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Abstract

 In this dissertation, we present and analyze the technology used in the making of 

PPMExplorer: Search, Find, and Explore Pompeii. PPMExplorer is a software tool made with 

data extracted from the Pompei: Pitture e Mosaic (PPM) volumes. PPM is a valuable set of 

volumes containing 20,000 historical annotated images of the archaeological site of Pompeii, 

Italy accompanied by extensive captions. We transformed the volumes from paper, to digital, to 

searchable. PPMExplorer enables archaeologist researchers to conduct and check hypotheses on 

historical findings. We present a theory that such a concept is possible by leveraging computer 

generated correlations between artifacts using image data, text data, and a combination of both. 

The acquisition and interconnection of the data are proposed and executed using image 

processing, natural language processing, data mining, and machine learning methods.
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1 Introduction 

On a seemingly ordinary day in 79 AD, the Roman city of Pompeii was going about 

business as usual. Despite a powerful earthquake which shook the region in 62 CE, from which 

Pompeii was still rebuilding, little did the people know, at nearby Mount Vesuvius, volcanic 

pressure building beneath the surface was about to unleash catastrophe upon Pompeii and other 

cities on the plains of Campania. The sleeping giant awoke and blew its top, spewing ash, rocks, 

and mud into the atmosphere. Possibly 16,000 people tragically lost their lives as they tried to 

escape with nowhere to go. They were suffocated by the dense clouds of ash and buried under 

the torrential downfall of volcanic debris. Shortly after, the entire city of Pompeii was entombed 

in millions of tons of volcanic ash and pumice layers. 

1.1 Motivation

While the ancient inhabitants who survived did tunnel into the buried city searching for 

valuables in the years immediately after the eruption, after this Pompeii was a total loss, it was 

even erased from maps, and as the years went by, the city was slowly forgotten. It would remain 

buried and lost to ash and time until 1766. The re-discovery of the ancient city finally brought 

about some light in shadows of horror and catastrophe suffered by the people of Pompeii. The 

ruins were unlike any ordinary archaeological find as rapid burial from a volcanic eruption had 

preserved artifacts by shielding them from air and moisture. In fact, the city had been submerged 

so quickly and was so well preserved, it seemed almost as if the last moments of Pompeii were 

frozen in time. 

Today, the ruins of Pompeii are a source of many treasures that can provide historians 

and archaeologists with insight into what everyday life would have been like 2,000 years ago. 
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Left untouched and unseen for centuries, despite the damage caused by exposure and the crush of 

tourists, it remains one of the largest and most well-preserved archeological sites known to be in 

existence. Now the biggest challenge is the preservation of this wealth, 66 hectares of vital 

information. For the past 200 years, as it has been unearthed, Pompeii has been open to the 

public. Although approximately one third of the area within the city walls remains unexcavated, 

being opened to the public has unfortunately degraded the quality of the city’s preservation. It 

also has been subjected to vandalism, wartime bombing, even earthquakes and subsequent 

eruptions from Vesuvius, which to this day remains an active volcano. The other problem is 

simply exposure. Now that structures and artifacts have been unearthed, they are no longer 

protected from the elements. As more time goes by, the degradation becomes worse. 

1.2 Driving Problem 

However, there is a silver lining. Back when the excavation of the site was at its peak, 

archeologists and historians recorded what they found as they uncovered the city. Originally, 

these were drawings, lithographs, and watercolors, but by the late 19th century this record began 

to include many photographs. These pictures have the benefit of representing the archaeological 

artifacts in their best-preserved state. Pompei: Pitture e Mosaici (PPM) is a collection of books, 

made in the 1990s, which inventories this set of visual evidence, from drawings to black and 

white and color photographs from the 1870s accompanied by extensive captions. It also includes 

hand drawings that illustrate reconstructed art and as well as accurate geolocation annotations

almost all date before 1900. The University of Arkansas’ library is fortunate enough to have 10 

volumes of Pompei: Pitture e Mosaic, containing thousands of photographs, illustrations, and 

other valuable pieces of information. Unfortunately, however, the sheer amount of information 

makes it extremely challenging for one person to effectively utilize the wealth of data as it is 
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distributed across printed pages and lacks an index. If relevant connections between artifacts and 

data contained in the volumes can be made, these connections can reveal pertinent clues to help 

understand what the ancient culture was like. the collection of Pompei: Pitture e Mosaic is a 

wealth of knowledge but working with it in its printed form would be very cumbersome for an 

individual or even a small team. 

