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Abstract- Active attitude control systems using a novel six layers electromagnetic embedded printed Air-Coils 

for small satellites with various dimensions are presented in this paper. The proposed designs are optimized in 

terms of available area, generated torque, power dissipation and generated magnetic dipole moment. The 

designed printed Air-Coils are the best choice for small satellites attitude stabilization in terms of their 

modularity, reconfigurability, lower cost, lesser space occupation and low mass. The printed Air-Coil is 

designed and analyzed for three small satellites with dimensions 10 𝒄𝒎𝟑, 13𝒄𝒎𝟑  and 16𝒄𝒎𝟑. The design is 

implemented with Commercial off the shelf (COTS) microdevices which are inexpensive, reliable and easily 

accessible. The printed Air-Coil is integrated in internal layers of printed circuit board (PCB) which does not 

require additional space on the spacecraft. The proposed Air-Coil with additional configurability features (2×3, 

3×2 hybrid) provide more flexibility to the design aspects by changing the arrangement through the onboard 

processor according to mission requirements. Electrothermal analysis of the Air-Coil module is done to keep 

the thermals in check and validate its feasibility. Time varying rotational operation of nanosatellites is 

performed to test the rotation time for spin stabilized satellites. Significant performance parameters like 

generated magnetic moment, resultant torque and power dissipation are evaluated and compared with the 

already commercial state of the art. 

I. Introduction 

The exploration and exploitation of space has been a very expensive but invaluable endeavor that has given us a  
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vast understanding of our planet, distant worlds and wonders of universe. So far, 2062 active artificial satellites orbit 

the Earth and human beings takes the everyday benefits of space for granted, whether it be for weather forecasting, 

man-made disasters or navigation & communication [1],[2]. Modern nanosatellites in many cases now compete and 

in some aspects transcends the capabilities of conventional large satellites but at a fraction of cost [3]. The revolution 

in nanoelectronics production techniques developed for the consumer mass market implies that the testing and 

performance certainty can be achieved at subsystem level instead of using individual components. Thus, commercial 

off the shelf (COTS) microdevices for the development of small satellites are inexpensive, reliable and easily available 

[4]–[7]. The small size, mass, cost, low power operation, scalability and modularity features make them a suitable 

choice for universities and small & medium enterprises (SMEs).  Academic institutions are working on various 

projects of small satellites and therefore provide a testbed to innovation (e.g. Hardware and software) that can be 

further implemented in large and expensive missions [8]–[14]. Satellites classification on the basis of their design 

features, weights and sizes is given in [15], [16] 

Making the spacecraft smaller poses a great challenge and requires engineering ingenuity to house large number 

of crucial subsystems such as power management, attitude control, telecommunication and payload etc. [17]. Attitude 

control system (ACS) is the most critical subsystem of any spacecraft and is used for the orientation and stabilization 

of directional components for small satellites that needs to be directed and positioned at specific inertial frame of axis 

e.g. solar panel towards the sun and antennas towards the ground station [18]–[21]. The ACS should let the payload 

track the specific objects on Earth or maneuver its optical instruments towards astronomical objects. Attitude control 

system is used for the stabilization and  maneuverability while the attitude determination system estimates or senses 

the attitude of the vehicle e.g. magnetometer, sun tracker and gyroscope [22], [23]. Stabilization and maneuverability 

of satellites can be categorized into two types, passive stabilization and active stabilization.  

Passive stabilization methods depend on gravity gradients, solar radiation pressure, permanent magnets, 

aerodynamics, and Earth's magnetic field. Gravity gradient passive stabilization utilizes a boom that interacts with the 

gravitational force to stabilize the vehicle. The boom lets the center of gravity push towards itself due to which torque 

is created, one face of the satellite moves downwards and boom is aligned in the direction of the Earth. In orbital 

transfer, the gravity gradient based nanosatellite under a continual thrust show complex dynamic behavior. 

Magnetorquer is used in conjunction with gravity gradient which provides a control torque that provides stabilization 

mainly in two axes due to which auxiliary compensators are used. Thus, making the overall system complicated [24]. 
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Advantages of this design are simplicity, long lifetime, and consumes no power. Recently, permanent magnet based 

passive attitude stabilization has gained the interest of researchers in the development of small satellites for Low Earth 

Orbit (LEO) missions [25]–[27]. In this system passive magnets with a set of hysteresis rods are used. The system 

allows to maneuver and follow the vehicle in Earth’s local magnetic field vector. In [28] the authors propose various 

approaches for enhancement of versatility, efficiency, and robustness of hall type thrusters using permanent magnets 

over traditional electromagnetic coils. However, design and testing of hall thrusters poses a considerable challenge 

that requires large and state of the art instruments and data acquisition systems [29], [30]. The techniques required to 

develop these systems pose considerable number of challenges to effectively utilize magnetic forces, low attitude 

accuracies and unavailability of forces [31]. 

