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ABSTRACT

Black carbon (BC) is one of the short-lived air pollutants that contributes significantly to aerosol radiative forcing
and global climate change. It is emitted by the incomplete combustion of fossil fuels, biofuels, and biomass. Urban
environments are quite complex and thus, the use of mobile jointly with fixed monitoring provides a better un-
derstanding of the dynamics of BC distribution in such areas. The present study addresses the measurement of BC
concentration using real-time mobile and ambient monitoring in Barranquilla, an industrialized urban area of the
Colombian Caribbean. A microaethalometer (MA200) and an aethalometer (AE33) were used for measuring the
BC concentration. The absorption Angstrdm exponent (AAE) values were determined for the study area, for iden-
tifying the BC emission sources. The results of the ambient sampling show that vehicle traffic emissions prevail;
however, the influence of biomass burning was also observed. The mean ambient BC concentration was found to
be1.04 4+ 1.03 ug/m3 and varied between 0.5 and 4.0 pg/m3. From the mobile measurements obtained in real traf-
fic conditions on the road, a much higher average value of 16.1 & 16.5 ug/m> was measured. Many parts of the
city showed BC concentrations higher than 20 pg/m?>. The spatial distribution of BC concentration shows that ve-
hicle emissions and traffic jams, a consequence of road and transport infrastructure, are the factors that most af-
fect the BC concentration. A comparison of results obtained from two aethalometers indicates that the
concentrations measured by MA200 are 9% lower than those measured by AE33. The AAE obtained was found
to vary between 1.1 and 1.6, indicating vehicular emissions as the most crucial source. In addition, it was ob-
served that the BC concentration on working days was 2.5 times higher than on the weekends in the case of mo-
bile monitoring and 1.5 times higher in the case of ambient monitoring.
©2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

2019). The study of BC concentration and its control depends on the ev-
idence of the negative impact that BC has on people's health in terms of

Human and environmental health is always exposed to atmospheric
nanoparticles (NPs) and ultra-fine particles (UFPs) through breathe, in-
gestion, dermal interaction, and eyes connections (Martinello et al.,
2014; Saikia et al., 2014, 2018; Schneider et al., 2016; Duarte et al.,
2019; Rojas et al., 2019; Madureira et al., 2020; Silva et al., 20203,
2020b, 2020c, 2020d). In general black carbon (BC) is an aerosol product
of incomplete combustion of fossil fuels, biofuel or biomass, generally
originated from anthropogenic activities such as emissions from vehi-
cles, industries, and burning of solid waste, among others (Bond et al.,
2013). It is mostly used as an indicator of combustion sources since its
physical properties, and airborne concentration varies depending on
the type of fuel used, combustion characteristics, and meteorology
(Schneider et al., 2015; Agudelo-Castafieda et al., 2016, 2017; Sehn
et al,, 2016; Evans et al., 2017; Saturno et al., 2018; Ramirez et al.,
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the alterations it causes in respiratory and cardiovascular functions (de
Oliveira Alves et al., 2011; de Oliveira Alves et al., 2015; de Oliveira Alves
et al,, 2017; Wang et al., 2016; Becerril-Valle et al., 2017). BC aerosol
particles are present mostly in the fine mode (PM, s) and can be inhaled
and get deposited in the lungs quite efficiently (Gong et al., 2019). BC is
considered to be more harmful to people than other particle compo-
nents such as PM;q and PM, 5 particulate materials (de Oliveira Alves
et al., 2012; Li et al., 2015). BC also has an important impact on the cli-
mate as it is responsible for a positive radiative forcing (warming) of
0.6 W/m? (Boucher et al., 2013). This value is about one-quarter of the
CO,, radiative forcing, a very significant figure. BC also has an impact
on the increase of snow melting when it gets deposited over snow
(USEPA, 2012).

In Latin America and the Caribbean, the main sources of BC emission
are vehicular traffic in urban areas and biomass burning from deforesta-
tion, cooking, and heating (Artaxo et al., 2013; Brito et al., 2013). There-
fore, knowledge on BC concentration and its sources is important in
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order to establish strategies for reducing emissions and their atmo-
spheric concentrations which, in turn, would contribute to the reduc-
tion of exposure of people to BC and provide short-term climate
benefits (Krecl et al., 2014; Reddington et al., 2015; Scott et al., 2018).

In urban areas, atmospheric BC is usually measured by employing
light absorption techniques such as aethalometers (Rizzo et al., 2011;
Dumka et al., 2013; Saturno et al., 2017; Mousavi et al., 2019), multi-
angle absorption photometry (MAAP) (Petzold et al., 2005; Coen et al.,
2010), and remote sensing tools (Zhu et al.,, 2017). However, BC moni-
toring in urban areas is challenging due to the large spatial variability
of the pollutants which, in turn, is dependent on the variability in traffic
density, street topology, and distance to the sources (Van Poppel et al.,
2013). The alternative technique of mobile sampling allows the acquisi-
tion of data in terms of air quality with a high spatial and temporal res-
olution in a complex urban environment. It thus provides vital
information for assessing the spatial variability of pollutants with a lim-
ited number of instruments in a short duration. This method can be used
for air quality mapping in an urban neighborhood (Targino et al., 2018),
identification of hot spot areas having a high BC concentration (Targino
et al., 2016), and also exposure evaluation of cyclists (Franco et al.,
2016), pedestrians (Morales Betancourt et al., 2017), and drivers (Liu
et al,, 2019a; Liu et al., 2019b), in order to obtain information on expo-
sure levels in them (Okokon et al,, 2017).

