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ABSTRACT 

Pathways are the functional building blocks of complex diseases such as cancers. 

Pathway-level studies may provide insights on some important biological processes. Gene set 

test is an important tool to study the differential expression of a gene set between two groups, 

e.g., cancer vs normal. The differential expression of a gene set could be due to the difference in 

mean, variability, or both. However, most existing gene set tests only target the mean difference 

but overlook other types of differential expression. In this thesis, we propose to use the recently 

developed distance correlation for gene set testing. To assess the distance correlation test, 

simulation studies under different settings are conducted for a comprehensive comparison with 

the popular Hotelling’s T2 test and rotation gene set test (ROAST). The three gene set tests are 

also applied to two real datasets for further comparisons. Based on our simulation studies and 

real data applications, it is found that the distance correlation test has overall better statistical 

performance than Hotelling’s T2 test and ROAST test, especially for detecting the difference in 

variability.  

This thesis begins with introductions to the problem of gene set testing, and then 

introduces the prevailing Hotelling’s T2 test and ROAST test. Chapter 2 is a detailed review of 

the concepts and properties of distance correlation. The results from simulation studies and real 

data applications were summarized in Chapters 3 and 4 respectively. In Chapter 5, we conclude 

the thesis with some discussion and future perspectives. 
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Chapter 1 

Introduction 

A gene set is a collection of genes that are a priori co-regulated or functionally related 

(Hejblum, Skinner, & Thiébaut, 2015) and a biological pathway can be defined as a sequence of 

interactions among molecules in a cell to govern a certain product or a change in a cell 

(Wikipedia, n.d.). Pathway information provides the facts of biological processes at molecular 

level (Cerami et al., 2011). For example, the cell-cycle pathway regulates an unreversed and 

crucial process of cell division. The life of a cell involves two stages that are interphase and M 

phase (Casem, 2016). M phase embraces all the steps occurred in mitotic cell division and 

interphase has G1, S, and G2 stages representing every other aspect of a life of cell. Cell cycle 

pathway is controlled by two classes of proteins known as cyclin-dependent kinases (Cdks) and 

cyclins. A diverse set of Cdks and cyclins rules each of the stages of the cell cycle. For instance, 

activation of Cdk2 by cyclin E controls the transition from G1 to S phase. However, the 

transition from G2 to M phase is controlled by the binding of Cdk1 and cyclin B. Cdk activity 

will be disabled when the cell has successfully transitioned from one phase to the next phase by 

destruction of the corresponding cyclin. There are three checkpoints in the process (Bio-Connect, 

n.d.): 

(1) G1 checkpoint: determining if a cell will enter the cell division process 

(2) G2 checkpoint: determining if the cell will enter into mitosis 

(3) metaphase: ensuring proper chromosome alignment prior to cell division. 

If a cell fails to meet the requirements of each checkpoint, it will lead the cell to halt cell cycle 

progression to next phase. The checkpoints are not often functional in cancer. This will result in 

genomic instability that is feature of malignant cells. 
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Gene set test is an important tool for evaluating differential expression of genes 

representing pathways or other biologically interpretable processes (Wu & Smyth, 2012). 

Goeman and Bühlmann (2007) classified gene set tests from two aspects: (1) the type of the null 

hypothesis and (2) the calculation of the 𝑝-value. By different null hypotheses, the tests can be 

classified into competitive and self-contained tests. Competitive gene set tests evaluate the 

differential expression of the selected genes relative to all other genes, to name a few, the gene 

set enrichment analysis (GSEA) proposed by Subramanian et al. (2005) and improved GSEA 

proposed by Efron and Tibshirani (2007). Self-contained gene set tests focus on the gene set or 

pathway of interest without reference to other genes, for instance, the global test (Goeman et al., 

2004), ANCOVA-based approach (Mansmann & Meister, 2005), and the test proposed by 

Tomfohr, Lu, and Kepler (2005). Suppose 𝐺 is the gene set of interest and 𝐺𝑐 is the complement 

of 𝐺, the null hypothesis for competitive gene set tests can be stated as: 

“𝐻0
𝑐𝑜𝑚𝑝: The genes in 𝐺 are at most as often differentially expressed as the genes in 𝐺𝑐” 

(Goeman and Bühlmann, 2007, p. 981), 

and the null hypothesis for self-contained gene set tests can be stated as: 

“𝐻0
𝑠𝑒𝑙𝑓

: No genes in 𝐺 are differentially expressed” (Goeman and Bühlmann, 2007, p. 981). 

By the method of 𝑝-value calculation, gene set tests can be classified into gene sampling 

methods and subject sampling methods. In gene sampling methods, 𝑝-values can be calculated 

for the gene set on a distribution where the gene is the sampling unit whereas subject sampling 

methods take subject as the sampling unit. The sampling units in both methods are assumed to be 

independent and identically distributed. Specifically, 𝑝-values can be evaluated by permuting 

genes in gene sampling methods and permuting subjects in subject sampling methods. 
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1.1 Purpose of this thesis 

Existing gene set tests rely on several key assumptions such as normality and 

homogeneity of variance, to examine the differential expression of the gene set of interest by 

comparing the mean vectors. However, the differential expression of a gene set can be in many 

other forms such as variability difference. The goal of this thesis is to use an existing dependence 

measure which is capable of detecting differences in both mean and variability of a gene set 

without any parametric assumption. To validate the performance of distance correlation in gene 

set testing, two commonly used gene set tests including Hotelling’s T2 test and rotation gene set 

test (ROAST) (Wu, et al., 2010) are used in the comparison.  

The thesis is structured as follows: A review of these two tests is provided in the sections 

1.2 and 1.3. The review of distance correlation is provided in Chapter 2. The simulation studies 

are presented in Chapter 3, and real data applications are given in Chapter 4. Chapter 5 discusses 

and concludes the thesis 

1.2 Hotelling’s T
2
 test 

In 1931, Hotelling proposed the T2 statistic in his paper entitled “The Generalization of 

Student’s Ratio”. Hotelling’s T2 test is a multivariate generation of Student’s 𝑡 test. Hotelling’s 

T2 test can be used for one-sample and two-sample cases. In this section, we review the concept 

of Hotelling’s T2 test by contrasting with univariate 𝑡-tests. 

1.2.1 One-sample test 

In the univariate case, suppose a random variable 𝑥~𝑁(𝜇, 𝜎2). For a sample with 𝑛 

subjects, the 𝑡 statistic can be defined as: 

𝑡 =
�̅� − 𝜇
𝑠

√𝑛

, 
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where �̅� is the sample mean and 𝑠 is the sample standard deviation. The 𝑡 statistic follows the 

𝑡𝑛−1 distribution. One application of the 𝑡 statistic is one-sample 𝑡 test: 

𝐻0: 𝜇 = 𝜇0, 

where 𝜇0 is the proposed mean. Under 𝐻0 is true, the test statistic can be defined as: 

𝑇 =
�̅� − 𝜇0
𝑠

√𝑛

.                                                                  (1.1) 

It can be shown that 𝑇 follows a 𝑡𝑛−1 distribution. Now, we consider the multivariate case. 

Suppose a random vector 𝑋𝑝×1 = [

𝑥1
𝑥2
⋮
𝑥𝑝

]~𝑀𝑉𝑁(𝜇𝑝×1, Σ𝑝×𝑝). There is a sample with 𝑛 subjects: 

𝑋(1) = [

𝑥11
𝑥12
⋮
𝑥1𝑝

] , 𝑋(2) = [

𝑥21
𝑥22
⋮
𝑥2𝑝

] , ⋯ , 𝑋(𝑛) = [

𝑥𝑛1
𝑥𝑛2
⋮
𝑥𝑛𝑝

] 

For testing 𝐻0: 𝜇 = 𝜇0, under the 𝐻0 is true, the Hotelling’s T2 statistic in the one-sample case is 

analogous to the square of 𝑇 given in (1.1): 

𝐻𝑇2 = (�̅� − 𝜇0)
𝑇 (
Σ̂

𝑛
)

−1

(�̅� − 𝜇0), 

where (1) �̅� =
1

𝑛
∑𝑋(𝑖)
𝑛

𝑖=1

 is the sample mean vector, 

(2) 𝜇0 is the proposed population mean vector, and 

(3) Σ̂ =
1

𝑛
∑(𝑋(𝑖) − �̅�)(𝑋(𝑖) − �̅�)

𝑇
𝑛

𝑖=1

 is the sample dispersion matrix by maximum  

                likelihood estimation (Anderson, 2003). 

Under 𝐻0 is true, the test statistic can be defined as: 
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𝑇 =
𝑛 − 𝑝

(𝑛 − 1)𝑝
𝐻𝑇2. 

The test statistic 𝑇 follows 𝐹𝑝,𝑛−𝑝 distribution. 

1.2.2 Two-sample test 

In the univariate case, suppose a random variable 𝑥 can be categorized by a factor 

𝑦 = {1, 2}. Let 𝑥1 represent 𝑥|𝑦 = 1, 𝑥2 represent 𝑥|𝑦 = 2, and they follow normal distributions 

with a common variance: 

(1) 𝑥1~𝑁(𝜇1, 𝜎2), 

(2) 𝑥2~𝑁(𝜇2, 𝜎2). 

Suppose a sample with 𝑛 subjects includes 𝑛1 subjects from the first population and 𝑛2 subjects 

from the second population. We are interested in if 

𝐻0: 𝜇1 = 𝜇2. 

Under 𝐻0 is true, the test statistic can be defined as: 

𝑇 =
�̅�1 − �̅�2

𝑠𝑝𝑜𝑜𝑙𝑒𝑑√
𝑛1 + 𝑛2
𝑛1𝑛2

,                                                         (1.2) 

where (1) �̅�1 and �̅�2 are the sample means of 𝑥 when 𝑦 = 1 and 𝑦 = 2 respectively, 

(2) 𝑠𝑝𝑜𝑜𝑙𝑒𝑑 = √
𝑠𝑠1 + 𝑠𝑠2
𝑛1 + 𝑛2 − 2

 is the pooled standard deviation (𝑠𝑠1 and 𝑠𝑠2 are the sums of 

 squares of 𝑥 when 𝑦 = 1 and 𝑦 = 2 respectively). 

This test statistic 𝑇 follows the 𝑡𝑛1+𝑛2−2 distribution. Now, we consider a multivariate case. 

Suppose a random vector 𝑋𝑝×1 can be categorized by a factor 𝑦 = {1, 2}. Let 𝑋1 represent 

𝑋|𝑦 = 1, 𝑋2 represent 𝑋|𝑦 = 2, and they follow two multivariate normal distributions with a 

common dispersion matrix: 
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(1) 𝑋1~𝑀𝑉𝑁(𝜇1, Σ𝑝×𝑝), 

(2) 𝑋2~𝑀𝑉𝑁(𝜇2, Σ𝑝×𝑝). 

Suppose a sample with 𝑛 subjects includes 𝑛1 subjects from the first population and 𝑛2 subjects 

from the second population. For testing 𝐻0: 𝜇1 = 𝜇2, under the 𝐻0 is true, the Hotelling’s T2 in 

the two-sample test is analogous to the square of 𝑇 given in (1.2): 

𝐻𝑇2 =
𝑛1𝑛2
𝑛1 + 𝑛2

(�̅�1 − �̅�2)
𝑇Σ̂𝑝𝑜𝑜𝑙𝑒𝑑

−1 (�̅�1 − �̅�2), 

where (1) �̅�1 =
1

𝑛1
∑𝑋(𝑖)
𝑛1

𝑖=1

      ∀𝑋|𝑦 = 1, 

(2) �̅�2 =
1

𝑛2
∑𝑋(𝑗)
𝑛2

𝑗=1

      ∀𝑋|𝑦 = 2, 

(3) Σ̂𝑝𝑜𝑜𝑙𝑒𝑑 

=
1

𝑛1 + 𝑛2 − 2
(∑(𝑋1

(𝑖)
− �̅�1)(𝑋1

(𝑖)
− �̅�1)

𝑇
𝑛1

𝑖=1

+∑(𝑋2
(𝑗)
− �̅�2) (𝑋2

(𝑗)
− �̅�2)

𝑇
𝑛2

𝑗=1

) 

is the pooled sample dispersion matrix (Anderson, 2003). 

Under 𝐻0 is true, the test statistic can be defined as: 

𝑇 =
𝑛 − 𝑝 − 1

(𝑛 − 2)𝑝
𝐻𝑇2 (Izenman, 2008). 

The test statistic 𝑇 follows the 𝐹𝑝,𝑛−𝑝−1 distribution. 

1.3 Rotation gene set test 

Gene set tests based on permutation of probes for computing 𝑝-values assume that genes 

are independent. However, this assumption is unrealistic. Wu et al. (2010) proposed ROAST 

gene set test that allows for genewise correlation by using rotation which is a Monte Carlo 

technology for multivariate regression. In this section, we review the concept of ROAST test. 
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1.3.1 Statistical model 

Suppose we have the expression data on 𝐺 probes in each of 𝑛 RNA samples. There are  

𝑝 − 1 different treatments associated with the samples. Let 𝑦𝑔𝑖 be the 𝑙𝑜𝑔2-expression value for 

the 𝑖𝑡ℎ sample of probe 𝑔 and 𝑦𝑔 = [𝑦𝑔1 𝑦𝑔2 ⋯ 𝑦𝑔𝑛]𝑇 is a vector of expression values of 

probe 𝑔 for 𝑛 samples. Assumptions for ROAST are listed below (Wu et al., 2010): 

(1) The 𝑦 = [𝑦1 𝑦2 ⋯ 𝑦𝑔 ⋯ 𝑦𝐺]𝑇 follows a multivariate normal distribution with 

unknown correlations between probes. 

(2) An experiment is assumed a linear model: 

𝐸(𝑦𝑔) = 𝑋𝛼𝑔, 

where 𝑋 is a 𝑛 × 𝑝 design matrix of full column rank to indicate how the treatment 

factors are assigned to RNA samples and 𝛼𝑔 = [𝛼𝑔1 𝛼𝑔2 ⋯ 𝛼𝑔𝑗 ⋯ 𝛼𝑔𝑝]𝑇 is an 

unknown coefficient vector with a length of 𝑝. A coefficient 𝛼𝑔𝑗 represents the (𝑗 − 1)𝑡ℎ 

treatment effect or difference associated with probe 𝑔. 

(3) The variance of 𝑦𝑔 is assumed: 

𝑉𝑎𝑟(𝑦𝑔) = 𝑊
−1𝜎𝑔

2, 

where 𝑊 is a positive definite matrix of weight and 𝜎𝑔
2 is the unknown probewise 

variance. 

(4) The probewise variance 𝜎𝑔
2 is assumed that it follows an inverse-𝜒2 distribution: 

1

𝜎𝑔2
~
1

𝑠0
2 𝜒𝑑0

2 , 

where 𝑠0
2 is the prior variance represented typical variability and 𝑑0 is the prior degrees of 

freedom used to control how consistent the variability is across probes. 
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1.3.2 Probe level test 

For a probe level test, suppose we are interested in a contrast of coefficients (Wu et al., 

2010): 

𝛽𝑔 = 𝑐𝑇𝛼𝑔 = [𝑐1 𝑐2 ⋯ 𝑐𝑝] [

𝛼𝑔1
𝛼𝑔2
⋮
𝛼𝑔𝑝

] =∑𝑐𝑗𝛼𝑔𝑗

𝑝

𝑗=1

. 

To find whether the 𝛽𝑔 is nonzero, we state the null hypothesis as: 

𝐻0: 𝛽𝑔 = 0. 

The test statistic 𝑡𝑔 follows a 𝑡 distribution with degrees of freedom 𝑑 = 𝑛 − 𝑝 under the null 

hypothesis: 

𝑡𝑔 =
�̂�𝑔

𝑠𝑔√𝜈
, 

where �̂�𝑔 = 𝑐𝑇�̂�𝑔 =∑𝑐𝑗�̂�𝑔𝑗

𝑝

𝑗=1

is the least squares estimator of 𝛽𝑔, 𝑠𝑔 is the residual standard 

deviation for probe 𝑔, and 𝜈 = 𝑐𝑇(𝑋𝑇𝑊𝑋)−1𝑐 is an unscaled standard deviation of �̂�𝑔. An 

amended and superior test was derived by using the studies of Wright and Simon (2003) and 

Smyth (2004) to calculate the posterior variance �̃�𝑔
2 as: 

�̃�𝑔
2 =

𝑑0𝑠0
2 + 𝑑𝑠𝑔

2

𝑑0 + 𝑑
. 

Then, the moderated test statistic �̃�𝑔 follows a 𝑡 distribution with degrees of freedom 𝑑0 + 𝑑 

under the null hypothesis: 

�̃�𝑔 =
�̂�𝑔

�̃�𝑔√𝜈
. 
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The moderated test statistic �̃�𝑔 can be transformed to an equivalent standard normal random 

variables 𝑧𝑔 as: 

𝑧𝑔 = 𝐹
−1(𝐹𝑡�̃�𝑔), 

where 𝐹 and 𝐹𝑡 are the cumulative distribution functions of standard normal and 𝑡𝑑𝑓=𝑑0+𝑑 

distribution respectively. 

1.3.3 Gene set test 

Suppose 𝑆 is the set of indices of the probes in the gene set of interest. We can state the 

null hypothesis as (Wu et al., 2010): 

𝐻0: 𝛽𝑔 = 0 ∀𝑔 ∈ 𝑆. 

The alternative hypothesis can be any one of three different statements listed in Table 1.1 based 

on one-tailed or two-tailed test. 

Table 1.1 

Three Different Alternative Hypotheses of ROAST 

Type of 𝐻1 Statement 

𝐻𝑢𝑝 𝛽𝑔 > 0 for at least one 𝑔 ∈ 𝑆 

𝐻𝑑𝑤𝑜𝑛 𝛽𝑔 < 0 for at least one 𝑔 ∈ 𝑆 

𝐻𝑚𝑖𝑥𝑒𝑑 {

𝛽𝑔 ≠ 0 for at least one 𝑔 ∈ 𝑆 or                                

genes can change in mixed (up or down) directions

 

Let 𝑎𝑔 be a weight for probe 𝑔 and 𝐴 = ∑ |𝑎𝑔|𝑔∈𝑆 . Wu et al. (2010) proposed following different 

summary statistics calculated in term of the 𝑧𝑔: 

(1) All genes in the gene set 𝑆 are differentially expressed by a similar amount: 

The test statistics for testing the directional hypotheses 𝐻𝑢𝑝 or 𝐻𝑑𝑤𝑜𝑛 can be given by: 

𝑇𝑚𝑒𝑎𝑛 =
∑ 𝑎𝑔𝑧𝑔𝑔∈𝑆

𝐴
. 
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The test statistic for testing a non-directional hypothesis 𝐻𝑚𝑖𝑥𝑒𝑑 the can be obtained by: 

𝑇𝑚𝑒𝑎𝑛 =
∑ |𝑎𝑔𝑧𝑔|𝑔∈𝑆

𝐴
. 

(2) Only a few genes in the set 𝑆 are differentially expressed or some log-fold-changes are 

much larger than other: 

In this case, mean of the squared genewise statistics can better detect differentially 

expressed genes. The test statistic for testing hypothesis 𝐻𝑚𝑖𝑥𝑒𝑑 is defined as: 

𝑇𝑚𝑠𝑞 =
∑ |𝑎𝑔|𝑧𝑔

2
𝑔∈𝑆

𝐴
. 

The test statistic for test hypothesis 𝐻𝑢𝑝 is defined as: 

𝑇𝑚𝑠𝑞 =
∑ |𝑎𝑔|𝑧𝑔

2
𝑎𝑔𝑧𝑔>0

𝐴
 ∀𝑔 ∈ 𝑆. 

The test statistic for test hypothesis 𝐻𝑑𝑜𝑤𝑛 is defined as: 

𝑇𝑚𝑠𝑞 =
∑ |𝑎𝑔|𝑧𝑔

2
𝑎𝑔𝑧𝑔<0

𝐴
 ∀𝑔 ∈ 𝑆. 