For optimal pointing accuracy, active stabilization methods (magnetic rods, reaction wheels and spin control 

systems) are used for three axis maneuverability of spacecraft [32]–[35]. The motor-driven reaction wheel is one of 

the most widely used active stabilization component by regulating motor torque for the attitude control owing to its 

exceptional pointing accuracy [36]. Despite their high pointing accuracies [37], these momentum exchange systems 

may experience saturation limitations and static friction when they approach zero angular velocity [38]. Hence, 

reaction wheels require a secondary ACS for momentum unloading and desaturation of the reaction wheels system. 

So, they need magnetorquers energy efficient, reliable, and effective external torque for momentum desaturation 

purposes [39]–[42]. Active stabilization systems control precise vehicle orientation to practically any desired degree 

of accuracy. But these methods are expensive to implement as they require propellant or energy which leads to increase 

in weight, power and size constraints. 

This work proposes solution for light weight, energy efficient active ACS using a novel six-layer printed Air-Coil 

to optimize the design in terms of available area, generated torque and dipole moment. The principle of operation is 

Fig. 1 Block level representation of ADS and ACS communication with onboard computer system (OBC) 
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the generation of magnetic field from coil as the current flows through it resulting in the interaction of Earth’s magnetic 

field and required torque is provided according to motor action principle. In [43] the authors discuss significant 

advantages of reconfigurable design parameters over the already available commercial magnetorquers[44]–[46]. The 

block diagram of printed Air-Coil unit is depicted in Fig. 1.  

This work presents the optimized design for nanosatellites having dimensions of 10 𝑐𝑚ଷ, 13 𝑐𝑚ଷ, and 16 𝑐𝑚ଷ. 

The optimized reconfigurable printed design and performance parameters are compared with the commercial 

magnetorquers that require high expenditure. The printed Air-Coil generates heat inside the Air-Coil module. 

Therefore, thermal analysis is done to achieve thermal stability of the proposed system. 

The paper is organized according to the following structure. Section 1 describes the overview and control of 

spacecrafts with electromagnetic actuators. Section 2 explains the working principle, reconfigurability and module 

design of Air-Coils. Section 3 describes the rotational operation of nanosatellites. Section 4 analyzes thermal operation 

of Air-Coils in detail and section 5 concludes the comparison of various Air-Coils configurations with commercial 

state of the art systems. 

II. Embedded Printed Air-Coil 

A. Working Principle 

Printed Air-Coil can be implemented in any design configuration for small satellites but this work mainly focuses 

on satellites of specific dimensions. The designed printed Air-Coil unit is fully compliant with small-satellites having 

tile dimensions of 16×16 cm3, 13×13 cm3 and 10×10 cm3. Air-Coil is printed inside the PCB internal layers (2nd, 3rd, 

4th, 5th and 6th) which is almost weightless and require no extra space and expenditure. Printed Air-Coil operates on 

the principle of magnetic moment (𝐷ሬሬ⃗ ) generation as a result of current (𝐼) passing through the Air-Coil, which is given 

by Eq. (1) 

Fig. 2 Earth’s magnetic field interaction with printed Air-Coil’s magnetic moment 
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𝐷ሬሬ⃗ = 𝑁. 𝑆. 𝐼. 𝑛ሬ⃗                                                                             (1) 

Where 𝑁 is the number of turns of printed Air-Coil, 𝑆 is the area of single turn and 𝐼 is the current passing through it. 

For orientation control, Air-Coil uses the Earth magnetic field which varies with altitude and inclination angle. At an 

altitude of 800km and inclination angle of 89°, it varies between 0.15G and 0.45G [47]. When Earth’s magnetic field 

(𝐵ሬ⃗ ) interacts with this current carrying printed Air-Coil, a torque is generated which is given by the following equation;  

𝜏 =  |𝐷ሬሬሬሬ⃗ ||𝐵ሬ⃗ | sin 𝜃 𝑛ො                                                                       (2) 

B. Reconfigurable Design 

The main advantage of the designed printed Air-Coil is that one can reconfigure it according to mission 

requirements based on power consumption, torque, dipole moment, thermal stability and voltage & current. The design 

can be fully reacclimatized and made compatible with the specific spacecraft’s dimensions. This Air-Coil is  