Our work is aimed at examining the possibility and means of creating a system to ease 

the usability of PPM. We study different methods such as image processing and Optical 

Character Recognition (OCR) to extract and collect data from the digitized form of PPM. We 

created an annotated database with the acquired data. We also performed analysis on the data 

using machine learning methods such as feature extractions with Convolutional Neural Networks 

(CNN) and Natural Language Processing (NLP), classification with the retraining of a CNN and 

K-Nearest Neighbors (KNN) using mainly the data from volume 1 and 2. From the analysis 

results, we developed an interactive software search tool allowing users to explore and make 

relevant connections between artifacts and data from PPM in a new way. We named this tool 

PPMExplorer. Among studying the various approaches used for the tool creation, this

dissertation describes how to multiple technologies can merge to deliver a unique product. We 

have chosen to create the tool with the game engine Unity. Unity is a very powerful and versatile 

tool for the development of projects and make it easy to deploy to multiple platforms. Using 

Unity will give us freedom to build PPMExplorer as a standalone application or a WebGL 

application for the web.
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1.4 Organization

The remainder of this dissertation is organized in two main parts, which can be 

summarized with the diagram in Figure 1. PPMExplorer will often be referred as “the tool”, “the 

software research tool”, or “interactive software tool”.

 

Figure 1: Dissertation Organization. Diagram of the dissertation organization. It is organized 
in two main parts. Part I contains the elements from the “Information Retrieval + Dataset 
creation”. Part II contains the elements from the two boxes “Data Analysis” and “Tool creation”. 

1.4.1 Part I: Data Collection  

In Chapter 2, we provide necessary background on Image Processing and Computer 

Vision related to archeology as well as Machine Learning and Natural language processing. 

Chapter 3 is dedicated to the extraction of the image data from PPM. Chapter 4 describes Image 

Processing, Optical Character Recognition (OCR) and text processing steps needed to extract the 

PPM caption text.  The database that links image and text together is described in Chapter 5.
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1.4.2 Part II: Data analysis 

In Chapter 6, we outline the design and implementation of the word search capabilities of 

PPMExplorer as well as a caption similarity calculation. Chapter 7 describe the research 

conducted to implement the image similarity functionality. Chapter 8 presents how we 

implemented a similarity search taking information collected from Chapter 6 and 7. Before 

drawing conclusions, Chapter 9 describes the experiment we conducted with experts in Roman 

archaeology and art history. It also evaluates the tool and discusses research questions and 

hypotheses. 
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PART I: DATA COLLECTION 
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2 Background 

Over the past decade, computer vision and machine learning techniques have proven their 

usefulness to explore the past. These visualization and computational methods have contributed 

to the support of archeologists in their exploration in the field, interpretation of discovery and 

conservation of new findings. 

2.1 Computer vision and archeology 

Thanks to the increased digitization of historical documents all over the world, we are 

able to present and explore historical artifacts in innovative ways with new technologies. 

Algorithms inspired by the structure and function of the brain called artificial neural networks, 

called Deep Learning algorithms, have brought us many opportunities. Transfer learning 

technologies, a subset of Deep Learning, have been used in recognizing Batik fabrics from 

Indonesia [38], generating labels for non-annotated historical images [35], and digitally 

archiving historical documents [55]. Architecture style recognition and classification of building 

facades in India [45] has also been possible with transfer learning. Image segmentation has been 

used to automatically recognize artistic influence of paintings [50]. The RANSAC algorithm has 

been tested as a support for analysis and interpretation of old paintings [56]. Reorganizing 

museums by similar objects instead of themes [13] using text similarity has been explored and 

tested in Europe. Deep learning methods have been utilized to recreate paintings and to restore 

damaged ones [43]. These are some of the few innovative applications that Deep Learning 

facilitates. With the help of interactive interfaces, we are able to present data retrieved with this 

new technology through applications. 
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Not only do these interactive tools allow information to be shared among more people, 

but they also present opportunities to improve the technology. Applications using CNNs trained 

on data can collect user inputs and enhance the tool as the more users interact with them; for 

instance, when users manually add labels to unlabeled data or upload their own images to 

databases [45]. Interactive tools can also generate information from one form to another thereby 

making it accessible to sight or hearing-impaired users (audio file, image, text) [52]. Utilizing 

mobile apps for quick and easy access to cultural heritage information such as monument 

recognition [47] or artwork recognition [25] is also a field in development. 