(3) Around a half of genes in the set 𝑆 are differentially expressed: 

In this case, mean-50 statistics can sensitively notice differentially expressed genes. Let 

ℎ = ⌈(𝑚 + 1)/2⌉, where 𝑚 is the number of genes in the gene set 𝑆. The test statistic for 

testing hypothesis 𝐻𝑚𝑖𝑥𝑒𝑑 is defined as: 

𝑇𝑚𝑒𝑎𝑛50 = the mean of the ℎ largest |𝑎𝑔𝑧𝑔| values. 

The test statistic for test hypothesis 𝐻𝑢𝑝 is defined as: 

𝑇𝑚𝑒𝑎𝑛50 = the mean of the ℎ largest 𝑎𝑔𝑧𝑔 values. 

The test statistic for test hypothesis 𝐻𝑑𝑜𝑤𝑛 is defined as: 

𝑇𝑚𝑠𝑞 = the mean of the ℎ samllest 𝑎𝑔𝑧𝑔 values. 
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(4) Floor-mean statistic: 

This statistic is motivated by the max-mean statistic proposed by Efron and Tibshirani 

(2007). The floor-mean statistic works alike to the mean-50 statistic. However, the 

computation of floor-mean statistic is faster than mean-50. For hypotheses 𝐻𝑢𝑝 and 

𝐻𝑑𝑜𝑤𝑛, the floored genewise statistics are 𝑓𝑔 = 𝑚𝑎𝑥(𝑧𝑔, 0) and 𝑓𝑔 = 𝑚𝑖𝑛(𝑎𝑔𝑧𝑔, 0) 

respectively and their test statistic is defined as: 

𝑇𝑓𝑙𝑜𝑜𝑟𝑚𝑒𝑎𝑛 =
∑ 𝑎𝑔𝑓𝑔𝑔∈𝑆

𝐴
. 

For the hypothesis 𝐻𝑚𝑖𝑥𝑒𝑑, the floored genewise statistic is 𝑓𝑔 = 𝑚𝑎𝑥(|𝑧𝑔|, 0.67) and the 

test statistic is defined as: 

𝑇𝑓𝑙𝑜𝑜𝑟𝑚𝑒𝑎𝑛 =
∑ |𝑎𝑔𝑓𝑔|𝑔∈𝑆

𝐴
. 

1.3.4 𝒑-values 

Since the correlation between probes is unknown, the distribution of test statistic is 

unknown. Goeman and Bühlmann (2007) stated that the 𝑝-values derived from the methods with 

an assumption of independence can greatly understate the true 𝑝-values. ROAST does not 

permute samples because permutation needs a large number of replicate samples, cannot test 

general linear model hypotheses, and assumes that samples are identically distributed and 

exchangeable. Instead, ROAST utilizes the concepts of rotation tests studied by Langsrud (2005). 

The 𝑝-values is defined as: 

𝑝-value =
𝑏 + 1

𝐵 + 1
, 

where 𝑏 is the number that yield a rotation statistic at least as extreme as that observed and 𝐵 is 

the total number of rotations.  
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Chapter 2 

Methodology 

In this chapter, we review the concept and statistical properties of distance correlation 

proposed by Székely, Rizzo, and Bakirov in 2007 and derive the distance correlation between a 

binary variable and a continuous random vector. To begin with, we introduce the notion of 

characteristic function. 

2.1 Characteristic function 

If 𝑋 is a random variable, the cumulative distribution function (CDF) of 𝑋 is defined as: 

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥). 

The CDF contains all the information of the distribution of 𝑋. The moment generating function 

(MGF) of 𝑋 is defined as: 

𝑚𝑋(𝑡) = 𝐸(𝑒𝑡𝑋)            𝑡 ∈ ℝ, 

and also provides information of the distribution of 𝑋. One of the major theoretical drawbacks is 

that MGF may not exist. The problem can be solved by involving imaginary number, 𝑖 = √−1, 

to make the characteristic function such as (Evans & Rosenthal, 2010): 

𝐶𝑋(𝑡) = 𝐸(𝑒
𝑖𝑡𝑋)            𝑡 ∈ ℝ 

= 𝐸(𝑐𝑜𝑠(𝑡𝑋)) + 𝑖𝐸(𝑠𝑖𝑛(𝑡𝑋))            𝑡 ∈ ℝ. 

Let 𝑋 be a continuous variable with a probability density function 𝑓𝑋(𝑥), the characteristic 

function of 𝑋 is: 

𝐶𝑋(𝑡) = ∫ 𝑒𝑖𝑡𝑥𝑓𝑋(𝑥)𝑑𝑥
∞

−∞

. 

If 𝑋1, 𝑋2, ⋯ , 𝑋𝑝 are independent random variables, then 

𝐶𝑋1, 𝑋2, ⋯, 𝑋𝑝
(𝑡) = 𝐶𝑋1(𝑡)𝐶𝑋2(𝑡)⋯𝐶𝑋𝑝(𝑡). 
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Unlike moment generating functions, characteristic functions always exist (Blitzstein & Hwang, 

2015). Characteristic functions will be used to define distance correlation in the next section. 

2.2 Distance correlation 

Distance correlation proposed by Székely, Rizzo, and Bakirov (2007) is an innovative 

measure of true dependence between random vectors 𝑋 and 𝑌 with arbitrary dimensions. 

Distance covariance 𝒱 and distance correlation ℛ are analogous to product-moment covariance 

𝜎2 and correlation 𝜌. The range of distance correlation is 0 ≤ ℛ(𝑋, 𝑌) ≤ 1 and ℛ(𝑋, 𝑌) = 0 if 

and only if 𝑋 and 𝑌 are independent. These are different from the prevailing product-moment 

correlation that −1 ≤ 𝜌 ≤ 1 and 𝜌 = 0 only indicates that the two random variables are linearly 

uncorrelated. The notations defined here will be used in illustration of the concepts of distance 

correlation later. 

(1) 𝑋 is a random vector in a space ℝ𝑝 where 𝑝 is a positive integer. 

(2) 𝑌 is a random vector in a space ℝ𝑞 where 𝑞 is a positive integer. 

(3) 𝑓𝑋 and 𝑓𝑌 denote the characteristic functions of 𝑋 and 𝑌 respectively. 

(4) 𝑓𝑋,𝑌 denotes the joint characteristic function of 𝑋 and 𝑌. 

(5) |𝑥|𝑝  denotes the Euclidean norm of a vector 𝑥 in a space ℝ𝑝. |𝑥|𝑝 = |𝑥| when 𝑝 = 1 

(6) ‖𝛾‖𝑤
2  denotes the weighted 𝐿2 norm for a complex function 𝛾 defined on ℝ𝑝 × ℝ𝑞.  

(6) 𝒱(𝑋, 𝑌) denotes the population distance covariance (dCov) between 𝑋 and 𝑌. 

(7) 𝒱(𝑋) denotes the population distance variance (dVar) of 𝑋. 

(8) ℛ(𝑋, 𝑌) denotes the population distance correlation (dCor) between 𝑋 and 𝑌. 

(9) 𝒱𝑛(𝑋, 𝑌) denotes the sample distance covariance (dCov𝑛) between 𝑋 and 𝑌. 

(10) 𝒱𝑛(𝑋) denotes the sample distance variance (dVar𝑛) of 𝑋. 

(11) ℛ𝑛(𝑋, 𝑌) denotes the sample distance correlation (dCor𝑛) between 𝑋 and 𝑌. 
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(10) �̃�𝑛
2(𝑋, 𝑌) denotes the unbiased estimator of squared population distance  

covariance (dCov
2
) between 𝑋 and 𝑌. 

(11) 𝒱𝑛
∗(𝑋, 𝑌) denotes the modified distance covariance statistic between 𝑋 and 𝑌. 

(12) ℛ𝑛
∗ (𝑋, 𝑌) denotes the modified distance correlation statistic between 𝑋 and 𝑌. 

2.2.1 Definition of distance covariance 

In their seminal work, Székely, Rizzo, and Bakirov (2007) introduced the distance 

covariance between 𝑋 and 𝑌 with finite first moments: 

𝒱2(𝑋, 𝑌) = ‖𝑓𝑋,𝑌(𝑡, 𝑠) − 𝑓𝑋(𝑡)𝑓𝑌(𝑠)‖
2
=

1

𝑐𝑝𝑐𝑞
∫

|𝑓𝑋,𝑌(𝑡, 𝑠) − 𝑓𝑋(𝑡)𝑓𝑌(𝑠)|
2

|𝑡|𝑝
1+𝑝|𝑠|𝑞

1+𝑞
ℝ𝑝+𝑞

𝑑𝑡𝑑𝑠, 

where 𝑐𝑝 =
𝜋(

1+𝑝
2
)

Γ (
1 + 𝑝
2 )

,  𝑐𝑞 =
𝜋(

1+𝑞
2
)

Γ (
1 + 𝑞
2 )

, and Γ(𝑥) = ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡
∞

0

 ∀𝑥 > 0 is the complete 

gamma function. Similarly, distance variance of 𝑋 denoted by 𝒱(𝑋) is defined as the square root 

of: 

𝒱2(𝑋) = 𝒱2(𝑋, 𝑋) = ‖𝑓𝑋,𝑋(𝑡, 𝑠) − 𝑓𝑋(𝑡)𝑓𝑋(𝑠)‖
2
. 

Székely et al (2007) also derive a second definition of distance correlation using inter-point 

distance (e.g., Euclidean distance) and proved its equivalency to the original definition: 

𝒱2(𝑋, 𝑌) = 𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 − 𝑌2|𝑞) + 𝐸(|𝑋1 − 𝑋2|𝑝)𝐸(|𝑌1 − 𝑌2|𝑞) − 

2𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 − 𝑌3|𝑞) 

= dCov
2(𝑋, 𝑌) 

= Cov(|𝑋1 − 𝑋2|𝑝, |𝑌1 − 𝑌2|𝑞) − 2Cov(|𝑋1 − 𝑋2|𝑝, |𝑌1 − 𝑌3|𝑞),       (2.1) 

where (𝑋1, 𝑌1), (𝑋2, 𝑌2), and (𝑋3, 𝑌3) are independent copies of (𝑋, 𝑌). The detailed proof is 

provided in Appendix A. In this thesis, we considered a special case of distance correlation 

where a random vector 𝑋 following any multivariate distribution and a random variable 
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𝑌~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋) where 𝑌 = 0 , 1 for any two categories and 𝜋 = 𝑃(𝑌 = 1). Then, the original 

formula of the squared distance covariance can be simplified as: 

𝒱2(𝑋, 𝑌) 

= 𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 − 𝑌2|𝑞) + 𝐸(|𝑋1 − 𝑋2|𝑝)𝐸(|𝑌1 − 𝑌2|𝑞) − 2𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 − 𝑌3|𝑞) 

= 2𝑑00(−𝜋
4 + 3𝜋3 − 4𝜋2 + 3𝜋 − 1) + 2𝑑11(−𝜋

4 + 𝜋3 − 𝜋2) + 

2𝑑01(2𝜋
4 − 4𝜋3 + 3𝜋2 − 𝜋),                                                                                               (2.2) 

where 𝑑00 = 𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 0, 𝑌2 = 0), 𝑑11 = 𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 1, 𝑌2 = 1), and 𝑑01 =

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 0, 𝑌2 = 1) = 𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 1, 𝑌2 = 0). A detailed proof is provided in 

Appendix B. 

2.2.2 Definition of distance correlation 

Székely, Rizzo, and Bakirov (2007) defined the distance correlation between 𝑋 and 𝑌 

with finite first moments is the nonnegative number ℛ(𝑋, 𝑌) as: 

ℛ2(𝑋, 𝑌) =

{
 
 

 
 𝒱2(𝑋, 𝑌)

√𝒱2(𝑋)𝒱2(𝑌)
,       𝒱2(𝑋)𝒱2(𝑌) > 0;

0,                             𝒱2(𝑋)𝒱2(𝑌) = 0.

 

2.2.3 Estimated distance covariate and distance correlation 

For a random sample of size 𝑛, (𝑋, 𝑌) = {(𝑋𝑘, 𝑌𝑘): 𝑘 = 1, 2, 3, ⋯ , 𝑛} from a joint 

distribution of random vectors 𝑋 in a space ℝ𝑝 and 𝑌 in a space ℝ𝑞, Székely, Rizzo, and Bakirov 

(2007) defined the distance dependence statistics as following: 

                  𝟏 𝟐 ⋯ 𝒑

𝑋𝑛×𝑝 =

𝟏
𝟐
⋮
𝒏

[

𝑥11 𝑥12 ⋯ 𝑥1𝑝
𝑥21 𝑥22 ⋯ 𝑥2𝑝
⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑝

]
, 
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(𝑋1)𝑝×1 = [

𝑥11
𝑥12
⋮
𝑥1𝑝

] , (𝑋2)𝑝×1 = [

𝑥21
𝑥22
⋮
𝑥2𝑝

] , ⋯ , (𝑋𝑛)𝑝×1 = [

𝑥11
𝑥12
⋮
𝑥1𝑝

] , 

                  𝟏 𝟐 ⋯ 𝒒

𝑌𝑛×𝑞 =

𝟏
𝟐
⋮
𝒏

[

𝑦11 𝑦12 ⋯ 𝑦1𝑞
𝑦21 𝑦22 ⋯ 𝑦2𝑞
⋮ ⋮ ⋱ ⋮
𝑦𝑛1 𝑦𝑛2 ⋯ 𝑦𝑛𝑞

]
, 

(𝑌1)𝑞×1 = [

𝑦11
𝑦12
⋮
𝑦1𝑞

] , (𝑌2)𝑞×1 = [

𝑦21
𝑦22
⋮
𝑦2𝑞

] , ⋯ , (𝑌𝑛)𝑞×1 = [

𝑦11
𝑦12
⋮
𝑦1𝑞

] . 

Let 𝑎𝑘𝑙 and 𝑏𝑘𝑙 where 𝑘, 𝑙 = 1, 2, ⋯ , 𝑛 represent Euclidean distances between any two 

observations of (𝑋, 𝑌). Then, 𝑎𝑘𝑙 is given by: 

𝑎𝑘𝑙 = |𝑋𝑘 − 𝑋𝑙|𝑝 = |[

𝑥𝑘1
𝑥𝑘2
⋮
𝑥𝑘𝑝

] − [

𝑥𝑙1
𝑥𝑙2
⋮
𝑥𝑙𝑝

]|

𝑝

= |[

𝑥𝑘1 − 𝑥𝑙1
𝑥𝑘2 − 𝑥𝑙2

⋮
𝑥𝑘𝑝 − 𝑥𝑙𝑝

]|

𝑝

                              

= √(𝑥𝑘1 − 𝑥𝑙1)2 + (𝑥𝑘2 − 𝑥𝑙2)2 +⋯+ (𝑥𝑘𝑝 − 𝑥𝑙𝑝)
2
 

= √∑(𝑥𝑘𝑖 − 𝑥𝑙𝑖)2

𝑝

𝑖=1

,                                                                                                  (2.3) 

and similarly, 

𝑏𝑘𝑙 = √∑(𝑦𝑘𝑖 − 𝑦𝑙𝑖)2

𝑞

𝑖=1

.                                                         (2.4) 

Let the distances be collected into two distance matrices. The two distance matrices are shown in 

Tables 2.1 and 2.2 below: 
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Table 2.1 

Distance Matrix for the Random Vector 𝑋 

𝒌\𝒍 𝑿𝟏 𝑿𝟐 ⋯ 𝑿𝒏 Average 

𝑿𝟏 𝑎11 = 0 𝑎12 ⋯ 𝑎1𝑛 �̅�1∙ = (
1

𝑛
)∑𝑎1𝑙

𝑛

𝑙=1

 

𝑿𝟐 𝑎21 𝑎22 = 0 ⋯ 𝑎2𝑛 �̅�2∙ = (
1

𝑛
)∑𝑎2𝑙

𝑛

𝑙=1

 

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 

𝑿𝒏 𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛 = 0 �̅�𝑛∙ = (
1

𝑛
)∑𝑎𝑛𝑙

𝑛

𝑙=1

 

Average �̅�∙1 =
1

𝑛
∑𝑎𝑘1

𝑛

𝑘=1

 �̅�∙2 =
1

𝑛
∑𝑎𝑘2

𝑛

𝑘=1

 ⋯ �̅�∙𝑛 =
1

𝑛
∑𝑎𝑘𝑛

𝑛

𝑘=1

 �̅�∙∙ = (
1

𝑛2
) ∑ 𝑎𝑘𝑙

𝑛

𝑘,𝑙=1

 

 

 

Table 2.2 

Distance Matrix for the Random Vector 𝑌 

𝒌\𝒍 𝒀𝟏 𝒀𝟐 ⋯ 𝒀𝒏 Average 

𝒀𝟏 𝑏11 = 0 𝑏12 ⋯ 𝑏1𝑛 �̅�1∙ = (
1

𝑛
)∑𝑏1𝑙

𝑛

𝑙=1

 

𝒀𝟐 𝑏21 𝑏22 = 0 ⋯ 𝑏2𝑛 �̅�2∙ = (
1

𝑛
)∑𝑏2𝑙

𝑛

𝑙=1

 

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 

𝒀𝒏 𝑏𝑛1 𝑏𝑛2 ⋯ 𝑏𝑛𝑛 = 0 �̅�𝑛∙ = (
1

𝑛
)∑𝑏𝑛𝑙

𝑛

𝑙=1

 

Average �̅�∙1 =
1

𝑛
∑𝑏𝑘1

𝑛

𝑘=1

 �̅�∙2 =
1

𝑛
∑𝑏𝑘2

𝑛

𝑘=1

 ⋯ �̅�∙𝑛 =
1

𝑛
∑𝑏𝑘𝑛

𝑛

𝑘=1

 �̅�∙∙ = (
1

𝑛2
) ∑ 𝑏𝑘𝑙

𝑛

𝑘,𝑙=1
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To make double centered distance matrices from the distance matrices above, double centered 

elements can be calculated by: 

𝐴𝑘𝑙 = 𝑎𝑘𝑙 − �̅�𝑘∙ − �̅�∙𝑙 + �̅�∙∙ 

𝐵𝑘𝑙 = 𝑏𝑘𝑙 − �̅�𝑘∙ − �̅�∙𝑙 + �̅�∙∙ 

In these two double centered distance matrices, row means, column means, and the grand means 

all equal zero. The relationships among 𝐴𝑘𝑙, 𝑎𝑘𝑙, �̅�𝑘∙, �̅�∙𝑙, �̅�∙∙ and 𝐵𝑘𝑙, 𝑏𝑘𝑙, �̅�𝑘∙, �̅�∙𝑙, �̅�∙∙ are shown in 

Tables 2.3 and 2.4 below: 

Table 2.3 

Relationship among 𝐴𝑘𝑙, 𝑎𝑘𝑙, �̅�𝑘∙, �̅�∙𝑙, and �̅�∙∙ in the Distance Matrix for the Random Vector 𝑋 

𝒌\𝒍 𝑿𝟏 𝑿𝟐 ⋯ 𝑿𝒍 ⋯ 𝑿𝒏 Average 

𝑿𝟏 𝑎11 𝑎12 ⋯ 𝑎1𝑙 ⋯ 𝑎1𝑛 �̅�1∙ 

𝑿𝟐 𝑎21 𝑎22 ⋯ 𝑎2𝑙 ⋯ 𝑎2𝑛 �̅�2∙ 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑿𝒌 𝑎𝑘1 𝑎𝑘2 ⋯ 𝒂𝒌𝒍 ⋯ 𝑎𝑘𝑛 �̅�𝒌∙ 

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 

𝑿𝒏 𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑙 ⋯ 𝑎𝑛𝑛 �̅�𝑛∙ 

Average �̅�∙1 �̅�∙2 ⋯ �̅�∙𝒍 ⋯ �̅�∙𝑛 �̅�∙∙ 

 

Table 2.4 

Relationship among 𝐵𝑘𝑙, 𝑏𝑘𝑙, �̅�𝑘∙, �̅�∙𝑙, and �̅�∙∙ in the Distance Matrix for the Random Vector 𝑌 

𝒌\𝒍 𝒀𝟏 𝒀𝟐 ⋯ 𝒀𝒍 ⋯ 𝒀𝒏 Average 

𝒀𝟏 𝑏11 𝑏12 ⋯ 𝑏1𝑙 ⋯ 𝑏1𝑛 �̅�1∙ 

𝒀𝟐 𝑏21 𝑏22 ⋯ 𝑏2𝑙 ⋯ 𝑏2𝑛 �̅�2∙ 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝒀𝒌 𝑏𝑘1 𝑏𝑘2 ⋯ 𝒃𝒌𝒍 ⋯ 𝑏𝑘𝑛 �̅�𝒌∙ 

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 

𝒀𝒏 𝑏𝑛1 𝑏𝑛2 ⋯ 𝑏𝑛𝑙 ⋯ 𝑏𝑛𝑛 �̅�𝑛∙ 

Average �̅�∙1 �̅�∙2 ⋯ �̅�∙𝒍 ⋯ �̅�∙𝑛 �̅�∙∙ 
(−) 

(+) 

(−) 

𝑩𝒌𝒍  

(−) 

(+) 

(−) 

𝑨𝒌𝒍  
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There were two issues of distance covariance/correlation: (1) ℛ𝑛
2(𝑋, 𝑌) goes to 1 when 𝑝 and 𝑞 

go infinity even though 𝑋 and 𝑌 are independent for any sample size 𝑛 and (2) the difference of 

double centered distance matrices is usually not a double centered distance matrix of any sample. 