Fig. 3 Printed Air-Coils connected through switches for configurability

Fig. 4 Required voltages for different arrangements of coils that provide constant current
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Table 1 MOSFET switches combination for different configuration of coils 

S. 
No. 

Air-Coil 
Configuration 

ON Switches OFF Switches 

1 Single Coil Q11. 
Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q12, 
Q14, Q15, Q16. 

2 Six coils in series Q6, Q7, Q8, Q9, Q10, Q16. Q1, Q2, Q3, Q4, Q5, Q11, Q12, Q13, Q14, Q15. 

3 Six coils in parallel 
Q1, Q2, Q3, Q4, Q5, Q11, Q12, Q13, 
Q14, Q15, Q16. 

Q6, Q7, Q8, Q9, Q10. 

2 
3×2 Hybrid 
Combination 

Q6, Q7, Q13, Q3, Q9, Q10, Q16. Q1, Q2, Q4, Q5, Q8, Q11, Q12, Q13, Q14, Q15. 

4 
2×3 Hybrid 
Combination 

Q6, Q12, Q2, Q8, Q14, Q4, Q10, Q16. 
Q1, Q2, Q3, Q4, Q5, Q7, Q8, Q9, Q11, Q13, Q14, 
Q15. 

 

subdivided into six internal layers of the PCB with the help of transistor switches (controllable through a signal from 

microprocessor) or 0 Ohm resistors (mounted on PCB) which can be attached or detached. Fig. 3 shows the subcoils 

connected through switches for configurability. Table 1 shows the switching configuration for selecting the desired 

coil configuration. By readjusting the arrangement of these coils, it can be used in series, parallel or in hybrid (series-

parallel) combination. In this paper the configurability aspect of the Air-Coil is tested and implemented in unit 

schematic design. The flexible reconfigurable design allows us to adjust the power, temperature, dipole moment and 

torque requirements for a specific mission.  

Fig. 4 shows the printed Air-Coil possible combinations (single, n-series and m-parallel). In case of parallel 

configuration, to maintain a constant current (𝐼଴) through m-parallel connected coils, the applied voltage should be the 

same as that of single coil (𝑉଴). Likewise, for series configuration, the voltage is (n𝑉଴) to pass a fixed current (𝐼଴) 

through n-series connected Air-coils. For series-parallel hybrid topology, to maintain constant (Io), the required 

applied voltage is (n𝑉଴). The flexibility of this design is further explained in Air-Coil module section. 

C. Printed Air-Coil Module 

A fully modular, scalable, robust and diverse schematic of the designed Air Coil is shown in Fig. 5. The component 

selection has been done on the basis of low-cost COTS components which allows the testbed and experimental setup 

for private and academic institutions to indulge in small satellites research. The Air-Coil module consist of PIC 

microcontroller, current sensor, voltage sensor, voltage regulators, latch-up protection system, D-type connectors, 

Joint Test Action Group (JTAG), MOSFETs based reconfigurable circuit, differential line drivers and magnetic 

actuator for driving the coil.
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Fig. 5 Air-Coil driver schematic 
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The Air-Coil unit receive 5-18V input power from the power distribution bus of the spacecraft through D-type 

connector [48]. ‘DRV8848’ [49] dual H-bridge motor driver IC is used for the magnetic actuation of the printed Air- 

 Coil which controls the amount and direction of current flow as a function of applied voltage. The device fully 

supports under voltage-lockout (UVLO), short-circuit, overcurrent protection (OCP) and over temperature that makes 

it suitable for low earth orbit space conditions. An analog overcurrent protection limit circuit regulates current through 

each MOSFET by limiting gate drive. If this analog current limit remains for a duration longer than the overcurrent 

protection called deglitch time, the MOSFETS in the actuator are disabled and nFAULT is brought to logic level low. 

The device will remain disabled until the retry time occurs facilitating a very low quiescent current draw. The Air-coil 

is divided into six sub-coils and a reconfigurable circuit is introduced to the coil actuator ‘DRV8848’ IC as shown in 

Fig. 5 facilitating the nanosatellite with a fully modular and reconfigurable active attitude control electromagnetic 

printed Air-Coil. The MOSFET switches are controlled by ‘DRV8848’ dual H-bridge motor driver IC supervised by 

the tile ‘PIC24’ [50] microprocessor which communicates with the onboard computer (OBC) subsystem using 

differential line drivers though D-type connecter with its telemetries to configure coil arrangement (series, parallel or 

hybrid). In this way the nanosatellite is provided with the desired power, temperature, dipole moment and torque 

depending upon the power ratings of specific mission requirements.  

