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Abstract 

Threat-induced pain modulation can increase survival by amplifying physiological and 

behavioral reactions towards danger.  Threat can also modulate spinal nociception, suggesting 

engagement of endogenous top-down circuitry.  A unique method to assess spinal nociception 

is via reflex receptive fields (RRF) associated with the nociceptive withdrawal reflex (NWR, a 

protective spinally-mediated reflex).  The size of nociceptive RRFs can be modulated by top-

down circuitry with the enlargement of RRFs related to increased spinal nociception.  Threat 

has been previously shown to enhance pain and spinal nociception, but the relationship 

between threat and RRFs has not been investigated.  The present study investigated this issue 

in 25 healthy individuals.  RRFs were determined from NWRs measured by electromyography 

(EMG) of the tibialis anterior following electrocutaneous stimulations.  RRFs and pain were 

assessed during periods in which participants were under threat of unpredictable painful 

abdominal stimulations and when they were not under threat.  Results indicated that threat 

periods led to significantly higher pain, larger nociceptive RRFs and NWR magnitudes.  These 

findings imply that threat produces changes in protective reflexes related to spinal nociceptive 

sensitivity and increased pain perception.  This is likely mediated by top-down circuitry that 

enhances dorsal horn nociceptive neurons by enlarging RRFs and amplifying ascending pain 

signals.  

Perspective: This article presents the enlargement of reflex receptive fields (RRF) during 

periods of threat. The results from this study may help clarify the mechanism underlining 

emotional modulation of spinal nociception.  

Key Words: Pain, Reflex Receptive Fields, Anxiety, Nociception, Spinal Nociception.   



THREAT AND REFLEX RECEPTIVE FIELDS   3 
 

Introduction 

Pain modulation can increase survival.  For example, during situations of possible threat, 

increased pain perception allows for early detection, and stronger reaction to, somatic danger 

[42; 49].  Consistent with this, several studies have noted an increase in pain perception when 

anticipating an unpredictable threat [27; 73; 76].  

The changes in pain perception due to threat appear to be mediated by activation of 

descending pathways.  Consequently, incoming nociceptive signals are facilitated at the spinal 

cord level [42; 49].  This is evidenced by a threat-induced increase in the magnitude of a 

spinally-mediated protective reflex, the nociceptive withdrawal reflex (NWR)[27; 73]. 

The NWR requires precise movements in order for the reflex to properly withdraw a 

limb from somatic danger [62; 69].  To achieve this, the NWR has a modular organization in 

which each muscle or muscle group has a specific cutaneous reflex receptive field (RRF) and 

corresponding spinal neurons in the dorsal horn that mediate the elicitation of the motor 

movement [2; 3; 67].  Stimulations within an RRF typically elicit a reflex (flexion or extension) 

from its respective muscle, but stimulations outside of the RRF do not [2].  Because skin areas 

have overlapping RRFs, the NWR is the net reflex-related muscle activity triggered by 

stimulations within a set of RRFs [3; 66].  

Because the spatial organization of the RRFs are mediated mostly by deep dorsal horn 

neurons, RRFs can act as a noninvasive correlate of dorsal horn nociceptive receptive fields 

[67].  Indeed, the size of RRFs can be modulated, with an increase in size related to increased 

spinal nociception and hyperalgesia.  For instance, individuals with disorders associated with 

hyperalgesia (e.g., chronic neck pain, chronic low back pain, endometriosis) have larger RRFs 
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than healthy controls [38; 44].  Likewise, RRFs enlarge after procedures that are associated with 

sensitization and hyperalgesia (e.g., after the administration of capsaicin) [35], and after 

repeated stimulations of the same intensity (temporal summation) [4; 35].  Interestingly, 

cognitive factors (e.g., attention) can also modulate the size of RFFs through descending 

pathways [7]. 

According to Latremoliere and Woolf, enlarged nociceptive receptive fields of dorsal 

horn neurons are a marker of central sensitization [32].  Indeed, enlarged dorsal horn neuron 

receptive fields are seen in animal models of cancer bone pain [74], arthritis (inflammation) [11; 

22; 28], postsurgical pain [30; 46], and spinal nerve ligation [11; 71].  Further, there is an 

expansion of dorsal horn receptive fields after repeated frequent stimulation (1Hz for 20 secs) 

[12], administration of mustard oil [79], injection of noxious agent into a muscle tissue [26], 

administration of noxious heat [40], noxious pinch [31], noxious stimulation of the viscera [10], 

and ischemia [14]. As such, measuring RRF expansion may provide insight into central 

sensitization mechanisms and the chronification of pain.  

