources from the population, SSpp′ .

9.3 PARAMETER ESTIMATION

At this point, we would like to use the results presented in Sections 9.2.1, 9.2.2,

9.2.3, and 9.2.4 to estimate the parameters of our model; however, given the dependen-

cies that exist between the various parameters, we must resort to sampling methods to

obtain posterior samples of the model parameters. In particular, we use a Gibbs sampler

with a Metropolis-Hastings step to study the distributions of our various parameters [14,

44]. Before defining the Gibbs sampler, we must first assign posterior distributions to

the model parameters (developments for the posterior distributions of θii′ and σii′ follow

those presented in Appendices F.2 and F.3.

We begin by assigning posterior distributions for the variance terms, σ2
a, σ2

b , σ2
c ,

σ2
d, and σ2

e . Given the particular dependency that exists between these parameters, we

can define a posterior distribution to study these variance terms simultaneously. We

begin by collecting all mean sums of squares terms defined in Tables 9.5, 9.6 9.7, and

9.8 to capitalize on all information related to the values of σ2
a, σ2

b , σ2
c , σ2

d, and σ2
e . We

have that

SSMkk

2(n0−1)σ2
a+(

n0
2 )σ2

c+4(n0−1)σ2
d+σ2

e

∼ χ2
df=1

SSWkk

(n0−2)σ2
a+2(n0−2)σ2

d+σ2
e
∼ χ2

df=n0−1
SSEkk

σ2
e

∼ χ2
df=Nkk−n0

for the sum of squares that consider comparisons that occur within the putative source,

SSMkp

2n0σ2
a+n2

0σ
2
c+4n0σ2

d+σ2
e
∼ χ2

df=1

SSWkp

n0σ2
a+2n0σ2

d+σ2
e
∼ χ2

df=2n0−2

SSEkp

σ2
e

∼ χ2
df=(n0−1)2

for the r sums of squares terms that consider comparisons that occur between an object



139

from the putative source and an object from a random source from the population,

SSMpp

2(n0−1)σ2
a+(

n0
2 )σ2

c+4(n0−1)σ2
d+σ2

e

∼ χ2
df=1

SSWpp

(n0−2)σ2
a+2(n0−2)σ2

d+σ2
e
∼ χ2

df=n0−1

SSEpp

σ2
e

∼ χ2
df=Npp−n0

for the r sums of squares terms that consider comparisons that occur within the same

random source from the population, and

SSM
pp′

2n0σ2
a+n2

0σ
2
c+4n0σ2

d+σ2
e
∼ χ2

df=1

SSW
pp′

n0σ2
a+2n0σ2

d+σ2
e
∼ χ2

df=2n0−2

SSE
pp′

σ2
e

∼ χ2
df=(n0−1)2

for the
(
r
2

)
sums of squares terms that consider comparisons that occur between two

random sources from the population. Note that the sums of squares terms for the

two within-source scenarios correspond, as do the sums of squares terms for the two

between-source scenarios. Using this information, we can define

MSσ =
∑

i∈{1,...,r,k}

(
SSMii

C1
+

SSWii

C2
+

SSEii

C3

)

+
∑

i∈{1,...,r}

∑
i′∈{2,...,r,k}

(
SSMii′

C4
+

SSWii′

C5
+

SSEii′

C3

)
(9.27)

∼ χ2

df=((r+1)n0
2 )−(r+1

2 )−(r+1)

where

C1 = 2(n0 − 1)σ2
a +

(
n0

2

)
σ2
c + 4(n0 − 1)σ2

d + σ2
e C2 = (n0 − 2)σ2

a + 2(n0 − 2)σ2
d + σ2

e C3 = σ2
e

C4 = 2n0σ
2
a + n2

0σ
2
c + 4n0σ

2
d + σ2

e C5 = n0σ
2
a + 2n0σ

2
d + σ2

e .

We can now define a posterior distribution for the variance terms, σ2
a, σ2

b , σ2
c , σ2

d, and

σ2
e , by considering a χ2 likelihood for the MSσ term, and assuming a Dirichlet prior

(since we have the constraint that 2σ2
a + σ2

c + 4σ2
d + σ2

e = 2σ2
a + 2σ2

b + 4σ2
d + σ2

e = 1,

with σ2
c = 2σ2

b ), such that

π
(
{σ2

a, σ
2
b , σ

2
d, σ

2
e}|MSσ, {θii′}ii′ , {σii′}ii′ , s,α

)
∝ χ2

(
MSσ|{σ2

a, σ
2
b , σ

2
d, σ

2
e}, {θii′}ii′ , {σii′}ii′ , s, ασ, βσ

)
× D

(
{σ2

a, σ
2
b , σ

2
d, σ

2
e}|α

)
, (9.28)
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where the dependence of MSσ on {θii′}ii′ , {σii′}ii′ , ii′ ∈ {kk, kP,PP ,PP ′} in

(9.28) results from the construction of the MSσ term as a sum of the various sums of

squares terms defined in Section 9.2.

Next, we move to assign the posterior distributions for the mean terms. How-

ever, this model requires proceeding via a different route than that considered for the

two-class and multi-class models. While the posterior distributions take the same form,

we consider a fixed number of terms. In the two-class and multi-class scenarios, the

number of mean and standard deviation terms depended on the number of sources being

considered. For this model, rather than consider (r+ 1)
(
n0

2

)
+
(
r+1
2

)
n2
0 mean terms, we

consider four mean and standard deviation terms related to the four varieties of source-

comparisons that we encounter in this model (i.e., within putative source comparisons,

between putative and random sources from the population, within random sources from

the population, and between random from the population), regardless of the number of

random sources considered.

Thus, we assign the posterior distributions for each of the four mean parameters,

θii′ ∈ {θkk, θkP , θPP , θPP′}, by considering a multivariate normal likelihood over the

scores that consider the particular source comparison, and assuming a Normal prior

with mean ϕii′ and variance ωii′ , ii′ ∈ {kk, kP,PP ,PP ′} such that

π
(
θii′ |sii′ , σii′ , σ

2
a, σ

2
b , σ

2
c , σ

2
d, σ

2
e , ϕii′ , ωii′

)
∝ MVN

(
sii′ |θii′ , σii′ , σ

2
a, σ

2
b , σ

2
c , σ

2
d, σ

2
e , ϕii′ ., ωii′

)
× N (θii′ |ϕii′ , ωii′) (9.29)

where the resulting posterior distribution is Normally distributed. The parameters of

the posterior distribution of θii′ are given by

µii′p
=

1′
Nii′

Σ−1
ii′ sii′ + ϕii′

1′
Nii′

Σ−1
ii′ 1Nii′ωii′ + 1

σ2
ii′p

=
ωii′

1′
Nii′

Σ−1
ii′ 1Nii′ωii′ + 1

,

where the terms Nii′ , 1Nii′
, sii′ and Σii′ have dimension

(
n0

2

)
when we consider the

vector of scores that compare two objects from the putative source (i.e., ii′ = kk),

have dimension rn2
0 when we consider the vector of scores that compare an object from
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the putative source to an object from the population (i.e., ii′ = kP), have dimension

r
(
n0

2

)
when we consider the vector of scores that consider two objects from the same

random source in the population (i.e., ii′ = PP), and have dimension
(
r
2

)
n2
0 when we

consider the vector of scores that compare two objects from different random sources

in the population (i.e., ii′ = PP ′).