A unipolar, high-Side current measurement ‘INA168’ [51] IC is employed that monitors the current, feeding the 

data to the onboard computer through telemetries. A low-cost passive temperature and voltage sensor circuits are used 

to monitor the Air-Coil power consumption and temperature rise within the acceptable threshold.  

A watchdog ‘Max6373’ [52] co-processor is employed that supervise the central ‘PIC24’ microprocessor memory-

access based activity and signals a pulse to reset the system in case of malfunctioning [53], [54]. JTAG [55] test access 

port is mounted which allows for testing and debugging of the Air-Coil module circuitry sufficiently to ensure proper 

operation [56][57]. 

International Geomagnetic Reference Field (IGRF) is used for magnetic field modeling [33][58]. Method of 

montenbruck and Pfleger [59] is used for Sun tracking modeling. The controller issues commands based on torque for 

required orientation according to current attitude estimation [58], [60]. The closed loop feedback ensures to maintain 

the required attitude control by repeating the torque command until the desired orientation is achieved.  

CMOS based COTS components are susceptible to solar radiations causing latch-ups. A latch-up is an 

instantaneous momentary effect in which the components get short-circuited and high current passes through the 



9 

circuitry from power supply to ground that damages the system. This problem can be solved by incorporating bipolar 

devices in the system design because of its immunity to latch-up as they need high energy to trigger this event. But 

the processors are CMOS based so a latch-up protection circuit is designed and simulated according to [17] eliminating 

the radiation-induced latch-up in overall system [61].  

The Air-Coil module has a dual redundant CAN interface using differential line drivers with OBC subsystem of 

nanosatellite for all telemetries and telecommands through D-type connectors. It provides sufficient telemetries (on 

redundant CAN interface) to monitor the power consumption of coil driver and rest of co-processors. These differential 

line drivers are optimized for high input impedance and high hysteresis that increase noise immunity for precise device 

control and accurate bus transmission at switching speeds up to 32MHz facilitating ultra-low power consumption 

without sacrificing speed. Fig. 6 shows Air-Coil printed inside the internal layers of the PCB. 

III. Rotational Operation of Small Satellites 

A. Torque Generated Vs Current Drawn 

Torque exerted on the nanosatellites depends on the amount of current flow through different arrangement of coils 

as shown in schematic design. Air-Coil driver controls this current as a function of applied voltage. Torque generated 

is given by Eq. (2). For different nanosatellite dimensions, torque exerted vs current flowing in presence of 0.5G earth 

magnetic field through different arrangements of Air-Coil is shown in Fig. 7. Current vs torque analysis shows that 

Fig. 6 Air-Coil embedded inside the internal layers  
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torque generated remains constant for the same current in case of six coils in series (6×1) or single coil. Torque 

produced for different satellites increases linearly as the dimensions of the nanosatellite increases. 

B. Angular Rotation Vs Time 

To align the spin axis with the Earth's inertial reference frame and stabilize the satellite, a high spin rate control is 

required [62]–[64]. Torque exerted and moment of inertia (J) of the nanosatellite controls the angular speed (ω) of 

satellite. Specific torque is required for time interval (0 → T/2) to increase the satellite angular speed (ω) linearly for 

covering an angular distance (φ). If the nanosatellite angular speed needs to be stopped, an opposing torque of the 

same magnitude (−τ) and duration (T/2 → T) is applied. To stop the satellite at desired angular distance (φ) covered, 

torque should be controlled with respect to time. 

According to newton’s second law of rotational motion; 

𝜏 = 𝐽𝜔                                                                               (3) 
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The angular distance is given by the following equation (φ); 
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The time T required for the Air-Coil to revolve the satellite for required angular distance φ can be calculated from Eq. 
(6); 

𝑇 = ට
ଶ௃థ

ఛ
                                                                                (6) 

Eq. (6) shows that torque applied and time required to revolve or orient the satellite are inversely related. The 

analysis is done for range of current inputs. The value of J is 0.0059 kgmଶ, 0.0405 kgmଶ and 1.21 kgmଶ for satellites 

with dimensions of 10cmଷ, 13cmଷ & 16cmଷ respectively. Fig. 8 shows the torque generated and the respective time 
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to rotate the nanosatellite at an angle of 90° by exciting various arrangements of the coils. In case of single and six 

coils in series, generated torque is 16.31µNm, 19.2µNm & 22.5µNm that takes 33s, 30s & 28s to spin the satellites 

through an angle of 90° for three nanosatellites (10cmଷ, 13cmଷ & 16cmଷ) respectively. The torque generated by six 

coils in parallel is 98.42µNm, 110µNm & 133.4 µNm that takes 14s, 12s & 11s to rotate the satellites through an angle 

of 90° for three nanosatellites (10cmଷ, 13cmଷ & 16cmଷ) respectively. Similarly, for hybrid (2×3) combination, torque 

produced is 49.9µNm, 58.7µNm & 68.1µNm that needs 19s, 17s & 16s through an angle of 90˚ rotation for three 

nanosatellites (10cmଷ, 13cmଷ & 16cmଷ) respectively. Analysis shows that as the dimensions of satellites increases, 

the spinning rates subsequently increases. The maximum spinning rate is given by the parallel configuration but at the 

expense of high-power consumption and temperature rise. 