Previous studies indicate that NWR magnitudes are enhanced during periods of threat 

[27; 72], but the effect of threat on nociceptive RRFs is unknown.  To address this gap in the 

literature, the present study will measure RRFs during periods in which unpredictable 

abdominal stimulations are delivered (threat periods) and periods in which they are not 

delivered (safety periods).  Given that unpredictable threat increases NWR magnitudes and 

produces hyperalgesia [27; 73], and that hyperalgesia is related to expansion of RRFs, we 

hypothesize that threat will produce anxiety, and in turn increase pain and the size of RRFs.   
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Further, as an added manipulation check, analyses verified that NWR magnitudes (not RRF) 

were increased during threat, relative to safe, periods. 

Methods 

In order to measure changes in RRFs elicited by threat, participants completed a 

procedure that consisted of the presentation of 8 threat and 8 safe periods.  Unpredictable 

painful abdominal stimulations were delivered during threat periods, but never during safe 

periods.  The RRF of the tibialis anterior (TA) was measured during the threat/safe paradigm by 

surface recording the TA-EMG in response to painful electrocutaneous stimulations to 10 sites 

on the sole of the foot. Participants were seated in a comfortable position with a slight flexion 

in the knee joint to reach approximately 75° throughout the experiment.  Power analysis using 

effect sizes from prior studies investigating successful psychological modulation of RRFs [7], and 

an α=.05, indicated that a sample of 15 was needed to achieve a power of .8.  The current study 

targeted 25 in order to ensure adequate power and obtain a sample size large enough to 

produce a normally distributed sampling distribution of the mean (to meet the assumption of 

normality).  

Participants 

26 participants were recruited from the community surrounding Aalborg University 

(located in Aalborg, Denmark) between November 2017 and January 2018, but 1 person did not 

complete the study due to discomfort with electrical stimulations.  Thus, the final sample 

consisted of 25 healthy, pain-free individuals (8 women, 17 men, mean age=24.1 years, 

SD=3.41). Participants were excluded if they endorsed any of the following via self-report: skin, 

neurological, cardiovascular, or circulatory problems;  acute pain or chronic pain (pain that lasts 
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longer than 3 months); being under the influence of substances that influence the central 

nervous system (e.g., antidepressants, anxiolytics, beta blockers, cannabis, opioids, alcohol, 

pain medication); pregnancy or lactation; participation in other related studies within 1 week of 

the study; and age younger than 18.  All procedures were approved by the local ethical 

committee of North Denmark Region (N-20150038) and the Declaration of Helsinki was 

respected. 

Questionnaires 

Participants verbally rated their pain using a numerical rating scale (NRS) that ranged 

from 0 (no pain) to 10 (pain as bad as it could be)[47] .  Participants verbally rated their anxiety 

on a 5-point Likert scale (1=not at all anxious, 2=a little anxious, 3=moderately anxious, 4=very 

anxious, 5=extremely anxious) [15].  

Sensor Placement and EMG Recording 

Prior to any sensor placement, the area was shaved and cleaned using isopropyl alcohol.  

In order to ensure proper electrical impedances at the sole of the foot, the thick epidermal 

layers at the bottom of the foot were removed by soaking the foot in warm saline water (~ 10 

mins), and then exfoliating using a foot exfoliator.  Biological markers on the bottom of the foot 

were used as anchors to ensure proper placement of each electrode (e.g., sites 1, 2, and 3 on 

the balls of the feet; sites 4, 5, and 6 on the center of the foot, sites 9, and 10 on the heel of the 

foot and sites 7, and 8 between the heel and the center of the foot). 

EMG activity was recorded from the belly of the TA with a double differential 

configuration using 3 electrodes (type 720, Ambu A/S, Denmark; interelectrode distance of 20 

mm) and a ground (type 720, Ambu A/S, Denmark) placed on the fibula.  Electrode placement 
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followed the recommendations of Surface EMG for Non-Invasive Assessment of Muscles 

(SEMIAN) for the electrode placement [25].  EMG signals were sampled at 2000 Hz, amplified, 

filtered (5-500 Hz), and stored on a hard drive. 

