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Abstract 

Climate change affects water resources differently across geospatial regions in the United States 

(U.S). There is a concern of how water availability will be affected by changes in long-term 

temperature and precipitation patterns, specifically in major production regions for eight fruit 

and vegetable crops. The effects on surface water available for irrigation use and supply stress in 

five regions containing 31 Agricultural Statistics Districts (ASDs) were assessed. The Water 

Supply Stress Index Model was used and modified to project water available for irrigation use 

across nine climate scenarios driven by historical data, five General Circulation Models, two 

population scenarios, and two Representative Concentration Pathways. Through the 

incorporation of Hydrologic Unit Code 8 subbasin boundaries (HUC8), and ASDs, a new border 

was defined from the HUC8 borders which allowed water availability in the ASDs and regions to 

be quantified through hydrologic boundaries and flow characteristics between HUC8s. Projected 

surface water available for irrigation use increased at the annual time step from 2040-2070 across 

ASDs in the Pacific West for two moderate warming scenarios. Two high warming scenarios 

projected decreased water availability in the Pacific West. The results all showed decreased 

projected surface water available for irrigation use in the Midwest and Southeast. Across all 

climate scenarios in the Midwest, Southeast, and Northeast, average watershed surface water 

supply stress induced by irrigation is projected to increase. The Plains and Pacific West showed 

decreased supply stress in certain scenarios, but this does not tell us how the watersheds will be 

affected during growing seasons. Past research shows that in areas of the Western U.S., 

precipitation will increase annually due to climate change. Overall, the results showed that water 

availability would decrease in the selected regions across climate change scenarios, but more 

work is needed to understand how the specific fruit and vegetable crops will be affected.  
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Chapter 1- Introduction 

1.1. Problem Statement 

Increasing greenhouse gas concentrations in the atmosphere, resulting in climate impacts, 

are raising concerns over the hydrologic cycle and its effects upon agricultural productivity.  If 

rainfall patterns change, meeting an increased demand for fruits and vegetables will pose a 

challenge for domestic production regions in the United States (U.S.). Previous studies have 

shown that climate change will result in changes in both precipitation and temperature resulting 

in a change to the available water supply (Cisneros, Blanca; Oki, 2014; Dahlman, 2018; Duan et 

al., 2016; Roy et al., 2012). Large areas of croplands across the central U.S. are predicted to be 

threatened by rising temperature and decreasing water availability for irrigation (Duan et al., 

2017). California is one of the leading domestic sources of many vegetable and fruit crops, but 

climate change, as well as increased competition for land, water, and other natural resources, 

have the potential to limit production in the current major centers of production. Over the entire 

continental United States (CONUS), increases in temperature is projected to have a greater role 

than precipitation.  

Climate change will impact the overall hydrologic cycle and will affect sectors dependent 

on water resources. The availability of water has a major impact on the yield and quality of 

selected crops in current conditions.  The projected shifts in surface water availability are not 

uniform across the U.S. (Averyt et al., 2013; Seager et al., 2013; US EPA, 2016). Total surface 

water supplies in the Pacific Northwest are projected to increase, while in the Southwest, runoff 

is projected to decline by 10% (Averyt et al., 2013).  

Analyzing the historical and future water availability for fruit and vegetable producing 

regions could provide a method for assessing the viability of production in a region in response 
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to climate change. Evaluating whether a water gap exists in the current production regions 

provides decision makers with critical information for risk assessment. Management of water in 

the production systems must also include preserving the ecosystem services provided by 

freshwater to sensitive habitats in these regions.  

1.1.1. Areas of interest 

The fruit and vegetable crops that provided the basis for the research areas in this study are 

tomatoes, potatoes, oranges, green beans, carrots, spinach, strawberries, and sweet corn. These 

eight crops were selected based on their importance to human nutrition as well as cropping 

system model and data availability (Gustafson et al., 2018). Based on these eight crops, 31 

Agricultural Statistics Districts (ASDs) were chosen for assessment.  

 

 

Figure 1. Agricultural Statistics Districts (ASDs) chosen for project within their Agricultural 

Research Service (ARS) regions 
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Table 1. List of the ASDs selected for the project 

State 

State Agricultural Statistics District 

(ASD) 

Agricultural 

Research 

Service 

(ARS) region 

Number of HUC8s 

intersecting ASD 

Arizona AZ480 Pacific West 42 

California CA651 Pacific West 38 

 CA680 Pacific West 40 

 CA640 Pacific West 32 

 CA650 Pacific West 28 

Colorado CO880 Plains 15 

Florida FL1280 Southeast 19 

 FL1250 Southeast 18 

Georgia GA1370 Southeast 13 

Idaho ID1690 Pacific West 40 

  ID1670 Pacific West 30 

 ID1680 Pacific West 16 

Maine ME2310 Northeast 9 

Michigan MI2650 Midwest 9  

 MI2680 Midwest 12  

Minnesota MN2790 Midwest 12 

 MN2780 Midwest 13 

 MN2740 Midwest 16 

 MN2750 Midwest 17 

New York NY3640 Northeast 9 

North Dakota ND3830 Plains 11 

Oregon OR4110 Pacific West 28 

 OR4130 Pacific West 17 

Texas TX4897 Plains 4 

Washington WA5320 Pacific West 26 

 WA5350 Pacific West 12 

 WA5310 Pacific West 41 

 WA5390 Pacific West 11 

Wisconsin WI5560 Midwest 9 

 WI5530 Midwest 9 

 WI5550 Midwest 7 

 

1.1.2. Objectives 
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Changing trends in temperature and precipitation signify that impacts of global climate 

change in specific agricultural regions needs to be addressed. This study focuses on the water 

availability for irrigation in the five regions containing these ASDs as well as water supply stress 

from irrigation demand over time. The objectives of this study include: 

1) assessing water available for irrigation use in the five regions at historical, near future, 

and far future conditions, and 

2) determining water supply stress in the five regions at historical, near future, and far future 

conditions 

1.1.3. Hypotheses to be tested 

The focus of this research was to evaluate potential water available for irrigation use and 

to quantify water supply stress through time in the five Agricultural Research Service (ARS) 

regions containing the 31 ASDs. Many projections of rainfall and water availability have been 

made over the past ten years for the CONUS, but no studies have evaluated predicted competing 

demands at the watershed (HUC8) scale within ASDs or the ARS regions.  

Combinations of regions and climate scenarios were chosen for analysis based on the results of 

the ANOVA tests. (see Section 3.1.1).  The ANOVA tests were necessary for finding significant 

differences between the historical time period and the future scenarios and as such, not every 

combination of each region and scenario was chosen for analysis. The following hypotheses 

were tested to see if the projected water available for irrigation use will not show a decreasing 

trend in these regions. 

H(0)1: Projected water available for irrigation use will not show a decreasing trend in the five 

regions of the US in the near future scenarios.  
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H(0)2: Projected water available for irrigation use will not show a decreasing trend in the five 

regions of the US in the far future scenarios.  

1.1.4 Modeling irrigation water supply stress index under climate change scenarios 

This second group of hypotheses evaluates whether the water supply stress index due to 

irrigation needs alone will have a statistically significant difference in the five regions when 

comparing the historical period to the future scenarios.  

H(0)3: Water supply stress due to irrigation demand will not increase from the baseline scenario 

to the near future scenarios in the five regions of the US. 

H(0)4: Water supply stress due to irrigation demand will not increase from the baseline scenario 

to the far future scenarios in the five regions of the US. 

1.2. Literature Review 

 It is important to provide a sufficient background related research and modeling methods  

being utilized. It is important to have an understanding as to the origins of climate change 

research leading into present day studies that examine the impact of climate change on water 

resources. Some of the first research on climate change started over a century again. In 1824, 

Joseph Fourier discovered the greenhouse effect (AIP, 2018). In 1862, John Tyndall showed that 

carbon dioxide had a strong greenhouse effect (AIP, 2018). Svante Arrhenius first showed how 

doubling atmospheric CO2 in the atmosphere would warm surface temperature in 1896 

(Arrhenius, 1896). There were scattered reports describing how greenhouse gases had an impact 

on the climate but it was not until 1988 that greenhouses gases were becoming a more forefront 

issue (Revkin, 2018).  The Intergovernmental Panel on Climate Change (IPCC) was established 

in 1988 and its first report on climate change was published in 1990. This report showed how 
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small changes in temperature and precipitation could have a significant impact on runoff 

(Shiklomanov et al., 1990). In 1977 the impact of climate change on water resources and its 

effects on the world was explored in Climate, climatic change, and water supply (Wallis, 1977). 

Gleick (1987) used a water balance model for the Sacramento Basin for climate impact 

assessment, which was one of the first studies using hydrologic modeling under a changing 

climate. As early as 1968, large-scale water use projections in the U.S. were made by the Senate 

Select Committee on National Water Resources (Brown, 1999). A national water-use 

compilation in the U.S. has been conducted by the United States Geological Survey (USGS) 

every five years since 1950 under the National Water Census. These reports show consumptive-

use estimates for thermoelectric power and irrigation water use as well as estimates of public 

supply and domestic use (National Water Census). Climate change and water resource science 

resource has come a long way since these studies. While the concerns identified in the 

hypotheses for this study are not new, the methods for assessment are more advanced than 

previous investigations. It is crucial to build upon previous studies but also improve upon 

previous hydroclimatological models by looking at the critical issue of water availability in 

major fruit and vegetable production regions.  

1.2.1. Fruit, vegetables, and irrigation 

 All eight of the fruit and vegetable crops in this study require some level of irrigation; 

however, there was not national data available to show irrigation water use estimates for each of 

these crops. It is still important to understand where these crops are being grown, their economic 

value, and to see where crop irrigation in general is taking place in the U.S.  

In 2018 the total area harvested for carrots in the U.S. was 79,800 with a value of 

731,504,000 dollars. The largest producers are California, Michigan, Texas, Washington, and 
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Wisconsin. The total area harvested for sweet corn was 473,100 acres with a value of 

858,862,000 dollars. The largest producers are California, Florida, Washington, New York, and 

Georgia. The largest producers of spinach are California, Arizona, New Jersey, and Texas with a 

total area harvested of 61,450 acres and a value of 422,879,000 dollars. Idaho and Washington 

are the largest producers of potatoes. The total area harvested for potatoes was 1,014,800 acres 

with a value of 4,006,340,000 dollars. California and Florida are the largest producers of green 

beans, oranges, tomatoes, and strawberries.  The total areas harvested in 2018 for green beans, 

and tomatoes were 221,500 acres and 321,900 acres with respective values of 363,506,000 

dollars and 1,856,280,000 dollars. Three million eight hundred seventy-five thousand tons of 

oranges were produced with a value of 1,704,399,000 dollars and 1,428,895 tons of strawberries 

were produced with a value of 2,670,523,000 dollars (National Agricultural Statistics Service, 

2019).  

In 2012, the majority of crop irrigation occurred in five principal regions: The Mississippi 

Delta, the High Plains Ogallala region, the California Central Valley, the Columbia River Basin 

of the Pacific Northwest, and the Snake River Basin of the Pacific Northwest. Vegetables 

accounted for seven percent of the irrigated acres in the 17 Western States and 12.5% of the 

irrigated acres in the 31 Eastern States in 2012 (USDA ERS, 2019). It is important to note that 

sources of irrigation differ on a farm by farm basis. One farm in California growing tomatoes 

may rely on a groundwater source while another may be using surface water. This is an 

important consideration for this study as only surface water availability for irrigation was 

analyzed.  
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1.2.2 Climate change and water resources 

There is a multitude of studies exploring the link between climate change and water 

resource vulnerability. Roy et al. (2012) modeled water withdrawal projections in the U.S. 

through the year 2050 and demonstrated that future water resources could be affected by 

population growth and climate change. This study builds upon his research by assessing how 

water resources are at risk from climate change and population growth in fruit and vegetable 

production regions. Higher temperatures will turn snowfall into rainfall and the time of snowmelt 

will occur earlier in the year (Dahlman, 2018). As a result, the timing and volume of the spring 

flood will drastically change. This change in the timing of spring flooding adds uncertainty to 

this project due to the model operating at the annual time scale which cannot account for 

seasonal fluxes in water availability. Tavernia et al. (2013) showed that the number of 

watersheds in the Northeastern and Midwestern U.S. experiencing severe water stress was 

projected to increase under most climate change scenarios between 2010 and 2060 using the 

Water Supply Stress Index (WaSSI) model. Additionally, some watersheds were projected to 

develop severe stress under several scenarios. These findings are noteworthy as watersheds were 

modeled in specific fruit and vegetable production regions in the Northeast and Midwest using 

the same model. Duan et al. (2016) found that future climate change may result in reduced water 

yield in the 170 National Forests and Grasslands (NFs) in the U.S. under 20 General Circulation 

Models (GCMs) of the Coupled Model Intercomparison Project phase five (CMIP5). These 

GCMs are the most current future climate projections. A subset of these GCMs were used in this 

project using similar methods. Water yield is projected to decrease by 18 ~ 31 mm per year by 

2100 due to a rise in air temperature and precipitation. In addition to understanding of regional 
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water resources are impacted by climate change it is important to present information on water 

use given that irrigation water use is a major focus of this project.  

1.2.3. Overview of water use 

Globally, agricultural consumption makes up 90% of water usage (Rost et al., 2008).  

In the U.S., agriculture makes up the largest sector of consumptive water use by 80.7% of the 

total (Moore et al., 2015). According to the Economic Research Service branch of the United 

States Department of Agriculture (USDA), agriculture accounts for over 90 percent of 

consumptive use for ground and surface water in many western states (USDA ERS , 2019). 