This study aimed to map the geographical distribution of BC in a
medium-sized urban area, as well as explore the use of AAE in the iden-
tification of BC sources. BC concentration was determined using both
ambient real-time monitoring and mobile monitoring in the industrial-
ized city of Barranquilla in the Colombian Caribbean. The chosen mobile
monitoring route was characterized by a mixture of residential, indus-
trial, and commercial areas, with different traffic density. In addition
to BC concentration mapping, the absorption Angstrém exponents
(AAEs) (Bergstrom et al., 2002; Bond and Bergstrom, 2006) were deter-
mined to provide information on the identification of BC sources. A
comparison between the two aethalometers used in this study was
also carried out to ensure the quality of the information obtained.

2. Methodology
2.1. Study area

Barranquilla (10°59'16"N, 74°47'20"W) is the capital of the depart-
ment of Atlantico in Colombia located on the Caribbean coast at an ele-
vation of 18 m above sea level and has a population of approximate 1.2
million inhabitants. It has an area of 154 km? and an annual average
temperature of 27 °C (between 23 and 31 °C). The average annual pre-
cipitation is 767 mm, and the predominant wind direction is north-
northeast (NNE). The climate of the city is classified as a dry tropical
type and is characterized by a wet period from April to November and
a dry period from December to March.

Barranquilla is officially referred to as a special, industrial, and a port
district. It is a coastal city consisting of fixed industrial sources, mainly
those dedicated to the elaboration of food and drink products, chemical
products, substances, and basic metallurgical products manufacturing,
on which part of the local economy depends (Table S1, Supplementary
Data). This city has a vehicle fleet consisting of private cars (~126,000),
followed by motorcycles (~31,000), public cars (~15,000), and buses for
public transport (~8000). There is no emission control system for vehic-
ular emissions in Barranquilla (Table S2, Supplementary Data).

For the mobile sampling of BC, a route was selected in order to con-
sider different types of activities along the route (i.e., consisting of com-
mercial, industrial, and residential sectors) as well as diversity in road
configuration and vehicle density. The chosen route borders the entire
periphery of the city, as can be seen from Fig. 1. Therefore, the BC data
collected in this work represents the various environments and influ-
ences of different sources in the urban area of Barranquilla.
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The location of the fixed site (Fig. 1) used for ambient BC sampling
has a contribution from multiple pollutant emission sources. It is located
at the top of a 5-floor building of the Universidad de la Costa, in a resi-
dential area near busy roads and industrial areas. Due to its geographical
location and predominance of the NNE wind direction, the BC found in
this area also contains the contribution from biomass burning from
the nearby mangrove nature reserve of Isla Salamanca Natural Park,
an important area for bird conservation and declared as a biosphere re-
serve by UNESCO. In this area, frequent biomass burning is observed
during March and June.

2.2. Sampling and data processing

A portable micro-aethalometer of model MA200 (AethLabs, San
Francisco, USA) was used for carrying out the BC mobile monitoring
campaigns. This instrument measures a change in light attenuation in
a filter at five wavelengths: 375 nm (ultraviolet), 470 nm (blue),
528 nm (green), 625 nm (red) and 880 nm (infrared), with mass ab-
sorption cross-sections (MACs) of 24.069, 19.070, 17.028, 14.091, and
10.120 m?/g respectively, provided by the manufacturer. In addition, it
incorporates the dual-spot method to compensate for the absorption ef-
fects of aerosol loading (Boniardi et al., 2019; Maduefio et al., 2019;
Wang et al., 2020). The portable micro-aethalometer follows the same
measurement principle as the AE33 aethalometer, where the aerosol
particles are continually sampled on the filter and the optical attenua-
tion is measured with high time resolution. Attenuation is measured
on two spots with different sample flows and on the reference spot
without the flow. The BC mass concentration is calculated from the
change in optical attenuation of the different wavelengths in the se-
lected time interval using the mass absorption cross section (Drinovec
etal., 2015). Other authors have addressed the model working principle
of the aethalometer in more detail (Dumka et al., 2013; Becerril-Valle
et al,, 2017; Martinsson et al., 2017; Zotter et al., 2017).

The mobile platform consisted of a car equipped with a global posi-
tioning system (GPS) (Garmin model 450) and a portable micro-
aethalometer, collecting the information in time intervals of 1 min,
with a flow rate of 150 mL/min, and a car speed of approximately
30 km/h. The micro-aethalometer was outside the vehicle, with the
PM, 5 cyclone attached to support located on the left side window at
an approximate height of 2 m above the road surface.