Székely and Rizzo in their later studies defined different versions of 𝐴𝑘𝑙 and 𝐵𝑘𝑙 to solve the 

problems (details are at the end of this chapter). The double centered distance matrices are shown 

in Tables 2.5 and 2.6 below: 

Table 2.5 

Double Centered Distance Matrix for the Random Vector 𝑋 

𝒌\𝒍 𝑿𝟏 𝑿𝟐 ⋯ 𝑿𝒍 ⋯ 𝑿𝒏 Average 

𝑿𝟏 𝐴11 𝐴12 ⋯ 𝐴1𝑙 ⋯ 𝐴1𝑛 �̅�1∙ = 0 

𝑿𝟐 𝐴21 𝐴22 ⋯ 𝐴2𝑙 ⋯ 𝐴2𝑛 �̅�2∙ = 0 

            ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑿𝒌 𝐴𝑘1 𝐴𝑘2 ⋯ 𝐴𝑘𝑙  ⋯ 𝐴𝑘𝑛 �̅�𝑘∙ = 0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 

𝑿𝒏 𝐴𝑛1 𝐴𝑛2 ⋯ 𝐴𝑛𝑙 ⋯ 𝐴𝑛𝑛 �̅�𝑛∙ = 0 

Average �̅�∙1 = 0 �̅�∙2 = 0 ⋯ �̅�∙𝑙 = 0 ⋯ �̅�∙𝑛 = 0 �̅�∙∙ = 0 

 

Table 2.6 

Double Centered Distance Matrix for the Random Vector 𝑌 

𝒌\𝒍 𝒀𝟏 𝒀𝟐 ⋯ 𝒀𝒍 ⋯ 𝒀𝒏 Average 

𝒀𝟏 𝐵11 𝐵12 ⋯ 𝐵1𝑙 ⋯ 𝐵1𝑛 �̅�1∙ = 0 

𝒀𝟐 𝐵21 𝐵22 ⋯ 𝐵2𝑙 ⋯ 𝐵2𝑛 �̅�2∙ = 0 

            ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝒀𝒌 𝐵𝑘1 𝐵𝑘2 ⋯ 𝐵𝑘𝑙 ⋯ 𝐵𝑘𝑛 �̅�𝑘∙ = 0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 

𝒀𝒏 𝐵𝑛1 𝐵𝑛2 ⋯ 𝐵𝑛𝑙 ⋯ 𝐵𝑛𝑛 �̅�𝑛∙ = 0 

Average �̅�∙1 = 0 �̅�∙2 = 0 ⋯ �̅�∙𝑙 = 0 ⋯ �̅�∙𝑛 = 0 �̅�∙∙ = 0 
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In the double centered distance matrix of 𝑋, �̅�𝑘∙ = 0 for the 𝑘th row, where 𝑘 = 1, 2, ⋯ , 𝑛. The 

detailed proof is provided in Appendix C. Similarly, we have �̅�∙𝑙 = 0, �̅�𝑘∙ = 0, and �̅�∙𝑙 = 0 for 

𝑘, 𝑙 = 1, 2, ⋯ , 𝑛. Therefore, the estimated nonnegative distance covariace 𝒱𝑛(𝑋, 𝑌) is equal to 

the square root of the average of elementwise products of these two double centered matrices:  

𝒱𝑛
2(𝑋, 𝑌) = (

1

𝑛2
) ∑ (𝐴𝑘𝑙𝐵𝑘𝑙)

𝑛

𝑘,𝑙=1

. 

Analogously, an estimated nonnegative distance variance of 𝑋 denoted by 𝒱𝑛(𝑋) is given by the 

square root of: 

𝒱𝑛
2(𝑋) = 𝒱𝑛

2(𝑋, 𝑋) = (
1

𝑛2
) ∑ 𝐴𝑘𝑙

2

𝑛

𝑘,𝑙=1

. 

The empirical distance correlation ℛ𝑛(𝑋, 𝑌) is defined as the square root of: 

ℛ𝑛
2(𝑋, 𝑌) =

{
 
 

 
 𝒱𝑛

2(𝑋, 𝑌)

√𝒱𝑛2(𝑋)𝒱𝑛2(𝑌)
, if 𝒱𝑛

2(𝑋)𝒱𝑛
2(𝑌) > 0;

0,                           if 𝒱𝑛
2(𝑋)𝒱𝑛

2(𝑌) = 0.

 

2.2.4 Implementation of the distance covariance test 

The distance covariance test is for testing multivariate independence. For small samples, 

a reference distribution for 𝑛𝒱𝑛
2(𝑋, 𝑌) under independence through the observed sample is 

established since the distribution of 𝑛𝒱𝑛
2(𝑋, 𝑌) is difficult to calculate (Székely, Rizzo, & 

Bakirov, 2007). This nonparametric test makes decision from permutation bootstrap with a user 

defined number of replicates. That is, the distribution for 𝑛𝒱𝑛
2(𝑋, 𝑌) under independence is 

constructed by calculating replicates of 𝑛𝒱𝑛
2(𝑋, 𝑌) under random permutations of the indices of 

the 𝑌 sample.  
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2.2.5 Modified distance covariance and distance correlation 𝒕-test 

There is a problem with distance covariance. It is that for any fixed sample size 𝑛, 

ℛ𝑛
2(𝑋, 𝑌) goes to 1 when 𝑝 and 𝑞 go infinity even though 𝑋 and 𝑌 are independent (Székely & 

Rizzo, 2013). In the study, modified distance covariance and modified correlation were proposed 

for testing independence between two random vectors of arbitrary dimensions (possibly high-

dimensions). Let 𝐴𝑘𝑙
∗  and 𝐵𝑘𝑙

∗  be modified versions of 𝐴𝑘𝑙 and 𝐵𝑘𝑙 and defined by: 

𝐴𝑘𝑙
∗ =

{
 
 

 
 (

𝑛

𝑛 − 1
) (𝐴𝑘𝑙 −

𝑎𝑘𝑙
𝑛
) , if 𝑘 ≠ 𝑙; 

(
𝑛

𝑛 − 1
) (�̅�𝑘∙ − �̅�∙∙),      if 𝑘 = 𝑙,

 

𝐵𝑘𝑙
∗ =

{
 
 

 
 (

𝑛

𝑛 − 1
) (𝐵𝑘𝑙 −

𝑏𝑘𝑙
𝑛
) , if 𝑘 ≠ 𝑙; 

(
𝑛

𝑛 − 1
) (�̅�𝑘∙ − �̅�∙∙),      if 𝑘 = 𝑙,

 

such that 𝐸(𝐴𝑘𝑙
∗ ) = 𝐸(𝐵𝑘𝑙

∗ ) = 0 ∀ 𝑘, 𝑙. The modified distance covariance statistic can be defined 

using 𝐴𝑘𝑙
∗  and 𝐵𝑘𝑙

∗ : 

𝒱𝑛
∗(𝑋, 𝑌) = (

1

𝑛(𝑛 − 3)
)(∑ 𝐴𝑘𝑙

∗ 𝐵𝑘𝑙
∗

𝑛

𝑘,𝑙=1

− (
𝑛

𝑛 − 2
)∑𝐴𝑘𝑘

∗ 𝐵𝑘𝑘
∗

𝑛

𝑘=1

) , 

where 𝑛 ≥ 3. This modified distance covariance is an unbiased estimator of squared population 

distance covariance. Naturally, the modified distance correlation statistic can be defined by: 

ℛ𝑛
∗ (𝑋, 𝑌) =

{
 
 

 
 𝒱𝑛

∗(𝑋, 𝑌)

√𝒱𝑛
∗(𝑋, 𝑋)𝒱𝑛

∗(𝑌, 𝑌)
, if 𝒱𝑛

∗(𝑋, 𝑋)𝒱𝑛
∗(𝑌, 𝑌) > 0;

0,                                    if 𝒱𝑛
∗(𝑋, 𝑋)𝒱𝑛

∗(𝑌, 𝑌) = 0.

 

Finally, the test statistic can be defined by: 

𝒯𝑛 = √𝜐 − 1
ℛ𝑛
∗ (𝑋, 𝑌)

√1 − ℛ𝑛∗
2(𝑋, 𝑌)

, 
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where 𝜐 =
𝑛(𝑛 − 3)

2
. If 𝑝 and 𝑞 go infinity, under the independence hypothesis, the test 

 statistic 𝒯𝑛 converges in distribution to Student’s 𝑡 with 𝜐 − 1 degrees of freedom. 

2.2.6 𝓤-centering and unbiased distance covariance 

In this part, we discussed the aforementioned issue of double centered distance matrices. 

It is that the difference of double centered distance matrices is usually not a double centered 

distance matrix of any sample. To solve this problem, Székely and Rizzo (2014) in their study 

about partial distance correlation defined an alternate type of double centering in the Hilbert 

space named unbiased or 𝒰-centering that formulates an unbiased estimator of squared 

population distance covariance. Let �̃�𝑘𝑙 and �̃�𝑘𝑙 be the (𝑘, 𝑙)th entry of the 𝒰-centered matrices 

�̃� and �̃� respectively. In the double centering, 𝐴𝑘𝑙 and 𝐵𝑘𝑙 have the property that the all rows and 

columns have zero sums. The 𝒰-centering �̃�𝑘𝑙 and �̃�𝑘𝑙 inherits this property and has the 

additional property that all expectations are equal to zero, that is, 𝐸(�̃�𝑘𝑙) = 0 and (�̃�𝑘𝑙) = 0 

∀𝑘, 𝑙. For 𝑛 > 2, the definitions of �̃�𝑘𝑙 and �̃�𝑘𝑙 are defined by: 

�̃�𝑘𝑙 =

{
 
 

 
 𝑎𝑘𝑙 − (

1

𝑛 − 2
)∑𝑎𝑘ℎ

𝑛

ℎ=1

− (
1

𝑛 − 2
)∑𝑎𝑔𝑙

𝑛

𝑔=1

+ (
1

(𝑛 − 1)(𝑛 − 2)
) ∑ 𝑎𝑔ℎ

𝑛

𝑔,ℎ=1

, if 𝑘 ≠ 𝑙;

0,                                                                                                                                   if 𝑘 = 𝑙,

 

�̃�𝑘𝑙 =

{
 
 

 
 𝑏𝑘𝑙 − (

1

𝑛 − 2
)∑𝑏𝑘ℎ

𝑛

ℎ=1

− (
1

𝑛 − 2
)∑ 𝑏𝑔𝑙

𝑛

𝑔=1

+ (
1

(𝑛 − 1)(𝑛 − 2)
) ∑ 𝑏𝑔ℎ

𝑛

𝑔,ℎ=1

, if 𝑘 ≠ 𝑙;

0,                                                                                                                                   if 𝑘 = 𝑙,

 

where 𝑎𝑘𝑙 and 𝑏𝑘𝑙 can be found in equations (2.3) and (2.4). If 𝐸(|𝑋| + |𝑌|) < ∞, for 𝑛 > 3, the 

unbiased estimator of squared population distance covariance is defined by: 

�̃�𝑛
2(𝑋, 𝑌) = (�̃� ∙ �̃�) = (

1

𝑛(𝑛 − 3)
)∑�̃�𝑘𝑙�̃�𝑘𝑙
𝑘≠𝑙

. 
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Chapter 3 

Simulation Studies 

Simulation studies were conducted to assess and compare type I error rates and statistical 

power of the distance correlation test, Hotelling’s T2 test, and ROAST test in different scenarios. 

The R packages for implementation include clusterGeneration v1.3.4, DescTools v0.99.30, 

energy v1.7-6, limma v3.42.0, and MASS v7.3-51.4. The purposes of the key functions used in 

the simulation studies are described below: 

 The function rcorrmatrix(∙) is from the R package clusterGeneration (Qiu & Joe, 2015). 

The simulations used it with an argument the pre-defined standard deviation vector to 

generate a random positive definite correlation matrix for constructing a positive definite 

dispersion matrix for a random vector. 

 The function mvrnorm(∙) is from the R package MASS (Ripley, Venables, Bates, Hornik, 

Gebhardt, & Firth, 2019). It was employed with arguments a pre-defined mean vector and 

a dispersion matrix to randomly generate data for a multivariate normal random vector 𝑋. 

 The function dcor.test(∙) is from the R package energy (Rizzo & Székely, 2019). It is a 

nonparametric test of multivariate independence. The 𝑝-value of this test is found through 

permutation bootstrap with a specified number of replicates. It was applied to test the 

independence between a random variable 𝑌 and a multivariate normal random vector 𝑋. 

 The function roast(∙) is from the R package limma (Smyth et al., 2019). It was originally 

proposed and implemented for gene set test but it can generally be applied to any variable 

set test. It was used with arguments data of a multivariate normal random vector 𝑋, 

design matrix comprised of intercept which was 1 and the random variable 𝑌, and the 

option contrast of 2 for ROAST testing. This function provides four different 𝑝-values: 
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Down, Up, UporDown (two-sided), and Mixed. In this simulation studies, Mixed 𝑝-value 

was chosen to compare with the significance level 𝛼. 

 The function HotellingsT2Test(∙) is from the R package DescTools (Signorell et al., 

2019). Hotelling’s T2 test is the multivariate generalization of the Student’s t test. It was 

used with an argument the formula of 𝑋~𝑌 to test for a significant difference between the 

mean vectors of two multivariate datasets 𝑋|𝑌 = 0 and 𝑋|𝑌 = 1.  

3.1 Simulation settings 

In the simulation studies, 𝑋 was a random vector of continuous type and 𝑌 was a 

dichotomous random variable. The distributions of 𝑋 and 𝑌 are shown below: 

(𝑋|𝑌 = 𝑖)~𝑀𝑉𝑁𝑝(𝜇𝑖, Σ𝑖) ∀𝑖 = 0 and 1, 

𝑌~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋), 

where 𝑌 = 0 (normal), 1 (cancer) and 𝜋 = 𝑃(𝑌 = 1). We generated the datasets under various 

settings of the mean vectors, dispersion matrices, and sample sizes varied from 40 to 300. 

3.2 Hypotheses and significance level 

There were three different hypothesis tests in the simulation studies. They included 

distance correlation test, Hotelling’s T2 test, and ROAST test. All the hypothesis tests were 

tested at the significance level 𝛼 = 0.05. The hypotheses for these three hypothesis tests are 

listed in Table 3.1 below: 

Table 3.1 

Hypotheses for Distance Correlation, Hotelling’s T2, and ROAST Tests 

 Distance Correlation Test Hotelling’s T2 Test ROAST Test 

𝐻0 ℛ = 0 𝜇0 = 𝜇1 𝛽 = 0 

𝐻1 ℛ ≠ 0 𝜇0 ≠ 𝜇1 𝛽 ≠ 0 
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3.3 Assessing type I error rates (simulation study I):  

A type I error occurs when a true null hypothesis is rejected. A type I error rate is the 

probability that a null hypothesis is rejected when it is true: 

𝑃(reject 𝐻0|𝐻0 is true). 

One important property of distance correlation is that ℛ(𝑋, 𝑌) = 0 only if 𝑋 and 𝑌 are 

independent. It implies that 𝑃(𝑋|𝑌 = 0) = 𝑃(𝑋|𝑌 = 1) = 𝑃(𝑋) if the null hypothesis is true. In 

other words, to make the null hypothesis be true, both (𝑋|𝑌 = 0) and (𝑋|𝑌 = 1) should follow 

an identical multivariate normal distribution 𝑀𝑉𝑁𝑝(𝜇, Σ) where 𝜇 and Σ are the common mean 

vector and the common dispersion matrix of (𝑋|𝑌 = 0) and (𝑋|𝑌 = 1). Similarly, this concept 

can be also applied to a Hotelling’s T2 test and ROAST test. In this part of simulation studies, 

the common mean vector 𝜇 was set as: 

𝜇𝑇 = [0 0 0 0 0 0 0 0], 

the common dispersion matrix Σ was calculated based on the common population standard 

deviation vector: 

𝜎𝑇 = [1 2 3 4 5 0.5 1.5 2.5], 

and the common population correlation matrix 𝑅 which was randomly generated by the function 

rcorrmatrix(∙). The random variable 𝑌 was set to follow the Bernoulli distribution with 𝜋 = 0.5. 

Moreover, the number of replicates was set as 1000. In each replication, two new datasets of the 

random variable 𝑌 and the random vector of 𝑋 were randomly generated respectively for 

distance correlation test, Hotelling’s T
2
 test, and ROAST test. The null hypothesis was rejected if 

a 𝑝-value was less than 𝛼 = 0.05. The numbers of times that a null hypotheses was rejected in 

distance correlation tests, Hotelling’s T2 tests, and ROAST tests within 1000 replicates were 

recorded respectively. A type I error rate can be obtained by: 
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Type I error rate =
The number of times that the 𝐻0 was rejected

1000
. 

The whole process above was performed ten replicates for each different sample size. The 

average type I error rates and standard deviations for different sample sizes were summarized 

based on the ten replicates. The R source code can be found in Appendix D. It can be seen from 

Figure 3.1 that for all settings, the type I error rates are very close to the nominal level of 0.05 

with a standard deviation less than 0.01 (see Table 6.1). 

 

Figure 3.1. Average type I error rate versus sample size in different hypothesis tests. 

3.4 Assessing statistical power 

Power is the probability that a null hypothesis is rejected when it is false: 

𝑃(reject 𝐻0|𝐻0 is false). 

Considering a distance correlation test, the null hypothesis is true only if 𝑋 and 𝑌 are 

independent. To make the null hypothesis be false, 𝑋 and 𝑌 should be dependent each other. If 𝑋 

and 𝑌 are dependent, 𝑃(𝑋|𝑌 = 0) ≠ 𝑃(𝑋) and 𝑃(𝑋|𝑌 = 1) ≠ 𝑃(𝑋) that implies 𝑃(𝑋|𝑌 = 0) ≠



27 

𝑃(𝑋|𝑌 = 1). Therefore, let (𝑋|𝑌 = 0) and (𝑋|𝑌 = 1) follow different multivariate normal 

distributions 𝑀𝑉𝑁𝑝(𝜇0, Σ0) and 𝑀𝑉𝑁𝑝(𝜇1, Σ1) respectively. Similarly, the concept can be also 

applied to a Hotelling’s T2 test and ROAST test. The statistical power was assessed under four 

conditions based on the settings of mean vectors, standard deviation vectors, and correlation 

matrices. The four conditions are listed in Table 3.2. 