Electrical stimulation 

Electrical stimulations were delivered by a grid of 10 self-adhesive Ag/AgCl surface 

electrodes (20 mm X 15 mm, type 700, Ambu A/S, Ballerup, Denmark) placed on the sole of the 

right foot (see Figure 1A for distribution of the electrodes).  A common large anode (75 mm X 

100 mm electrode, PALS Model #895340, Axelgaard Manufacturing Co. Ltd., Fallbrook, CA) was 

mounted on the top of the foot to ensure that stimulations were perceived to come from the 

sole (by allowing electron flow from the dorsum of the foot to the plantar side of the foot).  

Foot stimulations were 5 constant-current, monophasic 1 ms pulses delivered at 200 Hz which 

felt like one pulse.  Electrodes were moved slightly if the electrocutaneous stimulations 

produced a radiating sensation in order to ensure that a nerve was not directly stimulated. 

Abdominal stimulations were delivered to the lower right quadrant of the abdomen by 

an Ag/AgCl surface electrode (20 mm X 15 mm, type 700, Ambu A/S, Ballerup, Denmark) and a 

large anode (75 mm X 100 mm electrode, PALS Model #896240, Axelgaard Manufacturing Co. 

Ltd., Fallbrook, CA).  Abdominal stimulations consisted of 75 monophasic 1 ms pulses at 100 Hz 

experienced as multiple stimulations.  Stimulations, both to the abdomen and to the sole of the 

foot, were delivered by a Noxitest IES 230 stimulator (Aalborg University, Denmark).  For 

participant safety, no abdominal or foot electrocutaneous stimulation exceeded 50 mA.  
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Determining Stimulation Intensities 

In an attempt to reliably elicit NWRs, stimulation intensities were individually calibrated 

to each stimulation site.  First, pain threshold (PTh) was determined at site 4 (See Figure 1A) 

using 3 ascending/descending staircases.  The stimulations intensities began at 4 mA and 

increase in 2 mA steps until a NRS rating ≥ 5 was reached.  After a NRS rating ≥ 5 was obtained, 

the stimulus was decreased in 1 mA steps until a NRS rating < 5 was reached.  The second and 

third ascending/descending staircases used 1 mA steps.  PTh was defined as the average 

stimulus intensity (mA) of the last 2 peaks and troughs. Then, the stimulation intensity on site 4 

was increases to 1.5 X PTh in order to reduce floor/ceiling effects.  After increasing stimulation 

intensity of site 4, the pain ratings of the other sites were matched to site 4 in order to ensure 

equal nociceptive input during the threat/safe paradigm (See Figure 1).  Stimulations were 

matched to site 4 by delivering a stimulation on a site then increasing/decreasing the 

stimulation intensity until the ratings matched.  So, the 3 ascending/descending staircase 

method was only used on site 4.  

Abdominal stimulation intensity was determined using the same 3 

ascending/descending staircase methods used for site 4.  However, the target rating was a NRS 

of 8 instead of a NRS of 5.  Abdominal stimulation during the threat/safe paradigm intensity 

was set at the intensity that elicited a NRS rating of 8.  

Threat/Safe Paradigm 

After stimulation intensities were determined, participants underwent a validated 

threat paradigm [27; 73](See Figure 2).  The paradigm consisted of recording the RRF of the TA 

during 8 threat and 8 safe periods (all periods were 65 s in length).  The threat/safe periods 
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were pseudorandomly ordered with the restrictions that first period was always a threat period 

and no more than 3 of the same periods could occur in sequence.  During all threat periods, red 

text was displayed on a computer screen that read “DANGER: Abdominal Stimulation may be 

Given at Any Time.”  During all safe periods, green text was displayed that read “SAFE: No 

Abdominal Stimulation will be Given.”  As the text notes, no abdominal stimulation ever 

occurred during the safe periods.   