Agriculture is extremely important in this region of the country which is why it was essential to 

include major fruit and vegetable production areas in the Pacific West for this study. Water use 

for irrigation has stayed within a narrow range or has declined slightly from 1970-2005 (Roy et 

al., 2012). In the USGS data set, the water use per unit area known as irrigation intensity, did not 

show a clear correlation with climatic drivers like average precipitation and potential 

evapotranspiration (Roy et al., 2012). Brown et al. (2013) investigated USGS water use data 

from 1960-2015 and found that water use efficiency has improved in most sectors. Domestic, 

public, and irrigation withdrawals in most regions of the western U.S. have started to decrease. If 

these trends continue and with the absence of further climate change, withdrawals in the U.S. 

will be expected to stay within 3% of the 2005 levels. Including the effects of future climate 

change significantly increases the projection in water withdrawals. Modeling the effects of future 

climate change on water withdrawals and water supply has been accomplished in many studies 

through the WaSSI model.  
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1.2.4. Review of studies using the WaSSI model 

 Sun et al. (2008) conducted a study using two General Circulation Models 

(GCMs), one land use change model, and one human population model to evaluate water stress 

conditions in the 13 southeastern states across their 666 HUC8s. Future water supply stress was 

projected in 2020. The study found that climate changes had the most significant impact on water 

supply in Western Texas. Population increases contributed mainly to higher water supply stress 

in metropolitan areas in Florida and the Piedmont region. Future changes in precipitation patterns 

were found to be uncertain, mainly in the eastern U.S. Tavernia et al. (2013) used WaSSI to 

evaluate changes in the Northeast and Midwestern regions between 2010 and 2060. The study 

examined anthropogenically induced water stress in watersheds. Six scenarios of land-use 

change, climate change, and population change were used. The results indicated that severe 

stress would increase for most of the scenarios. In the future scenarios, the changes were 

averaged across the HUCs. This project also adapted his method and averaged water stress 

values across HUCs. As seen in previous studies, precipitation did not show a consistent 

direction of change. Half of the future scenarios projected increases in precipitation and half 

showed decreases. The average WaSSI value increased for HUCs in the Midwest and Northeast 

for all the scenarios. Averyt et al. (2013) assessed the influences of different demand sectors on 

water stress using WaSSI. Agriculture is the principal demand-side contributor to water stress 

overall in the U.S. Their results imply that water resources in the Southwest region are at risk. 

This project explores water resources in the Southwest region in major fruit and vegetable 

production regions adding to the body of research for this region. Total surface water supplies in 

the Northwest are projected to increase and a 10% decrease in runoff is projected in the 

Southwest when comparing the periods of 1900-1970 to 2041-2060. Duan et al. (2017) used 
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historical records and 20 CMIP5 models through WaSSI and found that precipitation has been 

the primary driver of runoff variation; however, temperature’s role will outweigh that of 

precipitation’s in most regions if future climate change follows projections. Precipitation is 

expected to be the principal driver in runoff increases across the Southwest and Pacific Coast. 

Severe runoff depletion is predicted to occur in the central U.S. due to temperature increases. 

This runoff depletion may play a role in available water for irrigation use in this region. A wetter 

future is a possibility in the Eastern U.S. due to increasing humidity and precipitation which 

could also impact water available for irrigation but it is unknown of this precipitation will vary 

through specific fruit and vegetable growing seasons.  

Water scarcity increases during the summer months where crop production is the highest. 

Since data was analyzed over a large time period, annual data was used instead of monthly data 

for this project. The WaSSI dataset contains monthly data for all the factors analyzed but for a 

general sense of water stress in major fruit and vegetable production areas annual data was 

sufficient. According to a five-year, county-scale water study done by Moore et al. (2015), 

13.7% of the county is considered water scarce at the annual scale but increases to 17.3% in the 

summer months. Approximately 15% of the basins modeled that were classified as “unstressed” 

contained water scarce areas around 10% during the summer months. This information should be 

considered for future studies done on fruit and vegetable producing areas that incorporate water 

use.  Further diving into some of these studies it is important to understand how water 

withdrawals are modeled.  

1.2.5. Projection modeling 

The overall approach in modeling water withdrawals under climate change scenarios that 

Brown et al. (2013) took was to create projections instead of forecasts. The intent of projections 
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is to show the effects of what happens when past trends are extended into the future rather than 

trying to predict future trends. Oki et al. (2006) state that the objectives of future-oriented water 

resource studies should show what can happen if water resources are managed the way they 

presently are. Scenarios influenced by past decisions and trends are used for future projections 

on the water demand side. Averyt et al. (2013) also kept present-day water demands constant due 

to uncertainty in predicting future water demands. This provides a rationale for why water 

demand is projected rather than predicted in future water resource assessments. This same 

approach was used for this project to stay consistent with these studies. With the knowledge of 

climate change research, resulting water resource issues, similar studies utilizing WaSSI, and 

water withdrawal projection methodology it is important to set forth certain limitations and gaps 

in knowledge in the modeling deployed in this project. On top of the limitation of accounting for 

water fluctuations during crop growing seasons, these limitations include environmental water 

requirements, interbasin transfer (IBT), and groundwater data.  

1.2.6. Environmental water requirements 

Studies on water availability, stress, and use have often failed to consider the water 

requirements of aquatic systems.  Smakhtin et al. (2004) developed the first pilot global 

assessment of total water volumes needed for maintaining freshwater ecosystems in world river 

basins. In the report, the water volumes are referred to as environmental water requirements 

(EWR), which is commonly referred to as environmental flow. The necessary EWR to sustain 

fair conditions globally in freshwater systems ranges from 20 to 50% of the mean annual river 

flow. Caissie et al. (2014) define EWR as the idea of environmental flow or environmental water 

requirements related to the volume of water required in freshwater systems needed to maintain 

an acceptable level of life of aquatic organisms throughout their life cycles. Kendy et al. (2012) 
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developed a guide for environmental flows for nine cases studies while acknowledging that site 

specific EWR criteria have not been developed across the whole U.S. For North Carolina water 

bodies, a percentage of flow strategy was developed to address EWR. This approach uses 80-

90% of the ambient modeled flow that remains in streams as EWR (Recommendations for 

Estimating Flows to Maintain Ecological Integrity in Streams and Rivers in North Carolina, 

2013). There are no universal criteria for EWR because it is site specific and continues to be 

quantified with further research.  

1.2.7. Interbasin Transfer 

When using the WaSSI model, it is common to find modeled WaSSI values greater than 

1.0 in certain watersheds. Since WaSSI values greater than 1.0 mean that the local demand 

exceeds the available supply in the watershed, water transfer from an adjacent HUC is necessary. 

This transfer of water constitutes interbasin transfer (IBT). The WaSSI model does not account 

for IBT. This means that water supply stress is being calculated under no basin transfer 

conditions.  Southern California is an example of an area where IBTs play a crucial role in water 

resource management. In this area, water demand is not being met by the local supply 

(WaSSI>1.0). This region depends on bringing water in from both northern California and the 

Colorado River to increase the local supply. Although water demands are generally met there, 

the region may be at risk if water supplies from the Colorado River and northern California 

decrease, or if the infrastructure that stores and transports the water to California is affected. 

With all of this in mind it is important to consider the research done on IBTs in the U.S.  

The most recent work identifying interbasin transfers in the U.S. was done by Kerim et 

al. (2017). The purpose of this work was to identify the number of interbasin transfers that exist 

in the U.S. and to examine the distribution of them along with potential impacts related to any 
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clusters of IBTs. The most recent national studies of IBTs were done by the USGS in 1985 and 

1986 using the HUC definitions of basins. The USGS studies used HUC4 boundaries. For the 

study done by Kerim et al. (2017) the HUC6 boundaries were used and so an IBT was defined as 

a water transfer across HUC6 boundaries. They found that a total of 2,161 man-made waterways 

cross these boundaries in the U.S. They are mainly concentrated in Florida, Texas, and North 

Carolina accounting for over 50% of the IBTs. North Carolina does not contain any of this 

project’s ASDs and the ASD in Texas does not have recorded IBTs based on historical data, so 

this knowledge is helpful in determining the validity of the data in these areas. Unfortunately, 

volumetric flow data is not available through the National Hydrography Dataset (NHD) which 

the authors used to identify the IBTs. This means that quantifying the impact of each IBT on the 

basins is difficult. The national inventory by the USGS included volumetric flow data and 

magnitudes of the IBTs between 1973 and 1982 (Mooty and Jeffcoat 1986, Petsch 1985). This 

data was utilized in the very first study to both use WaSSI and include IBT data downscaled to 

the HUC8 level by Emanuel et al. (2015). This study found that supplying and receiving 

drainage basins have hydroclimatological conditions in common with each other. This suggests 

that climatological drivers of water shortages in receiving basins have similar effects on the 

supplying basins. Human water demand as well as engineering constraints influence the 

distribution of IBTs across the continent while the hydrological characteristics of the basins do 

not seem to be a driving factor. This work is important in understanding how IBTs affect the 

HUC8 basins involved and emphasizes the need for updated national inventories and analyses to 

better understand IBTs in a hydrological sense. This lack of data adds an assumed limitation to 

this project since IBTs affects water used for irrigation in many areas.  
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1.2.8. Groundwater 

The WaSSI model does not account for the physical volumes of available groundwater 

that can exist in the same geographic boundaries that freshwater reside in. The model assumes an 

unlimited groundwater supply. For example, the entire region that uses the Ogallala Aquifer 

shows no current water stress through WaSSI modeling, yet the aquifer is overdrawn.  

 Two important assumptions in the WaSSI calculation noted in (Averyt et al., 2013) are 

that water is supplied by local natural sources (i.e. stream flow) and that the available 

groundwater is unlimited. This second assumption means that groundwater withdrawals will 

continue at their current rates despite the implied impacts and overdrafts. Groundwater supplies 

are not unlimited and are in fact declining in many places because of withdrawals, but there is a 

lack of quality assessments on availability (Dennehy, Reilly, & Cunningham, 2015). Since there 

is no national dataset for groundwater use at the HUC8 scale or ASD scale, the options regarding 

groundwater are to assume it is infinitely available or completely unavailable. Oki & Kanae 

(2006) state that approximately half of the world’s population depends on groundwater as a 

source for drinking water as well as for other uses. In terms of groundwater demand, changes in 

the seasonal pattern have not been quantified globally.  

1.2.9. WaSSI model calibration and validation 

 One of the most important aspects to the WaSSI model is that it does not require 

calibration. This is not a common feature in similar models. WaSSI was created to include 

crucial ecohydrological processes that influence water balance with standardized input datasets 

without the need for calibration. Schwalm et al. (2014) found that WaSSI exceeded the 

customary Nash-Sutcliffe efficiency (NSE) for a “good” model-data agreement. Comparing 

modeled runoff values to observed USGS measurements for the 18 Water Resource Regions 
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(WRRs) in the CONUS, WaSSI had a 0.89 NSE value. A score of 1.0 indicates that the modeled 

data perfectly matches the observed data. Caldwell et al. (2015) found that simple, regional-scale 

models like WaSSI, have comparable performance to more complex, fine-scale models at a 

monthly time step. WaSSI had a comparable error in predicting observed streamflows at a 

monthly time step as more complex models such as HSPF, PRMS, SWATG, and WaterFALL. 

Caldwell et al. (2015) found that the uncalibrated WaSSI model predictions were considered 

good for five sites and very good at one site in the Southeastern U.S.  

 Bagsta et al. (2018) compared results between InVEST models and WaSSI using land 

cover data at 30 and 300-meter resolution. The study found that the models were insensitive to 

the choice of spatial resolution and that six out of nine ecosystem service variables gave similar 

predictions for at least two different land cover datasets. Results can be robust to data and 

models in both simple models and national scale analyses. Caldwell et al. (2012) validated 

WaSSI using monthly observed runoff data between 1961 and 2007 at outlets of 10 sites that are 

a part of the USGS Hydro-Climate Data Network. It performed well in showing annual and 

monthly runoff patterns at the sites. Duan et al. (2017) performed additional validation of the 

model to verify this result. Annual runoff was simulated using monthly precipitation and 

temperature from the PRISM dataset and was compared to USGS measurements across the entire 

CONUS and in the 18 WRRs from 1961-2010. The R-squared value was shown to be 0.91 and 

0.95 for these two scales and the root mean squared error (RMSE) was 29 and 555 mm/yr, 

respectively. Based on these studies, WaSSI is believed to be the best model for accomplishing 

the goals of this project due to its ease of use for regional modeling.  
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Chapter 2- Materials and methods 

2.1. Study area 

This study analyzed watersheds within 31 Agricultural Statistics Districts (ASD) in the 

CONUS. The ASDs are groupings of counties defined by climate, cropping practices, and 

geography in each state. The geographic features include terrain, elevation, and soil type. The 

components of climate are annual precipitation, length of growing season, and mean 

temperature. These variables impact the need to conserve soil moisture, crops grown, and 

irrigation use (National Agricultural Statistics Service). In turn, the ASDs were grouped within 

their Agricultural Research Service Region (ARS).  In the hydrologic unit system created by the 

U.S. Geologic Survey (USGS), the U.S. is divided into six levels of hydrologic units. Each unit 

has a unique hydrologic unit code (HUC) made up of 2-12 digits. The level of classification used 

in this study is the HUC8 sub basin level. The sub basin level is comparable to medium-sized 

river basins (about 2200 nationwide at the time the WaSSI simulations were run). This level of 

classification is also referred to as watershed in this study. Climate and water supply variations at 

the resolution of the HUC8 watershed were simulated and upscaled to the ASD and ARS scale.  

The different spatial resolutions modeled are shown in Figure 2.  
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Figure 2. HUC8 map of the CONUS with ASD overlay and ARS region groupings 

2.2. Climate change scenarios  

Two climate datasets were used to provide inputs to the WaSSI model.  The first contains 

monthly temperature and precipitation for the historical period of 1981-2010 from the Parameter-

elevation Relationships on Independent Slopes Model (PRISM) dataset. This data came with the 

WaSSI model and was used as the baseline scenario. The second dataset contains monthly 

precipitation, solar radiation, wind speed, specific humidity, maximum temperature, and 

minimum temperature from the Multivariate Adaptive Constructed Analogs (MACA) datasets 

(MACAv2-LIVNEH dataset). Only the temperature and the precipitation data were needed from 
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this dataset. The downscaling from the larger grid spatial resolution to HUC8 was done by (Duan 

et al., 2017). The five General Circulation Models (GCMs) of the fifth phase of the Coupled 

Model Inter-comparison Project (CMIP5) were used. The five GCMs are: GFDL-

ESM2M(GCM1), HadGEM2-ES365(GCM2), IPSL-CM5A-LR(GCM3), MIROC-ESM-

CHEM(GCM4), and NorESM1-M(GCM5). Representative Concentration Pathways (RCP)4.5 

and RCP8.5 were used for each of the GCMs. These RCPs correspond to climate forcings such 

as aerosols and greenhouse gas emissions projected into a future where radiative forcing reaches 

4.5 and 8.5 W/m2 in the year 2100 (Moss et al., 2010; IPCC, 2014). The two future time periods 

are 2021-2050 for near future, and 2040-2070 for far future for the study scenarios.  