The steps established by Targino et al. (2016) and the manufactur-
er's suggestions (AethLabs) were followed for preparing the portable
micro-aethalometer before each sampling campaign. The data
discarded by the GPS was examined for detecting any erroneous
geolocations as well as, the speed and distance of each mobile sampling
campaign. The design of the sampling route was characterized by differ-
ent types of activities on the periphery of Barranquilla city (in the com-
mercial, industrial, and residential areas). The samples from a total of 13
complete routes were taken between May to June 2019. Each sampling
campaign started at 14:00 and lasted for about 2 h. This schedule was
selected by considering a period which the weather conditions remain
rather uniform, with low variations in the boundary layer height that
would minimize the interference of the meteorological variables. The
sampling was performed during days of no precipitation. In order to cal-
culate the AAEs, the BC data obtained with the micro-aethalometer was
processed by applying a polynomial regression smoothing method to
the measurements at the five wavelengths.

In the ambient BC monitoring campaign at a fixed site at the
Universidad de la Costa, an AE33 aethalometer (Magee Scientific Com-
pany, Berkley, USA) was used to carry out continuous measurements
from May to June 2019. This period corresponds to the dry season.
The data was recorded at time intervals of 1 min and a flow rate of
5 L/min. Drinovec et al. (2015) have previously described the character-
istics of the instrument. An aerosol dryer was used to make sure that the
relative humidity is kept constant at <35%.
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Fig. 1. Map of the study area indicating the fixed sampling site and mobile monitoring route. Traffic lights are presented as yellow circles, roundabout as blue circles, and mobile speed

camera sites as red square.

Simultaneous measurements using the AE33 aethalometer and
MA200 micro-aethalometer were performed in a measurement cycle
of 80 h in order to compare the results from both instruments. The
flows used were 5 L/min and 150 mL/min for AE33 and MA200, respec-
tively. Both instruments sampled at 1 min intervals and had dryers to
maintain a constant relative humidity (<35%). The obtained data was
smoothed by a polynomial regression of grade 7, allowing the elimina-
tion of outliers and reduction of signal-to-noise.

Weather variables such as temperature, atmospheric pressure, rela-
tive humidity, wind speed, and wind direction were measured with a
Vantage Pro2 weather station (Davis Instruments) near the fixed sam-
pling site of the environmental BC measurements.

2.3. Determination of the absorption Angstrém exponents

In general, it is assumed that the absorption Angstrém exponent
(AAE) for diesel emissions is close to 1 while that for biomass burning is
close to 2 (Saturno et al., 2018). However, some variability in these values
is usually observed. In the study area, the AAEs for biomass burning
(AAE,,) and fossil fuels (AAEg) were determined for all wavelength spec-
tra measured from the mobile measurements as well as at the fixed mon-
itoring site. For the AAEg characterization, measurements were taken at

the city's transport terminal. The portable micro-aethalometer was oper-
ated at a distance of about 3 m from the emission points (exhaust of a die-
sel bus). After the engine of the vehicle was started, data was recorded at
intervals of 1 min and a flow rate of 150 mL/min for 20 min. Data from a
total of 5 buses was evaluated to take its variability into account. For de-
termining AAE,;,, the controlled burning of small pieces of wood was car-
ried out. The equipment was placed on a support at the height of 1 m
above the floor. BC concentrations were recorded once the flaming
stage began, and the recording was continued until the smoldering phase.

Due to the difference in the spectral dependence of aerosols resulting
from the biomass burning (bb) and fossil fuel emissions (ff), it is possible
to estimate the contribution of BC sources by calculating the AAE as per
the model described by Sandradewi et al. (2008) using the blue channel
(N = 470 nm) and the infrared channel (A = 880 nm) as follows:

In <I;abs(470) >
abs(880)
AAE = (A0 (1)
880

where 470 and 880 nm are the wavelengths and b,ps(470) and baps(sso)
are the absorption coefficients at 470 and 880 nm, respectively.
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2.4. Statistical analysis and special representation

In order to understand the behavior of the BC concentration and de-
termine its contributing sources, an analysis of descriptive statistics by
the sampling type (mobile and fixed) and K-means cluster analysis of
the ambient sampling were performed. In the case of ambient monitor-
ing, according to the similarity of information they provide, the AAEs
were grouped into three groups: AAE corresponding to the vehicular
traffic, biomass burning, and emissions from mixed sources (a mixture
of the two sources indicated above). The analyses were performed
using the IBM SPSS statistical software package (IBM SPSS Statistics ver-
sion 22.0).

For representing the spatial distribution of BC concentration, results
obtained in each sampling campaign were smoothed and converted
into point vectors (shapefile) using the ArcGIS version 10.6 software.
Subsequently, they were interpolated by the inverse distance weighting
(IDW) method for each sampling campaign.

3. Results and discussions

3.1. Comparison of the results obtained from the AE33and MA200
instruments

AE33 has been widely used to determine not only BC concentrations,
but also its your contribution to biomass burning and fossil fuel combus-
tion sources, as an alternative to the methods based on chemical analy-
sis of filter simples (Dumka et al., 2013; Becerril-Valle et al., 2017;
Mousavi et al., 2019). Its usefulness the contribution of BC sources has
been validated when compared with measurements of radiocarbon
and levoglucosan source apportionment (Martinsson et al., 2017;
Zotter et al.,, 2017), with Multiangle Absorption Photometer (MAAP)
(Drinovec et al., 2015; Saturno et al., 2017) and even with previous ver-
sions of aethalometers obtaining a good relationship between them
(Laing et al., 2020).