Fig. 7 Current vs Torque exerted for satellites with dimensions (a) 10×10cm3 (b) 13×13cm3 (c) 16×16cm3 

Fig. 8 Time required to rotate the satellites by an angle of 90° for satellites with dimensions (a) 10×10cm3 (b) 13×13cm3 (c) 
16×16cm3 
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IV. Electrothermal Analysis 

The Air-Coil module is integrated with the solar panel PCB. The PCB design with the embedded printed Air-Coil 

is shown in Fig 9(a). The key design parameters of printed Air-Coil for various nanosatellites dimensions are 

represented in Table 2. In space the heat transfer takes place through conduction and no heat is transferred through 

convection resulting in high temperature difference between the nanosatellite surface towards the sun and bottom 

towards dark [65]. This temperature difference results in trapped heat inside the PCB module and rise of overall 

temperature which is dependent on the thermal resistance of the module. Thermal resistance is dependent on the 

thermal resistivity of PCB material, Air-Coil trace width & spacing and components in the selection process. Thus, 

thermal resistances and temperature differences needs to be calculated and modelled to illustrate thermal 

characteristics of the PCB for allowing the designer choose components and materials with lower thermal values. In 

order to get thermal resistance of the proposed design, cross sectional area of the PCB is divided into different 

subsections with respect to the type of material. Each subsection has the corresponding thermal resistance associated. 

Thermal resistance is found by using Eq. (7) [66]. 

𝜃௧௛ =
௅

௞×ௌ
                                                                             (7) 

Where 𝜃 is the thermal resistance, L is the length, K denotes the thermal conductivity and S reflects the surface area 

perpendicular to heat flow.  

The undesired heat power (P) translated to the system depends on the solar panel conversion efficiency (η). Greater 

the value of η, more power will be transformed to useful electrical power and less will be delivered as undesirable 

heat to the subsystem components inside the satellite. The value of P is given by Eq. (8), where ‘α’ denote the 

absorption coefficient, Pd reflects the solar power density and ‘A’ depicts the solar panel area exposed to solar 

radiations.  

𝑃 = 𝛼. 𝑝ௗ . 𝐴 − 𝛼. 𝑝ௗ . 𝐴. 𝜂. = 𝑝ௗ . 𝐴. (1 − 𝜂). 𝛼                                                (8) 

If thermal resistance of solar panel PCB material is known, temperature difference ‘𝛥𝑇’ can be calculated from Eq. 
(9); 

𝛥𝑇 = 𝑃. 𝜃௧௛                                                                          (9) 

The Air-Coil PCB can be represented as a network of capacitors and resistors [67]. In transient thermal model, 

both the thermal capacitance and thermal resistance are considered and evaluated. In the steady state illustration, when 

the temperature and power reaches steady level, thermal capacitors are fully charged and can be neglected. Cross
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   Table 2 Design parameters of printed Air-Coil for single layer 

Parameters Values 
10𝑐𝑚ଷ 13𝑐𝑚ଷ 16𝑐𝑚ଷ 

Number of Turns, N 60 75 90 
Cross sectional Area of trace, 𝐴் 5.4 × 10ିଽmଶ 5.4 × 10ିଽmଶ 5.4 × 10ିଽmଶ 
Area occupied by single turn, 𝐴ଵ 0.0036mଶ 0.0056mଶ 0.0081mଶ 
Area occupied by single coil, 𝐴  0.21mଶ 0.42mଶ 0.72mଶ 
Average length of single turn, 𝐿ଵ 0.24 m 0.3 m 0.36 m 
Average length of Single Coil, 𝐿௔௩௚ 14.4 m 22.5 m 32.4 m 
Resistivity of copper trace, 𝜌 3×10ି଼ Ωm 3×10ି଼ Ωm  3×10ି଼ Ωm  
Single Coil Resistance, 𝑅ଵ  80 ±3 Ω 125 ±3 Ω 180 ±3 Ω 
Distance between two traces, 𝑇ௐ   0.2 0.2 0.2 