As in the case for the mean terms, we find the posterior distributions for each

of the four variance parameters σii′ ∈ {σkk, σkP , σPP , σPP′}, by considering a Mul-

tivariate Normal likelihood over the scores that consider the particular source compari-

son, and assuming an Inverse-Gamma prior such that

π
(
σ2
ii′ |sii′ , θii′ , σ2

a, σ
2
b , σ

2
c , σ

2
d, σ

2
e , αii′ , βii′

)
∝ MVN

(
sii′ |σ2

ii′ , θii′ , σ
2
a, σ

2
b , σ

2
c , σ

2
d, σ

2
e , αii′ , βii′

)
× IG

(
σ2
ii′ |αii′ , βii′

)
(9.30)

where the resulting posterior distribution follows an Inverse Gamma distribution. The

parameters of the posterior distribution of σ2
ii′ are given by

αii′p
=

Nii′

2
+ αii′ βii′p

=
1

2

(
sii′ − θii′1Nii′

)′
Σ−1

ii′

(
sii′ − θii′1Nii′

)
+ βii′ ,

where, again, the terms Nii′ , 1Nii′
, sii′ and Σii′ have dimension

(
n0

2

)
when we consider

the vector of scores that compare two objects from the putative source (i.e., ii′ = kk),

have dimension rn2
0 when we consider the vector of scores that compare an object from

the putative source to an object from the population (i.e., ii′ = kP), have dimension

r
(
n0

2

)
when we consider the vector of scores that consider two objects from the same

random source in the population (i.e., ii′ = PP), and have dimension
(
r
2

)
n2
0 when we

consider the vector of scores that compare two objects from different random sources

in the population (i.e., ii′ = PP ′).

The posterior distribution given by (9.30) provides us with samples from the

posterior distribution of the variance term, σ2
ii′ . We, however, are interested in the

standard deviation term, σii′ , and so we simply take the square root of the sampled

variance terms to obtain samples of the standard deviations. The resulting inference is
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not affected.

We note that each of the distributions described in (9.28), (9.29), and (9.30)

depends on the value of at least one other parameter; therefore, we must rely on sam-

pling techniques to study the distributions of the model parameters. We construct the

following Gibbs sampler, described in Algorithm 5.

Algorithm 5: Gibbs sampler for generating posterior samples from the
distributions of the model parameters

Data: Initial values for all parameters at t = 0; values for hyperparameters
Result: Posterior samples for all parameters
for t ∈ 1 : T iterations do

1. Draw {σ2(t)
a , σ

2(t)
b , σ

2(t)
d , σ

2(t)
e }|MS

(t−1)
e ,σ(t−1), s,α from the

distribution defined in (9.28);
2. Calcualte σ

2(t)
c = 2σ

2(t)
b ;

for ii′ ∈ {kk, kP,PP,PP ′} source comparisons do
3. Draw θ

(t)
ii′ |sii′ , σ

(t−1)
ii′ , σ

2(t)
a , σ

2(t)
b , σ

2(t)
d , σ

2(t)
e , ϕii′ , ωii′ from the

distribution defined in (9.29);
4. Draw σ

2(t)
ii′ |sii′ , θ(t)ii′ , σ

2(t)
a , σ

2(t)
b , σ

2(t)
d , σ

2(t)
e , αii′ , βii′ from the

distribution defined in (9.30);
end

end

Algorithm 6: Metropolis-Hastings algorithm for obtaining a sample of
σ̃2 = {σ2

a, σ
2
b , σ

2
c , σ

2
d, σ

2
e} from the posterior distribution of {σ2

a, σ
2
b , σ

2
d, σ

2
e}

Data: Current value of {σ2
a, σ

2
b , σ

2
c , σ

2
d, σ

2
e}(t−1); value for hyperparameter α

Result: Posterior sample of {σ2
a, σ

2
b , σ

2
c , σ

2
d, σ

2
e}

1. Define the vector of σ̃2(t−1) := (2σ̃
2(t−1)
a , 2σ̃

2(t−1)
b , 4σ̃

2(t−1)
d , σ̃

2(t−1)
e ) in terms

of the current sigma values;
2. Sample a candidate value, σ̃2∗ ∼ D

(
σ̃2(t−1)

)
;

3. Calculate the value of MS∗
σ using the candidate value σ̃2∗ using (9.27);

4. Calculate the value of MS
(t−1)
σ using the current value σ̃2(t−2) using (9.27);

5. Evaluate the posterior density of σ̃2∗, f ∗, using the hyperparameter α, the
value of MS∗

σ, and (9.28);
6. Evaluate the posterior density of σ̃2(t−1), f (t−1), using the hyperparameter
α, the value of MS

(t−1)
σ , and (9.28);

7. Calculate the probability of acceptance, pacc = f∗

f (t−1)

D(σ̃2(t−1)|σ̃2∗)
D(σ̃2∗|σ̃2(t−1))

8. Generate a random probability, p∗ ∼ U(0, 1);
9. If pacc ≥ p∗, then define σ̃2(t) := σ̃2∗; otherwise define σ̃2(t) := σ̃2(t−1);
10. Return the vector {σ̃2(t)

1 /2, σ̃
2(t)
2 /2, σ̃

2(t)
2 , σ̃

2(t)
3 /4, σ̃

2(t)
4 } as the current

values of {σ2
a, σ

2
b , σ

2
c , σ

2
d, σ

2
e}.

Because the posterior distribution defined for {σ2
a, σ

2
b , σ

2
d, σ

2
e} in (9.28) is not

readily available, we cannot directly sample from this distribution. As a result, the
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first step in Algorithm 5 is not so straightforward - indeed, obtaining a sample from

the posterior distribution of {σ2
a, σ

2
b , σ

2
d, σ

2
e} requires introducing a Metropolis-Hastings

algorithm [14, 44]. This procedure is summarized in Algorithm 6.

Now that we have identified a method for obtaining samples of the parameters

used to define θ, ∆, and {σ2
a, σ

2
b , σ

2
c , σ

2
d, σ

2
e}, we can assign a Bayes factor to determine

if it is more likely that the set of trace objects originated from the putative source, or it

if is more likely that the set of trace objects originated from some random source in the

population of potential sources. In particular, we define

Λ =

∫
Ωp

ℓ (st|Ωp, sc) dΠ(Ωp|sc)∫
Ωd

ℓ (st|Ωd, sc) dΠ(Ωd|sc)
(9.31)

≈
1
T

∑T
t=1 ℓ

(
st|Ω(t)

p , sc

)
1
T

∑T
t′=1 ℓ (st|Ωd, sc)

(9.32)

where st is the vector of scores that consider at least one trace object, the subscripts on

Ω correspond to the model being considered, and Ω(t) are posterior samples of the pa-

rameters obtained using Algorithm 5. We consider the conditional posterior probability

of the scores that consider objects of unknown origin from the set Xu, st, rather than

the joint posterior probability of s, so as not to recycle the information contained in the

vector of scores sc, which are used to sample the parameter values.

9.4 RECOVERING THE MODEL PARAMETERS

In this section, we move to assess the performance of the proposed model. We

look at simulated data with known parameters to determine the ability of the model to

recover the model parameters as the number of random sources sampled from the pop-

ulation, r, and the number of observations per source, n0, increase. To determine the

combination of r and n0 that allows the model to appropriately estimate the parameters,

we consider a scenario in which we sample scores directly from the proposed distribu-

tion given by (9.8). We fix θkk = 10.9, θkP = 16.5, θPP = 13.0, and θPP′ = 9.7

for the mean terms, and σkk = 2.6, σkP = 3.4, σPP = 2.8, and σPP′ = 4.4 for the
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standard deviation terms.