In the field, it is very important for archaeological research to accurately record, map, and 

to monitor each successive layer of the excavation (stratigraphy), and to record each artifact and 

its location within the site map and the stratigraphic unit. In addition, the expenditure of time is a 

valuable factor for archaeologists. In modern times, it is not efficient to solely rely upon the 

traditional time-consuming techniques of mapping excavation sites. Technologies like 

photogrammetry [1], Geographic Information System (GIS) data collecting [12], on-site laser 

scanning of structures (remote sensing) [39], [12], [16] assist in the day to day work of 

archaeologists who must document their excavation and record all they encounter. Geolocalized 

data is very valuable, but difficult to manage and interpret. The lack of consistency in (spatial) 

data standards greatly inhibits the ability to develop sustainable solutions for managing, sharing, 

and analysis of that data [46]. In our project, we have at our disposal, a handmade accurate and 

annotated map of the Pompeii site. This will enable us to determine the spatial similarity between 

artifacts in the future, not simply by what was found literally where, but what kinds of artifacts 

tend to be found in what kinds of spaces. 
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Surveying, mapping, and other digital documenting techniques are not only applicable for 

geographical information retrieval, but they can also be utilized for 3D reconstruction which will 

aid in performing further analysis of artifacts (defragmented or not) and even presenting findings 

to the public without taking the risk of damaging the original artifacts. It is common for 

archaeologists to find artifacts that are in a broken state or have missing pieces, therefore 

automatic reconstruction methods are of great interest in archaeology. A common process to 

reconstruct the puzzle of an artifact is composed of two main steps: classifying or grouping the 

fragments and then assembling them. The classification involves feature extraction such as color 

and texture of the surface [40] or curve patterns [34]. The second stage of matching elements can 

be done by extracting different features such as 3D information ([36], [40]), aligning them and 

matching them by calculating similarities between features [40], curve pattern matching 

algorithms [8], or using Deep Learning methods such as neural networks ([40], [33], [36], [41], 

[39]). 

Collection Management and cataloging are also included in the best practices to adopt 

and maintain cultural heritage. The classification of artifacts is usually performed by visual 

inspection. Unfortunately, the metadata often associated with images of the artifacts is sparse or 

inconsistent. Therefore, there is a research interest in developing tools to assist in labeling tasks 

[3]. Then there comes the challenge of finding specific artifacts and extracting the wealth of 

relevant information from thousands of images for research. This is not something that can be 

reasonably processed by hand. Enhancing metadata on artifacts has been explored using various 

methods such as extracting image-based features suitable for representing characteristic to 

classify objects according to the eyes of experts. These features include shape and texture ([30], 

[4]) for rocks, coins or other biface objects and Scale Invariant Features Descriptors such as 
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SIFT descriptors [33], which are image descriptors for image-based matching and recognition 

that are invariant to scale or rotation changes. SIFT have been useful to recognize monuments 

and determining extra description labels [41] for various excavation site pictures that can be 

added to the metadata. The more detailed and specific these descriptors are, the more helpful 

they can be.

Sorting, classifying, and constructing accurate metadata labels are crucial to the analysis 

and interpretation of findings as a whole. Most recent methods to solve all the above problems 

use neural networks that keep growing in popularity. 

2.2 Convolutional Neural Network 

When it comes to classifying images, a lot of research uses Convolutional Neural 

Networks (CNN). CNN is a neural architecture for Deep Learning which learns directly from 

images. Just like the other Neural Networks, it consists of several layers that process and 

transform an input to produce an output. A CNN can be trained to classify images [49] but it can 

also be trained for object detection [51] [56] and image segmentation [50] [54]. In a typical 

neural network, each neuron in the input layer is connected to a neuron in a hidden layer. In a 

CNN, a small region of the input layer neurons connects to a neuron in a hidden layer. These 

regions are called local receptor fields. Each receptor field is translated across an image to form a 

feature map of the image in the next hidden layer. This is implemented using a convolution of 

images, hence the name Convolutional Neural Network (CNN). This process is repeated across 

all the hidden layers. It can have 10 to 1,000+ hidden layers. Each layer learns to detect different 

features in the image, the deeper the layer the more complex the feature. For instance, one first 

layer could detect edges and the last one could detect circles. The last hidden layer is then 
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flattened, and every neuron is fully connected to the output neurons which produces the final 

output.