 
Table 3 Description of parameters used in Thermal model 

Parameters Description  

ϴCT Copper trace thermal resistance 

ϴCMG Qouptic glass thermal resistance 

ϴresin Resin thermal resistance 

ϴSC Solar cell thermal resistance 

ϴF_1 Layer-1 FR4 material thermal resistance 

ϴF_a_2-7 Thermal resistance of FR4 material in section ‘a’ of Layers 2, 3, 4,5,6 & 7  

ϴF_b_2-7 Thermal resistance of FR4 material in section ‘b’ of Layers 2, 3, 4,5,6 & 7 

ϴF_e_2-7 Thermal resistance of FR4 material in section ‘e’ of Layers 2, 3, 4,5,6 & 7 

ϴCu_b_2-7 Thermal resistance of copper material in section ‘b’ of Layers 2, 3, 4,5,6 & 7 

ϴCu_d_2-7 Thermal resistance of copper material in section ‘d’ of Layers 2, 3, 4,5,6 & 7 

ϴCG_8-9 Thermal resistance of copper ground material in Layers 8 & 9 

ϴF_10 Thermal resistance of FR4 material in Layer 10 

Fig. 9.  (a) Cross sectional view of Air-Coil PCB. (b) Thermal resistances network of Air-Coil PCB  
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sectional view of solar cells mounted on the top layer and Air-Coil driver on the bottom layer is shown in Fig 9(a). 

Solar cells are mounted on Layer-1 (top layer) composed of FR4 material with thermally conductive resin, while 

layers-2, 3, 4, 5, 6 and 7 have copper traces of Air-Coil inserted in FR4 material. Layers-8 and 9 have copper ground 

planes embedded in FR4 material while layer-10 (bottom layer) has FR4 material. Each layer has a thickness of 

0.25mm. Copper traces and ground planes have thickness of 18µm. Width of the copper traces is 0.25mm. The PCB 

is divided into subsections with respect to the type of material. Depending on the type of material each subsection has 

a corresponding thermal resistance. The thermal resistance value is dependent on the material type, length and width 

of parameters. Subscript notations are depicted in Table 3. 𝜃 represents the thermal resistance of the material used. F 

denotes FR4, Cu represent copper, the alphabet letters (a, b, c, d, e) denote the respective subsections, and numbers 

(1, 2, 3, 4) describe the respective layers. For example, 𝜃ிೌ షమ,య,ర,ఱ,ళ
 denote thermal resistance of FR4 material in 

subsection ‘a’ of layers 2, 3, 4, 5, 6 & 7. Table 3 gives description of the parameters used in illustrating the thermal 

resistance. Cross sectional view of Air-Coil module from Fig. 9(a) is represented as network of thermal resistances in 

Fig. 9(b). Thermal resistance network of the Air-Coil PCB is mathematically represented in Eq. (10). Thermal 

resistance of the Air-Coil module can be calculated by putting length, width and conductivity values of PCB different 

sections into Eq. (7). Thermal resistance of the Air-Coil module for 10cmଷ, 13cmଷ & 16cmଷ satellites are 0.006 K/W, 

0.005 K/W and 0.0039K/W respectively. For solar radiation intensity level of 1365W/m2 at the solar panel module, 

the respective temperature differences are 8.64K, 7.02K and 5.4K for 10cmଷ, 13cmଷ & 16cmଷ satellites respectively.   

The temperature differences of the respective Air-Coil PCBs between the top and bottom surface of the Air-Coil 

module show a subsequent decrease as the dimensions of satellites increase. 

 

𝜃௧௛ =
𝜃௖௧

4
 || ቆ

𝜃஼ெீ + 2𝜃௥௘௦௜௡ାఏೄ಴

2
ቇ +  𝜃ிభ

+ [𝜃ிೌ మ,య,ర,ఱ,ల,ళ
||(𝜃ி್మ,య,ర,ఱ,ల,ళ

+ 𝜃஼௨మ,య,ర,ఱ,ల,ళ
) 

||𝜃ி೎మ,య,ర,ఱ,ల,ళ
 ||(𝜃ி೏మ,య,ర,ఱ,ల,ళ

+ 𝜃஼௨మ,య,ర,ఱ,ల,ళ
) || 𝜃ி௘మ,య,ర,ఱ,ల,ళ

]+𝜃஼ீఴ,వ
+𝜃ிభబ

                           (11) 

V. Comparison of Air-Coil Configurations 

Comparative analyses for satellites with dimensions 10𝑐𝑚ଷ, 13𝑐𝑚ଷ and 16𝑐𝑚ଷ have been done on the basis of 

thermal stability, magnetic moment generated, power dissipation and resultant torque as shown in Fig. 11-13. Power 

consumption and thermals are analyzed by measuring the amount of current that flows through the Air-Coils. Current 

flowing through the printed Air-Coils is responsible for magnetic moment generation which in turn gives rise to the 
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temperature of the module. Thus, temperature and magnetic moment are coherent parameters. Greater magnetic 

moment can be acquired but at the cost of higher solar panel module temperature. 