Because the threat periods were longer (65s) than prior studies (~30s)[27; 72], the 

present study increased the number of abdominal stimulations to the abdomen in order to 

maintain threat.  Abdominal stimulations (.75 s in length) were delivered between 1-5 s of 

every threat period and at the end (60-65s) of 4 out of the 8 threat periods (50% 

reinforcement). The rationale for presenting the second abdominal stimulation only 50% of the 

time was to increase the unpredictability of the threat.  There was a short break (8 - 10 s) in 

between each period. At the end of each period, participants were asked to rate the average 

anxiety they felt during the period.  

During each period, participants received 5 electrocutaneous stimulations at different 

stimulation sites to the sole of the foot (inter-stimulus interval = 5 - 10 s).  Periods were 

presented for at least 5 s before any abdominal stimulation was delivered. Foot stimulations 

occurred between 5 and 60 s after the onset of the period, but never overlapped with an 

abdominal stimulation.  In each safe period, participants received 5 foot stimulations whereas, 

in each threat period, participants received 5 foot stimulations and either 1 or 2 abdominal 

stimulations.  
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Within each condition (Threat vs. Safe), all foot electrode sites were stimulated (order 

randomized) before another stimulation in the same site could occur.  Immediately following a 

foot or abdominal stimulation, participants rated the pain verbally using the NRS.  

Calculation of Reflex Receptive Fields 

A previously validated procedure was used to calculate the size of the RRF [7; 29; 35-39; 

44; 70].  For all foot stimulations, EMG signal from the TA was recorded for a 1 s period.  The 

RRFs were calculated in the following way: 1) A z score was computed with the unrectified EMG 

from the 200 ms prestimulation period (baseline window) and the peak unrectified EMG that 

occurred in the 80-180 ms poststimulation period (Peak NWR window).  If the z score was 

greater than 12, a reflex was detected.  The z scores were computed in the following way. 

𝑍𝑠𝑐𝑜𝑟𝑒 =
(|𝑃𝑒𝑎𝑘 𝑁𝑊𝑅 𝑊𝑖𝑛𝑑𝑜𝑤| − |𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑊𝑖𝑛𝑑𝑜𝑤|)

 𝑆𝐷 𝑜𝑓 |𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑊𝑖𝑛𝑑𝑜𝑤|
 

2) The probabilities of having a reflex were computed for each stimulation site.  The formula 

used was as follows: 

𝑅𝑒𝑓𝑙𝑒𝑥 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑒𝑟 𝑠𝑖𝑡𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑓𝑙𝑒𝑥𝑒𝑠 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑜𝑛 𝑠𝑖𝑡𝑒

4
 

3) The probabilities for all foot stimulation sites were then interpolated using Kriging algorithm 

for non-uniformly spaced data points and placed onto a schematic of a foot (See Figure 3). 

 4) The RRF area is the percentage of the foot in which the interpolated values were over 0.25 

(i.e., the area of the foot in which the site produced an NWR at least 25% of the time).   RRF 

area was used as the dependent variable in analyses.  As a follow-up analysis, NWR magnitudes 

of the most pronounced site will be investigated.  
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Calculation of NWR Magnitude for Validity Analysis 

 To determine whether NWR magnitudes were enhanced by threat, similar to previous 

studies [50], NWR magnitudes were calculated for site 4 (the site with the most probable NWR).  

NWR magnitude was calculated as: 

𝑍𝑠𝑐𝑜𝑟𝑒 =
(|𝑃𝑒𝑎𝑘 𝑁𝑊𝑅 𝑊𝑖𝑛𝑑𝑜𝑤| − |𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑊𝑖𝑛𝑑𝑜𝑤|)

 𝑆𝐷 𝑜𝑓 |𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑊𝑖𝑛𝑑𝑜𝑤|
 

Data Analysis & Outlier Detection 

Dependent samples t-tests were used to investigate group differences between the 

threat and safe conditions.  Dependent variables were anxiety ratings, pain ratings, and RRF 

area.  A 1-way ANCOVA MLM (with trial covaried) was used to examine the effect of threat on 

NWR magnitude.  Zero-order-correlations using change scores (threat minus safe) were used to 

investigate the relationships between changes in anxiety and changes in pain/RRF.   

Data screening.  In order to allow for proper modulation of RRFs (i.e., to reduce ceiling 

and floor effects), participants with an RRF area = 1 or 0 were excluded from reflex-related 

analysis because these values could not be modulated up or down, respectively.  Prior to any 

analysis, outliers were detected on the change scores of the dependent variables (threat minus 

safe) using robust estimations (median absolute deviation > 2.24) and excluded from analyses 

[75]. During analysis of NWR magnitude, outliers were detected and excluded from the analysis. 