To make a Neural Network (NN), the weights and biases of the hidden layers need to be 

tuned to produce the best feature maps and therefore make good predictions. To do so, a NN 

needs to be trained, meaning it needs to learn what are the best weights and biases for each layer. 

CNN and NN learn the same way. The difference is that in a CNN, each neuron in one hidden 

layer has the same weight and bias. This is due to the fact that every neuron of one layer is 

detecting the same feature but at different regions of the image. In a typical neural network, each 

neuron has different weights and biases. It is possible to create and train a CNN from scratch 

[53]; it can be highly accurate but also very challenging as one might need more than hundreds 

of thousands of labeled images as well as significant computational resources. Another way to 

train a CNN is through transfer learning [29]. It is based on the idea that you can use knowledge 

of one type of problem to solve a similar problem. Transfer learning is usually done with large 

architecture CNNs that have be trained on millions of images. ImageNet [7] is one of the 

common datasets used to train and compare neural networks to each other. There are other such 

benchmark CNNs, for instance CIFAR-10 [8], CIFAR-100 [37], and SVHN [42]. ImageNet is a 

dataset of over 15 million labeled high-resolution images belonging to roughly 22,000 categories 

organized into 1,000 classes. The images were collected from the web and labeled by human 

using Amazon's Mechanical Turk crowd-sourcing tool [10]. 

CIFAR-10 dataset contains 60,000 32x32 color images in 10 different classes. The 10 

different classes represent airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. 

There are 6,000 images of each class [24]. CIFAR-100 is just like the CIFAR-10, except it has 

100 classes containing 600 images each. 
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There are 500 training images and 100 testing images per class. The 100 classes in the 

CIFAR-100 are grouped into 20 “super classes”. Each image comes with a ”fine” label (the class 

to which it belongs) and a ”coarse” label (the superclass to which it belongs) [23]. SVHN dataset 

contains different type of images from ImageNet and CIFARs. It contains over 600,000 images 

of numerical digits obtained from house numbers in Google Street View images. It is composed 

of 10 classes, one class for each digit. 73,257 digits for training, 26,032 digits for testing, and

531,131 additional, somewhat less difficult samples, to use as extra training data. SVHN is made 

to identify digits in natural scenes [9].

ImageNet is larger than the previous datasets described above. ImageNet is a dataset of 

over 15 million labeled high-resolution images belonging to roughly 22,000 categories. The 

images were collected from the web and labeled by human labelers using Amazon’s Mechanical 

Turk crowd-sourcing tool [32].  

One of the first winners of the ImageNet Large Scale Visual Recognition Competition 

(ILSVRC) was Alex Krizhevsky [32], who developed a very deep convolutional neural net. It 

has a total of 60 million parameters and 500,000 neurons, consists of five convolutional layers, 

some of which are followed by max-pooling layers, and two globally connected layers with a 

final 1000 SoftMax layer which normalizes the results. His architecture is now called the 

AlexNet. The ILSVRC competitions use a subset of ImageNet with roughly 1,000 images in 

each of 1,000 categories. In all, there are roughly 1.2 million training images, 50,000 validation 

images, and 150,000 testing images [32].  
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Figure 2: Model Architecture Scoring.Top1 vs. network. Single-crop top-1 validation accuracy 
for top scoring single-model architectures. We introduce with this chart our choice of color 
scheme, which will be used throughout this publication to distinguish effectively different 
architectures and their correspondent authors. Notice that networks of the same group share the 
same hue, for example ResNet are all variations of pink. Picture credit [28]. 

On the test data of LSVRC-2012, AlexNet achieved a winning top-5 test error rate of 

15.3%, compared to 26.2% achieved by the second-best entry. 