Table 3.2 

Settings of the Four Conditions for Assessing Powers 

Condition Mean Standard Deviation Correlation 

1 𝜇0 ≠ 𝜇1 𝜎0 = 𝜎1 𝑅0 = 𝑅1 

2 𝜇0 = 𝜇1 𝜎0 ≠ 𝜎1 𝑅0 ≠ 𝑅1 

3 𝜇0 = 𝜇1 𝜎0 = 𝜎1 𝑅0 ≠ 𝑅1 

4 𝜇0 ≠ 𝜇1 𝜎0 ≠ 𝜎1 𝑅0 ≠ 𝑅1 

The random variable 𝑌 was set to follow the Bernoulli distribution with 𝜋 = 0.5. The number of 

replicates was set as 1000. New datasets for random variable 𝑌 and random vector 𝑋 were 

randomly generated based on different settings of mean vectors, standard deviation vector, and 

correlation matrices for distance correlation test, Hotelling’s T
2
 test, and ROAST test in each 

replication. The null hypothesis was rejected if a 𝑝-value was less than 𝛼 = 0.05. The number of 

times that a null hypothesis was rejected in distance correlation tests, Hotelling’s T2 tests, and 

ROAST tests within 1000 replicates were recorded respectively. A statistical power can be 

calculated by: 

Power =
The number of times that the 𝐻0 was rejected

1000
 

The whole process above was executed ten replicates for each sample size. An average power 

and a standard deviation for each sample size were summarized based on the ten replicates.  
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3.4.1 Simulation study II 

The setting of the simulation study II had the same standard deviation vector and the 

same correlation matrix but different mean vectors for the two groups of the random vector 𝑋 

categorized by the dichotomous random variable 𝑌. The dispersion matrices Σ0 and Σ1 were 

constrained to be same. The common standard deviation vector was set as: 

𝜎𝑇 = [1 2 3 4 5 0.5 1.5 2.5]. 

The common correlation matrix 𝑅 was randomly generated by the rcorrmatrix(∙) function. The 

common dispersion matrix Σ was calculated based on the common standard deviation vector 𝜎 

and the common correlation matrix 𝑅. The 𝜇0 and 𝜇1 were set in three different cases listed in 

Table 3.3. The R problem and means and standard deviations of statistical power under different 

tests and sample sizes for this part of simulation studies can be found in Appendix E. The results 

under the first case showing in Figure 3.2 indicate that both Hotelling’s T2 test and ROAST test 

have means of statistical power around 1 with standard deviations around 0 (see Table 6.2) for 

all sample sizes. However, distance correlation test has means of statistical power below 0.8 with 

standard deviations around 0.01 (see Table 6.2) when sample sizes are less than 80 and means of 

statistical power around 1 with standard deviations below 0.01 (see Table 6.2) when sample sizes 

are 150 or above. 

Table 3.3 

Settings of 𝜇0 and 𝜇1 for Different Three Cases in the Simulation Study II 

 𝜇0
𝑇 𝜇1

𝑇 

Case 1 [0 0 0 0 0 0 0 0] [1 1 1 1 1 1 1 1] 

Case 2 [0 0 0 0 0 0 0 0] [0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5] 

Case 3 [0 0 0 0 0 0 0 0] [0.5 −0.5 0.5 −0.5 0.5 −0.5 0.5 −0.5] 
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Figure 3.2. Average power versus sample size in different hypothesis tests under the first case in 

the simulation study II. 

The results under the second and third cases showing in Figures 3.3 and 3.4 are similar. 

Hotelling’s T2 test has the best performance followed by ROAST test. The means of statistical 

power of Hotelling’s T2 test are around 1 with standard deviations around 0 (see Tables 6.3 and 

6.4) for all sample sizes. The means of statistical power of ROAST test are under 0.8 with 

standard deviations around 0.01 (see Tables 6.3 and 6.4) when sample sizes below 80 and the 

means of statistical power around 1 with standard deviations around 0 (see Tables 6.3 and 6.4) 

when sample sizes are 150 or above. In distance correlation test, the mean of statistical power is 

getting larger when the sample size is increased. Specifically, distance correlation test has a 

mean of statistical power around 0.1 with a standard deviation around 0.01 when sample size is 

40 and a mean of statistical power around 0.8 with a standard deviation around 0.01 when 

sample size becomes 300.  
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Figure 3.3. Average power versus sample size in different hypothesis tests under the second case 

in the simulation study II. 

 

Figure 3.4. Average power versus sample size in different hypothesis tests under the third case in 

the simulation study II. 
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3.4.2 Simulation study III 

The setting of the simulation study III had the same mean vector but different standard 

deviation vectors and different correlation matrices for the two groups of the random vector 𝑋 

categorized by the dichotomous random variable 𝑌. In this simulation study, we set 𝜇0 = 𝜇1 and 

used two random correlation matrices. The common mean vector, standard deviation vectors 

were set in two different cases listed in Table 3.4. The R problem and means and standard 

deviations of statistical power under different tests and sample sizes for the simulation study III 

can be found in Appendix F. The results under the both cases showing in Figures 3.5 and 3.6 are 

similar. Both Hotelling’s T2 test and ROAST test have means of statistical power around 0 with 

standard deviations around 0 (see Tables 6.5 and 6.6) for all sample sizes. However, distance 

correlation test has means of statistical power under 0.8 with standard deviations around 0 (see 

Tables 6.5 and 6.6) when sample sizes are below 80 and means of statistical power around 1 with 

standard deviations around 0 when the sample sizes are 100 or above. 

Table 3.4 

Settings of 𝜇0, 𝜇1, 𝜎0, and 𝜎1 for Different Cases in the Simulation Study III 

 Case 1 Case 2 

𝜇0
𝑇 = 𝜇1

𝑇 [0 0 0 0 0 0 0 0] [0.5 −0.5 0.5 −0.5 0.5 −0.5 0.5 −0.5] 

𝜎0
𝑇 [1 2 3 4 5 0.5 1.5 2.5] [1 2 3 4 5 0.5 1.5 2.5] 

𝜎1
𝑇 [5 4 0.5 3 2.5 1.5 2 1] [5 4 0.5 3 2.5 1.5 2 1] 
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Figure 3.5. Average power versus sample size in different hypothesis tests under the first case in 

the simulation study III. 

 

Figure 3.6. Average power versus sample size in different hypothesis tests under the second case 

in the simulation study III. 
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3.4.3 Simulation study IV 

The setting of the simulation study IV had the same mean vector and standard deviation 

vector but different correlation matrices for the two groups of the random vector 𝑋 categorized 

by the dichotomous random variable 𝑌. We set 𝜇0 = 𝜇1 and Σ0 = Σ1. The common mean vector 

𝜇 was set as: 

𝜇𝑇 = [0 0 0 0 0 0 0 0]. 

The common standard deviation vector 𝜎 was set as: 

𝜎𝑇 = [1 2 3 4 5 0.5 1.5 2.5]. 

Additionally, we used two random correlation matrices. The R problem and means and standard 

deviations of statistical power under different tests and sample sizes for this simulation study can 

be found in Appendix G. the results showing in Figure 3.7 indicate that both Hotelling’s T2 and 

ROASST tests have means of statistical power around 0 with standard deviations around 0 (see 

Table 6.7) for all sample sizes. However, distance correlation test has an s-shaped curve. It has 

means of statistical power above 0.8 with standard deviations around 0 (see Table 6.7) when the 

sample sizes are greater 200. 
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Figure 3.7. Average power versus sample size in different hypothesis tests in the simulation 

study IV. 

3.4.4 Simulation study V 

In the setting of the simulation study V, mean vectors, standard deviation vectors, and 

correlation matrices were different for the two groups of the random vector 𝑋 categorized by the 

dichotomous random variable 𝑌. The mean vectors and standard deviation vectors were set in 

three different cases listed in Table 3.5. The R program and means and standard deviations of 

statistical power under different tests and sample sizes for this simulation study can be found in 

Appendix G. The results under the first case showing in Figure 3.8 indicate that all three 

hypothesis test are similar. The lowest means of statistical power are around 0.75 with standard 

deviations around 0 (see Tables 6.8 – 6.10) for all three hypothesis tests when the sample size is 

40. The means of statistical power are around 1 with standard deviations around 0 for all three 

hypothesis tests when the sample sizes are 60 or above. The results under both the second and 

third cases showing in Figures 3.9 and 3.10 indicate distance correlation has the best statistical 
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power followed by Hotelling’s T2 test for all sample sizes. In both cases, distance correlation test 

has means of statistical power above 0.9 with standard deviations around 0 (see Tables 6.9 and 

6.10) when sample sizes are 80 or above. However, Hotelling’s T2 and ROAST tests have means 

of statistical power around 0.8 or above with standard deviations around 0 (see Tables 6.9 and 

6.10) when sample sizes are 150 or above. 

Table 3.5 

Settings of 𝜇0, 𝜇1, 𝜎0, and 𝜎1 for Different Cases in the Simulation Study V 

 Case 1 Case 2 

𝜇0
𝑇 [0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0] 

𝜇1
𝑇 [1 1 1 1 1 1 1 1] [0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5] 

𝜎0
𝑇 [1 2 3 4 5 0.5 1.5 2.5] [1 2 3 4 5 0.5 1.5 2.5] 

𝜎1
𝑇 [5 4 0.5 3 2.5 1.5 2 1] [5 4 0.5 3 2.5 1.5 2 1] 

 

Table 3.5 (Cont.) 

 Case 3 

𝜇0
𝑇 [0 0 0 0 0 0 0 0] 

𝜇1
𝑇 [0.5 −0.5 0.5 −0.5 0.5 −0.5 0.5 −0.5] 

𝜎0
𝑇 [1 2 3 4 5 0.5 1.5 2.5] 

𝜎1
𝑇 [5 4 0.5 3 2.5 1.5 2 1] 
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Figure 3.8. Average power versus sample size in different hypothesis tests under the first case in 

the simulation study V. 

 

Figure 3.9. Average power versus sample size in different hypothesis tests under the second case 

in the simulation study V. 
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Figure 3.10. Average power versus sample size in different hypothesis tests under the third 

case in the simulation study V. 

  



38 

Chapter 4 

Real Data Applications 

In this chapter, we compared the three tests, namely, distance correlation test, Hotelling’s 

T2 test and ROAST test, on two real data applications. The first dataset is a RNA-seq dataset 

about cervical tumors and matched controls. It was used in the study by Witten, Tibshirani, Gu, 

Fire, and Lui (2010). The second dataset is phylogenetic microarray data matrix about 

microbiota in the human intestine. It was used in the study by Lahti, Salojärvi, Salonen, Scheffer, 

and Vos (2014). For each dataset, we employed the three methods to test independence between 

a variable set and a group variable. All the hypothesis testing were based on the significance 

level of 0.05. 

4.1 First real data application 

The dataset used in this application is an expression profile of 714 miRNAs from 58 

samples including 29 cervical tumor samples and 29 normal controls (Witten, Tibshirani, Gu, 

Fire, & Lui, 2010) downloaded from Gynecologic Oncology Group Tissue Bank. An 

examination about how miRNA and the types of tissue are associated was conducted. The 

following notations will be used in illustration of this real data application: 

(1) 𝑋𝑡𝑢𝑚𝑜𝑟 and 𝑋𝑛𝑜𝑟𝑚𝑎𝑙 denote the expression data of miRNAs with a cervical tumor and 

a normal tissue respectively, 

(2) �̅�𝑡𝑢𝑚𝑜𝑟 and 𝑠𝑡𝑢𝑚𝑒𝑟 denote the mean and the standard deviation vectors of the 

expression data of miRNAs with a cervical tumor in the sample, 

(3) �̅�𝑛𝑜𝑟𝑚𝑎𝑙 and 𝑠𝑛𝑜𝑟𝑚𝑎𝑙 denote the mean and the sample standard deviation vectors of 

the expression data of miRNAs with a normal tissue in the sample. 
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4.1.1 Dataset summary 

The expression level of each miRNA was measured by RNA-sequencing technique, 

where the abundance can be represented by the number of sort reads produced by the assay. To 

stabilize the variances, a natural log transformation was performed. All the counts were added by 

1 to avoid log of zero. A mean difference (�̅�𝑛𝑜𝑟𝑚𝑎𝑙 − �̅�𝑡𝑢𝑚𝑜𝑟) and a ratio of standard deviations 

(𝑠𝑛𝑜𝑟𝑚𝑎𝑙/𝑠𝑡𝑢𝑚𝑒𝑟) for each miRNA were used to express how the differences in mean and 

standard deviation between the normal and the tumor groups. 

Figure 4.1 shows the distribution of mean differences between the normal and the tumor 

groups according to the log-scaled dataset with a normal curve of 𝑁 (𝑚𝑒𝑎𝑛((�̅�𝑛𝑜𝑟𝑚𝑎𝑙 −

�̅�𝑡𝑢𝑚𝑜𝑟)), 𝑠𝑑(�̅�𝑛𝑜𝑟𝑚𝑎𝑙 − �̅�𝑡𝑢𝑚𝑜𝑟)). This distribution is fairly symmetrical, skewness = 0.341. 

 

Figure 4.1. Distribution of mean differences between the normal and the tumor groups for each 

miRNA with a normal curve. 
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The distribution of standard deviation ratios of the normal and the tumor groups for each 

miRNA according to the log-scaled dataset is represented in Figure 4.2. Thirty miRNAs have a 

ratio of infinity and is excluded in Figure 4.2. That is caused by those miRNAs have all subjects 

with a zero expression in the tumor group. The distribution is positively skewed. 

 

Figure 4.2. Distribution of standard deviation ratios between the normal and the tumor groups 

for each miRNA. 

As we can see, some miRNAs have large differences in both mean and standard deviation 

between the normal and the tumor groups. This is a similar condition to the conditions in the 

simulation study V. We expect that the expression level of miRNAs will be associated with the 

two types of tissues in the population. 

4.1.2 Preprocessing of raw data 

The total count of each miRNA was calculated by summing all corresponding values of 

58 subjects (tissues). The values of the total count were between 1 and 2253073. A set of 

sequence thresholds was set from 40 to 129000 with an interval of 20. Distance correlation test 
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and ROAST test were performed under each threshold. Hotelling’s T2 test is not appropriate for 

this dataset since the number of miRNAs is greater than the number of subjects. The thresholds 

were used to determine which miRNAs were included for distance correlation test and ROAST 

test. Any miRNAs were included in the random vector 𝑋 for a specific threshold if the 

corresponding total count were greater than the specific threshold. The numbers of miRNAs 

included in a random vector 𝑋 under different thresholds are represented in Figure 4.3. As we 

can see, more than 600 miRNAs were included when the thresholds were between 0 and 12000. 

Then, the numbers of miRNAs rapidly dropped for the rest of thresholds. The data of the random 

variable 𝑌 were set as a vector of size 59 with a value of 0 to represent the corresponding subject 

with a normal tissue and the other value of 1 to represent the corresponding subject with a tumor 

tissue. The R program for the first real data application can be found in Appendix I. 

  

Figure 4.3. Histogram and scatterplot of different thresholds versus number of selected miRNAs. 

4.1.3 Results 

The distributions of 𝑝-values for distance correlation test and ROAST test under all 

difference thresholds were summarized in Figure 4.4. The null hypotheses were rejected in both 

distance correlation test and ROAST test under all thresholds. We conclude that at least one 
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transcript count of a miRNA is associated with the types of tissues, cervical cancer and normal, 

in the populations. However, in terms of 𝑝-values, distance correlation test is smaller and more 

concentrated than ROAST test. The descriptive statistics of the 𝑝-values are listed in Table 4.1. 

 

Figure 4.4. Distributions of 𝑝-value for distance correlation test and ROAST test under all 

different thresholds. 

Table 4.1 

Descriptive Statistics of 𝑝-values for Distance Correlation Test and ROAST Test under Different 

Thresholds 

 Min Max M SD 

Distance Correlation 0.001 0.004 0.002 0.001 

ROAST 0.008 0.034 0.018 0.005 

4.2 Second real data application 

The dataset used in this real data application including two files named HITChip.tab and 

Metadata.tab from the study titled “Tipping Elements in the Human Intestinal Ecosystem” by 

Lahti, Salojärvi, Salonen, Scheffer, and Vos (2014). The HITChip.tab encompasses HITChip 
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phylogenetic microarray data matrix with a dimension of 1172 samples by 130 genus-like groups 

related microbial communities in human intestine. Those data are continuous. The Metadata.tab 

holds the metadata for the samples in the HITChip data matrix. It includes 10 variables. The 

information of the variables is listed in Table 4.2. 

Table 4.2 

Information of the Variables in the Metadata File 

Variable Explanation 

SampleID Unique ample  identified corresponding to the sample in HITChip 

data matrix 

Age Age in years 

Sex Male/Female 

Nationality At the level of geographic regions: 

US, Central Europe, Eastern Europe, South Europe, Scandinavia, 

UKIE 

DNA _extraction_method DNA extraction method: 

r: Repeated Bead Beating o: Other 

ProjectID Project identifier 

Diversity Shannon diversity index based on probe-level signals 
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Table 4.2 (Cont.) 

Variable Explanation 

BMI_group Standard body-mass index classification: 

underweight: < 18.5 

overweight: 25 – 30 

severe: 35 – 40 

superobese: > 45 

lean: 18.5 – 25 

obese: 30 – 35 

morbid obese 40 – 45 

 

SubjectID Subject identifier 

Time Time point from the baseline in months 

4.2.1 Descriptive statistics of the preprocessed dataset  

The range of the microarray data in HITChip.tab was between 32.29489 and 944063.8. 

To stabilize the variances, a natural log transformation was performed by taking a natural loge of 

the data in HITChip.tab directly. The second real data application examined whether HITChip 

phylogenetic microarray data is associated with age, sex, nationality, and BMI group 

respectively. The variables Age, Sex, Nationality, and BMI_group were re-categorized into four 

dichotomous random variables 𝑌s. There was no missing value in HITChip.tab. However, there 

were some missing values indicated by NAs in Metadata.tab. The cases were eliminated from 

both HITChip.tab and Metadata.tab if the corresponding values were NA in the variables Age, 

Sex, Nationality, BMI_group respectively. The conditions of categorization and group sample 

sizes are listed in Table 4.3. The dataset of random vector 𝑋 and the corresponding random 

variable 𝑌 were constructed based on and represented the re-categorized variables Age, Sex, 

Nationality, and BMI_group individually. The following notations will be used in illustration 

later: 

(1) 𝑋𝑌=0 and 𝑋𝑌=1 denote the microarray data with 𝑌 = 0 and 𝑌 = 1 respectively. 
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(2) �̅�𝑌=0 and 𝑠𝑌=0 denote the mean and the standard deviation vectors of the microarray 

data with 𝑌 = 0 in the sample, 

(3) �̅�𝑌=1 and 𝑠𝑌=1 denote the mean and the sample standard deviation vectors of the data 

with 𝑌 = 1 in the sample. 

Then, distance correlation test, Hotelling’s T2 test, and ROAST test were applied to each pair of 

𝑋 and 𝑌. The R program for the second real data application can be found in Appendix J. 

Table 4.3 

Conditions and Group Sample Sizes for Re-categorized Age, Sex, Nationality, and BMI_group 

Variable 
𝑌 = 0  𝑌 = 1 

Condition Sample Size  Condition Sample Size 

Age ≤ 40 415  otherwise 701 

Sex male 455  female 680 

Nationality US 44  otherwise 1096 

BMI_group lean 493  otherwise 573 

The distributions of mean differences (�̅�𝑌=0 − �̅�𝑌=1) and standard deviation ratios (𝑠𝑌=0/𝑠𝑌=1) 

between two groups of re-categorized variables Age, Sex, Nationality, and BMI _group 

respectively are exhibited in Figures 4.5 – 4.8. The skewnesses of those distributions are listed in 

Table 4.4. The distributions of mean differences are fairly symmetrical except the variable Sex 

that is highly and positively skewed. The distributions of standard deviation ratios tend to be 

highly and positively skewed for all variables. As we can see, some genus-like groups have large 

differences in both mean and standard deviation between the two groups of the re-categorized 

variables Age, Sex, Nationality, and BMI_group respectively. Furthermore, the sample sizes are 

large in this application. This is also a similar condition to the conditions in the simulation study 
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V. We expect that the null hypotheses will be rejected in distance correlation test, Hotelling’s T2 

test, and ROAST test. 