This rise in temperature should be investigated to ensure thermal balance of the system within allowable limits to 

avoid thermal failures that may compromise system’s safety. In case of thermal equilibrium, the total dissipative power 

from the solar panel unit to the surroundings (Po) is equivalent to the electrical power consumed by the coil (Pd) inside 

the PCB and power absorbed from the surroundings (PI) as depicted in Fig 10 and given in Eq. (11); 

𝑃௢ = 𝑃ௗ + 𝑃ூ                                                                         (11) 

The power dissipated by M coils can be calculated from the Stefan-Boltzmann’s law [68] 

𝑃௢ = 𝛼௢𝜎𝑇௢
ସ𝑆                                                                        (12) 

Where σ denote the Stefan-Boltzmann constant. 

𝑇଴ reflects the solar panel unit surface temperature in Kelvin. 

S represent both sides of solar panel unit surface area. 

𝛼଴ is the emissivity of the Air-Coil PCB material at radiated wavelength. 

Eq. (11) and (12) result in Eq. (13); 

𝛼௢𝜎𝑇௢
ସ𝑆 = 𝑃ௗ + 𝑃ூ                                                                         (13)  

when thermal equilibrium is attained, no current passes through the coil, Pd = 0, and Eq. (13) results in the following 

equation; 

𝛼ூ𝜎𝑇ூ
ସ𝑆 = 𝑃ூ                                                                                (14) 

 
Where 𝛼ூ is the emissivity of the solar panel unit surface for the heat absorption wavelength 𝜆ூ. Using PI value from 

Eq. (14) and putting into Eq. (13) result in Eq. (15);

Fig. 10. Heat flow through the solar panels with embedded Air-Coils 
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Table 4 Comparison of printed Air-Coil with other commercial state of the art designs 

Attitude control System Price 
Mass 
(g), 

+/- 0.25g 

Dimensions 
(mm) 

P 
(W) 

𝝉 
 (µNm) 

𝝁  
(Am2) 

𝝉

𝑷
 

Commercial 
Designs 

CubeTorquer 
and  

CubeCoil [69] 
 

$1850 

 
27.5  

 
60(L) ×10(𝜙) 10.8  12 0.24 1.1 

45.9 90 × 96 × 6 3.95 7 0.13 1.7 

Gomspace 
Nanopower 
P110 [70]  

Internal to 
the PCB 
(No extra 

price) 

 Almost 
massless 

Internal to PCB 3.3 1.90 0.038 0.2 

 
NCTR-M012 
Magnetorquer 

Rod [71] 

$2000 50 g 94 × 15 × 13 2.88 60 1.2 20.8 

Embedded 
Printed 
Air-coil 

Six coils in 
series (6×1) 

Internal to 
the PCB 
(No extra 

price) 

 Almost 
massless 

Internal to PCB 0.36 16.31 0.99 45.3 

Six coils in 
parallel (1×6) 

Internal to 
the PCB 
(No extra 

price) 

Almost 
massless 

Internal to PCB 12.09 98.42 1.97 8.2 
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𝛼௢𝜎𝑇௢
ସ𝑆 = 𝑃௢ + 𝛼ூ𝜎𝑇ூ

ସ𝑆                                                            (15) 

In thermal equilibrium, 𝛼଴ = 𝛼ூ = 𝛼.  Solving Eq. (15) further will give a relation between Po and To as given in Eq. 

(16);  

𝑇௢ = ට௉೏ାఈఙ்಺
రௌ

ఈఙௌ

ర

                                                                  (16) 

The value of emissivity (α) as given in Eq. (16) is required to find the relation between Po and To. 

 𝛼 =
௉೏

ఙௌ( ೚்
రି்಺

ర)
                                                                    (17) 

The power dissipated (Pd) by the air-coil is represented by Eq. (18), where I is the current passing through the air-coil 

with resistance R; 

𝑃ௗ = 𝐼ଶ𝑅                                                                   (18) 

The surface emissivity (α = 0.9) value of solar panel module is found in [43] by conducting a laboratory experiment. 