2.3. Population scenarios 

The population scenarios used are the A1 and the A2 scenarios. The A1 scenario came with 

the WaSSI Fortran model. It is considered the “as is” scenario. This data is based on county 

resolution IPCC SRES A1 projections (Zarnoch et al., 2010). This is equivalent to what was the 

current official U.S. Bureau of Census national projection in 2010. This scenario was previously 

downscaled from county resolution to the HUC8 level by the WaSSI model developers. The 

annual population estimates were calculated through linear interpolation between the decadal 

data by the same researchers. After the year 2060, the population for that year is kept constant 

for simulations that go beyond it because of a lack of data that goes beyond that year and because 

of difficulties rewriting the Fortran code to allow for the population to be read beyond 2060. The 

A2 population scenario was provided by Dr. Kai Duan and contains data from 2006 to 2099. 

This scenario is a higher population growth future. This scenario’s data was not in a format that 

could be read by the Fortran model and had to be converted to match the format in the A1 

scenario by using the MATLAB programming language.  
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2.4. Model background 

The model used to simulate water supply variables for this project is the Water Supply 

Stress Index (WaSSI) model. WaSSI is a process-based model that can project the effects of 

climate change, forest land change, and water withdrawals on water supply stress, river flows, 

and carbon dynamics across the conterminous U.S., Rwanda, Burundi, and Mexico (U.S Forest 

Service). The core of this model is a water balance module that is sensitive to land cover and 

climate. It operates on a monthly time step at the 8-digit HUC watershed scale across the U.S. 

Annual USGS water demand estimates are adjusted to the population, disaggregated to the 

monthly time step, and compared to the surface and groundwater supply to assess stress on the 

water supply. Consumptive use is subtracted from stream flow in the river network. The model 

algorithms were developed by USDA Forest Service scientists from the Eastern Forest 

Environmental Threat Assessment Center. The web application version was created by a 

partnership between Praecipio Consulting, Photo Science Inc, and the Eastern Forest 

Environmental Threat Assessment Center and the USDA Forest Service International Programs.  

The principal element of the model that was used for this project is the water balance 

module.  The water balance module contains the predicted precipitation data for each of 

watersheds within the selected ASDs which is a critical driving force behind predicting water 

availability. The WaSSI water balance module computes the water balance separately for each of 

the different land cover classes in each watershed. Evapotranspiration (ET), infiltration, snow 

accumulation, snow melt, soil storage, surface runoff, and base flow is accounted for within each 

basin as shown in Figure 3 below. The required inputs for each watershed include monthly 

precipitation (PPT), mean monthly leaf area index (LAI), and temperature(T) for each land cover 

class, impervious cover fraction by land cover, soil properties, and land cover distribution.  
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Figure 3. Land cover classes and hydrologic processes simulated by the WaSSI Model. 

Reprinted with permission from WaSSI Services Model User Guide v1.2 by P. Caldwell and G. 

Sun et al., 2019 USDA 

The water supply/demand module is the other component of the model that was used for 

this project. This module can perform three functions:  

1. Calculate the total monthly water demand, groundwater withdrawals, and return flows 

across the domestic, industrial, thermoelectric, irrigation, livestock, public supply, aquaculture, 

and mining sectors in each watershed based on the 2005 county-level USGS water use estimates 

scaled to HUC8;  

2. Accumulate and route the water yield generated in each watershed through the river 

network at a monthly time step, subtracting consumptive use which is withdrawals minus return 

flows from river flows at the watershed outlets; and  

3. Compute the Water Supply Stress Index (WaSSI) for each watershed at a monthly time 

step.  
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WaSSI is computed as D/S.  Total freshwater withdrawals, 𝑊𝐷𝑆𝑊+𝐺𝑊(MGD) is the total 

freshwater withdrawals from groundwater and surface water (SW+GW) is as follows: 

𝑊𝐷𝑆𝑊+𝐺𝑊 = 𝑡𝑜𝑡𝑎𝑙 𝑓𝑟𝑒𝑠ℎ𝑤𝑎𝑡𝑒𝑟 𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙𝑠 𝑓𝑟𝑜𝑚 𝑔𝑟𝑜𝑢𝑛𝑑𝑤𝑎𝑡𝑒𝑟 𝑎𝑛𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑤𝑎𝑡𝑒𝑟 

Equation 1 

The total water demand(D) for a HUC8 in WaSSI is the sum of total freshwater withdrawals 

from groundwater and surface water and is shown by: 

𝐷 =  Σ𝑊𝐷𝑆𝑊+𝐺𝑊 

Equation 2 

The total water supply(S) in a HUC8 is given by 

𝑆 =  𝑄𝑆 +  Σ𝑊𝐷𝐺𝑊 

Equation 3 

Where 𝑄𝑆 is the surface water supply (MGD) for a HUC8 and Σ𝑊𝐷𝐺𝑊 is the sum of 

groundwater withdrawals for a HUC8.  

The 2005 USGS water use data was replaced with the 2010 USGS water use data for this 

project to simulate more accurate projections for future water use. The code used to run the 

model was obtained by the developers of WaSSI who work with the U.S. Forest Service (Dr. Ge 

Sun, Dr. Peter Caldwell, Erika Mack).  The data was simulated through a Fortran-backed version 

of the model and produced output at the watershed level.  

2.5. Surface water supply validation  

The variables generated from the water balance within the WaSSI model were not all 

directly used in projecting surface water supply for the stress analysis section. Instead, processes 

within the model was recreated using the equations in the WaSSI User Guide (Peter Caldwell et 

al., 2013). This was done because certain processes within the model had to be manipulated to 
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project water availability for irrigation use in ASDs and ARS regions rather than project water 

availability at the HUC8 scale. The surface water supply produced from the WaSSI model was 

compared to the surface water supply calculated in Equation 4.  

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝑆𝑊𝑆𝑤(𝑀𝐺𝐷) =  Σ𝑄𝑖𝑛(𝑀𝐺𝐷)𝑤 + 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑𝑅𝑢𝑛𝑜𝑓𝑓(𝑀𝐺𝐷)𝑤 

Equation 4 

Σ𝑄𝑖𝑛(𝑀𝐺𝐷)𝑤 is the sum of flows from upstream watersheds if present and the derivation of it is 

elaborated on in more detail in Section 2.7. First, the runoff values from WaSSI were converted 

from mm to Mm3/year and is shown by 

𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑𝑅𝑢𝑛𝑜𝑓𝑓 (
𝑀𝑚3

𝑦𝑒𝑎𝑟
) = 𝑅𝑈𝑁𝑂𝐹𝐹(𝑚𝑚) ∗ 𝐴𝑟𝑒𝑎 𝑜𝑓

𝐻𝑈𝐶(𝑚2)

1000
/1,000,000 

Equation 5 

Next, the newly converted runoff needed to be converted from Mm3/year to MGD.  

𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑𝑅𝑢𝑛𝑜𝑓𝑓(𝑀𝐺𝐷) = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑𝑅𝑢𝑛𝑜𝑓𝑓 (
𝑀𝑚3

𝑦𝑒𝑎𝑟
) ∗ 0.724

𝑀𝐺𝐷

𝑀𝑚3
/𝑦𝑒𝑎𝑟 

Equation 6 

Qin was then converted from Mm3/year to MG/year and is as follows 

Qin (
𝑀𝐺

𝑦𝑒𝑎𝑟
) = Qin(

𝑀𝑚3

𝑦𝑒𝑎𝑟
) ∗ 264.17 𝑀𝐺/𝑀𝑚3 

Equation 7 

Another conversion of the flow in had to take place in order to get the water supply values in the 

same units as water demand for irrigation (MGD) which was needed for the stress analyses. The 

Qin in MG/year was converted to MGD and is as follows 
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𝐹𝑙𝑜𝑤 𝑖𝑛 (𝑀𝐺𝐷) =
𝐹𝑙𝑜𝑤 𝑖𝑛 (

𝑀𝐺
𝑦𝑒𝑎𝑟)

365 𝑑𝑎𝑦𝑠
 

Equation 8 

There were some mismatches between the values from the WaSSI simulations and the 

numbers manually calculated. The same routing table was used to calculate the surface water 

supply manually that the model uses, and the runoff values were also the same. It is not believed 

that the errors have a huge impact on the water availability analysis for the ASDs based on the 

overall percent differences between the surface water values. In comparing the values, the 

percent difference was used since the values compared are both from models and therefore are 

values obtained from experimentation which fits the criteria for using the percent difference 

formula. The equation used to find the percent difference is  

% 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =

(

 
 
(

|𝑊𝑎𝑆𝑆𝐼𝑆𝑊𝑆 − 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝑆𝑊𝑆|
𝑊𝑎𝑆𝑆𝐼𝑆𝑊𝑆 + 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝑆𝑊𝑆

2
)

)

 
 
∗ 100 

Equation 9 

Where WaSSISWS = the surface water supply for a HUC8 in MGD generated from the WaSSI 

simulation; CalculatedSWS= the surface water supply for a HUC8 in MGD calculated manually 

fromEquation 9. 

The average percent difference was 0.15% and the maximum value was 9.28% using 

WaSSI simulation output utilizing historical data. All but two of the watersheds in the 31 ASDs 

had a percent difference under 5.00%. ASD 680 contains a watershed with the largest percent 

difference in surface water supply. 18100204 which is an isolated watershed, had a percent 

difference of -8.273%. The value calculated from the WaSSI equations is a larger value than the 

value produced from the model simulation.  
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2.6. Routing 

 In order to accurately project surface water supply in the ASDs using output from 

WaSSI, the same routing data between HUC8s needed to be used that the WaSSI model uses. 

Routing in this case is the physical relationship between each HUC8 in terms of how one 

watershed outlet empties into another watershed. The format of the routing matrix in the WaSSI 

model is seen in Table 2. Each number in the three columns corresponds to an ID number. An ID 

number represents a specific HUC8. The -9999 values are blank values that do not correspond to 

a HUC and are just placeholders that allow the Fortran code to read the table.  

Table 2. Screen capture of routing data read by Fortran code. Entire Matrix is 1245 rows X 33 

columns 

 

The ID numbers were replaced with the 8-digit HUC codes to give a table like that shown in the 

first column of Table 3.  

1 2 -9999

1 3 -9999

4 -9999 -9999

5 -9999 -9999

16 -9999 -9999

17 10 6

-9999 10 8

-9999 10 9

-9999 13 12

18 13 11

18 15 14

19 -9999 -9999

20 -9999 -9999

21 -9999 -9999

23 -9999 -9999

27 22 -9999

27 24 -9999

27 25 -9999

27 26 -9999
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Table 3. Three transformations of the routing matrix shown in each column 

 
Transformation 1 Transformation 2 Transformation 3 

   
 

The table in the first column is an example of the first transformation that took place. In 

this table, the columns are read from right to left with headwater HUC8s starting on the right and 

ocean or international boundaries in the leftmost column. Each column of the table was then 

pasted in reverse order to give a mirror image of the data so that the data could be read from left 

to right. This is seen in the second column of Table 3 above. In this second transformation, the 

column all the way on the right corresponds to HUCs flowing into oceans or international 

boundaries. The third transformation is the table in the final column. Table headers of ‘FROM’ 

1010001 1010002

1010001 1010003

1010004

1010005

1050001

1050002 1020005 1020001 1020002

1020005 1020003

1020005 1020004

1030003 1030002

1050003 1030003 1030001

1050003 1040002 1040001

1060001

1060002

1060003

1070002

1070006 1070001

1070006 1070003

1070006 1070004

1070006 1070005

1080106 1080105

1080106 1080107

1080201 1080202

1080201 1080203

18100203 18100204

18100100 18100204

18090208 18070203

18090202 18090203

18070304 18070305

18070202 18070203

18070105 18070106

18070104 18070106

18070102 0

18070102 0

18060012 18060006

18060007 18060008

18050004 18050002

18050001 0

18050001 0

18030010 18030012

18030009 18030012

18030007 18030012

18030006 18030012

18030005 18030012

18030004 18030012

18030003 18030012

18010211 18010209

18010210 18010209

18010206 0

18010206 0

18010206 0

FROM TO

18100204 None

12040101 12040104

11080003 11080006

11140306 11140304

5030104 5030101

12070101 12070104

6010107 6010201

15020014 15020013

14070004 14070001

12100303 12100204

14080106 14080105

9030004 9030008

15020018 15020016

18100100 18100204

16060002 None

16060012 None

8010202 8010100

9010003 None

15080102 None

2080203 2080205

16020306 None

3060103 3060106

15080101 None
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and ‘TO’ were added to the table. The ‘FROM’ column corresponds to the HUC that has water 

traveling to separate downstream HUC. The ‘TO’ column corresponds to the HUC that is 

receiving water from the separate upstream HUC (if applicable).  

If there is a none in the ‘TO’ column it means that the HUC is not contributing any flow 

downstream to another HUC. After this final table was created all duplicate routing pairs needed 

to be removed. For example, 18010206 to zero is shown three times when it only needs to be 

counted once. After removing all duplicates, the resulting table represents the same routing data 

used for the coterminous U.S. that the WaSSI Model. The resulting table was formatted as an 

Excel file that the developed code in R could use to process data. This table was used to find all 

flow out values (water leaving the outlet of the HUC) for the HUCs. 

The next steps for determining projected water available for irrigation involved ArcMap. 

The Agricultural Statistics Districts borders were added from a shapefile obtained from the 

USDA National Agricultural Library (“NASS - Quick Stats | National Agricultural Library,” 

2017). Using the ASD borders and HUC8 border in ArcMap, the percent area of each HUC in 

each ASD was found using the ‘Tabulate Area’ tool. In order to avoid having shared flows 

between HUCs crossing two or more ASD borders, the ASD borders were redefined based on 

watershed boundaries. If the majority of a HUC was contained in an ASD it was counted towards 

the new border. The new ASD borders based on HUCs are called ASD Watershed Borders. An 

example of this new type of boundary is shown below.  
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Figure 4. Example of an ASD Watershed Border boundary. ASD 2650 in the Midwest is shown. 