Table 4.4 

Skewnesses of the Distributions of Mean Differences and Standard Deviation Ratios for Re-

categorized Age, Sex, Nationality, and BMI_group 

 Variables 

 Age Sex Nationality BMI_group 

Mean Difference (�̅�𝑌=0 − �̅�𝑌=1) 0.030 1.672 -0.559 -0.115 

Standard Deviation Ratio (𝑠𝑌=0/𝑠𝑌=1) 0.808 1.899 1.696 1.076 

 

 

Figure 4.5. Distributions of mean differences and standard deviation ratios between the two 

groups of Age for all genus-like groups. 
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Figure 4.6. Distributions of mean differences and standard deviation ratios between the two 

groups of Sex for all genus-like groups. 

 

 

Figure 4.7. Distributions of mean differences and standard deviation ratios between the two 

groups of Nationality for all genus-like groups. 
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Figure 4.8. Distributions of mean differences and standard deviation ratios between the two 

groups of BMI_group for all genus-like groups. 

4.2.2 Results 

According to the 𝑝-values listed in Table 4.4, the null hypotheses were rejected by 

distance correlation test, Hotelling’s T2 test, and ROAST test for factors, the re-categorized 

variables age, sex, nationality, and BMI group, respectively. We can conclude that at least one 

genus-like group is associated with the re-categorized variables age, sex, nationality, and BMI 

group respectively in the populations. In other words, the multivariate distributions of the 

microarray data categorized by factors re-categorized age, sex, nationality, and BMI group 

respectively are different. 
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Table 4.5 

The 𝑝-values for Distance Correlation Test, Hotelling’s T2 Test, and ROAST Test in Age, Sex, 

Nationality, and BMI Group 

 Distance Correlation Test Hotelling’s T2 test ROAST 

Age 0.001 0.000 0.001 

Sex 0.001 0.000 0.016 

Nationality 0.001 0.000 0.001 

BMI Group 0.001 0.000 0.001 
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Chapter 5 

Discussion and Conclusions 

This chapter concludes the thesis and discusses some advantages and shortcomings of the 

three gene set tests being compared. In addition, we discuss some possible extensions and future 

directions. 

5.1 Summary 

Many statistical methods have been recently developed to test the differential expression 

of a gene set. However, most of the gene set tests emphasis on detecting mean differences 

instead of distributional differences. To this end, we proposed to use a novel dependence 

measure, namely distance correlation, for gene set testing because it targets not only the mean 

difference but also other forms of difference. To validate the distance correlation test, simulation 

studies under different settings were conducted for a comprehensive comparison with two 

popular multivariate tests including Hotelling’s T2 test and ROAST test. Furthermore, these 

three tests were applied to two real data sets. 

5.2 Discussion 

Both Hotelling’s T2 test and ROAST test detect a differential expression of a gene set 

based on mean vectors. The primary drawback of these two tests is that they cannot detect the 

difference in variability. If a null hypothesis is failed to reject in Hotelling’s T2 test and ROAST 

test, it tells us that the gene set has the same population mean vector between two groups. 

However, these two populations might or might not have a difference in variability. If a null 

hypothesis is rejected by Hotelling’s T2 test and ROAST test, it tells us that the gene set has a 

difference in population mean vector but it is unknown that whether these two populations have 

the same variability or not. The other drawback of Hotelling’s T2 test and ROAST test is that 
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they rely on several assumptions that we mentioned in Chapter 1. In contrast with Hotelling’s T2 

test and ROAST test, distance correlation test detects a differential expression of a gene set based 

on their distributions. Distance correlation test does not require any parametric assumptions. If a 

null hypothesis fails to be rejected in distance correlation test, it tells us the two groups of the 

gene set have the same population distribution. The major drawback of distance correlation test 

is that it does not tell us the differential expression of a gene set is caused by population mean 

vectors or population variabilities if the null hypothesis is rejected in distance correlation test. 

Based on the settings of mean vectors, standard deviation vectors, and correlation 

matrices, simulation studies were conducted under one condition for assessing type I error rates 

and four conditions with nine cases for assessing powers. The results can be summarized as: 

(1) The differential expression of a gene set is purely caused by differences in mean: 

Hotelling’s T2 test has the best powers that are close to 1 for all specified sample sizes. 

Then, it is followed by ROAST test and distance correlation test. Both ROAST test and 

distance correlation test have a larger power if the sample size is increased. Specifically 

for distance correlation test, the powers are greater than 0.7 when the sample sizes are 

greater than 250. 

(2) The differential expression of a gene set is caused by differences in correlation 

with/without differences in standard deviation: 

Both Hotelling’s T2 test and ROAST test have powers that are close to 0 for all specified 

sample sizes. Distance correlation test has the best powers for all specified sample sizes. 

The power of distance correlation test is increased if the sample size is increased. Overall, 

the powers of distance correlation test are greater than 0.8 when the sample sizes are 

greater than 200. 
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(3) The differential expression of a gene set is caused by differences in mean, standard 

deviation, and correlation: 

When the mean difference is large, the three tests are similar. All three tests have powers 

greater than 0.7 for all specified sample sizes. When the mean difference is small, 

distance correlation test has the best powers for all specified sample sizes. Then, it is 

followed by Hotelling’s T2 test and ROAST test. All three tests have a greater power 

when the sample size is increased. Specifically for distance correlation test, the powers 

are greater than 0.7 when the sample sizes are greater 60. 

The two real data applications have similar conditions to the simulation study V and the 

findings from these two real data applications support the results from the simulation study V. 

5.3 Conclusions 

According to our simulation studies, the distance correlation test works better than 

Hotelling’s T2 test and ROAST test on detecting a differential expression of a gene set caused by 

differences in variability. However, when a null hypothesis is rejected in a distance correlation 

test, it does not tell us that the differential expression of the gene set is caused by mean 

differences, variability differences, or both mean and variability differences. 

Both Hotelling’s T2 test and ROAST test can only detect the differential expression of a 

gene set due to mean differences. If the null hypothesis is failed to reject in Hotelling’s T2 test or 

ROAST test, distance correlation test can be used for further examinations. 

5.4 Future work 

In this thesis, we focus on a dichotomous response 𝑌 in distance correlation test. In fact, 

this can be extended to any number of categories, nominal or ordinal. For example, the random 

variable 𝑌 can be the BMI_group in the second real data application, which has eight categories 
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including underweight, lean, overweight, obese, severe, morbid obese, and superobese. Distance 

correlation test can be directly applied to such multi-category response simply by defining the 

dummy variables. 

In this thesis, we chose distance correlation for gene set test. However, many other novel 

correlation measures can be used. For instance, Zhu, Xu, Li, and Zhong (2017) proposed the 

projection correlation, which is a measure of dependence between two random vectors. 

Projection correlation is equal to zero if and only if the two random vectors are independent. 

Furthermore, projection correlation does not require moment restriction for (𝑋, 𝑌), which is 

more flexible distance correlation. A possible extension is to apply those similar correlation 

measures to the problem of gene set testing.  
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Appendices 

Appendix A: Proof of equation (2.1) 

We know that Cov(𝑈, 𝑉) = 𝐸(𝑈𝑉) − 𝐸(𝑈)𝐸(𝑉). 

dCov
2(𝑋, 𝑌) = Cov(|𝑋1 − 𝑋2|𝑝, |𝑌1 − 𝑌2|𝑞) − 2Cov(|𝑋1 − 𝑋2|𝑝, |𝑌1 − 𝑌3|𝑞) 

= 𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 − 𝑌2|𝑞) − 𝐸(|𝑋1 − 𝑋2|𝑝)𝐸( |𝑌1 − 𝑌2|𝑞) − 

2 (𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 − 𝑌3|𝑞) − 𝐸(|𝑋1 − 𝑋2|𝑝)𝐸( |𝑌1 − 𝑌3|𝑞)) 

= 𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 − 𝑌2|𝑞) − 𝐸(|𝑋1 − 𝑋2|𝑝)𝐸( |𝑌1 − 𝑌2|𝑞) − 

2𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 − 𝑌3|𝑞) + 2 (𝐸(|𝑋1 − 𝑋2|𝑝)𝐸( |𝑌1 − 𝑌3|𝑞)) 

= 𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 − 𝑌2|𝑞) + 𝐸(|𝑋1 − 𝑋2|𝑝)𝐸(|𝑌1 − 𝑌2|𝑞) − 

2𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 − 𝑌3|𝑞) 

(
∵ 𝑌1, 𝑌2, 𝑌3 are independent and identically distributed

∴ 𝐸( |𝑌1 − 𝑌2|𝑞) = 𝐸( |𝑌1 − 𝑌3|𝑞)                                    
) 

= 𝒱2(𝑋, 𝑌) 
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Appendix B: Proof of equation (2.2) 

Suppose 

{
 
 

 
 
𝑋|𝑌 = 0~𝑓(𝑥) ∀𝑋 = (−∞, ∞)                                                                     

𝑋|𝑌 = 1~𝑔(𝑥) ∀𝑋 = (−∞, ∞)                                                                     

𝑌~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋) ∀𝑌 = 0 (normal), 1 (cancel) where 𝜋 = 𝑃(𝑌 = 1)

. 

𝒱2(𝑋, 𝑌) = 𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 − 𝑌2|) + 𝐸(|𝑋1 − 𝑋2|𝑝)𝐸(|𝑌1 − 𝑌2|) − 

2𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 − 𝑌3|)            (by definition) 

Let 

{
 
 

 
 
𝑑00 = 𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 0, 𝑌2 = 0)                                                             

𝑑11 = 𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 1, 𝑌2 = 1)                                                             

𝑑01 = 𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 0, 𝑌2 = 1) = 𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 1, 𝑌2 = 0)

 

(1) For the first term: 

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 − 𝑌2|) 

= 𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 0, 𝑌2 = 0)𝑃(𝑌1 = 0, 𝑌2 = 0) + 

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 1, 𝑌2 = 1)𝑃(𝑌1 = 1, 𝑌2 = 1) + 

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 0, 𝑌2 = 1)𝑃(𝑌1 = 0, 𝑌2 = 1) + 

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 1, 𝑌2 = 0)𝑃(𝑌1 = 1, 𝑌2 = 0) 

(by law of total probability & conditional expectation) 

= 0𝑃(𝑌1 = 0, 𝑌2 = 0) + 0𝑃(𝑌1 = 1, 𝑌2 = 1) + 𝑑01𝑃(𝑌1 = 0, 𝑌2 = 1) + 

𝑑01𝑃(𝑌1 = 1, 𝑌2 = 0) 

(as |𝑌1 − 𝑌2| = {

0 if 𝑌1 = 𝑌2 = 0           
0 if 𝑌1 = 𝑌2 = 1           
1 if 𝑌1 = 0 and 𝑌2 = 1
1 if 𝑌1 = 1 and 𝑌2 = 0

) 

= 𝑑01𝑃(𝑌1 = 0)𝑃(𝑌2 = 1) + 𝑑01𝑃(𝑌1 = 1)𝑃(𝑌2 = 0)            (as 𝑌1 ⊥ 𝑌2) 

= 2𝑑01𝜋(1 − 𝜋)            (as {
𝑃(𝑌 = 1) = 𝜋        
𝑃(𝑌 = 0) = 1 − 𝜋

) . 
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(2) For the second term: 

𝐸(|𝑋1 − 𝑋2|𝑝) 

= 𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 0, 𝑌2 = 0)𝑃(𝑌1 = 0, 𝑌2 = 0) + 

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 1, 𝑌2 = 1)𝑃(𝑌1 = 1, 𝑌2 = 1) + 

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 0, 𝑌2 = 1)𝑃(𝑌1 = 0, 𝑌2 = 1) + 

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 1, 𝑌2 = 0)𝑃(𝑌1 = 1, 𝑌2 = 0) 

(by law of total probability & conditional expectation) 

= 𝑑00𝑃(𝑌1 = 0)𝑃(𝑌2 = 0) + 𝑑11𝑃(𝑌1 = 1)𝑃(𝑌2 = 1) + 

𝑑01𝑃(𝑌1 = 0)𝑃(𝑌2 = 1) + 𝑑01𝑃(𝑌1 = 1)𝑃(𝑌2 = 0)            (as 𝑌1 ⊥ 𝑌2) 

= 𝑑00(1 − 𝜋)
2 + 𝑑11𝜋

2 + 2𝑑01𝜋(1 − 𝜋)            (as {
𝑃(𝑌 = 1) = 𝜋        
𝑃(𝑌 = 0) = 1 − 𝜋

) , 

𝐸(|𝑌1 − 𝑌2|) 

= 0𝑃(𝑌1 = 0, 𝑌2 = 0) + 0𝑃(𝑌1 = 1, 𝑌2 = 1) + 1𝑃(𝑌1 = 0, 𝑌2 = 1) + 

1𝑃(𝑌1 = 1, 𝑌2 = 0)            (as |𝑌1 − 𝑌2| = {

0 if 𝑌1 = 𝑌2 = 0           
0 if 𝑌1 = 𝑌2 = 1           
1 if 𝑌1 = 0 and 𝑌2 = 1
1 if 𝑌1 = 1 and 𝑌2 = 0

) 

= 𝑃(𝑌1 = 0, 𝑌2 = 1) + 𝑃(𝑌1 = 1, 𝑌2 = 0) 

= 𝑃(𝑌1 = 0)𝑃(𝑌2 = 1) + 𝑃(𝑌1 = 1)𝑃(𝑌2 = 0)            (as 𝑌1 ⊥ 𝑌2) 

= 𝜋(1 − 𝜋) + 𝜋(1 − 𝜋)            (as {
𝑃(𝑌 = 1) = 𝜋        
𝑃(𝑌 = 0) = 1 − 𝜋

) 

= 2𝜋(1 − 𝜋), 

𝐸(|𝑋1 − 𝑋2|𝑝)𝐸(|𝑌1 − 𝑌2|) 

= (𝑑00(1 − 𝜋)
2 + 𝑑11𝜋

2 + 2𝑑01𝜋(1 − 𝜋))2𝜋(1 − 𝜋) 

= 2𝑑00𝜋(1 − 𝜋)
3 + 2𝑑11𝜋

3(1 − 𝜋) + 4𝑑01𝜋
2(1 − 𝜋)2.  
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(3) For the third term: 

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 − 𝑌3|) 

= 𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 0, 𝑌2 = 0, 𝑌3 = 0)𝑃(𝑌1 = 0, 𝑌2 = 0, 𝑌3 = 0) + 

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 0, 𝑌2 = 1, 𝑌3 = 0)𝑃(𝑌1 = 0, 𝑌2 = 1, 𝑌3 = 0) + 

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 1, 𝑌2 = 0, 𝑌3 = 1)𝑃(𝑌1 = 1, 𝑌2 = 0, 𝑌3 = 1) + 

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 1, 𝑌2 = 1, 𝑌3 = 1)𝑃(𝑌1 = 1, 𝑌2 = 1, 𝑌3 = 1) + 

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 0, 𝑌2 = 0, 𝑌3 = 1)𝑃(𝑌1 = 0, 𝑌2 = 0, 𝑌3 = 1) + 

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 0, 𝑌2 = 1, 𝑌3 = 1)𝑃(𝑌1 = 0, 𝑌2 = 1, 𝑌3 = 1) + 

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 1, 𝑌2 = 0, 𝑌3 = 0)𝑃(𝑌1 = 1, 𝑌2 = 0, 𝑌3 = 0) + 

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 1, 𝑌2 = 1, 𝑌3 = 0)𝑃(𝑌1 = 1, 𝑌2 = 1, 𝑌3 = 0) 

(by law of total probability & conditional expectation) 

= 0𝑃(𝑌1 = 0, 𝑌2 = 0, 𝑌3 = 0) + 0𝑃(𝑌1 = 0, 𝑌2 = 1, 𝑌3 = 0) + 

0𝑃(𝑌1 = 1, 𝑌2 = 0, 𝑌3 = 1) + 0𝑃(𝑌1 = 1, 𝑌2 = 1, 𝑌3 = 1) + 

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 0, 𝑌2 = 0, 𝑌3 = 1)𝑃(𝑌1 = 0, 𝑌2 = 0, 𝑌3 = 1) + 

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 0, 𝑌2 = 1, 𝑌3 = 1)𝑃(𝑌1 = 0, 𝑌2 = 1, 𝑌3 = 1) + 

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 1, 𝑌2 = 0, 𝑌3 = 0)𝑃(𝑌1 = 1, 𝑌2 = 0, 𝑌3 = 0) + 

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 1, 𝑌2 = 1, 𝑌3 = 0)𝑃(𝑌1 = 1, 𝑌2 = 1, 𝑌3 = 0) 

(as |𝑌1 − 𝑌3| = {

0 if 𝑌1 = 𝑌3 = 0           
0 if 𝑌1 = 𝑌3 = 1           
1 if 𝑌1 = 0 and 𝑌3 = 1
1 if 𝑌1 = 1 and 𝑌3 = 0

) 

= 𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 0, 𝑌2 = 0)𝑃(𝑌1 = 0, 𝑌2 = 0) + 

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 0, 𝑌2 = 1)𝑃(𝑌1 = 0, 𝑌2 = 1) + 
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𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 1, 𝑌2 = 0)𝑃(𝑌1 = 1, 𝑌2 = 0) + 

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 1, 𝑌2 = 1)𝑃(𝑌1 = 1, 𝑌2 = 1) 

(

 
 
 
 
 
 

as 

{
 
 
 
 

 
 
 
 
𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 0, 𝑌2 = 0, 𝑌3 = 0)𝑃(𝑌1 = 0, 𝑌2 = 0, 𝑌3 = 0) +

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 0, 𝑌2 = 0, 𝑌3 = 1)𝑃(𝑌1 = 0, 𝑌2 = 0, 𝑌3 = 1)   

= 𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 0, 𝑌2 = 0)𝑃(𝑌1 = 0, 𝑌2 = 0)                             

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 0, 𝑌2 = 1, 𝑌3 = 0)𝑃(𝑌1 = 0, 𝑌2 = 1, 𝑌3 = 0) +

𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 0, 𝑌2 = 1, 𝑌3 = 1)𝑃(𝑌1 = 0, 𝑌2 = 1, 𝑌3 = 1)    

= 𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 = 0, 𝑌2 = 1)𝑃(𝑌1 = 0, 𝑌2 = 1)                             

⋮ )

 
 
 
 
 
 

 

= 𝑑00𝑃(𝑌1 = 0, 𝑌2 = 0) + 𝑑01𝑃(𝑌1 = 0, 𝑌2 = 1) + 𝑑01𝑃(𝑌1 = 1, 𝑌2 = 0) + 

𝑑11𝑃(𝑌1 = 1, 𝑌2 = 1) 

= 𝑑00𝑃(𝑌1 = 0)𝑃(𝑌2 = 0) + 𝑑01𝑃(𝑌1 = 0)𝑃(𝑌2 = 1) + 𝑑01𝑃(𝑌1 = 1)𝑃(𝑌2 = 0) + 

𝑑11𝑃(𝑌1 = 1)𝑃(𝑌2 = 1)            (as 𝑌1 ⊥ 𝑌2) 

= 𝑑00(1 − 𝜋)
2 + 2𝑑01𝜋(1 − 𝜋) + 𝑑11𝜋

2             (as {
𝑃(𝑌 = 1) = 𝜋        
𝑃(𝑌 = 0) = 1 − 𝜋

) , 

2𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 − 𝑌3|) = 2𝑑00(1 − 𝜋)
2 + 4𝑑01𝜋(1 − 𝜋) + 2𝑑11𝜋

2. 