On the other hand, the microaethalometer has greater use in the
spatial distribution of BC in urban areas (Hankey and Marshall, 2015),
the evaluation of the personal exposure of BC (Maduefio et al., 2019;
Merritt et al,, 2019) and recently the identification of biomass burning
contributions using a MA200 due to supports to multiwavelengths
setup (Stampfer et al., 2020).

The microathalometers are optical portable devices that link the at-
tenuation rate (AATN) of a beam of light that passes through a filter spot
to the concentration of black carbon. However, a comparison between
the MA200 and AE51 was found to be non-linear due to some artefacts,
the most important of which are the so-called shadowing effect linked
with the increasing filter load and the multiple scattering of the filter fi-
bers (Weingartner et al., 2003; Boniardi et al., 2019). The shadowing ef-
fect it is automatically corrected by the Dualspot© technology. This
technology was available at MA200 and AE33.

In order to ensure the quality of the measurements, the BC concen-
trations obtained using the MA200 microaethalometer and the AE33
aethalometer were compared via the time series evaluation and linear
regression (Fig. 2). As can be observed from the figure, in general, the re-
sults show good linear regression (Fig. 2b) and indicate similar behavior
in the concentration-time series (Fig. 2a), yielding a linear regression
coefficient of 0.9721 between the two measurements and an adjusted
R? = 0.933. Thus, the results obtained from the two instruments can
be related to BCagz3 = 0.9721 x BCya200. An average difference of 9%
in the concentrations between the two instruments is relatively small
for the BC measurements since each instrument uses different absorp-
tion cross-sections, which, in turn, affects the conversion of light atten-
uation to BC mass concentrations.

Optical attenuation values measured by the aethalometer convert
the BC mass concentration using the mass absorption cross-section
(MAC) (Drinovec et al., 2015). MACs vary from one aethalometer
model to another. For example, for calculating the BC concentration in
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Fig. 2. (a) BC concentrations measured by the AE33 aethalometer (in red) and MA200
micro-aethalometer (in black), and (b) a plot of dispersion between the readings of the
two instruments in ng/m>.

the infrared wavelength region in the MA200, a MAC of 10.120 m?%/g is
used, while, for AE33, a MAC of 7.77 m?/g is used (the MACs were pro-
vided by the manufacturer). An adjusted R? linear coefficient of 0.933
indicates a good relationship between the measured concentrations ob-
tained by the two aethalometers.

The relative deviation between the two averaged concentrations of
the instruments during the study period indicates that the
microaethalometer underestimates the concentrations of BC at the
880 nm wavelength by 9.4%. This can be considered to be a relatively
good result, since in the previous studies, such as those of Martins
et al. (1998), Slowik et al. (2007) and Ajtai et al. (2011) a performance
comparison between different aethalometers have shown differences
of up to 40% for the measured concentrations.

3.2. Determination of AAEs for the local sources

Considering that the different chemical composition of fuels and
vegetation around the world generate different BC emissions, the
AAEs for diesel emissions (AAEg) and biomass burning (AAEy;) in the
study area were determined. These coefficients were determined
under relatively controlled conditions, as mentioned previously in
Section 2.3, with the portable microaethalometer (MA200) and the
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results are presented in Table 1. Values for the biomass burning mea-
surements show that AAE,,, varies over a wide range, with an average
of 1.88 & 0.49, which is close to 2, as expected. From the measurements
on emissions from fossil fuels, AAEg values are close to 1, as expected,
with an average of 0.97 4 0.18. Harrison et al. (2013) reported similar
results, with AAEg ranging between 0.8 and 1.1 and AAE,;, between
1.8 and 2.2. The higher variability in AAEy, value is associated with fac-
tors such as the type of wood used, water content, and the phase of
burning (i.e., flaming or smoldering). In addition, significant errors
could be due to the absorption of finer aerosols at smaller wavelengths
(Qiu et al,, 2019).

In several studies, the values of AAE¢ obtained are mostly close to 1,
as can be observed from Table 1. The variability in the AAEg values has
been related to be due to factors such as the shape of the BC particle
in the atmosphere, mixing state, aging, and coating. After emission,
the AAE of the BC particles with compact structures can be coated by
co-emitted organic compounds that may decrease the AAE signifi-
cantly, since the particle size increases that leads to a reduction of
AAE from 1.05 for fresh particles to 0.90 for aged aerosols (Liu et al.,
2018a).

As can be seen from Table 1, the AAEg values found in this study are
similar to those reported by Fuller et al. (2014) and Becerril-Valle et al.
(2017), lower than those reported by Titos et al. (2017) and higher than
the values reported by Zotter et al. (2017). The value obtained for AAE,;,
(1.88) is close to the AAE found for residential coal combustion for home
heating in Beijing, China (1.87 4 0.64) (Liu et al,, 2018Db). It is larger than
the values obtained in a smog chamber for fresh and photochemically
aged emissions of different types of wood (1.63 + 0.32) (Saleh et al.,
2013) and also for other measurements (Becerril-Valle et al., 2017;
Zotter et al,, 2017).