 

2.6.1. Flow Classification 

After creating the HUC8 routing table for the entire U.S., a routing table for the 31 ASDs 

was created was created using the ASD Watershed Borders which changed the number of HUCs 

assigned to each ASD. Based on the ASD routing data, flow classifications were assigned to 

each HUC8. Each HUC was assigned a flow classification value of one or two. A value of one 

means that the HUC is either ‘isolated’ or ‘downstream’. An isolated HUC does not receive flow 

from an upstream HUC or contribute flow to a downstream HUC. A downstream HUC means 

that the HUC is receiving flow from an upstream HUC in the ASD but not contributing flow to a 

downstream HUC in the ASD. A HUC with a flow classification of two is a ‘flow-through’ 
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watershed. A flow-through watershed both receives flow and contributes flow to other 

watersheds. Water in a HUC with a flow classification of two is not considered available to the 

ASD in this upscaling approach since its outlet streamflow is counted in each downstream 

watershed. Ensuring that flow through HUCs are not counted towards the overall ASD water 

availability negates possible over accounting of water that is represented downstream.  

2.7. Projecting surface water available for irrigation  

 Determining the water available for irrigation use in the future was accomplished through 

the R programming language. Microsoft Excel was used to separately check the calculations 

done in R. Each of the scenarios used in projecting water available for irrigation use is seen in 

Table 44. Each scenario has water supply data in WaSSI that is determined by whether the 

climate variables come from PRISM, RCP 8.5, or RCP 4.5 for the respective GCM. In WaSSI, 

the domestic water demand sector is the only water demand sector that is being simulated 

through time and is dependent on the population scenario. All other water demand sectors are 

kept constant from USGS data in the model. The irrigation water use estimates come from 2010 

USGS data. F1 scenarios correspond to near future (2021-2050), and F2 scenarios correspond to 

far future (2040-2070). All scenario results are the average of the five GCMs results with the 

exception of the historical scenario.  
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Table 4. Summary of historical (1981-2010) and future (2021-2050,2040-2070) scenarios of 

irrigation water supply stress and projected irrigation water availability 

  
Water Demand 

 
Scenario Water Supply Domestic Irrigation 

Historical PRISM Climate USGS County Level Census 2010 USGS Data 

High Stress AF1 RCP 8.5 Climate Population under SRES A2 2010 USGS Data 

High Stress BF1 RCP 8.5 Climate Population under SRES A1 2010 USGS Data 

Intermediate Stress AF1 RCP 4.5 Climate Population under SRES A2 2010 USGS Data 

Intermediate Stress BF1 RCP 4.5 Climate Population under SRES A1 2010 USGS Data 

High Stress AF2 RCP 8.5 Climate Population under SRES A2 2010 USGS Data 

High Stress BF2 RCP 8.5 Climate Population under SRES A1 2010 USGS Data 

Intermediate Stress AF2 RCP 4.5 Climate Population under SRES A2 2010 USGS Data 

Intermediate Stress BF2 RCP 4.5 Climate Population under SRES A1 2010 USGS Data 

For each scenario, routing data for the ASDs was referenced to derive the correct flow 

out values for each HUC8 in million meters cubed per year.  

𝑄𝑜𝑢𝑡 = Σ𝑄𝑖𝑛 + 𝑌 −  Σ𝐶𝑈 

Equation 10 

The variable Y inEquation 10 refers to the water yield/runoff generated in a HUC. Σ𝐶𝑈 is 

the sum of consumptive water use in all watersheds across all water use categories. For this 

analysis, irrigation was set to zero in the water use and return flow files that the model uses since 

water available for irrigation use was being modeled. Therefore, irrigation was not being 

accounted for in the consumptive use variable.  

Σ𝑄𝑖𝑛 = 𝑠𝑢𝑚 𝑜𝑓 𝑓𝑙𝑜𝑤𝑠 𝑓𝑟𝑜𝑚 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑤𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑𝑠 𝑖𝑓 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 

Equation 11 

Flow in was not a variable present as WaSSI output. Through a lookup function, the flow 

out of a given HUC that was being routed to another HUC is counted as Flow in. All Flow out 

values from a HUC going to another HUC were summed to give an overall Flow in value for a 
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HUC. 𝑄𝑜𝑢𝑡  and 𝑄𝑖𝑛 values change for each scenario. Next, the water left in the downstream or 

isolated HUC for EWR was calculated. The EWR constant is determined by the user and was set 

to be a constant 0.20 (20%).  

𝐸𝑊𝑅 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 0.20 

Equation 12 

The AvailableFlowOut is the flow out of an isolated or downstream HUC in the ASD. This value 

was directly simulated from WaSSI.  

𝐸𝑊𝑅 = 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐹𝑙𝑜𝑤𝑂𝑢𝑡 (
𝑀𝑚3

𝑦𝑒𝑎𝑟
) ∗ 𝐸𝑊𝑅 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Equation 13 

The water available for irrigation after EWR is subtracted from the AvailableFlowOut is given 

by 

𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑𝑊𝑎𝑡𝑒𝑟𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(
𝑀𝑚3

𝑦𝑒𝑎𝑟
) = 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐹𝑙𝑜𝑤𝑂𝑢𝑡 − 𝐸𝑊𝑅 

Equation 14 

ProjectedWaterAvailable(
𝑀𝑚3

𝑦𝑒𝑎𝑟
) was aggregated from HUC to each ASD for every simulation 

year to give an overall value for each ASD called ASDIrrigationWater(
𝑀𝑚3

𝑦𝑒𝑎𝑟
) and is given by 

𝐴𝑆𝐷𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑊𝑎𝑡𝑒𝑟(
𝑀𝑚3

𝑦𝑒𝑎𝑟
)  =∑𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑𝑊𝑎𝑡𝑒𝑟𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(

𝑀𝑚3

𝑦𝑒𝑎𝑟
) 

𝑛

𝑖=1

 

Equation 15 

The variable n corresponds to each watershed and i corresponds to each year of simulation so 

that the projected water available is summed for each year in a watershed for every watershed 
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making up the ASD to show results at the ASD scale. The water availability values were each 

year were averaged across ASDs in a region to give an average value for each region. Statistical 

analyses were then run on each region’s results.   

2.7.1 ANOVA 

The first statistical test performed was a one-way Analysis of Variance (ANOVA) test 

using Microsoft Excel. The significance level of 0.05 was used. This test compared each 

projected future scenario to the historical time period simulation to assess whether there was a 

statistically significant difference between the datasets.  

2.7.2 Mann-Kendall 

The next statistical test used was the Mann-Kendall test. The Mann-Kendall rank statistic 

test is one of the most widely used tests for analyzing climatological time series trends and in 

hydrologic time series (Mavromatis & Stathis, 2011; Yue & Wang, 2004). It is a non-parametric 

test that does not require normally distributed data. It is most generally a test to see if Y values 

tend to increase or decrease with time. The package ‘Kendall’ in R was used for calculating 

Kendall’s S statistic (score) and Kendall’s tau (Package “Kendall,” 2015). Tau assesses the 

strength of the relationship between the x and y variables. It is resistant to effects from a small 

number of skewed data points and is rank based. Tau is typically lower than the traditional 

correlation coefficient r when compared to linear relationships of the same caliber.  

When the score is a large positive number, the values measured later in time are larger 

than values measured earlier in time which indicates an upward trend in the data. If tau is 

positive, this also indicates an upward trend. The null hypothesis of no trend is rejected when the 
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score is significantly different from zero (Helsel & Hirsch, 2002). The alternative hypothesis 

assumes there is a trend. Kendall’s tau is expressed as 

 τ=S/D where S= Σ𝑖=1
𝑛−1Σ𝑗=𝑖+1

𝑛 𝑠𝑖𝑔𝑛𝑇𝑗 − 𝑇𝑖 and D= n(n-1)/2 

Where 𝑇𝑗 and 𝑇𝑖 are annual values in years j and i, and j is great than i. S is the score and D, the 

denominator. D is the largest possible value S can be. 

2.8. Irrigation surface water supply stress evaluation  

2.8.1. Stress classification 

Calculating the water supply stress index due to irrigation demand was modeled after the 

method done by Averyt et al. (2013). One key difference; however, is that only surface water 

supply stress was calculated for this project. Knowing the routing connections between each 

HUC in the ASDs allowed for calculating the surface water supply for each HUC using the 

runoff and the flow in (Qin).  

The water supply stress by the irrigation sector i at the watershed scale w was calculated 

through Equation 16, where 𝑊𝐷𝑤,𝑖(𝑀𝐺𝐷)  is the water demand for irrigation in 2010 for each 

watershed and 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝑆𝑊𝑆𝑤(𝑀𝐺𝐷) is the calculated surface water supply for each 

watershed found in Equation 4.  

𝑊𝑎𝑆𝑆𝐼𝑤,𝑖 = 𝑊𝐷𝑤,𝑖 (𝑀𝐺𝐷) /𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝑆𝑊𝑆𝑤(𝑀𝐺𝐷) 

Equation 16 
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The stress indices used for this analysis originate from Oki et al. (2001) and are seen in Table 5. 

Table 5. Watershed level stress indices ranging from low stress to high stress 

Classification of WaSSI values 

Category Index 

Low <0.1 

Moderate 0.1-0.2 

Medium 0.2-0.4 

High >0.4 

 

The higher the WaSSI value, the greater the water supply stress to the watershed. 

Groundwater supplies are not taken into account due to the lack of quality data surrounding this 

topic (Dennehy et al., 2015). One assumption in the WaSSI calculation was that the water was 

being supplied by local sources. Interbasin transfer was not considered. A watershed may have a 

WaSSI value greater than 1.0 but this may be an overestimate due to demands being met by 

infrastructure such as reservoirs, groundwater pumping, recycled water, reclaimed water, and 

interbasin transfers. EWR was not considered for the stress analysis to remain consistent with 

previous studies looking at watershed stress induced by specific demand sectors and given that 

the stress value may already be an overestimate in certain areas due to the above-mentioned 

reasons.  

Annual surface water supply (𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝑆𝑊𝑆𝑤) for each of the scenarios in Table 4 

was calculated using the modified WaSSI model developed for this project. Irrigation water 

demands were estimated by projecting 2010 USGS water use data into the future. This was done 

in order to see the possible effects on water supply stress if present water use in this sector was 

projected into the future under a range of climate and population scenarios. Each simulation year 

into the future used the 2010 irrigation values.  Present water use equated to the 2010 USGS 

values because that was the most recent data available. Only the HSAF1, HSAF2, ISAF1, and 

ISAF2 scenarios were analyzed for this section because the B scenarios used a different 
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population scenario. Since the only water use sector used for calculated WaSSI was irrigation, 

the population did not impact the resulting data.   

Chapter 3- Results and discussion 

3.1. Results and statistical analyses  

The results for projected surface water available for irrigation use in million meters cubed 

per year (Mm3/year) are shown in Appendix G and in the proceeding graphs. These results are 

shown for each year for the Historical, HSAF1, HSBF1, ISAF1, ISBF1, HSAF2, HSBF2, ISAF2, 

and ISBF2 scenarios. These represent the full range of scenarios chosen across the two warming 

scenarios (RCP 4.5 and 8.5), two population scenarios (A1 and A2), historical period from 1981-

2010, near future period from 2021-2050, and far future period from 2040-2070.  Figure 5 shows 

the results for each of the five regions for the historical time period from 1981-2010. Overall, the 

Pacific West has the most water available for irrigation use over time, followed by the Southeast, 

Northeast, Midwest, and Plains. The Pacific West and Southeast also appear to have the greatest 

fluctuations in water availability. This coincides with extreme precipitation and temperature 

events in these regions.  Figure 6, Figure 7, Figure 8, and Figure 9 shows the results for the near 

future scenarios (2021-2050) which follow similar trends as the Historical scenario. Figure 10, 

Figure 11, Figure 12, and Figure 13 show the water availability for each region for the far future 

scenarios (2040-2070). In these scenarios, the noticeable difference in water availability is the 

switch from the Southeast to the Northeast having the second most available water. This data is 

more comprehensively analyzed through the ANOVA and Mann-Kendall tests.  
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Figure 5. Projected surface water available for irrigation use over time in the Historical scenario 

 

 
Figure 6. Projected surface water available for irrigatoin use over time in the High Stress High 

Population Near Future  (HSAF1) scenario 
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Figure 7. Projected surface water available for irrigation use over time in the High Stress Normal 

Population Near Future (HSBF1) scenario 

 

 

 

 
Figure 8. Projected surface water available for irrigation use over time in the Intermediate Stress 

High Population Near Future (ISAF1) scenario 
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Figure 9. Projected surface water available for irrigation use over time in the Intermediate Stress 

Normal Population Near Future (ISBF1) scenario 

 

 
Figure 10. Projected surface water available for irrigation use over time in the High Stress High 

Population Far Future (HSAF2) scenario 
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Figure 11. Projected surface water available for irrigation use over time in the High Stress 

Normal Population Far Future (HSBF2) scenario 

 

 
Figure 12. Projected surface water available for irrigation use over time in the Intermediate 

Stress High Population Far Future (ISAF2) scenario 
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Figure 13. Projected surface water available for irrigation use over time in the Intermediate 

Stress Normal Population Far Future (ISBF2) scenario 
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ANOVA results. The historical scenario for each region shows ‘NA’ for the p-value, alpha, and 

Test Interpretation because the historical data was what the ANOVA test measured the means 

against for each future scenario. The historical scenario itself was not interpreted for significance 

as it was the baseline needed for the comparison of means in ANOVA.  

Table 6. Summary of ANOVA results for Midwest Region at alpha = 0.05 

Water Availability 

Scenarios 
Average p-value Test Interpretation 

Historical 9713 NA NA 

HSAF1 8878 0.15 Non-Significant 

HSBF1 8881 0.15 Non-Significant 

ISAF1 8745 0.08 Non-Significant 

ISBF1 8748 0.08 Non-Significant 

HSAF2 7813 0.001 Significant 

HSBF2 7813 0.001 Significant 

ISAF2 8445 0.02 Significant 

ISBF2 8444 0.02 Significant 

 

Table 6 above shows that for the Midwest Region there was no Statistical Significance 

for the HSAF1, HSBF1, ISAF1, and ISBF1 scenarios. There was Statistical Significance in the 

HSAF2, HSBF2, ISAF2, and ISBF2 scenarios. These same results are seen for the Pacific West 

and Southeast Regions in Table 7, and Table 8. Summary of ANOVA results for Southeast 

Region at alpha = 0.08 below.  