𝒱2(𝑋, 𝑌) 

= 𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 − 𝑌2|) + 𝐸(|𝑋1 − 𝑋2|𝑝)𝐸(|𝑌1 − 𝑌2|) − 2𝐸(|𝑋1 − 𝑋2|𝑝|𝑌1 − 𝑌3|) 

= 2𝑑01𝜋(1 − 𝜋) + 2𝑑00𝜋(1 − 𝜋)
3 + 2𝑑11𝜋

3(1 − 𝜋) + 4𝑑01𝜋
2(1 − 𝜋)2 − 

(2𝑑00(1 − 𝜋)
2 + 4𝑑01𝜋(1 − 𝜋) + 2𝑑11𝜋

2) 

= 2𝑑00(1 − 𝜋)
2(𝜋(1 − 𝜋) − 1) + 2𝑑11𝜋

2(𝜋(1 − 𝜋) − 1) + 

2𝑑01𝜋(1 − 𝜋)(1 + 2𝜋(1 − 𝜋) − 2) 

= 2𝑑00(1 − 𝜋)
2(𝜋(1 − 𝜋) − 1) + 2𝑑11𝜋

2(𝜋(1 − 𝜋) − 1) + 

2𝑑01𝜋(1 − 𝜋)(2𝜋(1 − 𝜋) − 1) 

= 2𝑑00(−𝜋
4 + 3𝜋3 − 4𝜋2 + 3𝜋 − 1) + 2𝑑11(−𝜋

4 + 𝜋3 − 𝜋2) + 

2𝑑01(2𝜋
4 − 4𝜋3 + 3𝜋2 − 𝜋) 
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Appendix C: Proof of �̅�𝑘∙ = 0 in the double centered distance matrix of 𝑋 

�̅�𝑘∙ = (
1

𝑛
)∑𝐴𝑘𝑖

𝑛

𝑖=1

 

= (
1

𝑛
) (𝐴𝑘1 + 𝐴𝑘2 +⋯+ 𝐴𝑘𝑛) 

= (
1

𝑛
) ((𝑎𝑘1 − �̅�𝑘∙ − �̅�∙1 + �̅�∙∙) + (𝑎𝑘2 − �̅�𝑘∙ − �̅�∙2 + �̅�∙∙) + ⋯+ 

(𝑎𝑘𝑛 − �̅�𝑘∙ − �̅�∙𝑛 + �̅�∙∙)) 

= (
1

𝑛
) ((𝑎𝑘1 + 𝑎𝑘2 +⋯+ 𝑎𝑘𝑛) − 𝑛�̅�𝑘∙ − (�̅�∙1 + �̅�∙2 +⋯+ �̅�∙𝑛) + 𝑛�̅�∙∙) 

= (
1

𝑛
) (𝑎𝑘1 + 𝑎𝑘2 +⋯+ 𝑎𝑘𝑛) − �̅�𝑘∙ − (

1

𝑛
) (�̅�∙1 + �̅�∙2 +⋯+ �̅�∙𝑛) + �̅�∙∙ 

= �̅�𝑘∙ − �̅�𝑘∙ − �̅�∙∙ + �̅�∙∙ 

= 0. 
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Appendix D: R program for assessing type I error rates (simulation study I) 

library(MASS) 
library(energy) 
library(clusterGeneration) 
library(DescTools) 
library(limma) 
 
alpha <- 0.05 
R <- 1000 
runs <- 10 
n <- c(40, 60, 80, 100, 150, 200, 250, 300) 
mu <- rep(0, 8) 
ng <- length(mu) 
sigma <- c(1,2,3,4,5,0.5,1.5,2.5) 
 
DispersionFunction <- function(sigma, correlation) 
  { 
    ng <- length(sigma) 
    DispersionMatrix <- matrix(NA, nrow=ng, ncol=ng) 
    for (i in 1:ng) 
      { 
        for (j in i:ng) 
          { 
            DispersionMatrix[i, j] <- correlation[i, j]*sigma[i]*sigma[j] 
          } 
        for (k in 1:i) 
          { 
            if (i < ng) 
              DispersionMatrix[i + 1, k] <- DispersionMatrix[k, i + 1] 
          } 
      } 
    return(DispersionMatrix) 
  } 
 
TypeIErrorSimulation <- function(n, mu, DispersionMatrix, alpha) 
  { 
    X <- matrix(NA, nrow=n, ncol=ng) 
    Y <- matrix(NA, nrow=n, ncol=1) 
    NrejectH0_dcor <- 0 
    NrejectH0_HotellingsT2 <- 0 
    NrejectH0_roast <- 0 
    for (r in 1:R) 
      { 
        X <- mvrnorm(n, mu, DispersionMatrix) 
        Y[, 1] <- rbinom(n, size=1, prob=0.5) 
 
        if (dcor.test(X, Y, R=R)$p.value <= alpha) 
          { 
            NrejectH0_dcor <- NrejectH0_dcor + 1 
          } 
         
        if (HotellingsT2Test(X~Y)$p.value <= alpha) 
          { 
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            NrejectH0_HotellingsT2 <- NrejectH0_HotellingsT2 + 1 
          } 
         
        DesignMatrix <- cbind(Intercept=1, Group=Y) 
        if (roast(t(X), design=DesignMatrix, contrast=2)$p.value[[2]][4] <= alpha) 
          { 
            NrejectH0_roast <- NrejectH0_roast + 1 
          } 
      } 
    return(c(NrejectH0_dcor / R, NrejectH0_HotellingsT2 / R, NrejectH0_roast / R)) 
  } 
 
set.seed(1) 
CorrelationMatrix <- rcorrmatrix(length(sigma)) 
DispersionMatrix <- DispersionFunction(sigma, CorrelationMatrix) 
 
TypeIErrors <- array(NA, dim=c(length(n), runs, 3), dimnames=list(n, 1:runs, 
c("dcor.test", "HotellingsT2Test", "roast"))) 
AverageTypeIErrors <- matrix(NA, nrow=3, ncol=length(n)) 
SDTypeIErrors <- matrix(NA, nrow=3, ncol=length(n)) 
for (SampleSize in 1:length(n)) 
  { 
    for (run in 1:runs) 
      { 
        TypeIErrors[SampleSize, run,] <- TypeIErrorSimulation(n[SampleSize], mu, 
DispersionMatrix, alpha) 
      } 
    for (TestType in 1:3) 
      { 
        AverageTypeIErrors[TestType, SampleSize] <- mean(TypeIErrors[SampleSize,, 
TestType]) 
        SDTypeIErrors[TestType, SampleSize] <- sd(TypeIErrors[SampleSize,, 
TestType]) 
      } 
  } 
 
AverageTypeIErrors 
SDTypeIErrors 
 
x11() 
plot(n, AverageTypeIErrors[1,], xlim=c(0, 300), ylim=c(0, 0.5), pch=1, 
xlab="Sample Size", ylab="Average Type I Error Rate", col="red") 
abline(h=0.05) 
par(new=T) 
plot(n, AverageTypeIErrors[2,], xlim=c(0, 300), ylim=c(0, 0.5), pch=2, xlab="", 
ylab="", axes=F, col="blue") 
par(new=T) 
plot(n, AverageTypeIErrors[3,], xlim=c(0, 300), ylim=c(0, 0.5), pch=8, xlab="", 
ylab="", axes=F, col="darkgreen") 
legend(150, 0.5, legend=c("Distance Correlation Test", "Hotelling's T Square 
Test", "ROAST Test"), col=c("red", "blue", "darkgreen"), pch=c(1, 2, 8), bty="n") 
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Table 6.1 

Means and Standard Deviations of Type I Error Rates for Different Sample Sizes and 

Different Hypothesis Tests 

Sample Size 

Type I Error Rate 

 Distance Correlation    Hotelling’s T
2
  ROAST 

M SD  M SD  M SD 

40 0.051 0.008  0.048 0.005  0.047 0.006 

60 0.046 0.003  0.050 0.007  0.047 0.008 

80 0.053 0.005  0.052 0.008  0.052 0.004 

100 0.051 0.005  0.052 0.007  0.054 0.006 

150 0.049 0.008  0.050 0.005  0.049 0.007 

200 0.051 0.005  0.047 0.004  0.048 0.006 

250 0.055 0.007  0.053 0.009  0.052 0.005 

300 0.046 0.006  0.053 0.008  0.051 0.006 
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Appendix E: R program for assessing powers in the simulation study II 

library(MASS) 
library(energy) 
library(clusterGeneration) 
library(DescTools) 
library(limma) 
 
alpha <- 0.05 
R <- 1000 
runs <- 10 
n <- c(40, 60, 80, 100, 150, 200, 250, 300) 
 
DispersionMatrix <- function(sigma, correlation) 
  { 
    ng <- length(sigma) 
    DispersionMatrix <- matrix(NA, nrow=ng, ncol=ng) 
    for (i in 1:ng) 
      { 
        for (j in i:ng) 
          { 
            DispersionMatrix[i, j] <- correlation[i, j]*sigma[i]*sigma[j] 
          } 
        for (k in 1:i) 
          { 
            if (i < ng) 
              DispersionMatrix[i + 1, k] <- DispersionMatrix[k, i + 1] 
          } 
      } 
    return(DispersionMatrix) 
  } 
 
PowerSimulation <- function(n, mu_0, mu_1, DispersionMatrix_0, DispersionMatrix_1, 
alpha) 
  { 
    NrejectH0_dcor <- 0 
    NrejectH0_HotellingsT2 <- 0 
    NrejectH0_roast <- 0 
    ng <- length(mu_0) 
    X <- matrix(NA, nrow=n, ncol=ng) 
    Y <- matrix(NA, nrow=n, ncol=1) 
    for (r in 1:R) 
      { 
        Y[, 1] <- rbinom(n, size=1, prob=0.5) 
        for (i in 1:n) 
          { 
            if (Y[i, 1] == 0) 
              X[i,] <- mvrnorm(1, mu_0, DispersionMatrix_0) 
            else 
              X[i,] <- mvrnorm(1, mu_1, DispersionMatrix_1) 
          } 
 
        if (dcor.test(X, Y, R=R)$p.value <= alpha) 
          { 
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            NrejectH0_dcor <- NrejectH0_dcor + 1 
          } 
         
        if (HotellingsT2Test(X~Y)$p.value <= alpha) 
          { 
            NrejectH0_HotellingsT2 <- NrejectH0_HotellingsT2 + 1 
          } 
         
        DesignMatrix <- cbind(Intercept=1, Group=Y) 
        if (roast(t(X), design=DesignMatrix, contrast=2)$p.value[[2]][4] <= alpha) 
          { 
            NrejectH0_roast <- NrejectH0_roast + 1 
          } 
      } 
    return(c(NrejectH0_dcor / R, NrejectH0_HotellingsT2 / R, NrejectH0_roast / R)) 
  } 
 
#****************************************************************** 
#*   Same standard deviation, same correlation, different means   *  
#****************************************************************** 
sigma_0 <- c(1,2,3,4,5,0.5,1.5,2.5) 
sigma_1 <- sigma_0 
 
set.seed(1) 
CorrelationMatrix_0 <- rcorrmatrix(length(sigma_0)) 
CorrelationMatrix_1 <- CorrelationMatrix_0 
 
DispersionMatrix_0 <- DispersionMatrix(sigma_0, CorrelationMatrix_0) 
DispersionMatrix_1 <- DispersionMatrix(sigma_1, CorrelationMatrix_1) 
 
#=========================================================  
#=   Case 1: mu_0 = {0,0,...,0} and mu_1 = {1,1,...,1}   = 
#=========================================================  
mu_0 <- rep(0, 8) 
mu_1 <- rep(1, 8) 
 
Powers_A1 <- array(NA, dim=c(length(n), runs, 3), dimnames=list(n, 1:runs, 
c("dcor.test", "HotellingsT2Test", "roast"))) 
AveragePowers_A1 <- matrix(NA, nrow=3, ncol=length(n)) 
SDPowers_A1 <- matrix(NA, nrow=3, ncol=length(n)) 
for (SampleSize in 1:length(n)) 
  { 
    for (run in 1:runs) 
       { 
         Powers_A1[SampleSize, run,] <- PowerSimulation(n[SampleSize], mu_0, mu_1, 
DispersionMatrix_0, DispersionMatrix_1, alpha) 
       } 
  } 
for (TestType in 1:3) 
  { 
    for (run in 1:runs) 
      { 
        for (SampleSize in 1:length(n)) 
          { 
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            AveragePowers_A1[TestType, SampleSize] <- mean(Powers_A1[SampleSize,, 
TestType]) 
            SDPowers_A1[TestType, SampleSize] <- sd(Powers_A1[SampleSize,, 
TestType]) 
          } 
      } 
  } 
 
AveragePowers_A1 
SDPowers_A1 
plot(n, AveragePowers_A1[1,], type="b", lty=1, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=1, xlab="Sample Size", ylab="Average Power", col="red") 
par(new=T) 
plot(n, AveragePowers_A1[2,], type="b", lty=3, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=2, xlab="", ylab="", axes=F, col="blue") 
par(new=T) 
plot(n, AveragePowers_A1[3,], type="b", lty=5, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=8, xlab="", ylab="", axes=F, col="darkgreen") 
legend(150, 0.2, legend=c("Distance Correlation Test", "Hotelling's T Square 
Test", "ROAST Test"), col=c("red", "blue", "darkgreen"), lty=c(1, 3, 5), pch=c(1, 
2, 8), bty="n") 
 
#===============================================================  
#=   Case 2: mu_0 = {0,0,...,0} and mu_1 = {0.5,0.5,...,0.5}   = 
#===============================================================  
mu_0 <- rep(0, 8) 
mu_1 <- rep(0.5, 8) 
 
Powers_A2 <- array(NA, dim=c(length(n), runs, 3), dimnames=list(n, 1:runs, 
c("dcor.test", "HotellingsT2Test", "roast"))) 
AveragePowers_A2 <- matrix(NA, nrow=3, ncol=length(n)) 
SDPowers_A2 <- matrix(NA, nrow=3, ncol=length(n)) 
for (SampleSize in 1:length(n)) 
  { 
    for (run in 1:runs) 
       { 
         Powers_A2[SampleSize, run,] <- PowerSimulation(n[SampleSize], mu_0, mu_1, 
DispersionMatrix_0, DispersionMatrix_1, alpha) 
       } 
  } 
for (TestType in 1:3) 
  { 
    for (run in 1:runs) 
      { 
        for (SampleSize in 1:length(n)) 
          { 
            AveragePowers_A2[TestType, SampleSize] <- 
mean(Powers_A2[SampleSize,,TestType]) 
            SDPowers_A2[TestType, SampleSize] <- 
sd(Powers_A2[SampleSize,,TestType]) 
          } 
      } 
  } 
 
AveragePowers_A2 
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SDPowers_A2 
x11() 
plot(n, AveragePowers_A2[1,], type="b", lty=1, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=1, xlab="Sample Size", ylab="Average Power", col="red") 
par(new=T) 
plot(n, AveragePowers_A2[2,], type="b", lty=3, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=2, xlab="", ylab="", axes=F, col="blue") 
par(new=T) 
plot(n, AveragePowers_A2[3,], type="b", lty=5, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=8, xlab="", ylab="", axes=F, col="darkgreen") 
legend(150, 0.2, legend=c("Distance Correlation Test", "Hotelling's T Square 
Test", "ROAST Test"), col=c("red", "blue", "darkgreen"), lty=c(1, 3, 5), pch=c(1, 
2, 8), bty="n") 
 
#==========================================================================  
#=   Case 3: mu_0 = {0,0,...,0} and mu_1 = {0.5,-0.5,0.5,-0.5,...,-0.5}   = 
#==========================================================================  
mu_0 <- rep(0, 8) 
mu_1 <- c(0.5, -0.5, 0.5, -0.5, 0.5, -0.5, 0.5, -0.5) 
 
Powers_A3 <- array(NA, dim=c(length(n), runs, 3), dimnames=list(n, 1:runs, 
c("dcor.test", "HotellingsT2Test", "roast"))) 
AveragePowers_A3 <- matrix(NA, nrow=3, ncol=length(n)) 
SDPowers_A3 <- matrix(NA, nrow=3, ncol=length(n)) 
for (SampleSize in 1:length(n)) 
  { 
    for (run in 1:runs) 
       { 
         Powers_A3[SampleSize, run,] <- PowerSimulation(n[SampleSize], mu_0, mu_1, 
DispersionMatrix_0, DispersionMatrix_1, alpha) 
       } 
  } 
for (TestType in 1:3) 
  { 
    for (run in 1:runs) 
      { 
        for (SampleSize in 1:length(n)) 
          { 
            AveragePowers_A3[TestType, SampleSize] <- 
mean(Powers_A3[SampleSize,,TestType]) 
            SDPowers_A3[TestType, SampleSize] <- 
sd(Powers_A3[SampleSize,,TestType]) 
          } 
      } 
  } 
 
AveragePowers_A3 
SDPowers_A3 
x11() 
plot(n, AveragePowers_A3[1,], type="b", lty=1, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=1, xlab="Sample Size", ylab="Average Power", col="red") 
par(new=T) 
plot(n, AveragePowers_A3[2,], type="b", lty=3, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=2, xlab="", ylab="", axes=F, col="blue") 
par(new=T) 
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plot(n, AveragePowers_A3[3,], type="b", lty=5, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=8, xlab="", ylab="", axes=F, col="darkgreen") 
legend(150, 0.2, legend=c("Distance Correlation Test", "Hotelling's T Square 
Test", "ROAST Test"), col=c("red", "blue", "darkgreen"), lty=c(1, 3, 5), pch=c(1, 
2, 8), bty="n") 

 

 

Table 6.2 

Means and Standard Deviations of Powers under Case 1 in the Simulation Study II for 

Different Sample Sizes and Different Hypothesis Tests 

Sample Size 

Power 

 Distance Correlation    Hotelling’s T
2
  ROAST 

M SD  M SD  M SD 

40 0.342 0.008  1.000 0.000  0.996 0.001 

60 0.573 0.015  1.000 0.000  1.000 0.000 

80 0.776 0.013  1.000 0.000  1.000 0.000 

100 0.910 0.015  1.000 0.000  1.000 0.000 

150 0.998 0.001  1.000 0.000  1.000 0.000 

200 1.000 0.000  1.000 0.000  1.000 0.000 

250 1.000 0.000  1.000 0.000  1.000 0.000 

300 1.000 0.000  1.000 0.000  1.000 0.000 
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Table 6.3 

Means and Standard Deviations of Powers under Case 2 in the Simulation Study II for 

Different Sample Sizes and Different Hypothesis Tests 

Sample Size 

Power 

 Distance Correlation    Hotelling’s T
2
  ROAST 

M SD  M SD  M SD 

40 0.096 0.012  0.996 0.003  0.402 0.011 

60 0.126 0.005  1.000 0.000  0.665 0.011 

80 0.164 0.004  1.000 0.000  0.855 0.008 

100 0.197 0.010  1.000 0.000  0.951 0.007 

150 0.325 0.017  1.000 0.000  0.999 0.001 

200 0.460 0.022  1.000 0.000  1.000 0.000 

250 0.613 0.012  1.000 0.000  1.000 0.000 

300 0.736 0.015  1.000 0.000  1.000 0.000 
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Table 6.4 

Means and Standard Deviations of Powers under Case 3 in the Simulation Study II for 

Different Sample Sizes and Different Hypothesis Tests 

Sample Size 

Power 

 Distance Correlation    Hotelling’s T
2
  ROAST 

M SD  M SD  M SD 

40 0.097 0.013  1.000 0.000  0.380 0.014 

60 0.130 0.013  1.000 0.000  0.598 0.012 

80 0.166 0.015  1.000 0.000  0.761 0.008 

100 0.208 0.011  1.000 0.000  0.873 0.009 

150 0.357 0.013  1.000 0.000  0.988 0.003 

200 0.531 0.013  1.000 0.000  1.000 0.001 

250 0.704 0.010  1.000 0.000  1.000 0.000 

300 0.841 0.011  1.000 0.000  1.000 0.000 
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Appendix F: R program for assessing powers in the simulation study III 

library(MASS) 
library(energy) 
library(clusterGeneration) 
library(DescTools) 
library(limma) 
alpha <- 0.05 
R <- 1000 
runs <- 10 
n <- c(40, 60, 80, 100, 150, 200, 250, 300) 
 
DispersionFunction <- function(sigma, correlation) 
  { 
    ng <- length(sigma) 
    DispersionMatrix <- matrix(NA, nrow=ng, ncol=ng) 
    for (i in 1:ng) 
      { 
        for (j in i:ng) 
          { 
            DispersionMatrix[i, j] <- correlation[i, j]*sigma[i]*sigma[j] 
          } 
        for (k in 1:i) 
          { 
            if (i < ng) 
              DispersionMatrix[i + 1, k] <- DispersionMatrix[k, i + 1] 
          } 
      } 
    return(DispersionMatrix) 
  } 
 