To gauge the values of r and n0 that allow for obtaining a reliable estimate of

the parameters, we consider r ∈ {5, 10, 15}, and n0 ∈ {4, 5, 6, 7}. Given
(
(r+)n0

2

)
-

dimensional vectors of scores, sc, we can use Algorithms 5 and 6 to sample from the

posterior distributions of the parameters, and determine at which point we begin to see

stabile results. Figures 9.7, 9.8, 9.9, and 9.10 depict the posterior distributions of the

different mean and standard deviation parameters when r = 5, 10, and 15, respectively.

Tables 9.9, 9.10, 9.11, and 9.12 summarize the results of Figures 9.7, 9.8, 9.9, and 9.10.

Parameter Sample Mean Posterior Mean Posterior Median Posterior Mode
n0 = 4
θkk 9.424 9.430 9.469 10.884
θkP 15.111 15.046 15.012 15.328
θPP 11.292 11.317 11.364 10.927
θPP′ 7.533 7.571 7.539 6.963
n0 = 5
θkk 10.302 10.306 10.304 10.256
θkP 15.965 15.976 15.976 15.909
θPP 13.043 13.076 13.054 12.94
θPP′ 9.437 9.452 9.447 8.373
n0 = 6
θkk 9.787 9.815 9.820 9.624
θkP 17.666 17.636 17.658 17.970
θPP 13.772 13.789 13.788 14.152
θPP′ 11.352 11.318 11.321 11.090
n0 = 7
θkk 8.352 8.353 8.386 7.800
θkP 15.168 15.191 15.224 15.391
θPP 12.555 12.568 12.580 12.761
θPP′ 9.281 9.291 9.292 9.028

Table 9.9: Point estimates for posterior distributions of θii′ ∈ {θkk, θkP , θPP , θPP′},
when r = 5. The mean parameters are fixed such that θkk = 10.9, θkP = 16.5, θPP =
13.0, and θPP′ = 9.7.
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Figure 9.7: Posterior distributions of θii′ ∈ {θkk, θkP , θPP , θPP′}, for the population-
based model when r = 5 random sources from the population and n0 = 4 (first row),
n0 = 5 (second row), n0 = 6 (third row) and n0 = 7 (fourth row). Red vertical lines
correspond to the mean of the posterior distributions obtained using Algorithms 5 and
6; blue vertical lines correspond to the medians of the posterior distributions; purple
vertical lines correspond to the mode of the posterior distributions; green vertical lines
correspond to the sample means of the different source combinations that exist within
the sampled vectors of scores.

Parameter Sample
Standard Deviation Posterior Mean Posterior Median Posterior Mode

n0 = 4
σkk 2.832 8.453 7.988 8.306
σkP 3.491 7.874 7.557 7.014
σPP 2.437 6.499 6.201 6.297
σPP′ 3.317 9.804 9.328 9.944
n0 = 5
σkk 1.601 3.215 2.985 2.835
σkP 3.417 5.625 5.985 2.383
σPP 3.115 4.028 3.790 3.366
σPP′ 4.159 5.805 5.739 2.884
n0 = 6
σkk 1.023 3.412 3.752 4.275
σkP 2.981 9.094 11.207 11.097
σPP 2.799 7.524 9.056 7.670
σPP′ 4.163 11.645 14.444 15.717
n0 = 7
σkk 1.788 5.019 4.532 1.551
σkP 2.866 7.472 6.739 4.407
σPP 1.834 4.942 4.454 4.193
σPP′ 3.324 8.427 7.519 2.548

Table 9.10: Point estimates for posterior distributions of σii′ ∈ {σkk, σkP , σPP , σPP′},
when r = 5. The standard deviation parameters are fixed such that σkk = 2.6, σkP =
3.4, σPP = 2.8, and σPP′ = 4.4.
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Figure 9.8: Posterior distributions of σii′ ∈ {σkk, σkP , σPP , σPP′}, for the population-
based model when r = 5 random sources from the population and n0 = 4 (first row),
n0 = 5 (second row), n0 = 6 (third row) and n0 = 7 (fourth row). Red vertical lines
correspond to the mean of the posterior distributions obtained using Algorithms 5 and
6; blue vertical lines correspond to the medians of the posterior distributions; purple
vertical lines correspond to the mode of the posterior distributions; green vertical lines
correspond to the sample standard deviations of the different source combinations that
exist within the sampled vectors of scores.

Parameter Sample Mean Posterior Mean Posterior Median Posterior Mode
n0 = 4
θkk 12.082 12.073 12.086 13.108
θkP 15.779 15.773 15.785 16.033
θPP 12.812 12.814 12.810 12.857
θPP′ 8.990 8.964 8.972 8.910
n0 = 5
θkk 7.894 7.907 7.907 8.155
θkP 15.512 15.528 15.525 15.455
θPP 13.196 13.195 13.185 13.158
θPP′ 9.686 9.678 9.696 10.035
n0 = 6
θkk 13.309 13.323 13.332 13.233
θkP 17.892 17.897 17.888 18.067
θPP 13.096 13.103 13.104 13.054
θPP′ 10.418 10.430 10.431 10.938
n0 = 7
θkk 10.894 10.899 10.902 10.671
θkP 16.133 16.130 16.128 15.993
θPP 12.642 12.640 12.642 12.844
θPP′ 9.322 9.317 9.329 9.783

Table 9.11: Point estimates for posterior distributions of θii′ ∈ {θkk, θkP , θPP , θPP′},
when r = 10. The mean parameters are fixed such that θkk = 10.9, θkP = 16.5,
θPP = 13.0, and θPP′ = 9.7.
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Figure 9.9: Posterior distributions of θii′ ∈ {θkk, θkP , θPP , θPP′}, for the population-
based model when r = 10 random sources from the population and n0 = 4 (first row),
n0 = 5 (second row), n0 = 6 (third row) and n0 = 7 (fourth row). Red vertical lines
correspond to the mean of the posterior distributions obtained using Algorithms 5 and
6; blue vertical lines correspond to the medians of the posterior distributions; purple
vertical lines correspond to the mode of the posterior distributions; green vertical lines
correspond to the sample means of the different source combinations that exist within
the sampled vectors of scores.