Results 

Stimulus Parameters 

No significant differences in pain ratings were found between stimulations sites after 

matching pain ratings to site 4 with the stimulation intensity set to 1.5 X PTh (Grand Mean of all 

sites = 5.78, SD = 0.07), F(9,216) = 1.48, p = 0.16; see Figure 1B. The average stimulation 
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intensity of all the stimulating sites after the all sites were matched was 21.60 mA (SD=3.29; 

See Figure 1C).   

Threat Evoked Differences in RRF 

RRFs were determined for all 25 participants for the safe and threat conditions.  Outliers 

were detected and excluded from analysis (4 for change scores in pain ratings, 1 for change 

scores in RRF area).  4 participants were excluded because of a RRF area of 1 or 0 in the threat 

or safe condition.  No outliers in anxiety were noted.  Hence, analyses using pain scores had 

N=21 whereas analyses using EMG had N=20. Baseline EMG was not significantly different 

between threat (M=1.95 µV; SD=.24 µV) and safe periods (M=1.89 µV; SD=.12 µV), t(19) = 1.76, 

p=.09.  In both conditions, the highest reflex probability was exhibited near the medial and 

distal sections of the foot (See Figure 3).  Results suggested significantly greater anxiety and 

pain ratings during threat periods than safe periods (See Table 1).  Furthermore, RRF areas 

were significantly larger during threat periods than safe periods (See Table 1 & Figure 3). 

Threat Evoked Differences in NWR Magnitude 

Site 4 had significantly large NWR magnitudes during the threat condition (M=58.11, 

SE=11.92) than the safe condition (M=44.214, SE=11.91) F(1,120.1) = 5.06, p = .03.  

Relationships between Anxiety, RRF, and pain 

Changes in anxiety were not significantly correlated with changes in pain, r(21) = 0.27, p 

= 0.24, or changes in RRF area, r(20) = 0.002, p = 0.99.  Moreover, anxiety scores during the safe 

condition were not related to RRF safe area r(20)=.413, p=.07 or mean pain ratings during the 

safe condition r(21)=.17, p=.46. Anxiety ratings during the threat condition were not related to 
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RRF threat area r(20)=.37, p=.10 or mean pain ratings r(21)=.17, p=.45 during the threat 

condition. 

Discussion 

 The current study investigated the relationship between threat, pain, and spinal 

nociceptive processing (as measured by NWR RRF).  In the present study, the threat condition 

resulted in increased anxiety, as well as increased pain ratings and RRFs areas, relative to the 

safe condition.  The increase in pain ratings (albeit small) is consistent with previous studies 

noting that anticipation of an unpredictable threat enhances pain and spinal nociceptive 

processes [27; 53; 73; 76].  This can be partly explained by the top-down facilitation of dorsal 

horn neurons that amplify the nociceptive signals at the spinal cord level [49].  

Previously, Terry et al. [72] and Hubbard et al. [27] used a similar threat/safe paradigm 

to induced an increase in NWR magnitudes and hyperalgesia.  The results from the present 

study replicate these results to show that NWR magnitudes at site 4 were enhanced by threat, 

but also expand on this research by indicating that RRFs expand during threat.  

As is suggested by Schouenborg, weighted connections between interneurons and 

motor neurons mediate RRF areas [63; 65]. In essence, there is a greater synaptic connection 

between the foci of a RRF and specific motor neurons which diminishes as you move towards 

the edges of the RRF area. As such, stimulations occurring within a RRF elicit a reflex response 

from the specific muscle while stimulations outside the RRF do not [2; 21].  Furthermore, 

stimulations occurring at the center of a RRF produce a greater (and more probable) reflex 

response than stimulations occurring at the edges [2].    
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Additionally, stimulations occurring near, but outside, the reflex receptive fields provide 

a subthreshold input into the reflex encoder [78].  However, if the reflex encoder is in a 

sensitized state, then this input may elicit a reflex [12; 64] reflecting an expansion of the 

receptive field of the encoder neuron. The present study suggest that threat sensitizes dorsal 

horn neurons (possibly through activation of the descending pathway) which leads to 

enlargement of RRF areas (and NWR magnitudes). Indeed, deep dorsal horn neurons receive 

continuous descending excitatory/inhibitory input from supraspinal structures [24; 34; 35].  