PowerSimulation <- function(n, mu_0, mu_1, DispersionMatrix_0, DispersionMatrix_1, 
alpha) 
  { 
    NrejectH0_dcor <- 0 
    NrejectH0_HotellingsT2 <- 0 
    NrejectH0_roast <- 0 
    ng <- length(mu_0) 
    X <- matrix(NA, nrow=n, ncol=ng) 
    Y <- matrix(NA, nrow=n, ncol=1) 
    for (r in 1:R) 
      { 
        Y[, 1] <- rbinom(n, size=1, prob=0.5) 
        for (i in 1:n) 
          { 
            if (Y[i, 1] == 0) 
              X[i,] <- mvrnorm(1, mu_0, DispersionMatrix_0) 
            else 
              X[i,] <- mvrnorm(1, mu_1, DispersionMatrix_1) 
          } 
 
        if (dcor.test(X, Y, R=R)$p.value <= alpha) 
          { 
            NrejectH0_dcor <- NrejectH0_dcor + 1 
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          } 
         
        if (HotellingsT2Test(X~Y)$p.value <= alpha) 
          { 
            NrejectH0_HotellingsT2 <- NrejectH0_HotellingsT2 + 1 
          } 
         
        DesignMatrix <- cbind(Intercept=1, Group=Y) 
        if (roast(t(X), design=DesignMatrix, contrast=2)$p.value[[2]][4] <= alpha) 
          { 
            NrejectH0_roast <- NrejectH0_roast + 1 
          } 
      } 
    return(c(NrejectH0_dcor / R, NrejectH0_HotellingsT2 / R, NrejectH0_roast / R)) 
  } 
 
#**************************************************************************** 
#*   Same mean, different standard deviations, and different correlations   *  
#**************************************************************************** 
#================================================================================
=======  
#=   Case 1: mu_0 = mu_1 = {0,0,...,0}                                                 
= 
#=           sigma_0 = {1,2,3,4,5,0.5,1.5,2.5} and sigma_1 = 
{5,4,0.5,3,2.5,1.5,2,1}   = 
#================================================================================
=======  
mu_0 <- rep(0, 8) 
mu_1 <- mu_0 
sigma_0 <- c(1,2,3,4,5,0.5,1.5,2.5) 
sigma_1 <- c(5,4,0.5,3,2.5,1.5,2,1) 
 
set.seed(1) 
CorrelationMatrix_0 <- rcorrmatrix(length(sigma_0)) 
CorrelationMatrix_1 <- rcorrmatrix(length(sigma_1)) 
 
DispersionMatrix_0 <- DispersionFunction(sigma_0, CorrelationMatrix_0) 
DispersionMatrix_1 <- DispersionFunction(sigma_1, CorrelationMatrix_1) 
 
Powers_B1 <- array(NA, dim=c(length(n), runs, 3), dimnames=list(n, 1:runs, 
c("dcor.test", "HotellingsT2Test", "roast"))) 
AveragePowers_B1 <- matrix(NA, nrow=3, ncol=length(n)) 
SDPowers_B1 <- matrix(NA, nrow=3, ncol=length(n)) 
for (SampleSize in 1:length(n)) 
  { 
    for (run in 1:runs) 
       { 
         Powers_B1[SampleSize, run,] <- PowerSimulation(n[SampleSize], mu_0, mu_1, 
DispersionMatrix_0, DispersionMatrix_1, alpha) 
       } 
  } 
for (TestType in 1:3) 
  { 
    for (run in 1:runs) 
      { 
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        for (SampleSize in 1:length(n)) 
          { 
            AveragePowers_B1[TestType, SampleSize] <- mean(Powers_B1[SampleSize,, 
TestType]) 
            SDPowers_B1[TestType, SampleSize] <- sd(Powers_B1[SampleSize,, 
TestType]) 
          } 
      } 
  } 
 
AveragePowers_B1 
SDPowers_B1 
plot(n, AveragePowers_B1[1,], type="b", lty=1, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=1, xlab="Sample Size", ylab="Average Power", col="red") 
par(new=T) 
plot(n, AveragePowers_B1[2,], type="b", lty=3, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=2, xlab="", ylab="", axes=F, col="blue") 
par(new=T) 
plot(n, AveragePowers_B1[3,], type="b", lty=5, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=8, xlab="", ylab="", axes=F, col="darkgreen") 
legend(150, 0.8, legend=c("Distance Correlation Test", "Hotelling's T Square 
Test", "ROAST Test"), col=c("red", "blue", "darkgreen"), lty=c(1, 3, 5), pch=c(1, 
2, 8), bty="n") 
 
#================================================================================
=======  
#=   Case 2: mu_0 = mu_1 = {0.5,-0.5,0.5,-0.5,...,-0.5}                                
= 
#=           sigma_0 = {1,2,3,4,5,0.5,1.5,2.5} and sigma_1 = 
{5,4,0.5,3,2.5,1.5,2,1}   = 
#================================================================================
=======  
mu_0 <- c(0.5, -0.5, 0.5, -0.5, 0.5, -0.5, 0.5, -0.5)   #? ENTER the population 
means for X|Y=0 
mu_1 <- mu_0        #? ENTER the population means for X|Y=1 
 
sigma_0 <- c(1,2,3,4,5,0.5,1.5,2.5) 
sigma_1 <- c(5,4,0.5,3,2.5,1.5,2,1) 
 
CorrelationMatrix_0 <- rcorrmatrix(length(sigma_0)) 
CorrelationMatrix_1 <- rcorrmatrix(length(sigma_1)) 
 
DispersionMatrix_0 <- DispersionFunction(sigma_0, CorrelationMatrix_0) 
DispersionMatrix_1 <- DispersionFunction(sigma_1, CorrelationMatrix_1) 
 
Powers_B2 <- array(NA, dim=c(length(n), runs, 3), dimnames=list(n, 1:runs, 
c("dcor.test", "HotellingsT2Test", "roast"))) 
AveragePowers_B2 <- matrix(NA, nrow=3, ncol=length(n)) 
SDPowers_B2 <- matrix(NA, nrow=3, ncol=length(n)) 
for (SampleSize in 1:length(n)) 
  { 
    for (run in 1:runs) 
       { 
         Powers_B2[SampleSize, run,] <- PowerSimulation(n[SampleSize], mu_0, mu_1, 
DispersionMatrix_0, DispersionMatrix_1, alpha) 
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       } 
  } 
for (TestType in 1:3) 
  { 
    for (run in 1:runs) 
      { 
        for (SampleSize in 1:length(n)) 
          { 
            AveragePowers_B2[TestType, SampleSize] <- mean(Powers_B2[SampleSize,, 
TestType]) 
            SDPowers_B2[TestType, SampleSize] <- sd(Powers_B2[SampleSize,, 
TestType]) 
          } 
      } 
  } 
 
AveragePowers_B2 
SDPowers_B2 
x11() 
plot(n, AveragePowers_B2[1,], type="b", lty=1, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=1, xlab="Sample Size", ylab="Average Power", col="red") 
par(new=T) 
plot(n, AveragePowers_B2[2,], type="b", lty=3, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=2, xlab="", ylab="", axes=F, col="blue") 
par(new=T) 
plot(n, AveragePowers_B2[3,], type="b", lty=5, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=8, xlab="", ylab="", axes=F, col="darkgreen") 
legend(150, 0.8, legend=c("Distance Correlation Test", "Hotelling's T Square 
Test", "ROAST Test"), col=c("red", "blue", "darkgreen"), lty=c(1, 3, 5), pch=c(1, 
2, 8), bty="n") 
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Table 6.5 

Means and Standard Deviations of Powers under Case 1 in the Simulation Study III for 

Different Sample Sizes and Different Hypothesis Tests 

Sample Size 

Power 

 Distance Correlation    Hotelling’s T
2
  ROAST 

M SD  M SD  M SD 

40 0.220 0.016  0.074 0.007  0.061 0.010 

60 0.427 0.016  0.062 0.010  0.057 0.006 

80 0.724 0.013  0.059 0.007  0.053 0.006 

100 0.931 0.008  0.058 0.009  0.059 0.008 

150 1.000 0.000  0.056 0.006  0.051 0.006 

200 1.000 0.000  0.052 0.007  0.048 0.006 

250 1.000 0.000  0.055 0.009  0.053 0.008 

300 1.000 0.000  0.056 0.006  0.052 0.008 
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Table 6.6 

Means and Standard Deviations of Powers under Case 2 in the Simulation Study III for 

Different Sample Sizes and Different Hypothesis Tests 

Sample Size 

Power 

 Distance Correlation    Hotelling’s T
2
  ROAST 

M SD  M SD  M SD 

40 0.225 0.012  0.068 0.010  0.060 0.010 

60 0.469 0.011  0.063 0.005  0.057 0.006 

80 0.777 0.009  0.062 0.010  0.054 0.006 

100 0.957 0.005  0.056 0.007  0.054 0.009 

150 1.000 0.000  0.058 0.003  0.056 0.009 

200 1.000 0.000  0.053 0.010  0.053 0.009 

250 1.000 0.000  0.054 0.006  0.056 0.006 

300 1.000 0.000  0.053 0.004  0.046 0.005 
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Appendix G: R program for assessing powers in the simulation study IV 

library(MASS) 
library(energy) 
library(clusterGeneration) 
library(DescTools) 
library(limma) 
alpha <- 0.05 
R <- 1000 
runs <- 10 
n <- c(40, 60, 80, 100, 150, 200, 250, 300) 
 
DispersionMatrix <- function(sigma, correlation) 
  { 
    ng <- length(sigma) 
    DispersionMatrix <- matrix(NA, nrow=ng, ncol=ng) 
    for (i in 1:ng) 
      { 
        for (j in i:ng) 
          { 
            DispersionMatrix[i, j] <- correlation[i, j]*sigma[i]*sigma[j] 
          } 
        for (k in 1:i) 
          { 
            if (i < ng) 
              DispersionMatrix[i + 1, k] <- DispersionMatrix[k, i + 1] 
          } 
      } 
    return(DispersionMatrix) 
  } 
 
PowerSimulation <- function(n, mu_0, mu_1, DispersionMatrix_0, DispersionMatrix_1, 
alpha) 
  { 
    NrejectH0_dcor <- 0 
    NrejectH0_HotellingsT2 <- 0 
    NrejectH0_roast <- 0 
    ng <- length(mu_0) 
    X <- matrix(NA, nrow=n, ncol=ng) 
    Y <- matrix(NA, nrow=n, ncol=1) 
    for (r in 1:R) 
      { 
        Y[, 1] <- rbinom(n, size=1, prob=0.5) 
        for (i in 1:n) 
          { 
            if (Y[i, 1] == 0) 
              X[i,] <- mvrnorm(1, mu_0, DispersionMatrix_0) 
            else 
              X[i,] <- mvrnorm(1, mu_1, DispersionMatrix_1) 
          } 
 
        if (dcor.test(X, Y, R=R)$p.value <= alpha) 
          { 
            NrejectH0_dcor <- NrejectH0_dcor + 1 
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          } 
         
        if (HotellingsT2Test(X~Y)$p.value <= alpha) 
          { 
            NrejectH0_HotellingsT2 <- NrejectH0_HotellingsT2 + 1 
          } 
         
        DesignMatrix <- cbind(Intercept=1, Group=Y) 
        if (roast(t(X), design=DesignMatrix, contrast=2)$p.value[[2]][4] <= alpha) 
          { 
            NrejectH0_roast <- NrejectH0_roast + 1 
          } 
      } 
    return(c(NrejectH0_dcor / R, NrejectH0_HotellingsT2 / R, NrejectH0_roast / R)) 
  } 
 
#***************************************************************** 
#*   Same dispersion matrix, same mean, different correlations   *  
#***************************************************************** 
mu_0 <- rep(0, 8) 
mu_1 <- mu_0 
sigma_0 <- c(1,2,3,4,5,0.5,1.5,2.5) 
sigma_1 <- sigma_0 
 
set.seed(1) 
CorrelationMatrix_0 <- rcorrmatrix(length(sigma_0)) 
CorrelationMatrix_1 <- rcorrmatrix(length(sigma_1)) 
 
DispersionMatrix_0 <- DispersionMatrix(sigma_0, CorrelationMatrix_0) 
DispersionMatrix_1 <- DispersionMatrix(sigma_1, CorrelationMatrix_1) 
 
Powers_C <- array(NA, dim=c(length(n), runs, 3), dimnames=list(n, 1:runs, 
c("dcor.test", "HotellingsT2Test", "roast"))) 
AveragePowers_C <- matrix(NA, nrow=3, ncol=length(n)) 
SDPowers_C <- matrix(NA, nrow=3, ncol=length(n)) 
for (SampleSize in 1:length(n)) 
  { 
    for (run in 1:runs) 
       { 
         Powers_C[SampleSize, run,] <- PowerSimulation(n[SampleSize], mu_0, mu_1, 
DispersionMatrix_0, DispersionMatrix_1, alpha) 
       } 
  } 
for (TestType in 1:3) 
  { 
    for (run in 1:runs) 
      { 
        for (SampleSize in 1:length(n)) 
          { 
            AveragePowers_C[TestType, SampleSize] <- mean(Powers_C[SampleSize,, 
TestType]) 
            SDPowers_C[TestType, SampleSize] <- sd(Powers_C[SampleSize,, 
TestType]) 
          } 
      } 
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  } 
 
AveragePowers_C 
SDPowers_C 
plot(n, AveragePowers_C[1,], type="b", lty=1, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=1, xlab="Sample Size", ylab="Average Power", col="red") 
par(new=T) 
plot(n, AveragePowers_C[2,], type="b", lty=3, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=2, xlab="", ylab="", axes=F, col="blue") 
par(new=T) 
plot(n, AveragePowers_C[3,], type="b", lty=5, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=8, xlab="", ylab="", axes=F, col="darkgreen") 
legend(0, 1, legend=c("Distance Correlation Test", "Hotelling's T Square Test", 
"ROAST Test"), col=c("red", "blue", "darkgreen"), lty=c(1, 3, 5), pch=c(1, 2, 8), 
bty="n") 

 
 

Table 6.7 

Means and Standard Deviations of Powers in the Simulation Study IV for Different Sample 

Sizes and Different Hypothesis Tests 

Sample Size 

Power 

Distance Correlation    Hotelling’s T
2
  ROAST 

M SD  M SD  M SD 

40 0.094 0.010  0.069 0.009  0.054 0.009 

60 0.122 0.010  0.058 0.008  0.048 0.007 

80 0.170 0.010  0.054 0.006  0.049 0.007 

100 0.240 0.012  0.055 0.007  0.051 0.007 

150 0.473 0.012  0.050 0.007  0.047 0.008 

200 0.791 0.014  0.050 0.006  0.049 0.007 

250 0.965 0.004  0.054 0.010  0.052 0.006 

300 0.998 0.001  0.056 0.005  0.053 0.007 
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Appendix H: R program for assessing powers in the simulation study V 

library(MASS) 
library(energy) 
library(clusterGeneration) 
library(DescTools) 
library(limma) 
alpha <- 0.05 
R <- 1000 
runs <- 10 
n <- c(40, 60, 80, 100, 150, 200, 250, 300) 
 
DispersionMatrix <- function(sigma, correlation) 
  { 
    ng <- length(sigma) 
    DispersionMatrix <- matrix(NA, nrow=ng, ncol=ng) 
    for (i in 1:ng) 
      { 
        for (j in i:ng) 
          { 
            DispersionMatrix[i, j] <- correlation[i, j]*sigma[i]*sigma[j] 
          } 
        for (k in 1:i) 
          { 
            if (i < ng) 
              DispersionMatrix[i + 1, k] <- DispersionMatrix[k, i + 1] 
          } 
      } 
    return(DispersionMatrix) 
  } 
 
PowerSimulation <- function(n, mu_0, mu_1, DispersionMatrix_0, DispersionMatrix_1, 
alpha) 
  { 
    NrejectH0_dcor <- 0 
    NrejectH0_HotellingsT2 <- 0 
    NrejectH0_roast <- 0 
    ng <- length(mu_0) 
    X <- matrix(NA, nrow=n, ncol=ng) 
    Y <- matrix(NA, nrow=n, ncol=1) 
    for (r in 1:R) 
      { 
        # Generate data for X and Y 
        Y[, 1] <- rbinom(n, size=1, prob=0.5) 
        for (i in 1:n) 
          { 
            if (Y[i, 1] == 0) 
              X[i,] <- mvrnorm(1, mu_0, DispersionMatrix_0) 
            else 
              X[i,] <- mvrnorm(1, mu_1, DispersionMatrix_1) 
          } 
 
        if (dcor.test(X, Y, R=R)$p.value <= alpha) 
          { 
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            NrejectH0_dcor <- NrejectH0_dcor + 1 
          } 
         
        if (HotellingsT2Test(X~Y)$p.value <= alpha) 
          { 
            NrejectH0_HotellingsT2 <- NrejectH0_HotellingsT2 + 1 
          } 
         
        DesignMatrix <- cbind(Intercept=1, Group=Y) 
        if (roast(t(X), design=DesignMatrix, contrast=2)$p.value[[2]][4] <= alpha) 
          { 
            NrejectH0_roast <- NrejectH0_roast + 1 
          } 
      } 
    return(c(NrejectH0_dcor / R, NrejectH0_HotellingsT2 / R, NrejectH0_roast / R)) 
  } 
 
#****************************************************************************** 
#*   Different means, different standard deviations, different correlations   *  
#****************************************************************************** 
sigma_0 <- c(1,2,3,4,5,0.5,1.5,2.5) 
sigma_1 <- c(5,4,0.5,3,2.5,1.5,2,1) 
 
set.seed(1) 
CorrelationMatrix_0 <- rcorrmatrix(length(sigma_0)) 
CorrelationMatrix_1 <- rcorrmatrix(length(sigma_1)) 
 
DispersionMatrix_0 <- DispersionMatrix(sigma_0, CorrelationMatrix_0) 
DispersionMatrix_1 <- DispersionMatrix(sigma_1, CorrelationMatrix_1) 
 
#================================================================================
=======  
#=   Case 1: mu_0 = {0,0,...,0} and mu_1 = {1,1,...,1}                                 
= 
#=           sigma_0 = {1,2,3,4,5,0.5,1.5,2.5} and sigma_1 = 
{5,4,0.5,3,2.5,1.5,2,1}   = 
#================================================================================
=======  
mu_0 <- rep(0, 8) 
mu_1 <- rep(1, 8) 
 
Powers_D1 <- array(NA, dim=c(length(n), runs, 3), dimnames=list(n, 1:runs, 
c("dcor.test", "HotellingsT2Test", "roast"))) 
AveragePowers_D1 <- matrix(NA, nrow=3, ncol=length(n)) 
SDPowers_D1 <- matrix(NA, nrow=3, ncol=length(n)) 
for (SampleSize in 1:length(n)) 
  { 
    for (run in 1:runs) 
       { 
         Powers_D1[SampleSize, run,] <- PowerSimulation(n[SampleSize], mu_0, mu_1, 
DispersionMatrix_0, DispersionMatrix_1, alpha) 
       } 
  } 
for (TestType in 1:3) 
  { 
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    for (run in 1:runs) 
      { 
        for (SampleSize in 1:length(n)) 
          { 
            AveragePowers_D1[TestType, SampleSize] <- mean(Powers_D1[SampleSize,, 
TestType]) 
            SDPowers_D1[TestType, SampleSize] <- sd(Powers_D1[SampleSize,, 
TestType]) 
          } 
      } 
  } 
 
AveragePowers_D1 
SDPowers_D1 
plot(n, AveragePowers_D1[1,], type="b", lty=1, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=1, xlab="Sample Size", ylab="Average Power", col="red") 
par(new=T) 
plot(n, AveragePowers_D1[2,], type="b", lty=3, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=2, xlab="", ylab="", axes=F, col="blue") 
par(new=T) 
plot(n, AveragePowers_D1[3,], type="b", lty=5, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=8, xlab="", ylab="", axes=F, col="darkgreen") 
legend(150, 0.2, legend=c("Distance Correlation Test", "Hotelling's T Square 
Test", "ROAST Test"), col=c("red", "blue", "darkgreen"), lty=c(1, 3, 5), pch=c(1, 
2, 8), bty="n") 
 