Parameter Sample
Standard Deviation Posterior Mean Posterior Median Posterior Mode

n0 = 4
σkk 1.607 5.434 4.811 3.855
σkP 3.367 11.253 10.314 10.764
σPP 3.66 7.293 6.233 5.783
σPP′ 4.744 12.796 11.687 11.690
n0 = 5
σkk 1.211 2.500 2.147 1.295
σkP 3.270 5.626 5.302 2.710
σPP 2.351 4.417 3.905 2.365
σPP′ 3.876 6.668 6.573 3.215
n0 = 6
σkk 2.510 2.880 2.817 2.518
σkP 3.292 3.118 3.115 3.129
σPP 2.290 2.529 2.521 2.508
σPP′ 4.059 4.200 4.198 4.171
n0 = 7
σkk 1.774 1.949 1.916 1.814
σkP 2.921 2.415 2.414 2.387
σPP 2.429 2.058 2.054 2.031
σPP′ 3.851 3.552 3.551 3.557

Table 9.12: Point estimates for posterior distributions of σii′ ∈ {σkk, σkP , σPP , σPP′},
when r = 10. The standard deviation parameters are fixed such that σkk = 2.6, σkP =
3.4, σPP = 2.8, and σPP′ = 4.4.
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Figure 9.10: Posterior distributions of σii′ ∈ {σkk, σkP , σPP , σPP′}, for the population-
based model when r = 10 random sources from the population and n0 = 4 (first row),
n0 = 5 (second row), n0 = 6 (third row) and n0 = 7 (fourth row). Red vertical lines
correspond to the mean of the posterior distributions obtained using Algorithms 5 and
6; blue vertical lines correspond to the medians of the posterior distributions; purple
vertical lines correspond to the mode of the posterior distributions; green vertical lines
correspond to the sample standard deviations of the different source combinations that
exist within the sampled vectors of scores.

Parameter Sample Mean Posterior Mean Posterior Median Posterior Mode
n0 = 4
θkk 14.804 14.812 14.840 14.878
θkP 18.532 18.555 18.507 18.373
θPP 12.833 12.863 12.842 12.751
θPP′ 9.322 9.2667 9.272 9.924
n0 = 5
θkk 9.343 9.336 9.338 9.274
θkP 16.008 16.004 15.997 16.058
θPP 13.276 13.286 13.286 13.319
θPP′ 9.609 9.604 9.604 9.484
n0 = 6
θkk 10.618 10.614 10.612 10.741
θkP 15.366 15.363 15.358 15.345
θPP 12.070 12.066 12.064 12.021
θPP′ 8.992 8.990 8.990 9.066
n0 = 7
θkk 14.096 14.081 14.073 13.921
θkP 17.365 17.359 17.359 17.187
θPP 12.339 12.338 12.342 12.491
θPP′ 8.809 8.808 8.809 8.978

Table 9.13: Point estimates for posterior distributions of θii′ ∈ {θkk, θkP , θPP , θPP′},
when r = 15. The mean parameters are fixed such that θkk = 10.9, θkP = 16.5,
θPP = 13.0, and θPP′ = 9.7.
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Figure 9.11: Posterior distributions of θii′ ∈ {θkk, θkP , θPP , θPP′}, for the population-
based model when r = 15 random sources from the population and n0 = 4 (first row),
n0 = 5 (second row), n0 = 6 (third row) and n0 = 7 (fourth row). Red vertical lines
correspond to the mean of the posterior distributions obtained using Algorithms 5 and
6; blue vertical lines correspond to the medians of the posterior distributions; purple
vertical lines correspond to the mode of the posterior distributions; green vertical lines
correspond to the sample means of the different source combinations that exist within
the sampled vectors of scores.

Parameter Sample
Standard Deviation Posterior Mean Posterior Median Posterior Mode

n0 = 4
σkk 1.352 3.061 2.942 3.061
σkP 3.252 6.999 8.382 7.465
σPP 3.053 5.377 6.083 5.627
σPP′ 4.573 8.048 9.874 8.575
n0 = 5
σkk 2.189 2.479 2.409 2.344
σkP 5.366 3.850 3.844 3.880
σPP 3.563 2.980 2.980 2.994
σPP′ 2.582 1.779 1.780 1.783
n0 = 6
σkk 2.785 2.759 2.685 2.758
σkP 5.632 3.548 3.542 3.591
σPP 4.036 2.668 2.665 2.648
σPP′ 3.007 1.651 1.651 1.654
n0 = 7
σkk 4.190 4.041 3.986 3.798
σkP 5.975 3.899 3.894 3.924
σPP 3.482 2.687 2.692 2.736
σPP′ 2.727 1.963 1.962 1.958

Table 9.14: Point estimates for posterior distributions of σii′ ∈ {σkk, σkP , σPP , σPP′},
when r = 15. The standard deviation parameters are fixed such that σkk = 2.6, σkP =
3.4, σPP = 2.8, and σPP′ = 4.4.
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Figure 9.12: Posterior distributions of σii′ ∈ {σkk, σkP , σPP , σPP′}, for the population-
based model when r = 15 random sources from the population and n0 = 4 (first row),
n0 = 5 (second row), n0 = 6 (third row) and n0 = 7 (fourth row). Red vertical lines
correspond to the mean of the posterior distributions obtained using Algorithms 5 and
6; blue vertical lines correspond to the medians of the posterior distributions; purple
vertical lines correspond to the mode of the posterior distributions; green vertical lines
correspond to the means (for θii′) and standard deviations (for σii′) of the different
source combinations that exist within the sampled vectors of scores.

There are three implications of Figures 9.7 through 9.12 and Tables 9.9 through

9.14. First, we see that we obtain better estimates of the parameter values (as given by

the posterior means, medians and modes) as we increase r and n0. Second, we see that

the posterior approximations for θii′ are better representations than they are for σii′ . In

particular, there appears to be a lack of convergence whenever n0 < 6 control objects

for each of n ≤ 10 random sources (although the convergence does seem to improve as

we move from considering r = 5 random sources from the population to considering

r = 10 random sources from the population). Finally, we note that the posterior samples

obtained when r = 5 are not stable since the resulting chains do not converge towards

a single distribution. Instead, they appear to explore a mixture of distributions. We see

this same peculiarity when r = 10 random sources from the population and n0 = 4

or n0 = 5 control objects per source, and when r = 15 random sources from the

population and n0 = 4 control objects per source (note, though, that the phenomenon
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becomes less extreme as we move to consider r = 10 or r = 15 random sources from

the population). However, when r = 10 or r = 15, we see that the chains and resulting

posterior samples begin to stabilize. This indicates that, given the current status of the

sampler, an examiner should consider no less than r = 10 random sources from the

population alongside at least n0 = 6 control objects per source. Note that there exist

several methods for stabilizing the resulting chains. For example, considering a more

informative prior can help to stabilize chains in this type of scenario [44].

9.5 ASSESSING NORMALITY ASSUMPTIONS

The score model presented in (9.1) relies on the assumption that the vector of

scores s is normally distributed. This assumption can be met by defining an appropriate

kernel, or by increasing the intrinsic dimension of the original objects [5, 53] . In this

section, we present the results of some simulations that demonstrate that the assump-

tion of Multivariate Normality is reasonable, so long as the dimension of the objects

in the original space is sufficiently large. In these simulations, we sample 2500 sets of

functional objects described by p B-spline basis functions, p ∈ {5, 50, 500}. In these

simulations, we sample the coefficients of the basis functions from a Dirichlet distri-

bution. This distribution is chosen to demonstrate that the distribution of the original

objects does not impact the convergence of the scores to a Multivariate Normal distribu-

tion. This process is outlined in Algorithm 7. After sampling sets of objects, the scores

are calculated using the exponential of a squared Euclidean kernel. Given these 2500

sets of N =
(
(r+1)n0+nu

2

)
-dimensional scores, we are able to compute the associated

empirical covariance matrix, and project the scores into their eigenspace.