Although the AAE values presented in this section provide particular
data for a specific source (fossil fuel and biomass burning) in a complex
urban environment, this condition of contribution from a single BC
source is, in general not observed, but a mixture of variable contribu-
tions of fossil fuel and biomass burning emissions.

3.3. Spatial variability of BC concentration

Results obtained from the data analysis of the mobile sampling car-
ried out in this study, corresponding to the BC concentration measured
at the infrared wavelength (880 nm) and a MAC of 10.12 m?/g, have
been presented in Table 2. The average value of BC concentration and
its standard deviation obtained from all BC samples is found to be a
high value of 16.1 £ 16.5 ug/m?>. It is important to mention here that
the exposure of the population that spends a significant amount of
time in public transportation is related to this high BC value. As ex-
pected, and will also be discussed in the following paragraphs, the
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variability of BC concentration is due to various spatial factors such as
traffic density, terrain topology, as well as the proximity of emission
sources (Van Poppel et al., 2013; Li et al., 2015).

The spatial distribution of BC concentration from all the measure-
ments recorded during the study period is shown in Fig. 3a. The differ-
ent colors represent a specific average concentration for the region.
High concentrations of BC (>20 pug/m?) along the route were recorded
in the southern part of the city, downwind of the urban center. This
area is characterized by a larger number of traffic intersections and
speed detection cameras in comparison to the north of the city. This pro-
vides points with notable vehicular congestion and low vehicle speed
that led to higher levels of BC than in the other parts of the study area.
On the other hand, lower levels of BC were identified in the north of
the city, which has an average vehicle speed of 80 km/h and thus is a
fast-moving route with little traffic. This facilitates vehicle distancing
and ease of dispersion of the emissions. The speed limit in the southern
part of the city is much lower at 30 km/h, which increases BC emission
and concentration.

The observations described above are a general feature found from
other studies as well Ham et al. (2017) have observed that intersections
are the main contributing factor to the high concentration of BC, since
vehicle congestion accompanied by the stop and go effect of vehicles
can result in higher levels of incomplete combustion. Similarly, high-
ways and main roads were observed to have a high concentration of
BC due to traffic congestion in yet another study (Krecl et al., 2014). In
addition, a higher BC concentration is usually present near the traffic in-
tersections as compared to a street curb, a street canyon or an urban
background, as has been already shown by Goel and Kumar (2014).

The proportion of heavy diesel vehicles and weather variables cer-
tainly influences the BC concentration. In Barranquilla, the vehicle
fleet in 2018 consisted of 10% of diesel-fueled vehicles. However, a
high value of 35% of the total fuel was sold during the same year,
which despite being a small proportion of the vehicle fleet, significantly
favors a higher BC concentration (Targino et al., 2016). Jezek et al.
(2015), in their study on emission factors, concluded that only 25% of
diesel-fueled vehicles contributed about 63% to the BC emissions. On
the other hand, meteorological variables measured on the roads have
been observed to show little influence on mobile BC concentration mea-
surements, which are mostly affected by the continually changing traffic
environment and near-surface weather conditions (Dons et al., 2012).

In order to understand the pattern of BC emission in the study area,
the spatial distribution was separated into two datasets, working days
(Fig. 3b) and non-working days (Fig. 3¢) and average BC concentration
values of 17.8 + 17.3 pg/m> and 7.10 =+ 5.49 pg/m? respectively, were
obtained for the two sets. Both figures highlight the effects of vehicular
traffic, showing a 2.5 times higher concentration of BC on working days
as compared to the non-working days.

Table 1

Comparison of AAEg and AAE,,;, obtained in this study with those from different studies.
AEEg AAEy;, Wavelengths used Reference
0.97 1.88 470 and 880 nm This study
1.05 fresh BC N/R N/R Liu et al., 2018b
0.90 1.75 470 and 880 nm Zotter et al. (2017)
1.1 2.0 370 and 970 nm Titos et al. (2017)
0.97-1.12 1.63-1.74 470 and 950 nm Becerril-Valle et al. (2017)
1.0 1.8 407 and 850 nm Massabo et al. (2015))
N/A 25 370 and 950 nm Martinsson et al. (2015)
0.96 NR 370 and 880 nm Fuller et al. (2014)
0.8-1.1 1.8-2.2 370 and 880 nm Harrison et al. (2013)
N/R 1.38 for fresh oak 370 and 950 nm Saleh et al. (2013)

1.48 for the fresh fewin pine
2.15 for fresh blueberry

1.1 1.86

1.0 2.5

470 and 950 nm
UV-1R

Sandradewi et al. (2008)
Kirchstetter et al. (2004)

Note: N/R = No report.
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Table 2

Descriptive statistics for BC concentrations and meteorological conditions.
Parameters Mobile monitoring Ambient

Mean Standard deviation Min Max Mean Standard deviation Min Max

BC (ng/m?) 16.1 16.5 0.66 140.4 1.04 1.03 0.16 10.27
AAE 091 0.15 0.48 1.40 122 0.12 0.92 2.33
Air temperature (°C) 29.34 1.23 26.6 314 28.50 1.47 2493 32.82
Relative humidity (%) 77.85 4.24 69.0 86.0 85.22 6.33 63.83 96.00
Wind speed (m/s) 4.28 1.77 0.4 9.8 243 1.78 0.00 7.43
Wind direction (°) 86 60 23 293 94 45 11 291
N° of samples 232 1393