Table 7. Summary of ANOVA results for Pacific West Region at alpha = 0.05 
Water Availability 

Scenarios 
Average p-value Test Interpretation 

Historical 65819 NA NA 

HSAF1 65819 0.14 Non-Significant 

HSBF1 71106 0.13 Non-Significant 

ISAF1 69736 0.25 Non-Significant 

ISBF1 69876 0.23 Non-Significant 

HSAF2 34171 3.64E-14 Significant 

HSBF2 34180 3.68E-14 Significant 

ISAF2 34919 6.20E-14 Significant 
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ISBF2 34927 6.25E-14 Significant 

 

Table 8. Summary of ANOVA results for Southeast Region at alpha = 0.05 
Water Availability 

Scenarios 
Average p-value Test Interpretation 

Historical 17430 NA NA 

HSAF1 17215 0.82 Non-Significant 

HSBF1 17162 0.08 Non-Significant 

ISAF1 17430 0.79 Non-Significant 

ISBF1 17665 0.83 Non-Significant 

HSAF2 10153 6.82E-12 Significant 

HSBF2 10105 5.49E-12 Significant 

ISAF2 10819 8.22E-10 Significant 

ISBF2 10770 6.65E-10 Significant 

 

Table 9. Summary of ANOVA results for Plains Region at alpha = 0.059 and  

 

 

 

 

 

 

 

 

 

 

 

Table 10. Summary of ANOVA results for Northeast Region at alpha = 0.0510 show that there 

was no Statistical Significance found in any of the future scenarios for the Plains and Northeast 

Regions based on the results of the ANOVA tests.  

Table 9. Summary of ANOVA results for Plains Region at alpha = 0.05 
Water Availability 

Scenarios 
Average p-value Test Interpretation 

Historical 4107 NA NA 

HSAF1 4018 0.67 Non-Significant 

HSBF1 4026 0.70 Non-Significant 
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ISAF1 4202 0.65 Non-Significant 

ISBF1 4210 0.63 Non-Significant 

HSAF2 3791 0.15 Non-Significant 

HSBF2 3799 0.16 Non-Significant 

ISAF2 3886 0.27 Non-Significant 

ISBF2 3894 0.28 Non-Significant 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10. Summary of ANOVA results for Northeast Region at alpha = 0.05 

Water Availability 

Scenarios 
Average p-value Test Interpretation 

Historical 11964 NA NA 

HSAF1 12388 0.33 Non-Significant 

HSBF1 12390 0.33 Non-Significant 

ISAF1 12111 0.73 Non-Significant 

ISBF1 12112 0.73 Non-Significant 

HSAF2 12001 0.93 Non-Significant 

HSBF2 12003 0.93 Non-Significant 

ISAF2 12275 0.46 Non-Significant 

ISBF2 12278 0.45 Non-Significant 

 

In the Midwest, Pacific West, and Southeast Regions the results of these ANOVA tests 

showed that there was a statistically significant difference in the means of the historical scenario 

to the ISAF2, HSAF2, ISBF2, and HSBF2 scenario. This means that the projected water 

available for irrigation use averaged across ASDs in this region differed enough between 

historical period from 1981-2010 and projected data from 2040-2070. This applied to the 

moderate warming RCP 4.5 and high warming RCP 8.5 scenarios for both the normal A1 
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population scenario and the high A2 population scenario. These scenarios represent four of the 

eight projected future scenarios. The near future period from 2021-2050 and its different 

scenarios did not show statistically significant differences compared to the historical period 

meaning these scenarios were not analyzed through trend testing. It is worth noting that these 

results do not mean that there is not a change in projected water availability in the near future but 

using averaged results across specific ASDs at the annual scale there was not a statistically 

significant difference.  

The Northeast and Plains Regions did not show statistically significant difference in the 

means between the historical period from 1981-2020 to any of the projected future scenarios. 

This means that for the ASDs in these regions, the average results do not show statistical 

significance for the scenarios modeled. This does not necessarily mean there is no change in 

water availability which is important to note. The ANOVA test was used to determine which 

scenarios and regions would require more testing and since there was no statistical significance 

found for the Northeast and Plains, they were not analyzed using the Mann-Kendall trend test. 

These results imply that precipitation and temperature do not have a large enough change in 

these two regions using the selected ASDS at the annual time scale. Specific watersheds and 

crops may still be heavily affected by a changing climate in the regions and scenarios that did not 

show statistical significance. 

3.1.2. Trend Testing Results 

This section presents the results of the Mann-Kendall trend tests which were run on the 

scenarios with significant differences between the means of the historical scenario compared to a 

future scenario through the ANOVA test. These scenarios were analyzed using this trend test to 

indicate which direction the water availability is trending towards throughout the scenario’s 
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timespan. The test showed whether the trend was positive or negative over the selected time 

period.  

When the score (S) was a large positive number, later measured projected water available 

for irrigation use values were larger than earlier measured values (positive trend). If tau was 

positive, this also indicated an upward or positive trend. The trend test is comparing later 

measured water available for irrigation use to earlier measured water available for irrigation use.  

 

 

 

Table 11. Mann-Kendall Trend Test Results for each scenario by region  
Scenario Score Var Denominator             tau Test Interpretation 

Midwest      
Historical -9 3141.67 435.00 -0.02 Negative Trend 

HSAF2 -129 3461.67 465.00 -0.28 Negative Trend 

HSBF2 -129 3461.67 465.00 -0.28 Negative Trend 

ISAF2 -11 3461.67 465.00 -0.02 Negative Trend 

ISBF2 -11 3461.66 465.00 -0.02 Negative Trend 

Pacific West      
Historical -49 3141.67 435.00 -0.11 Negative Trend 

HSAF2 -67 3461.67 465.00 -0.14 Negative Trend 

HSBF2 -67 3461.67 465.00 -0.14 Negative Trend 

ISAF2 21 3461.67 465.00 0.05 Positive Trend 

ISBF2 21 3461.67 465.00 0.05 Positive Trend 

Southeast      
Historical -11 3141.67 435.00 -0.03 Negative Trend 

HSAF2 -161 3461.67 465.00 -0.35 Negative Trend 

HSBF2 -161 3461.67 465.00 -0.35 Negative Trend 

ISAF2 -77 3461.67 465.00 -0.17 Negative Trend 

ISBF2 -77 3461.67 465.00 -0.17 Negative Trend 

Table 11. Mann-Kendall Trend Test Results for each scenario by region 

 above shows the Mann-Kendall trend test results for each of the scenarios that had 

significant differences between the means of the historical and future scenarios. The first region 
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analyzed was the Midwest region. The historically projected water available for irrigation on 

average for the selected ASDs trended towards decreased water availability over time for the 

period of 1981 through 2010 as evidenced by the score of -9 and the tau of -0.02. HSAF2 

scenario values trended towards decreased water availability over time for the near far future 

period from 2040-2070 shown by the score of -129 and the tau of -0.28. The HSBF2 scenario 

also trended negative with the same score and tau as the HSAF2 scenario. Both the ISAF2 and 

ISBF2 water availability scenarios trended towards decreased availability from 2040-2070 as 

evidenced by the score of -11 and the tau of -0.20. There was an overall decreasing trend when 

comparing later measured projected water available for irrigation use values to the earlier 

measured values in the Midwest scenarios.  

 The next region analyzed was the Pacific West region. Historically, the ASDs in this 

region trended towards decreased water available for irrigation use over time on average. This 

trend is shown by the score of -49 and the tau of -0.11. In the HSAF2 and HSBF2 scenarios, the 

values trended towards decreased water availability over time for the period of 2040-2070 as 

evidenced by the score of -67 and the tau of -0.14.  There was a decreasing or negative trend 

when comparing the later measured values to the earlier measured values in the HSAF2 and 

HSBF2 scenarios.  

The ISAF2 scenario showed increasing water availability from 2040-2070 on average for 

the ASDs in the Pacific West. This is shown by the score of 21 and the tau of 0.05. The ISBF2 

scenario also showed a positive trend for this same time period. Its score of 21 and tau of 0.05 

demonstrated this. For both of these scenarios there was a small positive trend in the data.  

The final region analyzed through the Mann-Kendall test was the Southeast region. 

Historically, the region trended towards decreased projected water available for irrigation use 
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from 1981-2010 seen by the score of -11 and tau of -0.03. The HSAF2 scenario had a negative 

trend in water availability from 2040-2070 with a score of -161 and tau of -0.35.  availability 

over time for the period of 2040 through 2070 as evidenced by the score of -161 and the tau of -

0.35. Projected water availability in the HSBF2 scenario trended negative for this same time 

period. The score and tau for this scenario were -161 and -0.35. The ISAF2 and ISBF2 scenarios 

both trended towards decreased water availability from 2040-2070. Both IS scenarios had a score 

of -77 and tau of -0.17.  

All four scenarios analyzed for the Midwest region had downward trends in water 

availability. This means that in the far future period being analyzed across both population and 

warming scenarios, the projected water available for irrigation use was declining on average for 

the ASDs in this region at the annual time step. The high warming, higher population scenario 

(HSAF2) showed the largest decrease in water availability followed by the high warming, 

normal population scenario (HSBF2). The intermediate warming scenarios with both a high 

population growth scenario (ISAF2) and normal population growth scenario (ISBF2) both 

showed a negative trend as well albeit not as large the projected drop in the higher warming 

scenarios.  

In the Pacific West, a negative trend was seen in both high warming scenarios (HSAF2 & 

HSBF2). The moderate warming scenarios; however, showed a small positive trend in projected 

water availability. The ISAF2 and ISBF2 scenarios were the only scenarios analyzed that showed 

increased water availability over time. The score and tau values were small so the trend towards 

increased water availability is not strong, but it does exist. This implies that in the selected ASDs 

in the Pacific West, from 2040-2070, there may be more water available annually with a 

moderate warming climate scenario. This does not necessarily correlate to more water being 
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available for irrigation use for the specific fruit and vegetable crops during the growing season 

and does not account for possible flood risks from increased precipitation. It could imply 

anything ranging all the way from more water available during the growing season, increased 

flooding, to an earlier snow melt.  

All four future scenarios trended towards decreased water availability in the Southeast 

region. This applied to the moderate warming scenarios with a high population growth rate and a 

normal population growth rate (ISAF2 & ISBF2) as well as the two high warming scenarios with 

both population scenarios (HSAF2 & HSBF2). The largest drop in projected water availability 

was seen in the HSBF2 scenario followed by the HSAF2 scenario. The lowest change was seen 

in the ISAF2 scenario followed by the ISBF2 scenario. These results imply that less water may 

be available annually when higher warming occurs in the selected ASDs in the Southeast region.  

Water resources are being affected in an unequal manner depending on which region of 

the country is being modeled as well as the amount of warming occurring. This finding is further 

corroborated in the water stress results. Next, the results of the surface water supply stress index 

induced by irrigation demand are presented for each region.  

3.2. Irrigation surface water supply stress results  

3.2.1. Midwest 

The results show that for the Midwestern ASDs, the average watershed WaSSI for the 

historical scenario was about 0.008 which indicates no stress. For the future scenarios, the 

average watershed WaSSI was about 0.01 which also indicates no stress. The lowest percent 

change was seen in the HSAF1 scenario at 14.07%. The next lowest was the ISAF1 scenario at 

19.6%. The two highest percent changes are seen in the HSAF2 scenario and ISAF2 scenario at 
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43.4% and 36.19% respectively. (see Appendix F for visual percent change maps for each 

scenario) 

The four future scenarios all showed a projected average increase in water supply stress 

at the watershed scale. The two far future scenarios had a higher increase than the near future 

scenarios. The intermediate stress near future scenario (ISAF1) had a higher percent increase 

than the high stress near future scenario for the Midwest while the intermediate stress far future 

scenario (ISAF2) had a lower percent increase than the high stress future scenario (HSAF2). 

Tavernia et al. (2013) showed that Northeast and Midwestern regions would show increased 

stress between 2010-2060 which backs up the finding of increased stress from these scenarios.  

 

 
Figure 14. Impacts from climate scenarios on water supply stress in the Midwest region with 

percent change in WaSSI and average WaSSI 
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Contrary to other regions, the Northeast showed no water stress historically. On average 

the WaSSI was 0.001. Projecting forward to the future scenarios the water stress did not vary 

significantly and stated at approximately 0.001. The percent change for the HSAF1 scenario was 

1.49% followed by a change of 3.92% for the ISAF1 scenario. The change for the HSAF2 and 

ISAF2 scenarios was 6.82% and 3.68%. On average all the future scenarios had increased water 

supply stress at the watershed scale. The highest change was seen in the high stress far future 

scenario (HSAF2) and the intermediate stress near future scenario (ISAF1). The lowest percent 

change in stress was seen in the high stress near future scenario (HSAF1).  

 
Figure 15. Impacts from climate scenarios on water supply stress in the Northeast region with 

percent change in WaSSI and average WaSSI 
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many watersheds experience very high water stress. For the future scenarios, the average 

watershed WaSSI was about 5.21 which also indicates very high stress. The percent change for 

the HSAF1 scenario was -7.5%. For the ISAF1 scenario the change was -4.87%. The change was 

10.58% and -5.65% for the HSAF2 and ISAF2 scenarios. This region showed some markedly 

different results from the Northeast and Midwest regions in that the average water supply stress 

decreased for three of the four scenarios. The reduction in surface water supply stress does 

coincide with the projected increase in total surface water supplies in this region. A reduction in 

water supply stress across the selected ASDs does not mean that water stress is improving across 

the entire region or during specific growing seasons. It means that with the data analyzed the 

water stress reduced on average across watersheds in the specific ASDs. It is important not to use 

this finding to state watershed water supplies improving in a historically stressed region. The 

high average annual water supply stress values (WaSSI > 1.0) for this region indicate that that 

this region must be dependent on transferred, groundwater, or stored water to meet local 

demands since a WaSSI value greater than 1.0 means the local water demand is exceeding the 

local surface water supply. Duan et al. (2017) demonstrated that runoff would increase across the 

Pacific coast and Southwest and that this increase would be driven by precipitation. An average 

annual precipitation increase coincides with an average annual reduction in water stress.  
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Figure 16. Impacts from climate scenarios on water supply stress in the Pacific West region with 

percent change in WaSSI and average WaSSI 
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(HSAF2) and 41.15% for the intermediate stress far future scenario (ISAF2). For both near 

future scenarios, the average water supply stress is decreasing. The average water supply stress is 

above the criteria for being considered high in all scenarios regardless of any decrease in supply 

stress. These findings are supported by Duan et al. (2017) drawing from the same GCMs. His 

study found that there will be severe runoff depletions in parts of the central U.S. due to 

temperature increases. This contributes to the understanding of why there is high water stress in 

the Plains region on average.  