We proceed by considering the within-source comparisons separate of the between-

source comparisons. In the case of the within-source comparisons, we ensure that the

objects sampled in each iteration are from the same source by first sampling a single p-

dimensional flat Dirichlet object, α, using Λ = {1p}. We then sample N objects from

a p-dimensional Dirichlet distribution whose parameter is α, multiplied by c = 1000 to

ensure that the three objects are very similar, and thus have originated from the same
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Algorithm 7: Generating scores for sets of objects
Data: A kernel function, κ; a set of p basis functions, {βi(t)}pi=1, over

some interval; [a, b], a multivariate distribution function, F and
associated sets of parameters, Λ,Ω

Result: An matrix of scores, where each row corresponds to an
N =

(
(r+1)n0+nu

2

)
-dimensional vector of scores given the

simulated data
for n iterations do

1. Sample a mean vector, α ∼ F (Λ), α ∈ Rp, where Λ is the set of
parameters for F ;

2. Sample a matrix, B, of coefficients such that each row vector,
bi ∼ F (Ω), i ∈ {1, 2, 3}, c ∈ R, α ⊂ Ω, represents the coefficients of a
single object;

3. Calculate the function values xij =
∑p

j=1 bijβj(t), ∀i ∈ {1, . . . , N},
∀t ∈ [a, b];

4. Calculate the vector of scores, s;
end

source. In this case, where we sample our coefficients from a Dirichlet distribution, the

parameter Ω = {1000α}. In the case where we consider that all objects originate from

different sources, we proceed using the same steps as in the within-source scenario de-

scribed above. However, rather than multiply the parameter α by c = 1000, we simply

use the vector α (c = 1) as our parameter for the second sample from a p-dimensional

Dirichlet distribution, such that Ω = {α}. Keeping the parameters “small” allows for

enough variation in the sampled objects such that they originate from different sources.

Upon obtaining the functional objects, we proceed as in the above algorithm.

Figures 9.13 and 9.14 demonstrate that, as the dimension of the objects in-

creases, we see a tendency of the distributions of the resulting scores to become spheri-

cal or ellipsoidal, which gives us an idea of whether or not the vector of scores follows

a Multivariate Normal distribution. In either scenario, when we consider the first three

eigen-dimensions, we see that the clouds of points begin to appear spherical or ellip-

soidal when p = 50. In addition, we note that the projections of the within-source

scores are more spherical in appearance than those of the between-source scores.
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Figure 9.13: Projection of N -dimensional vectors of scores obtained from 2500 sets of
within-source objects in the space defined by their respective spectra decompositions of
their covariance matrices. Objects correspond to spectra obtained from linear combi-
nations of B-spline bases whose coefficients were sampled from Dirichlet distributions.
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Figure 9.14: Projection of N -dimensional vectors of scores obtained from 2500 sets of
between-source objects in the space defined by their respective spectra decompositions
of their covariance matrices. Objects correspond to spectra obtained from linear combi-
nations of B-spline bases whose coefficients were sampled from Dirichlet distributions.
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Chapter 10

IMPLEMENTING THE POPULATION-BASED MODEL

SELECTION ALGORITHM

In this chapter, we apply the proposed model to a set of Fourier-Transform In-

frared (FTIR) spectra of paint chips from cans of common household paint. The paint

chips considered in this example come from 166 different paint cans. For each paint

source, we observe seven replicates, each of which corresponds to a new, distinct ob-

servation, and is not a repeated measurement of a single paint chip. That is, the seven

replicates correspond to seven exchangeable FTIR spectra. Each spectra represents

the absorbance of the paint material for a range of wavelengths (from approximately

550 cm−1 to approximately 4,000cm−1), and is captured by an approximately 7,000-

dimensional vector1.

Since we observe only seven spectra per source, we treat the spectra as func-

tional data and express each as a linear combination of 300 B-spline bases for the pur-

pose of this experiment. We assume that the vectors of basis coefficients are i.i.d.

Multivariate Normal, and we use the sample mean and covariance matrix of the coef-

ficients for the seven spectra as point estimates for the parameters of their distribution.

This strategy is fit-for-purpose in the context of this example, and allows us to “re-

sample” new spectra from a considered source to study the performance of our model.

Figure 10.1 presents seven observed spectra overlaid with seven simulated spectra from

the same can of paint, and indicates that this approach is reasonable.

1The set of FTIR spectra proves to be more felicitous dataset for the considered model, given
the greater number of sources that constitute the population of potential sources. Given that
the MNIST handwritten digit data considers only 10 potential sources, it is not an appropriate
dataset for considering the performance of the considered population-based model.
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Figure 10.1: Seven observed replicates of FTIR spectra (solid dark blue lines) overlaid
with seven generated replicates of pseudo-spectra (dashed light gray lines) from paint
can #5 (out of 166 paint cans)

Evaluating the performance of the model in this scenario requires defining a

kernel function for comparing two FTIR spectra. The kernel function used in this ex-

periment measures the dissimilarity between two spectra xij and xi′j′ by considering

their cross-correlation over a range of lags, τ = −k, . . . , k, and the Euclidean norm of

their difference. Specifically, we define our kernel as

κ (xij,xi′j′) = log [C (||ω ◦ xij − ω ◦ xi′j′||) (||12k+1|| − ||rτ ||)] . (10.1)

There are three components to the kernel defined in (10.1): we define the constant, C,

to help satisfy the normality assumption for the resulting vector of scores; we consider

the Euclidean norm of the difference between the vectors ω ◦xij and ω ◦xi′j′ , where ω

is a vector of binary weights that indicates which positions of the spectra are considered

in the calculation, and ◦ is the Schur product; we convert the (2k + 1)-dimensional

vector of cross-correlations between spectra ω ◦xij and ω ◦xi′j′ into a distance metric

by considering the displacement of its norm from the norm of the (2k+1)-dimensional

one vector. Considering ω ◦xij , rather than xij , allows us to employ a filtering process

such that only the interesting areas of xij are considered in the comparison process.

That is, uninformative (i.e., flat) areas that exist between pairs of spectra are filtered out

so as to better discriminate between pairs of spectra (see Figure 10.3 for an example of

the results of the filtering process). Finally, the function satisfies Mercer’s conditions,

and so is a valid kernel function with an inner-product representation in some separable
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high-dimensional feature space.
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Figure 10.2: Original and projected distributions of scores obtained from comparing
FTIR spectra of paint. Top Row: 3-dimensional vectors of scores obtained from 332
triplets of objects originating from the same source in the original space. Bottom Row:
Projection of 3-dimensional vectors of scores obtained from 332 triplets of objects origi-
nating from the same source in the space defined by the spectral decomposition of their
covariance matrix.

Figure 10.2 (top row) portrays the marginal distributions of the scores in their

original space. By expressing the original vectors of scores as a function of the space

defined by the eigenvectors of their sample covariance matrix, we can observe the

marginal distributions of the score vectors along orthogonal axes, and better determine

if the marginal distributions follow a Normal distribution. Figure 10.2 (bottom row)

shows that, although the data is approximately spherical in the first two dimensions

of the eigenspace, there is a rather significant departure from normality when eigen-

dimensions 2 and 3 are plotted against one another. However, given the results pre-

sented below, we purport that this deviation from multivariate normality does not affect

the ability of the model to correctly classify and differentiate spectra, and thus testifies

to the robustness of the model: despite the lack of normality, the model remains able

to correctly associate and differentiate spectra originating from the same and different

sources, respectively.
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Figure 10.3: Spectra from paint can #19 (light blue) overlaid with spectra from paint
can #34 (dark blue). Paint can #34 is the most similar to paint can #19 out of the 166
potential cans of paint, as determined by the kernel function defined in (10.1). Regions
in light grey correspond to the areas that are considered to be uninformative in the
discrimination process, and so these time stamps are not considered in calculating the
score returned by the kernel function. By considering only the areas in blue, we can
better discriminate between the two sources.