On comparison of our results with other investigations, it was ob-
served that in Bogota, Colombia, BC concentration was reported to
have an average value of 33.8 ug/m> during the working days and
19.8 ug/m> during the weekends (Franco et al., 2016), while, in Sdo
Paulo, Brazil, the BC concentration was between 8.5 and 10 times higher
on working days as compared to non-working days (Targino et al.,
2018). The BC concentration in both cases is attributable to the different
vehicular traffic patterns and the configuration of roads (cycle paths). In
Sdo Paulo, for example, the vehicle fleet is 7.8 million, corresponding to
83.5% cars, 13.4% motorcycles, 1.1% buses, and 2.0% trucks. The study
area evaluated by Targino et al. (2018), was influenced by a high num-
ber of motor vehicles (5136 vehicles/h), of which 4.9% were heavy-duty
diesel vehicles. In Bogot4, vehicle flow in the study sections located
along the main roads was between 2713 and 12,838 vehicles/h
(Franco et al., 2016).

The AAE results for the spatial distribution in this study indicate that
it remains quite constant with an average value of 0.90 4 0.15 through-
out the experiments. This coefficient is similar to AAE¢ reported in the
source measurements having an average value of 0.97 + 0.18. This con-
firms that traffic is the main source of BC in the mobile monitoring
study. The AAE evaluation was done to estimate the possible contribu-
tions from biomass burning sources, since some industries located
along with the route use wood burning in their boilers. However, this
influence was found to be insignificant in this study.

The comparison of the BC concentration values measured in this
study with those obtained from other studies is given in Table 3. Al-
though the use of mobile platforms, measuring equipment, and study
objectives are different between the investigations, all the studies pro-
vide the key information on the use of mobile monitoring in urban en-
vironments. From a comparison of the results of this study with those
obtained in other cities, it is seen that the BC levels measured in this
study in Barranquilla were higher than those found in Shanghai (Li
et al, 2015; Lei et al., 2017; Liu et al., 2019a; Liu et al., 2019b), Brisbane
(Williams and Knibbs, 2016), Londrina (Targino et al., 2016), Minneap-
olis (Hankey and Marshall, 2015), Stockholm (Krecl et al., 2014),
Beckley (Jarjour et al., 2013), Helsinki, Rotterdam, and Thessaloniki
(Okokon et al., 2017) and lower than those reported in Barcelona (de
Nazelle et al., 2012), and Bogota (Franco et al., 2016). It is important
to emphasize that Barranquilla is a much smaller urban area than
most of the cities listed in Table 3. The old age of the urban bus fleet
and the lack of a vehicle inspection program certainly contributes to
the significantly higher values of BC concentration measured in
Barranquilla.

3.4. Measurements of ambient BC concentration

A time series of the daily mean BC concentrations measured at the
infrared wavelength (880 nm) and AAE values obtained from them dur-
ing the study period for the evaluation of ambient BC is shown in Fig. 4.
Hourly BC levels up to 10.3 and 9.26 pg/m> were observed and with the
corresponding AAEs of 1.06 and 1.12, respectively. In this way, as ex-
pected for the urban areas, the highest concentration was associated
with vehicular traffic emissions. On the other hand, several events

with higher AAEs were observed (on 6th, 18th, and 20th May and
15th, 16th, 26th, and 30th June) and were associated with biomass
burning emissions around the study area. The highest AAE values
were between 1.44 and 2.33. During these days, as confirmed by remote
sensing tools, a series of biomass burning plumes were recorded in the
surroundings of the city of Barranquilla due to the mangrove burns
made in the Via Isla Salamanca Natural Park.

Variation of the burning points is mainly associated with climatic
conditions and the intensity of the activities that generate biomass
burning. Therefore, their contribution during the study period is not
constant. In dry periods there is a greater number of burning points,
which are associated with a greater emission of BC from this source.

The diel variability of BC concentration and AAE are presented in
Fig. 5a and b, respectively. Three peaks corresponding to higher BC con-
centration are evident: in the morning (06:00-09:00 h) having a con-
centration of 2.14 ug/m>; in the afternoon, around 14:00 having a
concentration of 1.07 ug/m> and during the night (18:00-20:00 h) hav-
ing a maximum value of 1.09 pg/m?>. On the other hand, the diel variabil-
ity of AAE, which relates the BC concentration with vehicular traffic
emissions, coinciding, in turn, with the hours of the highest vehicular
traffic, is seen to have constant values <1.20 in the same hours. In addi-
tion, the location of the sampling site, downwind of a road having high
vehicular traffic, is a determining factor in this pattern of BC concentra-
tion (Taheri et al.,, 2019).

The daytime variations of BC concentration during the working days
and non-working days show a trend similar to BC concentration ob-
tained from measurements throughout the days and nights and on
both working as well as non-working days (all data), with pronounced
peaks seen during the morning (6:00-9:00 h) and at night
(18:00-20:00 h). The concentration of BC recorded on working days
correspond to 1.16 & 0.48 pg/m> while that recorded on non-working
days correspond to 0.78 + 0.33 pg/m>. Thus, the BC concentration on
working days is 1.5 times higher as compared to the non-working days.