 
Figure 17. Impacts from climate scenarios on water supply stress in the Plains region with 

percent change in WaSSI and average WaSSI 
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by Sun et al. (2008) in which they studies the impacts of climate change on watersheds in the 

Southeast. The percent change for the HSAF1 and ISAF1 scenarios was 76.59% and 36.40%. 

For the HSAF2 and ISAF2 scenarios the percent change was 140.82% and 79.14%. The ASDs in 

this region experienced the highest percent change in water supply stress out of all of the regions. 

In all four future scenarios there was a percent increase in water supply stress. The largest 

percent increases occurred in the two far future scenarios. The Southeast will experience great 

variability in precipitation under climate change scenarios and significant increases in air 

temperature. The high increases in air temperature coincide with the increased average water 

stress.   

 
Figure 18. Impacts from climate scenarios on water supply stress in the Southeast region with 

percent change in WaSSI and average WaSSI 

3.3. Model calibration and validation  
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While most hydroclimatological models require calibration, the WaSSI model does not 

require calibration and has been well-validated (Schwalm et al.,2014; Caldwell et al.,2015; 

Bagsta et al.,2018; Caldwell et al.,2012; Duan et al.,2017). The runoff output from the WaSSI 

model has been verifiably validated which directly relates to this project as runoff is a primary 

driver in water availability. Since the runoff output is used as a direct input to the model 

developed for this project it is reasonable to state that no further validation of this data is needed. 

WaSSI does not project water available for irrigation use. This projection is novel to this project 

it was built from validated data. To add more confidence to the projected surface water available 

for irrigation use data there are several recommendations. More research should be done to 

examine water demands from the eight fruit and vegetable crops in the modeled areas, assess the 

amount of water that has historically been used for these crops, quantify current irrigation use in 

these areas, find studies on how water use is predicted to change in these areas, and understand 

the trends in water use efficiency in the irrigation sector as related to these crops.  

Chapter 4- Conclusions and recommendations 

Global climate change has an impact on fruit and vegetable agriculture through the 

changing trends in temperature and precipitation. Temperature and precipitation patterns are key 

variables in fruit and vegetable production; therefore, the impact from climate change in specific 

agricultural regions needs to be addressed. The focus of this study was to understand the overall 

impact from a changing climate on surface water available for irrigation use in five regions 

containing 31 ASDs and the water supply stress from irrigation demand in HUC8s in these 

ASDs. The objectives for this study were to assess surface water available for irrigation use in 

the five regions at historical conditions, the near future period from 2021 to 2050, and the far 

future period from 2040 to 2070, and to determine water supply stress in the five regions at these 
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same historical, near future, and far future conditions. No studies have investigated predicted 

competing demands at the watershed scale within the ASDs or ARS regions. It was important to 

research this topic to better understand the effects of climate change at different scales and how it 

can assist with decision making in these areas.  

The approach to providing answers to the questions posed in the hypotheses involved 

using a modified version of an annual ecohydrological model (the Water Supply Stress Index 

model, WaSSI) utilizing historical climate data and future climate change scenarios derived from 

five Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models. Water supply 

data at the HUC8 scale was generated from WaSSI and upscaled to a newly created ASD 

Watershed Border. This ASD Watershed Border was defined by watershed boundaries within an 

ASD, and through flow routing information between watersheds, the available water could be 

scaled to this boundary to give an overall value for the ASD. The WaSSI model was also used to 

calculate surface water supply stress values induced by irrigation demand for watersheds in each 

of the ASDs at the average annual time scale. Each ASD was grouped into an ARS region to 

give values for five different regions across the U.S. Once model values were generated, 

upscaled to the 31 ASDs, and grouped to the five regions, the Analysis of Variance (ANOVA) 

and Mann-Kendall trend tests were run on the results to determine which direction the surface 

water available for irrigation use for future scenarios trended towards compared to historical 

conditions. The average watershed WaSSI value was compared between the historical scenario 

and different future climate scenarios to assess the change in surface water supply stress.  

The near future scenarios did not show a significance level using the P value of 0.05 for 

the analysis of projected surface water available for irrigation use; therefore, the null hypothesis 

of not showing a decreasing trend cannot be rejected for H(0)1. Projected surface water available 
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for irrigation use trends towards an increase over time for the ISAF2 and ISBF2 scenarios for the 

Pacific West region. The HSAF2 and HSBF2 scenarios trend towards a decreased amount of 

surface water available for irrigation use over time. Since there is an increasing trend in two of 

the scenarios, the null hypothesis of no decreasing trend is rejected for H(0) 2.  

The surface water supply stress decreased in the Pacific West and Plains regions for the 

near future scenarios; however, the surface water supply stress increased for the Southeast, 

Midwest, and Northeast. Therefore, the null hypothesis of no increase in water supply stress is 

rejected for H(0)3. The increase in water supply stress for the Southeast may be related to a 

decrease in runoff in this region. Surface water supply stress increased on average in the Plains 

and Southeast regions for both far future scenarios, and in the Pacific West for the HSAF2 

scenario. This result is consistent with increased ET due to the higher warming far future climate 

scenario. However, the stress index decreased in the Pacific West for the ISAF2 scenario. Water 

supply stress increased on average for both far future scenarios in the Northeast and Midwest 

regions.  The null hypothesis is still rejected for H(0)4 because there were increases in water 

supply stress in these regions for the far future scenarios.  

A changing climate has the potential to differentially impact the country’s surface water 

supply depending on the region. It is clear that water availability for irrigation use decreased at 

an annual scale in the far future in the Midwest, and Southeast for all combinations of population 

and warming scenarios. For the Pacific West, the availability decreased for both higher warming 

scenarios. This change occurred regardless of population change. The availability is increasing 

over time for the moderate warming scenarios at the annual scale for the selected ASDs. This 

result must strictly be interpreted to mean that on average, in the selected ASDs in the Pacific 

West, there was more surface water available annually.  
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Further research is needed to better the understanding of modeling water availability at 

the ASD scale. This is a new way of modeling water availability and therefore, the model needs 

to be adjusted to further quantify the results. The WaSSI model was validated to demonstrate its 

effectiveness when it was first developed and has been subsequentially validated in other studies 

as seen in the literature review of this paper. Any further validation of the results of this research 

would be pseudo-validation since the data to validate against is input data to the model. If more 

confidence in the validation is needed, more stream gages are required to cover more watersheds 

across the U.S. More historical streamflow data itself is needed in order to model across different 

decades to see how the validation numbers change. Additionally, more HUC8 specific 

information is needed to include IBT over time with the respective volumes of water both 

leaving and entering the HUC8 geographical area. Included in this HUC8 information should be 

the number of dams in a watershed and upstream of a watershed being modeled. More recent 

water use data should be incorporated into the WaSSI Model itself. Another recommendation for 

future studies would be to look at any ASDs with poor validation results and determine if there is 

a correlation with these results and the number of dams, interbasin transfers, upstream watershed 

alterations, and a significant change in water use over time. This would allow for better 

explanations of the results and create a better understanding of what is driving the water 

availability in these areas. More research needs to be done to understand the water sources for 

the eight crops in their principal production regions. The results of this study could be better 

utilized if the crops that rely more on surface water for irrigation in the selected ASDs can be 

identified as well as the watersheds that contribute the most to the major growing operations of 

these crops.  To better the model as a whole, more GCMs should be used in the RCP 4.5 and 8.5 

scenarios to expand upon the five GCMs that were used. A look into flood risks for specific 
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ASDs from specific WaSSI data would also be helpful for assessing the risks to fruit and 

vegetable infrastructure systems.  

The results of this assessment suggest very specific areas, may experience a significant 

decrease in average annual water supply stress when compared to historical conditions, while 

other areas may have an increase in average annual water supply stress depending on the 

scenario. The average annual surface water supply stress increased for all future scenarios in the 

Midwest, Northeast, and Southeast regions. The water supply stress increased for both far future 

scenarios and decreased for the near future scenarios in the Plains. Three of the four future 

scenarios showed a decrease in stress in the Pacific West. More research is needed to understand 

what this decrease in stress translates to. It is an oversimplification to state that water supply 

stress is projected to decrease with climate change in the Pacific West. These results show that 

across watersheds in the Pacific West ASDs used in this study, on average, surface water supply 

stress induced by irrigation demand may decrease in the near future annually. The stress is still 

extremely high though when going by the metrics used in this study.  Climate change affects 

water supply stress differently depending on the region, and modeled time period at the average 

annual basis. 

Surface water supply stress is prominent in the Pacific West region of the U.S. where 

natural surface water supplies are not abundant enough to meet the local demand in many 

watersheds. In the areas where WaSSI > 1.0 under the current and projected supply and demand 

scenarios, the supplies are met by infrastructure such as reservoirs, groundwater systems, and 

water transfer systems. The ASDs in southern California are examples of where irrigation 

demands are not being met by local supply. This region depends on water from the Colorado 

River and northern California. Although water demands are being met, the analysis adds to one 
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done by Averyt et al. (2013) in showing that the region is at risk if supplies from northern 

California and the Colorado were to diminish.  

Another important consideration in this analysis is that the volume of groundwater is not 

considered.  ASD 4897 in southern Texas and ASD 480 in Arizona are very reliant on 

groundwater supplies which could account for the high WaSSI values seen in these areas. 

Additionally, more research is needed on EWR in order to incorporate it into a study like this. 

EWR was left out of the water supply stress modeling to resemble past studies using the WaSSI 

model and given the uncertainty of EWR estimates across different geographical regions of the 

U.S., it was not included. 

It is clear that further research needs to be done to identify more areas at risk and more 

information is needed to increase confidence in this type of new modeling methodology. This 

study was performed using an annual timestep. In many regions of the country there may be 

more water available at an annual scale due to more extreme precipitation events (i.e. flooding). 

This does not necessarily mean that there will be more water available for irrigation use in these 

ASDs. Without proper flood mitigation measures, and water storage systems, this volume of 

water may not be useable in the months that the fruit and vegetable crops need it most. Further 

research needs to be done to see how the water availability and water supply stress varies in the 

production months associated with the crops grown in these various ASDs and regions. Another 

consideration to note is that interbasin transfers were not incorporated into this study which has 

an impact on local water supply stress and overall water availability. Even though recent studies 

have been done incorporating IBT with the WaSSI Model, (Duan et al., 2019; Emanuel et al., 

2015) I thought it was best not to use previously quantified IBT numbers for this study. The 

reason for this is because the original studies done on quantifying IBT volumes were done in the 
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1970s and at the HUC4 scale. Evenly distributing large water volumes from the larger 

geographical HUC4 to the HUC8 scale is poses the problem of having quantity inaccuracies 

since the water could be assigned to multiple HUC8s that have no water being transferred to or 

from them when spatially downscaling. Additionally, water supply can only be partially 

quantified in the future due to it largely being influenced by policies and laws of the water right 

system, and regulations of storage systems. (Duan, Sun, Caldwell, McNulty, & Zhang, 2018) 

Such complexities pose problems to the modeling approach employed here as they cannot be 

accurately represented. 

In terms of modeling at the ASD scale, the watersheds were used as the system 

boundaries in order to take away unnecessary error. In a similar project an area weighting 

method was applied to the water from runoff in order to justify water availability within the ASD 

boundaries. ASDs have econometric data and agronomic commonality between them, but for 

hydrologic modeling at a watershed scale it is not justifiable to confide the water availability to 

these boundaries. These boundaries are compatible with econometric modeling, so the HUC8 

unit of analysis was used for the USDA delineated ASD regions. There are still issues associated 

with modeling water availability in ASDs at the HUC8 scale due to there being shared 

watersheds between bordering ASDs. Due to this, the water available in one ASD will be 

partially dependent on the water available and being used by a bordering ASD. This is a dilemma 

encountered when modeling using artificially derived boundaries that do not follow the 

hydrological and geological characteristics that define a watershed.  

An important conclusion is that there is a statistically significant change in surface water 

available for irrigation for specific regions in the United States when the ASDs are grouped into 

their respective regions. This is seen in the Midwest, Pacific West, and Southeast Regions. 
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Another important finding is that a warming climate is not affecting the Midwest, Pacific West, 

and Southeast regions uniformly. The ISAF2 and ISBF2 scenarios for the Pacific West region 

showed increased surface water available for irrigation use over time. An increase in water 

supply in certain areas is not necessarily positive for fruit and vegetable crops due implications 

that snow could be melting earlier in the year and not be available for use at the right time for 

irrigation. There is also the potential for higher flood risks to areas in the Pacific West if these 

warming scenarios prove true which could cause damage to fruit and vegetable production 

infrastructure. 