To assess the performance of the model in the forensic context, we again con-

sider a series of simulations in which we consider a putative source alongside r = 10

random sources from the population of potential sources. We consider n0 = 6 control

objects per source, and nu = 3 trace objects. We consider this combination of r and n0

since this is when we begin to see some stability of the distributions resulting from our

sampling process (see Figures 9.9 and 9.10 above).

To determine if the rarity of the putative source affects the sensitivity of the

model, we consider three instances in which the putative source has a low random

match probability, indicating that the source has characteristics which make it rare in

the population (we consider that paint cans #37, #77, and #160 are rare) and three

instances in which the putative source has a high random match probability, indicating

that the source has characteristics that are unremarkable in the population (we consider

that paint cans #18, #47, and #85 are unremarkable). The rarity of the sources was

determined by considering the random match probability associated with each of the

166 potential sources that make up the population. Figure 4 in [7] is reproduced as

Figure 10.4 below, and characterizes the distributions of the random match probabilities

associated with each of the 166 paint cans that make up the population of potential

sources 2. See details of full experiment in [7]).

2Note that Ausdemore et al. use N to describe the number of control objects, while this
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We consider 250 iterations of the experiment when Hp is true (that is, the puta-

tive source is the true source of the set of trace objects), and when Hd is true (that is,

dissertation uses n0 to describe the number of control objects.
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some other random source from the population of potential sources is the true source

of the set of trace objects). For this set of experiments, when we consider that Hd is

true, we consider two scenarios: we consider a set of simulations in which the set of

trace objects truly originates from can #9, since this paint can is considered to be rare

in the population of 166 paint cans, and we consider a set of simulations in which the

set of trace objects truly originates from can #41, since this paint can is considered to

be unremarkable in the population of 166 paint cans. We choose to consider a rare

source as the true source under Hd, since it more likely to be poorly described when

r = 10 random sources are used to describe the population of potential sources, and

we choose to consider an unremarkable source as the true source under Hd, since this

source should be well described when r = 10 random sources are used to describe the

population of potential sources.

Proposed Model
Paint Can #18 Random Source Total

True Source Paint Can #18 250 0 250
Paint Can #9 3 247 250

Total 253 247 500

Table 10.1: Confusion matrix for classification of FTIR spectra when r = 10 and n0 = 6
under the null hypothesis that the set of nu trace objects truly originate from paint can
#18. We consider 250 sets of nu = 3 trace objects that truly originate from paint can
#18 and 250 sets of nu = 3 trace objects that truly originate from a rare source (paint
can #9) in the population.

Proposed Model
Paint Can #18 Random Source Total

True Source Paint Can #18 250 0 250
Paint Can #41 14 236 250

Total 264 236 500

Table 10.2: Confusion matrix for classification of FTIR spectra when r = 10 and n0 = 6
under the null hypothesis that the set of nu trace objects truly originate from paint can
#18. We consider 250 sets of nu = 3 trace objects that truly originate from paint can
#18 and 250 sets of nu = 3 trace objects that truly originate from an unremarkable
source (paint can #41) in the population.
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Proposed Model
Paint Can #37 Random Source Total

True Source Paint Can #37 250 0 250
Paint Can #9 2 248 250

Total 252 248 500

Table 10.3: Confusion matrix for classification of FTIR spectra when r = 10 and n0 = 6
under the null hypothesis that the set of nu trace objects truly originate from paint can
#37. We consider 250 sets of nu = 3 trace objects that truly originate from paint can
#37 and 250 sets of nu = 3 trace objects that truly originate from a rare source (paint
can #9) in the population.

Proposed Model
Paint Can #37 Random Source Total

True Source Paint Can #37 250 0 250
Paint Can #41 10 240 250

Total 260 240 500

Table 10.4: Confusion matrix for classification of FTIR spectra when r = 10 and n0 = 6
under the null hypothesis that the set of nu trace objects truly originate from paint can
#37. We consider 250 sets of nu = 3 trace objects that truly originate from paint can
#37 and 250 sets of nu = 3 trace objects that truly originate from an unremarkable
source (paint can #41) in the population.

Proposed Model
Paint Can #47 Random Source Total

True Source Paint Can #47 250 0 250
Paint Can #9 4 246 250

Total 254 246 500

Table 10.5: Confusion matrix for classification of FTIR spectra when r = 10 and n0 = 6
under the null hypothesis that the set of nu trace objects truly originate from paint can
#47. We consider 250 sets of nu = 3 trace objects that truly originate from paint can
#47 and 250 sets of nu = 3 trace objects that truly originate from a rare source (paint
can #9) in the population.
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Proposed Model
Paint Can #47 Random Source Total

True Source Paint Can #47 250 0 250
Paint Can #41 11 239 250

Total 261 239 500

Table 10.6: Confusion matrix for classification of FTIR spectra when r = 10 and n0 = 6
under the null hypothesis that the set of nu trace objects truly originate from paint can
#47. We consider 250 sets of nu = 3 trace objects that truly originate from paint can
#47 and 250 sets of nu = 3 trace objects that truly originate from an unremarkable
source (paint can #41) in the population.

Proposed Model
Paint Can #77 Random Source Total

True Source Paint Can #77 250 0 250
Paint Can #9 11 239 250

Total 261 239 500

Table 10.7: Confusion matrix for classification of FTIR spectra when r = 10 and n0 = 6
under the null hypothesis that the set of nu trace objects truly originate from paint can
#77. We consider 250 sets of nu = 3 trace objects that truly originate from paint can
#77 and 250 sets of nu = 3 trace objects that truly originate from a rare source (paint
can #9) in the population.

Proposed Model
Paint Can #77 Random Source Total

True Source Paint Can #77 250 0 250
Paint Can #41 9 241 250

Total 259 241 500

Table 10.8: Confusion matrix for classification of FTIR spectra when r = 10 and n0 = 6
under the null hypothesis that the set of nu trace objects truly originate from paint can
#77. We consider 250 sets of nu = 3 trace objects that truly originate from paint can
#77 and 250 sets of nu = 3 trace objects that truly originate from an unremarkable
source (paint can #41) in the population.
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Proposed Model
Paint Can #85 Random Source Total

True Source Paint Can #85 250 0 250
Paint Can #9 10 240 250

Total 260 240 500

Table 10.9: Confusion matrix for classification of FTIR spectra when r = 10 and n0 = 6
under the null hypothesis that the set of nu trace objects truly originate from paint can
#85. We consider 250 sets of nu = 3 trace objects that truly originate from paint can
#85 and 250 sets of nu = 3 trace objects that truly originate from a rare source (paint
can #9) in the population.

Proposed Model
Paint Can #85 Random Source Total

True Source Paint Can #85 250 0 250
Paint Can #41 9 241 250

Total 259 241 500

Table 10.10: Confusion matrix for classification of FTIR spectra when r = 10 and n0 = 6
under the null hypothesis that the set of nu trace objects truly originate from paint can
#85. We consider 250 sets of nu = 3 trace objects that truly originate from paint can
#85 and 250 sets of nu = 3 trace objects that truly originate from an unremarkable
source (paint can #41) in the population.