Evolutionarily speaking, having RRFs that change in size due to environmental stimuli is 

highly adaptive.  For example, having enlarged RRFs in threatening situations could increase 

withdrawal reactions to, and detection of, somatic danger. This would increase the chance of 

survival and/or limit somatic damage. Hence, having healthy RRFs that can modulate in size are 

likely advantages for survival.  

A perceptual consequence of threat is anxiety/fear [16].  However, anxiety is typically 

defined as a future-oriented emotion associated with unpredictable threat, whereas fear is 

defined as an emotion focused on a present (typically severe) threat and usually evokes active 

fight-or-flight [45; 51; 52; 54; 68].  Moreover, anxiety elicits hyperalgesia, whereas fear elicits 

hypoalgesia.  Given these distinctions, we designed the threat paradigm to evoke anxiety, 

because the periods were long (65s) and the abdominal stimulations were unpredictable.  

Moreover, we were interested in studying hyperalgesia.  Consistent with this, prior studies have 

used this threat paradigm to elicit hyperalgesia and NWR facilitation [27; 73].  We found that 

self-reported anxiety was significantly greater during threat periods compared to safe periods; 
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therefore, it can be inferred that the unpredictable abdominal stimulations elicited anxiety in 

our participants.   

The labels on the Likert scale indicated that the anxiety level, on average, for people 

during the threat condition was between “a little anxious” and “moderately anxious” whereas 

scores during the safe condition endorsed being between “not at all anxious” and “a little 

anxious.” The score in the safe condition are as expected (slight anxiety due to the foot 

stimulations). However, the scores in the threat condition are a lower than expected. This may 

reflect comfortability with the experimental setting and trust in the experimenter. 

Interestingly, correlations between the changes in RRF size, pain intensity, and anxiety 

ratings were not significant.  This could signify that the perceptual consequences of the threat 

paradigm (i.e., the subjective experience of anxiety) were not related to changes in pain or 

spinal nociception per se, but rather the biological consequences of the threatening situation 

itself (see further discussion below).  

Modulation of Spinal Nociception by Threat 

Pain typically begins by the activation of primary nociceptors following a noxious event.  

The signals are then transmitted to the spinal cord and up to different supraspinal structures 

related to pain processing (e.g., prefrontal cortex [PFC], anterior cingulate cortex [ACC], primary 

somatosensory cortex [SI], secondary somatosensory cortex [SII], parabrachial area [PB], 

periaqueductal gray [PAG], hypothalamus, pons and medulla)[5; 6; 18].  Incoming nociceptive 

signals can be modulated at the spinal cord level through supraspinal activation of the 

descending, top-down, pathway.  The structures implicated in the descending pathways include 
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the PFC, ACC, SI, SII, hypothalamus, amygdala, basal ganglia; midbrain structures such as the PB, 

and PAG; and hindbrain structures such as the pons and the medulla [6; 8; 13].   

The amygdala and the bed nucleus of the stria terminalis [BNST] are intimately involved 

in the processing of threat [1; 17; 24; 33].  Importantly, the amygdala and the extended 

amygdala have projections to the PAG and the rostral ventromedial medulla [RVM] [43].  The 

RVM is known to play a pivotal role in the descending control and thereby modulation of 

incoming nociceptive signals at the spinal cord level [23; 24].  Given the extensive literature 

noting descending modulation of protective reflexes and pain through descending pathways 

[51; 54-61], we believe the current findings suggest a role of descending facilitation.  However 

other mechanisms (e.g., motor neuron facilitation) cannot be ruled out.  