#================================================================================
=======  
#=   Case 2: mu_0 = {0,0,...,0} and mu_1 = {0.5,0.5,...,0.5}                           
= 
#=           sigma_0 = {1,2,3,4,5,0.5,1.5,2.5} and sigma_1 = 
{5,4,0.5,3,2.5,1.5,2,1}   = 
#================================================================================
=======  
mu_0 <- rep(0, 8)   #? ENTER the population means for X|Y=0 
mu_1 <- rep(0.5, 8)   #? ENTER the population means for X|Y=1 
 
Powers_D2 <- array(NA, dim=c(length(n), runs, 3), dimnames=list(n, 1:runs, 
c("dcor.test", "HotellingsT2Test", "roast"))) 
AveragePowers_D2 <- matrix(NA, nrow=3, ncol=length(n)) 
SDPowers_D2 <- matrix(NA, nrow=3, ncol=length(n)) 
for (SampleSize in 1:length(n)) 
  { 
    for (run in 1:runs) 
       { 
         Powers_D2[SampleSize, run,] <- PowerSimulation(n[SampleSize], mu_0, mu_1, 
DispersionMatrix_0, DispersionMatrix_1, alpha) 
       } 
  } 
for (TestType in 1:3) 
  { 
    for (run in 1:runs) 
      { 
        for (SampleSize in 1:length(n)) 
          { 
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            AveragePowers_D2[TestType, SampleSize] <- mean(Powers_D2[SampleSize,, 
TestType]) 
            SDPowers_D2[TestType, SampleSize] <- sd(Powers_D2[SampleSize,, 
TestType]) 
          } 
      } 
  } 
 
AveragePowers_D2 
SDPowers_D2 
x11() 
plot(n, AveragePowers_D2[1,], type="b", lty=1, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=1, xlab="Sample Size", ylab="Average Power", col="red") 
par(new=T) 
plot(n, AveragePowers_D2[2,], type="b", lty=3, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=2, xlab="", ylab="", axes=F, col="blue") 
par(new=T) 
plot(n, AveragePowers_D2[3,], type="b", lty=5, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=8, xlab="", ylab="", axes=F, col="darkgreen") 
legend(150, 0.2, legend=c("Distance Correlation Test", "Hotelling's T Square 
Test", "ROAST Test"), col=c("red", "blue", "darkgreen"), lty=c(1, 3, 5), pch=c(1, 
2, 8), bty="n") 
 
#================================================================================
=======  
#=   Case 3: mu_0 = {0,0,...,0} and mu_1 = {0.5,-0.5,0.5,-0.5,...,-0.5}                
= 
#=           sigma_0 = {1,2,3,4,5,0.5,1.5,2.5} and sigma_1 = 
{5,4,0.5,3,2.5,1.5,2,1}   = 
#================================================================================
=======  
mu_0 <- rep(0, 8)   #? ENTER the population means for X|Y=0 
mu_1 <- c(0.5, -0.5, 0.5, -0.5, 0.5, -0.5, 0.5, -0.5)   #? ENTER the population 
means for X|Y=1 
 
Powers_D3 <- array(NA, dim=c(length(n), runs, 3), dimnames=list(n, 1:runs, 
c("dcor.test", "HotellingsT2Test", "roast"))) 
AveragePowers_D3 <- matrix(NA, nrow=3, ncol=length(n)) 
SDPowers_D3 <- matrix(NA, nrow=3, ncol=length(n)) 
for (SampleSize in 1:length(n)) 
  { 
    for (run in 1:runs) 
       { 
         Powers_D3[SampleSize, run,] <- PowerSimulation(n[SampleSize], mu_0, mu_1, 
DispersionMatrix_0, DispersionMatrix_1, alpha) 
       } 
  } 
for (TestType in 1:3) 
  { 
    for (run in 1:runs) 
      { 
        for (SampleSize in 1:length(n)) 
          { 
            AveragePowers_D3[TestType, SampleSize] <- mean(Powers_D3[SampleSize,, 
TestType]) 
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            SDPowers_D3[TestType, SampleSize] <- sd(Powers_D3[SampleSize,, 
TestType]) 
          } 
      } 
  } 
 
AveragePowers_D3 
SDPowers_D3 
x11() 
plot(n, AveragePowers_D3[1,], type="b", lty=1, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=1, xlab="Sample Size", ylab="Average Power", col="red") 
par(new=T) 
plot(n, AveragePowers_D3[2,], type="b", lty=3, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=2, xlab="", ylab="", axes=F, col="blue") 
par(new=T) 
plot(n, AveragePowers_D3[3,], type="b", lty=5, xlim=c(0, 300), ylim=c(0.0, 1.0), 
pch=8, xlab="", ylab="", axes=F, col="darkgreen") 
legend(150, 0.2, legend=c("Distance Correlation Test", "Hotelling's T Square 
Test", "ROAST Test"), col=c("red", "blue", "darkgreen"), lty=c(1, 3, 5), pch=c(1, 
2, 8), bty="n") 
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Table 6.8 

Means and Standard Deviations of Powers under Case 1 in the Simulation Study V for 

Different Sample Sizes and Different hypothesis Tests 

Sample Size 

Power 

 Distance Correlation    Hotelling’s T
2
  ROAST 

M SD  M SD  M SD 

40 0.749 0.014  0.751 0.014  0.769 0.016 

60 0.971 0.004  0.943 0.009  0.937 0.007 

80 0.999 0.001  0.990 0.004  0.986 0.003 

100 1.000 0.000  0.999 0.001  0.997 0.002 

150 1.000 0.000  1.000 0.000  1.000 0.000 

200 1.000 0.000  1.000 0.000  1.000 0.000 

250 1.000 0.000  1.000 0.000  1.000 0.000 

300 1.000 0.000  1.000 0.000  1.000 0.000 
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Table 6.9  

Means and Standard Deviations of Powers under Case 2 in the Simulation Study V for 

Different Sample Sizes and Different hypothesis Tests 

Sample Size 

Power 

 Distance Correlation    Hotelling’s T
2
  ROAST 

M SD  M SD  M SD 

40 0.370 0.021  0.233 0.019  0.228 0.015 

60 0.678 0.016  0.354 0.020  0.341 0.017 

80 0.911 0.008  0.471 0.013  0.445 0.016 

100 0.993 0.003  0.594 0.012  0.558 0.014 

150 1.000 0.000  0.808 0.011  0.767 0.018 

200 1.000 0.000  0.956 0.005  0.889 0.012 

250 1.000 0.000  0.977 0.005  0.953 0.006 

300 1.000 0.000  0.994 0.002  0.982 0.002 
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Table 6.10 

Means and Standard Deviations of Powers under Case 3 in the Simulation Study V for 

Different Sample Sizes and Different Hypothesis Tests 

Sample Size 

Power 

 Distance Correlation    Hotelling’s T
2
  ROAST 

M SD  M SD  M SD 

40 0.389 0.011  0.299 0.014  0.225 0.011 

60 0.711 0.008  0.467 0.015  0.332 0.017 

80 0.933 0.005  0.610 0.016  0.445 0.018 

100 0.994 0.003  0.743 0.013  0.556 0.007 

150 1.000 0.000  0.921 0.007  0.788 0.008 

200 1.000 0.000  0.982 0.004  0.911 0.008 

250 1.000 0.000  0.996 0.001  0.969 0.005 

300 1.000 0.000  0.999 0.001  0.992 0.003 
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Appendix I: R program for the first real data application 

library(energy) 
library(DescTools) 
library(limma) 
library(moments) 
 
# The original dataset is preprocessed to cancer_dataA.csv 
CancerData <- read.csv("cancer_dataA.csv", header=F) 
 
n <- nrow(CancerData) 
p <- ncol(CancerData) - 1 
 
Y <- rep(NA, n) 
for (i in 1:n) 
  { 
    ifelse (CancerData[i, 1] == "N", Y[i] <- 0, Y[i] <- 1) 
  } 
 
X <- CancerData[, 2:715] 
total <- colSums(X) 
logX <- log(X + 1) 
 
threshold <- seq(from=40, to=129000, by=20) 
I <- length(threshold) 
R <- 1000 
DesignMatrix <- cbind(Intercept=1, Group=Y) 
p_values_temp <- matrix(NA, nrow=I, ncol=3, dimnames = list(threshold, 
c("NumberOfGenes","dcor", "ROAST"))) 
 
set.seed(1) 
for (i in 1:I) 
  { 
    index_t <- total > threshold[i] 
    XData <- logX[, index_t] 
    p_values_temp[i, 1] <- ncol(XData) 
    p_values_temp[i, 2] <- dcor.test(XData, Y, R=R)$p.value 
    p_values_temp[i, 3] <- roast(t(XData), design=DesignMatrix, 
contrast=2)$p.value[[2]][4] 
  } 
index_p <- rep(NA, I) 
index_p[1] = T 
for (j in 1:(I - 1)) 
  { 
    index_p[j + 1] <- p_values_temp[j, 1] > p_values_temp[j + 1, 1] 
  } 
p_values <- p_values_temp[index_p,] 
 
hist(p_values[,2], breaks=4, xlim=c(0, 0.035), ylim=c(0,150), xlab="p-value", 
ylab="Frequency", main=NULL, col="green") 
par(new=T) 
hist(p_values[,3], nclass=20, xlim=c(0, 0.035), ylim=c(0,150), xlab="p-value", 
ylab="Frequency", main=NULL, col="lightblue") 
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legend(0.02, 150, legend=c("Distance Correlation Test", "ROAST Test"), 
col=c("green", "lightblue"), pch=c(15, 15),bty="n") 
box() 
 
x11() 
plot(threshold, p_values_temp[, 1], pch=20, ylim=c(0,500), xlab="Threshold", 
ylab="Number of Genes", type="l", main=NULL) 
x11() 
NumberofGenes <- hist(total[total>=0 & total<120000], breaks=seq(from=0, 
to=120000, by=12000), xlab="Threshold", ylab="Number of Genes", main=NULL) 
box() 
NumberofGenes$counts 
NumberofGenes$breaks 
NumberofGenes$mids 
 
max(p_values[,2]) 
min(p_values[,2]) 
mean(p_values[,2]) 
sd(p_values[,2]) 
 
max(p_values[,3]) 
min(p_values[,3]) 
mean(p_values[,3]) 
sd(p_values[,3]) 
 
x11() 
MeanDifference <- hist((colMeans(logX[!Y,])-colMeans(logX[as.logical(Y),])), 
breaks=seq(-4, 4, by=0.5), xlab="Mean Difference", main=NULL, col="lightblue") 
box() 
xfit <- seq(-4, 4, length=60) 
yfit <- dnorm(xfit, mean(colMeans(logX[!Y,])-colMeans(logX[as.logical(Y),])), 
sd(colMeans(logX[!Y,])-colMeans(logX[as.logical(Y),]))) 
yfit <- yfit*diff(MeanDifference$mids[1:2])*length(colMeans(logX[!Y,])-
colMeans(logX[as.logical(Y),])) 
lines(xfit, yfit, col="red") 
legend(0.5, 250, legend=c("Histogram of Mean Differences", "Normal Curve"), 
col=c("lightblue", "red"), pch=c(15, 15),bty="n", cex=0.95) 
 
skewness((colMeans(logX[!Y,])-colMeans(logX[as.logical(Y),]))) 
MeanDifference$counts 
sum(MeanDifference$counts) 
sum(colMeans(logX[!Y,])-colMeans(logX[as.logical(Y),])==0) 
which(colMeans(logX[!Y,])-colMeans(logX[as.logical(Y),])==0) 
MeanDifference$breaks 
MeanDifference$mids 
 
x11() 
Ratio_SD <- hist(apply(logX[!Y,], 2, sd)/apply(logX[as.logical(Y),], 2, sd), 
breaks=seq(0,5, by=0.4), xlab="Ratio of Standard Deviations", main=NULL) 
box() 
Ratio_SD$counts 
sum(Ratio_SD$counts) 
sum(apply(logX[!Y,], 2, sd)/apply(logX[as.logical(Y),], 2, sd)==0) 
logX[!Y,which(apply(logX[!Y,], 2, sd)/apply(logX[as.logical(Y),], 2, sd)==0)] 
sum(apply(logX[!Y,], 2, sd)/apply(logX[as.logical(Y),], 2, sd)==Inf) 
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logX[as.logical(Y),which(apply(logX[!Y,], 2, sd)/apply(logX[as.logical(Y),], 2, 
sd)==Inf)] 
Ratio_SD$breaks 
Ratio_SD$mids 
 
counts <- matrix(NA, nrow=6, ncol=1, dimnames=list(c("(X0bar-X1bar)<0", "(X0bar-
X1bar)=0", "(X0bar-X1bar)>0", "(s0/s1)<1", "(s0/s1)=0", "(s0/s1)>1"), "counts")) 
counts[1, 1] <- sum((colMeans(logX[!Y,])-colMeans(logX[as.logical(Y),])) < 0) 
counts[2, 1] <- sum((colMeans(logX[!Y,])-colMeans(logX[as.logical(Y),])) == 0) 
counts[3, 1] <- sum((colMeans(logX[!Y,])-colMeans(logX[as.logical(Y),])) > 0) 
counts[4, 1] <- sum((apply(logX[!Y,], 2, sd)/apply(logX[as.logical(Y),], 2, sd)) 
< 1) 
counts[5, 1] <- sum((apply(logX[!Y,], 2, sd)/apply(logX[as.logical(Y),], 2, sd)) 
== 1) 
counts[6,1] <- sum((apply(logX[!Y,], 2, sd)/apply(logX[as.logical(Y),], 2, sd)) > 
1) 
counts  
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Appendix J: R program for the second real data application 

library(energy) 
library(DescTools) 
library(limma) 
library(moments) 
 
Metadata <- read.table("Metadata.tab", header=T) 
HITChip <- read.table("HITChip.tab", sep="\t", row.names=1, header=T) 
dim(HITChip) 
max(HITChip) 
min(HITChip) 
     
n <- nrow(HITChip) 
p <- ncol(HITChip) 
 
ColumnNumberOfMetadata <- c(2, 3, 4, 8) 
index <- matrix(NA, nrow=n, ncol=4,dimnames=list(NULL, c("Age", "Sex", 
"Nationality", "BMI"))) 
for (j in 1:length(ColumnNumberOfMetadata)) 
  { 
    for (i in 1:n) 
      { 
        index[i, j] <- !is.na(Metadata[i, ColumnNumberOfMetadata[j]]) 
      } 
  } 
 
n <- matrix(NA, nrow=4, ncol=1, dimnames=list(c("Age", "Sex", "Nationality", 
"BMI"), "Sample Size")) 
for (i in 1:length(ColumnNumberOfMetadata)) 
  { 
    n[i] <- sum(index[, i]) 
  } 
n 
 
Y <- list(rep(NA, n[1, 1]), rep(NA, n[2, 1]), rep(NA, n[3, 1]), rep(NA, n[4, 1])) 
for (i in 1:n[1, 1]) 
  { 
    ifelse (Metadata[index[, 1], 2][i] <= 40, Y[[1]][i] <- 0, Y[[1]][i] <- 1) 
  } 
 
Age0 <- sum(!Y[[1]]) 
Age0 
Age1 <- sum(Y[[1]]) 
Age1 
 
Conditions <- c("male", "US", "lean") 
for (j in 2:length(ColumnNumberOfMetadata)) 
  { 
    for (i in 1:n[j, 1]) 
      { 
        ifelse (Metadata[index[, j], ColumnNumberOfMetadata[j]][i] == 
Conditions[j - 1], Y[[j]][i] <- 0, Y[[j]][i] <- 1) 
      } 
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  } 
 
Sex0 <- sum(!Y[[2]]) 
Sex0 
Sex1 <- sum(Y[[2]]) 
Sex1 
 
Nationality0 <- sum(!Y[[3]]) 
Nationality0 
Nationality1 <- sum(Y[[3]]) 
Nationality1 
 
BMI0 <- sum(!Y[[4]]) 
BMI0 
BMI1 <- sum(Y[[4]]) 
BMI1 
 
X <- list(log(HITChip[index[, 1],]), log(HITChip[index[, 2],]), 
log(HITChip[index[, 3],]), log(HITChip[index[, 4],])) 
 
set.seed(1) 
p_values <- matrix(NA, nrow=4, ncol=3, dimnames=list(c("Age", "Sex", 
"Nationality", "BMI"), c("dcor", "Hotteling's T2", "ROAST"))) 
R <- 1000 
for (i in 1:length(ColumnNumberOfMetadata)) 
  { 
    p_values[i, 1] <- dcor.test(X[[i]], Y[[i]], R=R)$p.value 
    p_values[i, 2] <- 
HotellingsT2Test(as.matrix(X[[i]])~as.matrix(Y[[i]]))$p.value 
    DesignMatrix <- cbind(Intercept=1, Group=Y[[i]]) 
    p_values[i, 3] <- roast(t(X[[i]]), design=DesignMatrix, 
contrast=2)$p.value[[2]][4] 
  } 
p_values 
 
labels <- c("Age", "Sex", "Nationality", "BMI") 
counts <- matrix(NA, nrow=6, ncol=4, dimnames=list(c("(X0bar-X1bar)<0", "(X0bar-
X1bar)=0", "(X0bar-X1bar)>0", "(s0/s1)<1", "(s0/s1)=1", "(s0/s1)>1"), c("Age", 
"Sex", "Nationality", "BMI"))) 
Skewness <- matrix(NA, nrow=2, ncol=4, dimnames=list(c("MeanDifference", "SD 
Ratio"), c("Age", "Sex", "Nationality", "BMI"))) 
for (i in 1:length(ColumnNumberOfMetadata)) 
  { 
    x11(width=14.125,height=7.0625) 
    par(mfrow=c(1, 2)) 
    histogram <- hist((colMeans(X[[i]][!Y[[i]],])-
colMeans(X[[i]][as.logical(Y[[i]]),])), breaks=seq(-1.5, 1, by=0.1), ylim=c(0, 
90), main=labels[i], xlab="Mean Difference") 
    Skewness[1, i] <- skewness((colMeans(X[[i]][!Y[[i]],])-
colMeans(X[[i]][as.logical(Y[[i]]),]))) 
    box() 
    #xfit <- seq(-1.5, 1, length=60) 
    #yN01 <- dnorm(xfit, 0, 1) 
    #yfit <- yN01*diff(histogram$mids[1:2])*sum(histogram$counts) 
    #lines(xfit, yfit, col="red") 
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    hist(apply(X[[i]][!Y[[i]],], 2, sd)/apply(X[[i]][as.logical(Y[[i]]),], 2, sd), 
breaks=seq(0, 4, by=0.15), ylim=c(0, 90), main=labels[i], xlab="Ratio of Standard 
Deviations") 
    Skewness[2, i] <- skewness(apply(X[[i]][!Y[[i]],], 2, 
sd)/apply(X[[i]][as.logical(Y[[i]]),], 2, sd)) 
    box() 
    counts[1, i] <- sum((colMeans(X[[i]][!Y[[i]],])-
colMeans(X[[i]][as.logical(Y[[i]]),])) < 0) 
    counts[2, i] <- sum((colMeans(X[[i]][!Y[[i]],])-
colMeans(X[[i]][as.logical(Y[[i]]),])) == 0) 
    counts[3, i] <- sum((colMeans(X[[i]][!Y[[i]],])-
colMeans(X[[i]][as.logical(Y[[i]]),])) > 0) 
    counts[4, i] <- sum(apply(X[[i]][!Y[[i]],], 2, 
sd)/apply(X[[i]][as.logical(Y[[i]]),], 2, sd) < 1) 
    counts[5, i] <- sum(apply(X[[i]][!Y[[i]],], 2, 
sd)/apply(X[[i]][as.logical(Y[[i]]),], 2, sd) == 1) 
    counts[6, i] <- sum(apply(X[[i]][!Y[[i]],], 2, 
sd)/apply(X[[i]][as.logical(Y[[i]]),], 2, sd) > 1) 
  } 
counts 
Skewness 
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