Proposed Model
Paint Can #160 Random Source Total

True Source Paint Can #160 250 0 250
Paint Can #9 12 238 250

Total 262 238 500

Table 10.11: Confusion matrix for classification of FTIR spectra when r = 10 and n0 = 6
under the null hypothesis that the set of nu trace objects truly originate from paint can
#160. We consider 250 sets of nu = 3 trace objects that truly originate from paint can
#160 and 250 sets of nu = 3 trace objects that truly originate from a rare source (paint
can #9) in the population.
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Proposed Model
Paint Can #160 Random Source Total

True Source Paint Can #160 250 0 250
Paint Can #41 9 241 250

Total 259 241 500

Table 10.12: Confusion matrix for classification of FTIR spectra when r = 10 and n0 = 6
under the null hypothesis that the set of nu trace objects truly originate from paint can
#160. We consider 250 sets of nu = 3 trace objects that truly originate from paint can
#160 and 250 sets of nu = 3 trace objects that truly originate from an unremarkable
source (paint can #41) in the population.

Tables 10.1 through 10.12 summarize the results of our experiment for the given

kernel function defined in (10.1). These results indicate that, overall, the model is better

at distinguishing between the putative source and the population of potential sources

when the putative source is the true source of the trace objects. In addition, we note that

we have a higher misclassification rate, in general, when the putative source is rare in the

population of potential sources. Finally, we note that we have a similar performance,

regardless if the true source of the set of trace objects is a rare random source from

the population of potential sources, or if it is an unremarkable random source from

the population of potential sources. Overall, the results of Tables 10.1 through 10.12

indicate that, for the given kernel, the model performs quite well, despite the apparent

departure from normality, indicated in Figure 10.2.

Finally, we perform a test where we consider r = 5 random sources from the

population of potential sources alongside n0 = 6 control objects per source to determine

the ultimate performance of the model given unstable samples of the parameters (see

Figure 9.8 in Section 9.4). For this experiment, we consider that, when Hd is true, the

source of the set of trace objects is a rare source from the population of potential sources

(paint can #9). Tables 10.13 through 10.18 below indicate that, even when the Gibbs

sampler does not necessarily return stable samples of the parameters, the performance

of the model is not affected. This issue is addressed in Chapter 11.
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Proposed Model
Paint Can #18 Random Source Total

True Source Paint Can #160 250 0 250
Paint Can #9 6 244 250

Total 256 244 500

Table 10.13: Confusion matrix for classification of FTIR spectra when r = 5 and n0 = 6
under the null hypothesis that the set of nu trace objects truly originate from paint can
#18. We consider 250 sets of nu = 3 trace objects that truly originate from paint can
#18 and 250 sets of nu = 3 trace objects that truly originate from a rare source (paint
can #9) in the population.

Proposed Model
Paint Can #37 Random Source Total

True Source Paint Can #37 250 0 250
Paint Can #9 4 246 250

Total 254 246 500

Table 10.14: Confusion matrix for classification of FTIR spectra when r = 5 and n0 = 6
under the null hypothesis that the set of nu trace objects truly originate from paint can
#37. We consider 250 sets of nu = 3 trace objects that truly originate from paint can
#37 and 250 sets of nu = 3 trace objects that truly originate from a rare source (paint
can #9) in the population.

Proposed Model
Paint Can #47 Random Source Total

True Source Paint Can #47 250 0 250
Paint Can #9 2 248 250

Total 252 248 500

Table 10.15: Confusion matrix for classification of FTIR spectra when r = 5 and n0 = 6
under the null hypothesis that the set of nu trace objects truly originate from paint can
#47. We consider 250 sets of nu = 3 trace objects that truly originate from paint can
#47 and 250 sets of nu = 3 trace objects that truly originate from a rare source (paint
can #9) in the population.
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Proposed Model
Paint Can #77 Random Source Total

True Source Paint Can #77 250 0 250
Paint Can #9 2 248 250

Total 252 248 500

Table 10.16: Confusion matrix for classification of FTIR spectra when r = 5 and n0 = 6
under the null hypothesis that the set of nu trace objects truly originate from paint can
#77. We consider 250 sets of nu = 3 trace objects that truly originate from paint can
#77 and 250 sets of nu = 3 trace objects that truly originate from a rare source (paint
can #9) in the population.

Proposed Model
Paint Can #85 Random Source Total

True Source Paint Can #85 250 0 250
Paint Can #9 4 246 250

Total 254 246 500

Table 10.17: Confusion matrix for classification of FTIR spectra when r = 5 and n0 = 6
under the null hypothesis that the set of nu trace objects truly originate from paint can
#85. We consider 250 sets of nu = 3 trace objects that truly originate from paint can
#85 and 250 sets of nu = 3 trace objects that truly originate from a rare source (paint
can #9) in the population.

Proposed Model
Paint Can #160 Random Source Total

True Source Paint Can #160 250 0 250
Paint Can #9 6 244 250

Total 256 244 500

Table 10.18: Confusion matrix for classification of FTIR spectra when r = 5 and n0 = 6
under the null hypothesis that the set of nu trace objects truly originate from paint can
#160. We consider 250 sets of nu = 3 trace objects that truly originate from paint can
#160 and 250 sets of nu = 3 trace objects that truly originate from a rare source (paint
can #9) in the population.
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Chapter 11

EVALUATING THE POPULATION-BASED MODEL SELECTION

ALGORITHM

In this part, we considered the development for a population-based model se-

lection algorithm that allows for making inference on the source of a set of test objects.

In this scenario, the test objects may have originated from a considered putative source,

or from some other random source in a population of potential sources. This method is

novel in that it allows for classifying the complete set of nu trace objects at once, rather

than classifying each object in turn. This method relies on a kernel function, which

allows for considering virtually any set of high-dimensional, complex, heterogeneous

data as a single vector of real-valued scores between observations by merely modifying

the kernel to accommodate the considered data. In addition, our method is particularly

well-suited for scenarios in which a limited number of observations are available for

consideration, as is oftentimes the case in forensic scenarios.

To evaluate the model under various conditions, we conducted a series of sim-

ulations, described in Chapters 9 and 10 above. These simulations indicated that the

sampler used to study the model parameters (in particular, the variance terms) has the

best performance when at least r = 10 random sources consisting of at least n0 = 6

control objects are used to describe the population of potential sources. When the model

was applied to a real forensic dataset, we saw that the algorithm had an average correct

classification rate of 98.60%, and that the algorithm was particularly apt at correctly

classifying the trace objects when they truly originated from the considered putative

source.
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This being said, the current Gibbs sampler appears to be dependent on the

Metropolis-Hastings step for the set of variance terms, σ2
a, σ

2
b , σ

2
c , σ

2
d, and σ2

e defined

in 9.8. A study of the Gibbs sampler indicates that this Metropolis-Hastings step is the

most delicate part of the model. That is, if the Metropolis-Hastings step starts at a ran-

dom point in which one of the positions of the 5-dimensional parameter vector is too

small, the sampler gets “stuck”, and the entire sampler is offset.

This issue was first noticed in the original development of the Gibbs sampler and

Metropolis-Hastings step. Initial attempts to correct this issue consisted of modifying

the distribution from which the random starting point was sampled, and also included

adjusting the proposal distribution from which the next point in the Metropolis-Hastings

step is sampled. While these adjustments did bolster the performance of the model and

the stability of the resulting distributions of the posterior samples, there still appear to

be instances (albeit rare instances) in which the sampler gets stuck. Future work would

focus on stabilizing this step to readily ensure that values of the variance terms do not

get too small.