This emissivity value is used for the calculation of To in case of different configuration of the Air-Coils. 

Thermal analysis for the Air-Coil PCB module shows that the increase in the number of turns, trace widths, trace 

thickness and material used have significant dependence on the temperature rise of the PCB. The current rating of 

different configurations depends upon the resistance of the respective coils. It can be noticed, by increasing the 

dimensions of nanosatellites, magnetic moment and torque generation increases with the corresponding decrease in 

temperature and power dissipation.  

The analysis is done for range of 18V inputs applied to satellites with dimensions 10cmଷ, 13cmଷ & 16cmଷ as shown 

in Fig 11-13. In case of six coils in series (6×1), the resulting current is 18mA, 9mA & 6mA, dissipated power is 

0.36W, 0.17W & 0.11W, magnetic moment generated is 0.3Am2, 0.37Am2 & 0.45Am2, PCB temperature rise to 30˚C, 

26.5˚C & 25˚C and generated torque is 16.31µNm, 19.2µNm & 22.5µNm for three satellites (10cmଷ, 13cmଷ & 

16cmଷ) respectively. In case of hybrid combination (2×3), the corresponding current is 167mA, 90mA & 50mA, 

dissipated power is 2.99W, 1.64W & 1.05W, magnetic moment generated is 0.99Am2, 1.17Am2 & 1.36Am2, torque 

produced is 49.9µNm, 58.7µNm & 68.1µNm and PCB temperature rise to 54.51˚C, 35.2˚C & 29.2˚C for three 

satellites (10cmଷ, 13cmଷ & 16cmଷ) respectively. Similarly, using parallel configuration, the corresponding current is 

674mA, 365mA & 230mA, dissipated power is 12W, 6.6W & 3.8W, magnetic moment generated is 1.97Am2,  
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2.35Am2 & 2.7Am2, torque produced is 98.42µNm, 110µNm & 133.4µNm and PCB temperature rise to 115˚C, 60.2˚C 

& 40.1˚C for three satellites (10cmଷ, 13cmଷ & 16cmଷ) respectively. 

 Fig 11(b), 12(b) and 13(b) shows the optimized printed Air-Coil with configuration six coils in series gives the 

maximum torque vs power dissipation ratio for all the nanosatellites. The maximum temperature rise of 115˚C is given 

by 6 coils in parallel for 10cmଷ nanosatellite in Fig 11(c). It is the temperature at the steady state when the coil is 

energized for longer period of time. Also, as mentioned before in section 3, the maximum torque generated by six 

coils in parallel is 98.42µNm that takes 14 seconds for 90˚ rotation which shows that the temperature rise of the module 

due to excitation of the embedded coils is very low and the coils will be excited at most once a week that will not 

harm the operations of other subsystems. It can be noticed that as the dimensions of nanosatellites increases the 

temperature and power dissipation also subsequently decreases which shows the coils direct dependence on size, trace 

width and spacing in the module. The analysis show that the overall temperature of coils increases at higher operating 

voltages but remains well within the thermal limits even for the worst case of six coils in parallel configuration. 

Therefore, lower operating voltages for the printed Air-Coil sustain better thermal operation as a design selection. 

Table 4 shows the comparison of optimized printed Air-Coil with other commercial state of the art designs available 

in market. The Air-Coil with additional configurability features (2×3, 3×2 hybrid) provides more flexibility to the 

design aspects by changing the arrangement through the onboard processor. Depending upon the mission 

requirements, data from telemetry points are sent to the OBC and telemetry processor unit for transmission to ground 

station for required power consumption, torque or dipole moment generated by the coil.  

VI. Conclusion 

An innovative design of electromagnetic embedded printed Air-Coil for nanosatellites was proposed to achieve 

the desired magnetic dipole moment and torque produced. The design is made fully reconfigurable to offer more 

flexibility according to power requirements and can be reused for multiple missions. The optimized reconfigurable 

design was compared with the commercially available designs. Commercial NCTR-M012 magnetorquer rod provides 

good magnetic moment versus power ratio but it is expensive, heavier and occupy extra space on the vehicle which is 

not suitable for 1U based nanosatellites. Gomspace Nano Power p110U like proposed Air-Coil is internal to PCB but 

offers very weak torque to power dissipation ratio. The proposed printed Air-coil with configuration of six coils (6×1) 

in series gives the maximum torque vs power ratio. Thermal analyses were done in detail to ensure the feasibility and 
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merit of the proposed embedded Air-Coil. Future work can be done on the presented coil configurations for higher 

form factor commercial microsatellites. 
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