There is a clear trend towards decreased surface water available for irrigation use 

projected in the far future scenarios. This is most evident in the Midwest, Pacific West, and 

Southeast Regions of the United States when looking at the specific ASDs that fall in those 

regions for this study going by the ANOVA and Mann-Kendall test results. Irrespective of 

whether the emission scenario is going towards 4.5 W m-2 or 8.5 W m-2   paired with either 

population scenario, the trend still shows that in these major agricultural production areas the 

surface water available for irrigation use from 2040-2070 is projected to be less than it was from 

1981-2010. These findings could support the need to improve water use efficiency across all 

sectors but more importantly, cut down on global GHG emissions to reduce the projected 

radiative forcing posed by these scenarios to lessen the potential impact on the primary 

production systems for tomatoes, potatoes, oranges, green beans, carrots, spinach, strawberries, 

and sweet corn in the U.S.  
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Appendix A- Midwest 

Anova: Single Factor Midwest       
SUMMARY       

Groups Count Sum Average Variance   
HistoricalWaterAvailability 30 291379.6 9712.655 7047007   
HSAF1WaterAvailability 30 266328.5 8877.615 2739431   
       
       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 1E+07 1 10459358 2.137521 0.149131 4.006873 

Within Groups 3E+08 58 4893219    
       
Total 3E+08 59         
       
 

Anova: Single Factor Midwest        
SUMMARY       

Groups Count Sum Average Variance   
HistoricalWaterAvailability 30 291379.6 9712.655 7047007   
HSBF1WaterAvailability 30 266421.8 8880.727 2736775   
       
       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 1E+07 1 10381557 2.122197 0.150571 4.006873 

Within Groups 3E+08 58 4891891    
       
Total 3E+08 59         
       
Anova: Single Factor Midwest       
SUMMARY       

Groups Count Sum Average Variance   
HistoricalWaterAvailability 30 291379.6 9712.655 7047007   
ISAF1WaterAvailability 30 262357.8 8745.26 1973304   

       

       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 1E+07 1 14037778 3.112482 0.08296 4.006873 

Within Groups 3E+08 58 4510156    

       
Total 3E+08 59         
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Anova: Single Factor Midwest  
SUMMARY       

Groups Count Sum Average Variance   
HistoricalWaterAvailability 30 291379.6 9712.655 7047007   
ISBF1WaterAvailability 30 262443.1 8748.104 1972071   
       
       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 1E+07 1 13955355 3.09463 0.083825 4.006873 

Within Groups 3E+08 58 4509539    
       
Total 3E+08 59         

 

 
Figure A1. Mann-Kendall Trend Test results for Historical scenario in Midwest region with 

regression line 
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Figure A2. Mann-Kendall Trend Test results for HSAF2 scenario in Midwest region with 

regression line 

 

 
Figure A3. Mann-Kendall Trend Test results for HSBF2 scenario in Midwest region with 

regression line 
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Figure A4. Mann-Kendall Trend Test results for ISAF2 scenario in Midwest region with 

regression line 

 

 
Figure A5. Mann-Kendall Trend Test results for ISBF2 scenario in Midwest region with 

regression line 
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Appendix B- Pacific West 

Anova: Single Factor Pacific West        
SUMMARY        

Groups Count Sum Average Variance    
HistoricalWaterAvailability 30 1974575 65819 3E+8    
HSAF1WaterAvailability 30 2128994 70967 6E+7    

        

        
ANOVA        

Source of Variation SS df MS F P-value F crit  
Between Groups 4E+8 1 4E+8 2.2 0.14 4.01  
Within Groups 1E+10 58 1.8E+8     

        
Total 1E+10 59          

        
Anova: Single Factor Pacific West        
SUMMARY        

Groups Count Sum Average Variance    
HistoricalWaterAvailability 30 1.98E+6 65819 3E+8    
HSBF1WaterAvailability 30 2.13E+6 71106 587E+7    
        
        
ANOVA        

Source of Variation SS df MS F P-value F crit  
Between Groups 4E+8 1 4.19E+8 2.32 0.13 4.007  
Within Groups 1E+10 58 1.81E+08     
        
Total 1E+10 59          
        

 

Anova: Single Factor Pacific West        
SUMMARY        

Groups Count Sum Average Variance    
HistoricalWaterAvailability 30 1974575 65819 3.03E+8    
ISAF1WaterAvailability 30 2092066 69736 3.64E+8    

        

        
ANOVA        

Source of Variation SS df MS F P-value F crit  
Between Groups 2E+8 1 2.3E+8 1.35 0.25 4.01  
Within Groups 1E+10 58 1.7E+8     

        
Total 1E+10 59          
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Anova: Single Factor Pacific West        

SUMMARY        

Groups Count Sum Average Variance    

HistoricalWaterAvailability 30 1.97E+6 65819 3.03E+8    

ISBF1WaterAvailability 30 2.1E+6 69876 364E+7    

        

        

ANOVA        

Source of Variation SS df MS F P-value F crit  

Between Groups 2E+8 1 2.47E+8 1.45 0.23 4.007  

Within Groups 1E+10 58 1.7E+8     

        

Total 1E+10 59          
 

 
Figure B1. Mann-Kendall Trend Test results for Historical scenario in Pacific West region with 

regression line 
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Figure B2. Mann-Kendall Trend Test results for HSAF2 scenario in Pacific West region with 

regression line 

 

 
Figure B3. Mann-Kendall Trend Test results for HSBF2 scenario in Pacific West region with 

regression line 
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Figure B4. Mann-Kendall Trend Test results for ISAF2 scenario in Pacific West region with 

regression line 

 

 
Figure B5. Mann-Kendall Trend Test results for ISBF2 scenario in Pacific West region with 

regression line 
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Appendix C- Southeast 

Anova: Single Factor Southeast       
SUMMARY       

Groups Count Sum Average Variance   
HistoricalWaterAvailability 30 522905 17430 19603113   
HSAF1WaterAvailability 30 516445 17215 6123709   

       

       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 7E+5 1 695402 0.054 0.817 4.007 

Within Groups 7E+8 58 12863411    

       
Total 7E+8 59         

       
Anova: Single Factor Southeast       
SUMMARY       

Groups Count Sum Average Variance   
HistoricalWaterAvailability 30 522905 17430 19603113   
HSBF1WaterAvailability 30 514866 17162 6132305   
       
       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 1E+6 1 1076970 0.084 0.773 4.007 

Within Groups 7E+8 58 12867709    
       
Total 7E+8 59         

       
Anova: Single Factor Southeast       
SUMMARY       

Groups Count Sum Average Variance   
HistoricalWaterAvailability 30 522905 17430.15 19603113   
ISAF1WaterAvailability 30 511527 17717.57 14545447   

       
       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 1E+6 1 1239112 0.073 0.7886 4.01 

Within Groups 1E+9 58 17074280    
       
Total 1E+9 59         
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Anova: Single Factor Southeast 

SUMMARY       
Groups Count Sum Average Variance   

HistoricalWaterAvailability 30 522905 17430.15 19603113   
ISBF1WaterAvailability 30 529951 17665.03 14566673   
       
       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 827480 1 827480.4 0.048 0.827 4.007 

Within Groups 1E+9 58 17084893    
       
Total 1E+9 59         

 

 
Figure C1. Mann-Kendall Trend Test results for Historical scenario in Southeast region with 

regression line 

 

y = -12.589x + 42551
R² = 0.0006

0

5000

10000

15000

20000

25000

30000

1975 1980 1985 1990 1995 2000 2005 2010 2015

Ir
ri

ga
ti

o
n

 W
at

er
 A

va
ila

b
lil

it
y(

M
m

3 /
ye

ar
)

Year

Southeast Historical Scenario



 

79 

 
Figure C2. Mann-Kendall Trend Test results for HSAF2 scenario in Southeast region with 

regression line 

 

 
Figure C3. Mann-Kendall Trend Test results for HSBF2 scenario in Southeast region with 

regression line 
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Figure C4. Mann-Kendall Trend Test results for ISAF2 scenario in Southeast region with 

regression line 

 

 
Figure C5. Mann-Kendall Trend Test results for ISBF2 scenario in Southeast region with 

regression line 
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Appendix D- Plains 

Anova: Single Factor Plains       
SUMMARY       

Groups Count Sum Average Variance   
HistoricalWaterAvailability 30 123214 4107 921431   
HSAF1WaterAvailability 30 120547 4018 400849   

       

       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 118565 1 118565 0.179 0.674 4.0069 

Within Groups 4E+7 58 661140    

       
Total 4E+7 59         

       
Anova: Single Factor Plains       
SUMMARY       

Groups Count Sum Average Variance   
HistoricalWaterAvailability 30 123214 4107 921431   
HSBF1WaterAvailability 30 120767 4026 399244   

       

       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 99804 1 99803.56 0.15114 0.698872 4.006873 

Within Groups 4E+7 58 660337.4    

       
Total 4E+7 59         

       
Anova: Single Factor Plains       
SUMMARY       

Groups Count Sum Average Variance   
HistoricalWaterAvailability 30 123414.3 4107.14 921430.6   
ISAF1WaterAvailability 30 126066.1 4202.03 402040.3   

       

       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 135548 1 135547.8 0.205 0.652 4.01 

Within Groups 4E+7 58 661735.4    

       
Total 4E+7 59         
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Anova: Single Factor Plains       
SUMMARY       

Groups Count Sum Average Variance   
HistoricalWaterAvailability 30 123214.3 4107.142 921430.6   
ISBF1WaterAvailability 30 126288 4209.598 402571.3   

       

       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 157459 1 157459 0.237853 0.627599 4.006873 

Within Groups 4E+07 58 662000.9    

       
Total 4E+07 59         

       
Anova: Single Factor Plains       
SUMMARY       

Groups Count Sum Average Variance   
HistoricalWaterAvailability 30 123214.3 4107.142 921430.6   
HSAF2WaterAvailability 31 117532.5 3791.372 529803.1   

       

       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 2E+06 1 1520179 2.104643 0.152149 4.003983 

Within Groups 4E+07 59 722297.9    

       
Total 4E+07 60         

       
Anova: Single Factor Plains       
SUMMARY       

Groups Count Sum Average Variance   
HistoricalWaterAvailability 30 123214.3 4107.142 921430.6   
HSBF2WaterAvailability 31 117756.1 3798.583 528108.7   

       

       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 1E+06 1 1451547 2.012023 0.161318 4.003983 

Within Groups 4E+07 59 721436.4    

       
Total 4E+07 60         
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Anova: Single Factor Plains       
SUMMARY       

Groups Count Sum Average Variance   
HistoricalWaterAvailability 30 123214.3 4107.142 921430.6   
ISAF2WaterAvailability 31 120466.5 3886.016 274927.2   

       

       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 745476 1 745475.9 1.257763 0.266619 4.003983 

Within Groups 3E+07 59 592700    

       
Total 4E+07 60         

       
Anova: Single Factor Plains       
SUMMARY       

Groups Count Sum Average Variance   
HistoricalWaterAvailability 30 123214.3 4107.142 921430.6   
ISBF2WaterAvailability 31 120701.1 3893.584 274697.9   

       

       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 695323 1 695322.7 1.173375 0.283116 4.003983 

Within Groups 3E+07 59 592583.5    

       
Total 4E+07 60         
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Appendix E- Northeast 

       

Anova: Single Factor Northeast        
SUMMARY       

Groups Count Sum Average Variance   
HistoricalWaterAvailability 30 358927.6 11964.25 4819652   
HSAF1WaterAvailability 30 371651.8 12388.39 822258.8   

       

       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 3E+06 1 2698408 0.956558 0.332118 4.006873 

Within Groups 2E+08 58 2820956    

       
Total 2E+08 59         

      
Anova: Single Factor Northeast       
SUMMARY       

Groups Count Sum Average Variance   
HistoricalWaterAvailability 30 358927.6 11964.25 4819652   
HSBF1WaterAvailability 30 371701.3 12390.04 822059.5   

       

       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 3E+06 1 2719442 0.964048 0.330247 4.006873 

Within Groups 2E+08 58 2820856    

       
Total 2E+08 59         

       
Anova: Single Factor Northeast       
SUMMARY       

Groups Count Sum Average Variance   
HistoricalWaterAvailability 30 358927.6 11964.25 4819652   
ISAF1WaterAvailability 30 363316.3 12110.54 621459   

       

       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 321017 1 321016.7 0.117997 0.73246 4.00687 

Within Groups 2E+08 58 2720556    

       
Total 2E+08 59         
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Anova: Single Factor Northeast       
SUMMARY       

Groups Count Sum Average Variance   
HistoricalWaterAvailability 30 358927.6 11964.25 4819652   
ISBF1WaterAvailability 30 363365.8 12112.19 621364.4   

       

       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 328291 1 328291.3 0.120673 0.729563 4.006873 

Within Groups 2E+08 58 2720508    

       
Total 2E+08 59         

        
Anova: Single Factor Northeast       
SUMMARY       

Groups Count Sum Average Variance   
HistoricalWaterAvailability 30 358927.6 11964.25 4819652   
HSAF2WaterAvailability 31 372031.2 12001.01 650459.9   

       

       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 20594 1 20594.33 0.007628 0.930697 4.003983 

Within Groups 2E+08 59 2699724    

       
Total 2E+08 60         

       
Anova: Single Factor Northeast       
SUMMARY       

Groups Count Sum Average Variance   
HistoricalWaterAvailability 30 358927.6 11964.25 4819652   
HSBF2WaterAvailability 31 372103.6 12003.34 650296.5   

       

       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 23294 1 23293.58 0.008628 0.926306 4.003983 

Within Groups 2E+08 59 2699641    

       
Total 2E+08 60         
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Anova: Single Factor Northeast       
SUMMARY       

Groups Count Sum Average Variance   
HistoricalWaterAvailability 30 358927.6 11964.25 4819652   
ISAF2WaterAvailability 31 380535.3 12275.33 475565.5   

       

       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 1E+06 1 1475358 0.565099 0.455201 4.003983 

Within Groups 2E+08 59 2610795    

       
Total 2E+08 60         

       
Anova: Single Factor Northeast       
SUMMARY       

Groups Count Sum Average Variance   
HistoricalWaterAvailability 30 358927.6 11964.25 4819652   
ISBF2WaterAvailability 31 380607.4 12277.66 475514   

       

       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 1E+06 1 1497496 0.573584 0.451852 4.003983 

Within Groups 2E+08 59 2610768    

       
Total 2E+08 60         
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Appendix F- Irrigation Surface Water Supply Stress Graphics

 
Figure F1. Average Annual WaSSI due to irrigation water use (1981-2010) Historical scenario 
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Figure F2. Average Annual WaSSI due to irrigation water use (2021-2050) scenario HSAF1 
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Figure F3. Average Annual WaSSI due to irrigation water use (2040-2070) scenario HSAF2 
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Figure F4. Average Annual WaSSI due to irrigation water use (2021-2050) scenario HSBF1 
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Figure F5. Average Annual WaSSI due to irrigation water use (2040-2070) scenario HSBF2 
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Figure F6. Average Annual WaSSI due to irrigation water use (2021-2050) scenario ISAF1 
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Figure F7. Average Annual WaSSI due to irrigation water use (2040-2070) scenario ISAF2 
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Figure F8. Average Annual WaSSI due to irrigation water use (2021-2050) scenario ISBF1 
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Figure F9. Average Annual WaSSI due to irrigation water use (2040-2070) scenario ISBF2 
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Figure F10. Percent Change in WaSSI from Baseline to HSAF1 scenario 
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Figure F11. Percent Change in WaSSI from Baseline to HSAF2 scenario 
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Figure F12. Percent Change in WaSSI from Baseline to ISAF1 scenario 
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Figure F13. Percent Change in WaSSI from Baseline to ISAF2 scenario 
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Appendix G- Projected Surface Water Available for Irrigation Use Results 

Table G1. Summary of historical projected water available for irrigation use 
Historical Water Availability 

(Mm3/year) 