Interestingly, different structures and pathways process threat at the conscious versus 

nonconscious level.  For example, Carlsson and colleagues [9] used a masking paradigm with 

pictures of phobic and feared stimuli and investigated positron emission tomography (PET) 

changes related to the conscious and nonconscious processing of threatening stimuli. The 

results suggested activation of the amygdala in the nonconscious processing of the phobic 

stimuli, but amygdala, ACC, anterior insula, orbital frontal cortex (OFC), and PAG in the 

processing of conscious threatening stimuli. Further, a study using masked and unmasked 

threatening stimuli with participants that had “blindsight” revealed an increase in connectivity 

between the right amygdala, pulvinar, and superior colliculus in masked conditions [41]. The 

results from our correlations suggest that the presence of threat, not the perceptual 

consequence (i.e., anxiety), enlarged RRFs. Hence, it is possible that the activation of the 



THREAT AND REFLEX RECEPTIVE FIELDS   17 
 

amygdala, and midbrain pathways are related to the enlargement of RRFs (i.e. modulation of 

the top-down pathways). However, this hypothesis has to be explicitly tested.  

Implications 

 The results from the present study have several implications.  First, because pain ratings 

were greater in the threat condition than during the safe condition, it further supports the 

notion that threat has enhancing effects on the pain system (albeit a small effect in the current 

study)[73].  Second, because there was an enlargement of RRFs in the context of increased 

sensitivity, it strengthens the argument that enlarged RRF areas are related to increased spinal 

nociception.  Third, our results suggest that in healthy individuals, RRFs enlarge under 

threatening situations. This implies that RRF modulation can help protect from somatic threats, 

when needed. And finally, these results provide additional support for the relationship between 

environmental forces and amplification of pain processing, thus highlighting the significance of 

the biopsychosocial model [20] in the conceptualization of pain and its impact on human 

suffering.    

Strengths & Limitations 

The present study has several strengths.  First, this is the first study investigating 

emotional modulation of RRFs, thus further linking top-down modulation with protective 

reflexes [49; 62]. Second, a within-subject experimental design was used to reduce confounding 

variables and the effect of individual variability.  Third, EMG signals were recorded using a 

double differential configuration that reduces muscle crosstalk helping to isolate the activity of 

tibialis anterior muscle so that RRFs can be more accurately measured [29].  Fourth, data 
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analysis was conducted with the support of modern outlier detection methods that maximize 

statistical power within small samples [75].   

Nonetheless, several limitations must be noted.  For one, the study was conducted on 

young, healthy pain-free individuals.  Hence, the results may not translate to unhealthy 

populations such as people with chronic pain or those with affective disturbance.  Future 

research should investigate whether the findings generalize to other populations.   

Second, the effect size of the RRF change was small.  Past research investigating changes 

in RRFs elicited by psychological constructs, resulted in effect sizes (Cohen’s d) between 0.40 

and 0.71 [7].  However, past studies investigating psychological constructs that modulate the 

size of RRF used an experimental design in which the control condition was always before the 

active condition.  In the current study, the control condition and the active condition were 

pseudorandomly ordered in such a way that the pain system, theoretically, was moving 

between an unsensitized and sensitized state within very short time periods (i.e., 65 s).  This 

may have decreased the amount of change seen in the size of RRFs between the threat and safe 

conditions.  By contrast, the small effect sizes may indicate that our threat manipulation was 

less effective than expected. For example, it is possible that the effect of abdominal stimulation 

threat waxed and waned across each period. Future studies could add a continuous measure of 

anxiety (e.g., using an electronic VAS) in order to detect covariation between pain, threat, and 

RRFs at a more specific level.   

Third, although it was found that threat enlarged RRFs, it is unknown if other 

environmental stimuli would also modulate the size of RRFs (e.g., pleasant stimuli). It is possible 

that, in the current study, unmeasured psychological factors contributed to the change of RRF 
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sizes.  Therefore, future studies should focus on investigating whether other situations 

modulate RRFs.  Further, several studies have noted how individual difference factors (e.g., pain 

catastrophizing) can contribute to individual differences in affective reactions and pain 

modulation [19; 77]. Hence, future studies should investigate the role of these factors in threat-

evoked changes in RRF.   

Fourth, even though we recruited more participants than was suggested by our power 

analysis, this study still had a small sample. Hence, these results should be interpreted with 

caution until replicated.   

Fifth, during threat periods participants received painful abdominal stimulations before 

the measurement of RRF areas. There is a possibility that CPM-like (‘pain inhibits pain’) 

mechanisms may have been activated and thus reduced the facilitating effect of threat on RRFs. 

Although, this may be possible, it is unlikely because CPM typically requires a tonic, long-lasting, 

conditioning stimulus to activate descending inhibition. In the current study the abdominal 

stimulations were very brief and thus unlikely to activate CPM-like inhibition [48].    