Multiple other models have been created using CNN as their backbone architecture that 

have achieved excellent results in ImageNet: ZFNet [21], GoogLeNet [22], VGGNet [19], 

ResNet [26], DenseNet [31]. GoogLeNet has another name, Inception V1. Since 2013 it has been 

the father of Inception V2, inception V3 (used in the pilot work, see chapter 7) and now 
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Inception V4. These multiple neural networks differ in their architecture. In other words, they 

have different numbers of layers, different number of neurons as well as different activation 

functions and different connections between neurons. Figure 2 shows one-crop accuracies of the 

most relevant entries submitted to the ImageNet challenge, from the AlexNet [10], on the far left, 

to the best performing Inception-v4 [28].

2.3 Natural Language Processing 

To perform word similarity calculation, we would need to transform the words into a 

numerical representation (word embedding) which usually is in the form of a vector. The 

distance between the two vectors will inform us of how similar the two words are. 

For instance, Word2Vec [14] is a two layered neural network trained on a very large 

corpus of words that can take a word as input and produces a vector as output. Other approaches 

to convert words into numbers are count-based methods. One popular algorithm for a count-

based method is called GloVe: Global Vectors for Word Representation [18]. It creates a matrix 

that represents words by features. To get this representation, it first constructs a large co-

occurrence matrix of words by context. For each word, it counts how frequently that word 

appears in a certain context (class or category).  

Another common method is Latent Dirichlet Allocation (LDA) [44]. LDA states that 

each document in a corpus is a combination of a fixed number of topics. A topic has a 

probability of generating various words, where the words are all the observed words in the 

corpus. These ‘hidden’ topics are then surfaced based on the likelihood of word co-occurrence. 

This allows for the creation of a lower-dimensional space that best discriminates the samples 

from different classes [5]. Regarding text classification, after having a numerical representation 
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of the text, it is possible to use a CNN. It would work the same way as described above but 

instead of matrices of pixels as an input, it could be a matrix that represents a sentence where 

each row is a word represented as a vector. This could then detect spatial patterns (groups of 

words) in the text [27]. Other methods for text classification use typical neural networks [15] or 

common machine learning algorithms like SVM [5], Naive Bayes ([6], [2]) or KNN ([20],[17]).

2.4 Notations 

CNN: Convolutional Neural Network

KNN: K-Nearest Neighbor 

LDA: Latent Dirichlet Allocation 

NN: Neural Network 

OCR: Optical Character Recognition 

PPM: Pompei: Pitture e Mosaici

SVM: Support Vector Machine
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3 Image extraction

This chapter describes the information retrieval process of the images contained in the 

scanned version of Pompei: Pitture e Mosaici (PPM). 

The pages of PPM are composed of text and images. By observing the page layout of 

PPM, we noticed: 

- The images are on top of a white page background. 

- The images can be black and white or colored. 

- The images vary in sizes. 

- Images are not framed. 

- The number of images on the page can vary from 0 to 8. 

Figure 3 describes multiple examples of page layouts. From these observations, we 

developed an automatic way to detect and crop out the images from the pages using heuristic 

image processing methods.  

3.1 Initial Background/foreground segmentation 

One way to separate the foreground (images and text) and background (PPM page 

background) is to do an image binarization. From the grayscale scan image of a page, we tried 

using a binarization using a threshold. It puts all the background pixels to 0 and all the 

foreground pixel to 255.  

 

 = 0  >255             (1)
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Figure 3: Page Examples. Two examples of scan pages. The one on the left has two black and 
white images, the one on the right has two black and white images and a color sketch image at 
the bottom.

Equation (1) describes the binarization function using a threshold. The new pixel value 

will either be 0 or 255 depending if it is higher or lower than the threshold. Using a threshold of 

220 works well on images that have a uniform page light and little scan noise (see Figure 4).  

However, on a lot of images this method was not efficient, see Figure 5. Most of the 

pixels of the bottom image are not being detected as foreground. The problem is that every 

scanned image has a slightly different global lightning and different local lightning according to 

how they were placed on the scanner. The ideal global threshold that would extract most of the 

background is different for each page. Utilizing an adaptive threshold function to create the  
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Figure 4: Threshold Binarization, Successful Example. Example of a binarization putting all 
the background pixel to 0 (any pixel with a higher value than 220) and the foreground to white. 
On the left side is the original page and the binarization result is on the right. 

Figure 5: Threshold Binarization - Unsuccessful Example.Example of a binarization putting 
all the background pixel to 0 (any pixel with a higher value than 220) and the foreground to 
white. On the left side is the original page and the binarization result is on the right. 
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binarization improved the results. It calculates a different threshold value for different regions of 

the page image. The threshold is calculated as a weighted sum of a 3*3 neighborhood of the 

pixel minus a C value. The weights are a Gaussian window, and the C value is 2 (the most 

common value used with the adaptive threshold function). 