In this study, the behavior of BC concentration coincides with the
profiles of an urban center, due to the contribution of vehicular traffic
and the proximity of the sampling site to the main roads. Similar pat-
terns of BC concentration were found in the suburban and urban areas
in the United Kingdom (Singh et al., 2018), in Nanjing, China (Xiao
et al., 2020), and Madurai, India (Bhaskar et al., 2018) and are generally
attributed to the atmospheric boundary layer height, weather condi-
tions, and local anthropogenic emissions (Ribeiro et al., 2010, 2013;
Oliveira et al., 2012, 2014, 2017; Quispe et al., 2012; Ehrenbring et al.,
2019).

In order to observe the pattern of BC concentration according to its
sources, three categories were identified and classified according to a
K-means cluster analysis, using the AAE values as a grouping criterion.
The first cluster, related to the BC resulting from fossil fuel emissions
(Fig. 5b and Table 4), has AAE in the range of 0.92 to 1.23 and a mean
BC concentration of 1.18 =+ 1.15 pg/m>. The second cluster, related to
the biomass burning (Fig. 5b and Table 4), has AAE values between
1.44 and 2.33, with an average BC concentration of 0.81 + 1.56 pg/m?>,
slightly lower than the previous one. Finally, a category composed of a
mixture of the two sources (fossil fuel emissions and biomass burning)
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Fig. 3. Spatial distribution of aggregated median BC concentrations for (a) all sampling sessions, (b) working days with n = 11 routes, and (c) non-working days with n = 2 routes.
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Table 3
Comparisons of BC concentrations in urban areas, obtained for mobile monitoring, from different studies.
City Study year BC + SD (pg/m?) Reference
Barranquilla, Colombia 2018 16.1 &+ 16.54 This study
Sdo Paulo, Brazil 2017 8.5 + 8.4 Weekday (B) Targino et al. (2018)
5.2 4+ 13.9 Weekday
Macau, China 2016 4.0 £ 2.6 (morning) Liu et al. (2019a)
3.1 £+ 1.9 (afternoon)
Shanghai, China 2016 10.8 & 3.5 (C) Liu et al. (2019b)
Shanghai, China 2015 11.8 +£ 9.8 (C) Lei et al. (2017)
Brisbane, Australia 2015 44 + 7.3 (OWC) Williams and Knibbs (2016)
Londrina, Brazil 2015 6.35 + 20.0 (morning) Targino et al. (2016)
5.10 + 14.7 (afternoon) (B)
Shanghai, China 2014 7.28 + 1.63 (Bs) Liet al. (2015)
9.43 + 1.70 (S)
8.62 + 2.57 (T)
Bogota, Colombia 2013 25.6 + 39.2 (B) Franco et al. (2016)
Minneapolis, USA 2012 2.5 4+ 1.4 (morning) Hankey and Marshall (2015)
0.7 &+ 1.6 (afternoon)
(B)
Stockholm, Sweden 2011 24 4+ 3.6 (T) Krecl et al., 2014
Berkeley, USA 2011 1.76 £ 2.58 low traffic (B) Jarjour et al. (2013)
2.06 + 3.23 high traffic (B)
Helsinki (urban) 2011 7.8 + 4.3 (OWC) Okokon et al. (2017)
Rotterdam (urban) 2011 6.4 + 3.3 (OWC)
Thessaloniki (urban) 2011 10.9 4+ 9.9 (OWC)
Barcelona, Spain 2009 16.7 (C) de Nazelle et al. (2012)

Note: Bs (bus), S (subway), T (Taxi), C (cars), OWC (open windows car), B (bicycle).

BC (ug/m®)

0.0 1.0

19/05/03

19/05/06 A
19/05/10 A
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19/05/21
19/05/254
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19/06/01+
19/06/05 1
19/06/09+
19/06/124
19/06/16 4
19/06/20 4
19/06/23 4
19/06/27 4

Fig. 4. Daily average time series for ambient BC concentrations and AAE during the study
period.

(Fig. 5b and Table 4), which has been called mixed sources, has AAE in
the range of 1.23 to 1.44 and an average BC concentration of 0.78 +
1.29 ug/m3. Therefore, the concentration of BC recorded for the ambient
monitoring corresponds to 66% of fossil fuel emissions, 6% of burning
biomass, and 28% of mixed sources.

The results indicate that AAEg and AAEixeq have a limited magni-
tude of 1.15 + 0.05 and 1.29 + 0.05, respectively, while AAE;, has a
larger magnitude of 1.56 4 0.14. Becerril-Valle et al. (2017) observed
similar AAE profiles in Madrid, Spain, with a relatively flat trend in an
urban background (1.05 4 0.05 in spring and 1.07 4 0.06 in autumn)
and in the urban center (1.16 & 0.08 in spring and 1.07 £ 0.07 in au-
tumn), while in Paris, France, AAE values of 1.02 4+ 0.04 (summer) dur-
ing peak morning traffic and 1.08 + 0.04 during the evening/night
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periods were reported in another study (Favez et al., 2009). In both
cases, the seasons are characterized by the predominance of vehicular
traffic as a significant source.