In conclusion, the present study was the first to investigate the hyperalgesic effects of 

threat on nociceptive withdrawal reflex receptive fields (RRF).  Our results indicated that threat 

enlarged RRF sizes, increased NWR magnitudes, and produced hyperalgesia.  Enlarged RRF sizes 

may be a novel explanation for the emotional modulation of spinal nociception and how 

threatening contexts may lead to central sensitization. 
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Figure Legends 

Figure 1.  Pre-experiment characteristics. (A) Distribution of electrodes. (B) Distribution of mean 

pain ratings for matched stimulation intensities. (C) Distribution of stimulation amplitudes after 

matching pain ratings of each site to pain ratings of 1.5 X PTh reported on site 4.  

 

Figure 2.  Experimental procedures to examine threat induction on nociceptive reflex receptive 

fields (RRF).  The paradigm included 8 threat and 8 safe periods (represented by #1‐16). The 

figure above depicts one possible sequence of periods, but periods were pseudorandomly 

ordered (inter‐period interval 8 ‐ 10s).  Example screenshots from the threat and safe periods 

are shown.  Participants saw text presented on a computer screen that indicated the period 

type (threat vs. safe).  The horizontal bar at the bottom of the screen filled left‐to‐right as time 

passed in the 65 s period.  Five foot stimulations were given during each period.  Abdominal 

stimulations were given during the first 5 s of each threat period and during the last 5 s of 4 

randomly chosen threat periods in order to evoke unpredictable threat.  No abdominal 

stimulations were ever given during safe periods.  Pain and nociceptive withdrawal reflexes 

(NWR) were measured in response to all foot stimulations.  Ab=abdominal.  Stim=stimulation. 

 

Figure 3.  Depiction of nociceptive reflex receptive fields (RRFs) during threat and safe 

conditions.  Warmer colors represent a higher probability of having a reflex while cooler color 

represent a lower probability.  RRFs (depicted as the areas within the black lines) are larger in 

the threat condition (left) than in the safe condition (right; p<.05). 
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Figure 1.  Pre-experiment characteristics. (A) Distribution of electrodes. (B) Distribution of mean pain ratings for matched 
stimulation intensities. (C) Distribution of stimulation amplitudes after matching pain ratings of each site to pain ratings 
of 1.5 X PTh reported on site 4. 
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Figure 2.  Experimental procedures to examine threat induction on nociceptive reflex receptive fields (RRF).  The paradigm included 8 threat and 8 safe periods 
(represented by #1-16). The figure above depicts one possible sequence of periods, but periods were pseudorandomly ordered (inter-period interval 8 - 10s).  
Example screenshots from the threat and safe periods are shown.  Participants saw text presented on a computer screen that indicated the period type 
(threat vs. safe).  The horizontal bar at the bottom of the screen filled left-to-right as time passed in the 65 s period.  Five foot stimulations were given during 
each period.  Abdominal stimulations were given during the first 5 s of each threat period and during the last 5 s of 4 randomly chosen threat periods in order 
to evoke unpredictable threat.  No abdominal stimulations were ever given during safe periods.  Pain and nociceptive withdrawal reflexes (NWR) were 
measured in response to all foot stimulations.  Ab=abdominal.  Stim=stimulation.
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Figure 3.  Depiction of nociceptive reflex receptive fields (RRFs) during threat and safe 
conditions.  Warmer colors represent a higher probability of having a reflex while cooler color 
represent a lower probability.  RRFs (depicted as the areas within the black lines) are larger in 
the threat condition (left) than in the safe condition (right; p<.05). 



 

Table 1. Means and SDs for Anxiety, Pain, and RRFs during the Threat and Safe Periods 

 
Threat 

Mean (SD) 
Safe 

Mean (SD) 
t df p Cohen’s d 

Anxiety (1-5; Ratings) 2.51 (1.00) 1.51 (0.53) 6.19 24 <.001 1.31 
Pain Ratings (0-10; Ratings) 4.86 (1.04) 4.71 (0.95) 2.31 20 0.03 0.14 
RRF Area (0-1; Percent) 0.47 (0.29) 0.41 (0.29) 2.78 19 0.01 0.20 

Note. RRF=Reflex receptive field 
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