Year Midwest Pacific West Southeast Plains Northeast 

1981 8034 69473 11901 3775 12707 

1982 10083 89134 23396 4077 10193 

1983 10975 99529 24411 3535 12537 

1984 11479 83009 15826 4385 13360 

1985 12061 53015 13562 5676 8634 

1986 15330 76375 14099 6158 11734 

1987 3883 44080 17491 5101 8809 

1988 4788 47492 15628 3289 8344 

1989 4796 57554 12133 2401 9260 

1990 9349 58780 11362 3786 14165 

1991 11738 58156 20905 4710 11582 

1992 9123 44124 18406 4969 12213 

1993 14638 73394 14847 5147 11331 

1994 10084 43353 23458 4082 12295 

1995 10575 92040 22416 4781 9552 

1996 8666 93226 16089 2704 15102 

1997 9952 98588 21329 5066 11340 

1998 8897 83234 24446 4760 12346 

1999 10098 77435 16610 4984 11229 

2000 7834 56546 10854 2769 12250 

2001 11677 40124 20710 3492 7834 

2002 10528 55589 20698 2317 10399 

2003 6473 58325 23260 2683 13138 

2004 9821 57931 18922 4424 12454 

2005 10533 58422 20423 4171 16229 

2006 7394 77585 9861 3494 15338 

2007 9255 49863 11489 4479 12259 

2008 9295 57315 17011 4178 16004 

2009 9775 57439 16061 3770 13027 

2010 14244 63447 15302 4052 13260 
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Table G2. Summary of HSAF1 projected water available for irrigation use 
High Stress High Population Near Future (HSAF1) Water Availability 

(Mm3/year) 

Year Midwest Pacific West Southeast Plains Northeast 

2021 6902 66685 20166 4946 11924 

2022 11576 68710 19213 4333 12660 

2023 10444 74356 19368 3952 11924 

2024 10444 92010 14887 3584 13646 

2025 8752 82883 14436 4411 12559 

2026 12042 70259 16703 5117 13283 

2027 9143 85445 18413 4269 12199 

2028 8287 67918 15985 3528 13075 

2029 8102 78689 16851 3913 12442 

2030 11178 79364 24395 4450 13955 

2031 9104 64034 15042 3621 12482 

2032 9746 67482 18258 4203 13242 

2033 7654 65659 17980 3879 11204 

2034 6644 64424 17981 3796 12975 

2035 9973 73843 18275 4349 12785 

2036 8412 69518 17380 3690 13515 

2037 8452 70790 19884 4148 11502 

2038 5725 64360 15686 4192 10827 

2039 8272 66038 14055 3806 12969 

2040 10137 70090 17688 3382 11695 

2041 8083 59465 16699 4732 12338 

2042 5778 54183 12609 2875 11592 

2043 9109 72043 16556 3410 12436 

2044 11250 68388 18997 5780 12503 

2045 10192 66413 17429 4342 10851 

2046 8389 72100 12353 4131 11065 

2047 7049 68197 13872 3670 10950 

2048 7888 77476 18546 3904 11870 

2049 7387 72295 18260 2691 13585 

2050 10215 75877 18480 3441 13601 
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Table G3. Summary of HSBF1 projected water available for irrigation use 
High Stress Normal Population Near Future (HSBF1) Water Availability 

(Mm3/year) 

Year Midwest Pacific West Southeast Plains Northeast 

2021 6904 66780 20131 4950 11925 

2022 11578 68803 19176 4337 12661 

2023 10446 74452 19331 3964 11925 

2024 10449 92183 14849 3595 13647 

2025 8757 83060 14401 4420 12560 

2026 12046 70429 16667 5128 13285 

2027 9147 85608 18374 4279 12200 

2028 8291 68059 15946 3537 13077 

2029 8107 78837 16809 3923 12443 

2030 11182 79496 24350 4459 13957 

2031 9109 64173 14999 3630 12483 

2032 9750 67629 18211 4212 13244 

2033 7659 65794 17932 3888 11206 

2034 6647 64538 17932 3804 12977 

2035 9977 73979 18225 4358 12787 

2036 8417 69652 17329 3698 13517 

2037 8457 70913 19827 4156 11504 

2038 5732 64518 15628 4199 10828 

2039 8276 66200 13998 3813 12970 

2040 10140 70243 17629 3387 11696 

2041 8088 59595 16640 4735 12340 

2042 5783 54316 12549 2878 11593 

2043 9109 72183 16494 3412 12438 

2044 11250 68548 18929 5779 12505 

2045 10189 66570 17361 4342 10853 

2046 8388 72232 12288 4130 11068 

2047 7049 68312 13803 3681 10952 

2048 7891 77626 18472 3916 11872 

2049 7391 72432 18185 2704 13587 

2050 10213 76032 18402 3452 13603 
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Table G4. Summary of ISAF1 projected water available for irrigation use 
Intermediate Stress High Population Near Future (ISAF1) Water Availability 

(Mm3/year) 

Year Midwest Pacific West Southeast Plains Northeast 

2021 6738 59308 20715 5788 11161 

2022 7113 72752 25533 4808 12804 

2023 7239 81842 23512 3890 12138 

2024 8587 71553 22577 5278 12842 

2025 8680 79292 14897 4862 11665 

2026 8640 68207 18750 4090 11146 

2027 6987 58475 13904 3413 12765 

2028 9408 73035 14822 3480 12270 

2029 8567 73683 18218 3616 11977 

2030 8326 75014 17191 3990 12660 

2031 9753 75932 12985 4676 11617 

2032 9021 79006 18940 4922 13252 

2033 10604 60265 15000 4634 12028 

2034 9825 64383 17425 3776 10969 

2035 11118 76238 16110 3313 9704 

2036 10731 71285 22744 4801 12181 

2037 11194 63032 19060 4249 13294 

2038 10192 65829 17650 3680 11150 

2039 9444 70945 13974 3796 12897 

2040 9960 67184 19368 3628 12862 

2041 8807 60673 15640 3219 12092 

2042 7141 71249 25496 4031 11754 

2043 6684 68233 17639 3680 11543 

2044 9784 64683 22331 4143 12361 

2045 9661 66492 15711 4621 11870 

2046 8341 68082 9884 3857 12900 

2047 7258 72506 16195 4091 11750 

2048 8823 73634 13742 4240 12842 

2049 6172 71778 13886 5161 12411 

2050 7561 67478 17628 4333 12410 
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Table G5. Summary of ISBF1 projected water available for irrigation use 
Intermediate Stress Normal Population Near Future (ISBF1) Water Availability 

(Mm3/year) 

Year Midwest Pacific West Southeast Plains Northeast 

2021 6741 59403 20680 5792 11162 

2022 7116 72844 25497 4812 12805 

2023 7242 81937 23474 3902 12139 

2024 8592 71719 22537 5290 12843 

2025 8685 79473 14864 4873 11666 

2026 8645 68358 18715 4101 11147 

2027 6993 58607 13865 3423 12766 

2028 9413 73185 14784 3490 12272 

2029 8571 73829 18175 3624 11978 

2030 8330 75165 17150 3999 12662 

2031 9756 76081 12942 4684 11619 

2032 9025 79165 18893 4930 13254 

2033 10605 60404 14954 4642 12030 

2034 9827 64499 17377 3784 10971 

2035 11121 76362 16061 3322 9706 

2036 10733 71406 22692 4809 12183 

2037 11196 63153 19005 4257 13296 

2038 10194 65987 17594 3687 11151 

2039 9447 71114 13916 3802 12899 

2040 9961 67335 19309 3634 12864 

2041 8809 60821 15580 3225 12094 

2042 7144 71411 25432 4033 11755 

2043 6688 68377 17574 3681 11545 

2044 9785 64843 22263 4144 12363 

2045 9660 66644 15643 4622 11872 

2046 8343 68219 9819 3855 12902 

2047 7259 72669 16124 4102 11752 

2048 8825 73761 13673 4254 12845 

2049 6176 71915 13808 5171 12413 

2050 7561 67590 17552 4344 12412 
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Table G6. Summary of HSAF2 projected water available for irrigation use 
High Stress High Population (HSAF2) Far Future Water Availability 

(Mm3/year) 

Year Midwest Pacific West Southeast Plains Northeast 

2040 10195 35193 11636 3583 11696 

2041 8087 30523 11275 4800 12338 

2042 5778 28601 8547 2883 11592 

2043 9109 37628 10488 3416 12436 

2044 11253 32815 12667 5802 12503 

2045 10195 32743 11600 4358 10851 

2046 8389 36436 8894 4132 11065 

2047 7049 37213 9075 3670 10950 

2048 7888 38517 11576 3904 11870 

2049 7387 36881 11342 2692 13585 

2050 10215 36867 11562 3441 13601 

2051 7648 38784 11804 4005 11732 

2052 7594 38294 8588 4017 11976 

2053 4991 34009 15217 4918 11336 

2054 7859 33604 9470 4891 12924 

2055 8861 37038 7888 5179 12554 

2056 7966 39020 10071 3317 11394 

2057 7804 31537 11403 3159 13746 

2058 4932 32065 10676 3735 11996 

2059 6094 29744 10426 3484 12306 

2060 7448 37339 8163 2775 12160 

2061 9236 36786 10001 3881 12226 

2062 9518 32337 10329 3941 11188 

2063 7359 27320 9488 3719 11188 

2064 6819 35164 9323 2902 11531 

2065 5919 26154 10447 3451 10708 

2066 7288 28631 9548 3392 12094 

2067 6771 32605 9974 3306 12730 

2068 7087 34181 8618 3219 12804 

2069 7728 36232 7624 4012 11251 

2070 7727 35051 7028 3547 11700 
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Table G712. Summary of HSBF2 projected water available for irrigation use 
High Stress Normal Population (HSBF2) Far Future Water Availability 

(Mm3/year) 

Year Midwest Pacific West Southeast Plains Northeast 

2040 10197 35202 11599 3587 11698 

2041 8092 30532 11238 4804 12340 

2042 5783 28613 8511 2886 11593 

2043 9109 37641 10449 3418 12438 

2044 11253 32827 12624 5801 12505 

2045 10193 32756 11557 4358 10853 

2046 8388 36448 8853 4130 11068 

2047 7049 37226 9032 3681 10952 

2048 7891 38529 11528 3916 11872 

2049 7391 36893 11296 2705 13587 

2050 10213 36877 11513 3452 13603 

2051 7647 38793 11753 4017 11734 

2052 7597 38301 8541 4028 11978 

2053 4997 34014 15168 4928 11338 

2054 7858 33611 9419 4899 12926 

2055 8858 37044 7841 5189 12556 

2056 7967 39024 10020 3327 11396 

2057 7802 31542 11349 3169 13748 

2058 4935 32073 10623 3741 11999 

2059 6094 29752 10374 3488 12308 

2060 7450 37345 8110 2784 12163 

2061 9233 36792 9946 3890 12229 

2062 9513 32341 10277 3949 11191 

2063 7355 27327 9435 3727 11191 

2064 6817 35171 9269 2912 11534 

2065 5921 26160 10391 3459 10711 

2066 7288 28638 9494 3399 12097 

2067 6775 32612 9922 3313 12732 

2068 7084 34187 8565 3227 12807 

2069 7726 36238 7574 4018 11254 

2070 7726 35056 6979 3555 11703 
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Table G8. Summary of ISAF2 projected water available for irrigation use 
Intermediate Stress High Population (ISAF2) Far Future Water Availability 

(Mm3/year) 

Year Midwest Pacific West Southeast Plains Northeast 

2040 9979 33647 12735 3951 12864 

2041 8807 31885 10007 3354 12092 

2042 7143 35142 16412 4055 11754 

2043 6684 33477 11032 3692 11543 

2044 9784 31587 14421 4147 12361 

2045 9661 32420 10560 4635 11870 

2046 8341 34234 6824 3859 12900 

2047 7258 35912 10362 4093 11750 

2048 8823 37348 9712 4241 12842 

2049 6172 37074 9452 5162 12411 

2050 7561 32839 11553 4333 12410 

2051 10650 37230 13348 4066 12362 

2052 9045 36884 14015 4345 13738 

2053 11061 35353 8924 3701 12376 

2054 6788 33491 6786 3311 12282 

2055 8550 40516 11400 3551 12032 

2056 11193 37258 9521 4462 13002 

2057 8613 36578 14948 3966 11944 

2058 6271 33601 10273 3240 10901 

2059 7861 37489 8049 3943 11639 

2060 5996 35659 13999 3988 11174 

2061 8161 36689 10589 3154 11563 

2062 9736 37212 11565 3399 12463 

2063 9155 31681 11533 3050 13337 

2064 9341 28838 12034 4907 10862 

2065 9905 33244 8075 3697 12662 

2066 6562 39531 9899 3139 13240 

2067 6599 36539 9204 3628 12414 

2068 8037 32291 7415 3663 12098 

2069 8595 31597 9873 3342 12577 

2070 9449 35251 10868 4394 13071 
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Table G9. Summary of ISBF2 projected water available for irrigation use 
Intermediate Stress Normal Population (ISBF2) Far Future Water Availability 

(Mm3/year) 

Year Midwest Pacific West Southeast Plains Northeast 

2040 9981 33656 12698 3956 12865 

2041 8809 31894 9970 3359 12094 

2042 7145 35153 16370 4057 11755 

2043 6688 33490 10991 3692 11545 

2044 9785 31600 14377 4148 12363 

2045 9660 32431 10517 4635 11872 

2046 8343 34246 6784 3857 12902 

2047 7259 35924 10317 4104 11752 

2048 8825 37360 9670 4254 12845 

2049 6176 37085 9403 5172 12413 

2050 7561 32850 11507 4344 12412 

2051 10649 37239 13297 4078 12364 

2052 9044 36892 13963 4357 13740 

2053 11059 35359 8875 3712 12378 

2054 6790 33499 6740 3322 12284 

2055 8548 40521 11350 3561 12034 

2056 11189 37263 9469 4470 13004 

2057 8611 36583 14890 3975 11946 

2058 6274 33609 10220 3248 10904 

2059 7861 37495 7996 3950 11642 

2060 5995 35664 13945 3996 11176 

2061 8157 36695 10533 3164 11566 

2062 9730 37217 11511 3409 12466 

2063 9151 31687 11477 3060 13340 

2064 9337 28845 11976 4914 10865 

2065 9898 33249 8022 3703 12665 

2066 6560 39535 9848 3147 13243 

2067 6600 36544 9151 3634 12417 

2068 8034 32297 7364 3669 12101 

2069 8592 31603 9823 3351 12580 

2070 9443 35256 10814 4402 13074 
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