The behavior of BC concentration for the biomass burning category
(Fig. 5a) is strongly marked by peak values in the morning and at
night, although it is in an urban area with the influence of vehicular traf-
fic. The biomass burning events recorded during the study originate
from burning activities coming from the northeast and east of the city.
A natural mangrove reserve is located in this area, in which illegal bio-
mass burning occurs to obtain agricultural areas and for charcoal
production.

The continuous measurements of ambient BC concentration in this
study show an average value of 1.04 & 1.03 pg/m?> (Table 2). According
to measurements carried out in other cities, the results are lower than
those reported in urban areas such as Nanjing, China (1.328 +
1.12 pg/m3) (Jing et al., 2019), Istanbul, Turkey (13 + 4 pg/m?)
(Ozdemir et al., 2014), Milan, Italy (1.92 + 0.35 pg/m>) (Mousavi
et al,, 2019), Trivandrum, Kerala (3.51 & 1.64 pg/m>) (Rajeevan et al,,
2019), Los Angeles, California (2.89 + 0.84 pg/m>) (Shirmohammadi
et al,, 2017), and Rio de Janeiro, Brazil (1.6 + 1-3.3 & 1.7 pg/m°)
(Godoy et al., 2009).

Although these are only the initial results of a continuous monitoring
carried out in the city of Barranquilla, it is evident that the rapid disper-
sion of BC occurs as a result of emissions from mobile sources (average
value of 16.17 pg/m?) until reaching the fixed monitoring point (aver-
age value of 1.04 ug/m?). The study area is located in a coastal area, char-
acterized by high wind speeds influenced by sea and land breezes, who
play a significant role favoring contaminant dispersion processes and
consequently improving the air quality. These results contrast with
those reported by Aruna et al. (2013) and Kumar et al. (2020) where
stations located in the coastal region of southern India report low con-
centrations of BC compared to urban areas and semi-urban.

There are some limiting aspects in BC mobile monitoring that can in-
fluence the representativeness of the results, such as the collection of
mobile data carried out in limited periods of time, the number of exper-
iments, the different mobile platforms and the routes traced. However,
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Fig. 5. (a) Daily variation of black carbon concentration (ug/m?), and (b) AAE in the
categories general, fossil fuel, mixed and biomass burning.

Table 4
Source apportionment of BC.

Fossil fuel Mixed Biomass burning

BC (ug/m®) AAE BC (ug/m*®) AAE BC (ug/m®) AAE
Mean 1.18 115 0.78 1.29 081 1.56
Standard deviation 1.16 0.05 0.65 0.05 0.59 0.14
Min 0.16 092 0.17 123 024 1.44
Max 10.27 123 538 144 328 233
N° of samples 911 396 78

this study allows understanding of the BC formation and spatial distri-
bution processes.

4. Conclusions

BC concentration was evaluated through ambient monitoring and
mobile measurements in an urban area of the Colombian Caribbean.
The average concentration of ambient BC was found to be 1.04 +
1.03 pg/m>. As described in the results, the concentration implied a
strong association with local emission sources. The hourly profiles of
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BC and AAE indicate that the emissions originate from fossil fuels and
consequently, are associated with vehicular traffic, the predominant
source of BC. This source was observed to be the primary source in
66% of the evaluated period, which is a characteristic of urban areas.
However, during the same period, the influence of 6% of data frequency
was observed to be due to biomass burning, registered mainly in the
park via Isla Salamanca. The remaining 28% of the data was associated
with mixed sources, consisting of the contribution of both vehicular
traffic and biomass burning.

Results found in the ambient BC and AAE associate biomass burning
emissions around the study area. Therefore, extending the sampling pe-
riod will allow studying the temporal variability of the pollutant, as well
as the optical properties and its sources of BC emission. Additionally, the
use of digital platforms is suggested to identify the sources of fires that
allow evidence of the impact of forest burns in the region in the com-
pany of air mass trajectory models.

The spatial variability of BC concentration was associated with local
traffic, showing an average concentration of 16.1 + 16.5 pg/m>.
Hotspots with high BC concentration were registered near the urban
center, in areas with high vehicular congestion produced by different
road infrastructures and transport such as road intersections, speed re-
ducers, and speed limit control of the road.

In this study, it is shown that as compared to the AE33 aethalometer,
validated by the United States Environmental Protection Agency (US
EPA), the MA200 portable micro-aethalometer can also be used to de-
termine the BC concentration. This instrument has been used to deter-
mine not only BC concentrations, but also its your contribution to
biomass burning and fossil fuel combustion sources from the AAE calcu-
lation. Its low price and ease of use make it an attractive instrument
for BC.

Finally, as a suggestion, the use of both methods (mobile and fixed)
for BC measurement in complex urban centers is recommended so that
the spatial-temporal variations of BC concentration can be highlighted.
These results will contribute to the construction of policies and strate-
gies that help to reduce BC concentration in the city and consequently
its effects on population health and climate change.

Supplementary data to this article can be found online at https://doi.
0rg/10.1016/j.gs£.2021.101149.
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