That being said, these issues do not appear to affect the model in terms of dis-

tinguishing between Hp and Hd. That is, the discrepancy in the sampler is consistent

between the numerator and the denominator of the Bayes factor in 9.32, and so one

model is not “favored” over the other as a result of the discrepancy, and the model is

still able to accurately determine whether or not the trace objects came from the putative

source or from another random source in the population of potential sources.

In addition, as in the previous two models described in Parts II and III, the

computational cost increases as n0, and nu increases, and increases drastically as r

increases.

Finally, we note that the model is robust to both departures from multivariate

normality and instabilities in the posterior samples obtained during the sampling pro-

cess. That is, should the vector of scores violate the assumption of multivariate normal-

ity or should the Gibbs sampler return an unstable chain, the overall performance of the

model is not affected. The model is still able to accurately distinguish between Hp and
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Hd, as can be seen in Chapter 10.

Overall, the performance of this model indicates that the model works well for

determining whether or not a set of trace objects originates from a given putative source,

or from a random source in the population of potential sources.
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APPENDICES

A CALCULATIONS FOR SS11 BRACKETED TERMS
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B CALCULATIONS FOR SS22 BRACKETED TERMS

B.1 FULL DEVELOPMENT OF (3.23)
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To reach the final equality, we make use of the two identities expressed in Appendix A.
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C CALCULATIONS FOR SS12 BRACKETED TERMS
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To reach the final equality, we make use of the two identities expressed in Appendix A.

D GENERALIZATION OF DEVELOPMENT FOR WITHIN-SOURCE SUMS OF

SQUARES

D.1 FULL DEVELOPMENT OF (6.18), (9.18) AND (9.22)
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D.2 FULL DEVELOPMENT OF (6.19), (9.19) AND (9.23)
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∆
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=
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+
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+
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E GENERALIZATION OF DEVELOPMENT FOR BETWEEN-SOURCE SUMS

OF SQUARES

E.1 FULL DEVELOPMENT OF (6.20), (9.20), AND (9.24)
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∆
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E.2 FULL DEVELOPMENT OF (6.21), (9.21), AND (9.26)
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F GENERALIZATION OF ASSIGNING DISTRIBUTIONS TO PARAMETERS

F.1 POSTERIOR DISTRIBUTION FOR σ2
e FOR THE TWO- AND MULTI-CLASS

MODELS

We begin by defining MSe as a function of all available information pertaining

to σ2
e in Tables 6.5 through 6.6:

MSe =

n∑
i=1

(
SSWii

C2
+

SSEii

C3

)
+

n−1∑
i=1

n∑
i′=2

(
SSWii′

C1
+

SSEii′

C3

)
.
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For ease of notation, we define

C1 = n0

(
1− σ2

e

2

)
+ σ2

e C2 = (n0 − 2)
(

1−σ2
e

2

)
+ σ2

e C3 = σ2
e ,

such that

MSe =
C1

C1

C3

C3

n∑
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(
SSWii
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)
+
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C3

C3
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(
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C2

C2
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n∑

i=1

(
SSEii
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)
+

n−1∑
i=1

n∑
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(
SSEii′

C3

))

=
C1C3

(∑n
i=1 SSWii

)
+ C2C3

(∑n−1
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∑n
i=2 SSWii′

)
+ C1C2

(∑n
i=1 SSEii

+
∑n−1

i=1

∑n
i′=2 SSEii′

)
C1C2C3

∼ χ2

df=
(
nn0
2

)
−
(
n
2

)
−n

.

We obtain the posterior distribution of σ2
e , π(σ2

e |MSe) by considering the above

distribution of MSe, f(MSe|σ2
e), in conjunction with a Beta prior on σ2

e , with hyper-

parameters αe, βe, such that

π(σ2
e |MSe) ∝ f(MSe|σ2

e)π(σ
2
e)

= χ2(MSe|σ2
e)B(σ2

e |αe, βe).

F.2 POSTERIOR DISTRIBUTION FOR θii′ FOR THE TWO- AND

MULTI-CLASS MODELS

We obtain the posterior distribution of θii′ , π(θii′|sii′ , σii′ , σ
2
a, σ

2
e), for i = i′ and

i 6= i′, by considering a Multivariate Normal likelihood for our vector of scores, sii′ ,

and a Normal prior on θii′ , with hyper-parameters ϕii′ , ωii′ . We define θii′ and ∆ii′ as

the parameters associated with sii′ , Pii′ and Iii′ as design matrices corresponding to



177

these source comparisons, and Nii′ as the cardinality of sii′ . We begin by defining

π
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2
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At this point, we define
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and
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a, σ

2
e) ∼ N(µii′p , σ

2
ii′p
), with µii′p and σ2

ii′p
defined as above.

F.3 POSTERIOR DISTRIBUTION FOR σ2
ii′ FOR THE TWO- AND

MULTI-CLASS MODELS

We obtain the posterior distribution of σ2
ii′ , π(σ

2
ii′|sii′ , θii′ , σ2

a, σ
2
e), by consid-

ering a Multivariate Normal likelihood for our vector of scores, sii′ , and an Inverse-

Gamma prior on σ2
ii′ , with hyper-parameters αii′ , βii′ . As in Appendix F.2, the subscript

ii′ indicates the type of relationship we are considering between our scores. We begin

by defining
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G GENERALIZATION OF ASSIGNING DISTRIBUTIONS TO PARAMETERS

FOR THE POPULATION-BASED MODEL

G.1 POSTERIOR DISTRIBUTION FOR θii′ FOR THE POPULATION-BASED

MODEL

We obtain the posterior distribution of θii′ , π(θii′|sii′ , σii′ , σ̃
2) for ii′ ∈ {kk, kp,

pp, pp′} by considering a Multivariate Normal likelihood for our vector of scores, sii′ ,

and a Normal prior on θii′ , with hyper-parameters ϕii′ , ωii′ . We define θii′ and ∆ii′

as the parameters associated with sii′ , Pii′ , Qii′ , Rii′ , Tii′ , and Iii′ as design matrices

corresponding to these source comparisons, and Nii′ as the cardinality of sii′ . We begin

by defining
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From this point on, we define Σii′ := Pii′P
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.

At this point, we define

1

σ2
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,

and
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Σ−1
ii′ 1Nii′ωii′ + 1

And so π (θii′|sii′ , σ2
a, σ

2
e) ∼ N(µii′p , σ

2
ii′p
), with µii′p and σ2

ii′p
defined as above.

G.2 POSTERIOR DISTRIBUTION FOR σ2
ii′ FOR THE POPULATION-BASED

MODEL:

We obtain the posterior distribution of σ2
ii′ , π(σ2

ii′ |sii′ , θii′ , σ̃2), by consider-

ing a Multivariate Normal likelihood for our vector of scores, sii′ , and an Inverse-

Gamma prior on σ2
ii′ , with hyper-parameters αii′ , βii′ . As in Appendix F.2, the subscript
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ii′ ∈ {kk, kp, pp, pp′} indicates the type of relationship we are considering between our

scores. We begin by defining

π(σ2
ii′ |sii′ , θii′ , σ̃

2) ∝ f(sii′ |σ2
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