Figure 6: Difference between Threshold and Adaptive Binarization.Two image results of the 
same page using two different binarization method. (a) is a regular binarization threshold 
function, (b) is the result of the adaptive threshold function. 

The window (Gaussian combined with the C value) is passed through the entire page, 

then for each window a threshold is calculated, and it is used to binarize the page. Figure 6

shows the result on page from Figure 5 using the regular threshold function (a) and using the 

adaptive threshold function (b). It is evident that many more foreground pixels on the bottom 



20

image were detected that were not detected with the regular threshold function. On the other 

hand, the background accuracy went down as more pixels from background were detected as 

foreground due to the small window size of the threshold function. The same, but reversed, can 

be observed in the two top images. They had more accuracy on foreground detection with the 

regular method. Overall, it still improved the results and brought homogeneity to the detection on 

the entire page. Ergo, the adaptive threshold function created noise on the background, applying 

a median blur of size 3*3 removed a lot of it without jeopardizing the foreground pixels. Figure 7 

shows a zoomed image of the effect of the median blur.

Figure 7: Zoom on Median Blur. Zoom on a page after a binarization. (a) is the image before 
the median blur and (b) is after the median blur.  

 

3.2 Image Extraction 

The foreground and background being identified, the next step was to calculate the 

coordinates or corners of each image to be able to extract the image region from of the page. 

Some pixels of the foreground detection correspond to pixels from the images but also the text. 
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To separate the images pixels from the rest, we used the connected component function. This 

function connects into groups the pixels connected to each other. We used a connectivity of 8 for 

the connected function. We also used an average blur of size 5*5 beforehand to increase the 

connectivity within the images that the median blur might have formed. 

Figure 8: Connected Components Two examples of image of page scans after the average blur 
and connected component function applied. Each color corresponds of a different connected 
cluster.

Figure 8 shows the results of the connected component function applied to the two pages 

from Figure 3. It does an excellent job at extracting the different images. Next step was to get rid 

of the region containing the text and lines. Calculating the size of each region and disposing of 
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the ones under 16,000 pixels worked well (see Figure 9). This value was determined doing 

iterations with several values on several types of pages.  

 

Figure 9:Connected components without small clusters. Two examples of image of page 
scans after the connected component function applied. Each color corresponds of a different 
connected cluster, the cluster with less than 16,000 pixels have been deleted. 

The area corresponding to each image is extracted by calculating the extremities of the 

regions:  

- Maximum and minimum on the x axis 

- Maximum and minimum on the y axis 

Once these coordinates were extracted, we eliminated the image regions too big or too 

small (either height too small or width too small) because they did not correspond to photographs 
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or drawings in PPM. In the case of region too big being detected, it happened generally when the 

page had some shade on its borders which created a region taking up the entire page. An example

of a case of a region too small can be seen in the Figure 9. The region at the very top contains a 

decorative line. That region is too small to be an actual image. Figure 10 present the results of 

the extraction, note that 10 pixels inward are also added to make sure the images are neat and 

contain no background. 

Figure 10: Image Extraction Results. Results of the images’ extraction. The red frame boxes 
correspond to the area collected to save the images. 

The detected borders calculated from the coordinates are highlighted in red. Each page 

with red frames was generated to observed and check the image extraction results quickly. In 

addition to some regions being too big or too small, some regions were overlapping. One image 
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can sometime be detected as multiple regions rather than one big one. This happened mostly with 

maps images (see Figure 11). We fixed most of these problems by combining all overlapping 

regions. 

Figure 11: Overlapping and Maps.Page with a map image that creates overlapping problem. 
(a) has the overlapping problem. (b) has the problem fixed with the coordinates re-calculation.

We identified overlapping regions by looking at the four corners of each region on the 

image, if at least one of the corner coordinates of one image was inside the square formed by the 

coordinate of another, we combined the regions by finding the minimum and maximum x and y 

values from the two regions. 



25
 

3.3 Evaluation and Observation

 Using the methods described above we extracted the images of volume 1-6 and volume 

8-10 and the results are displayed in Table 1. Those results have been calculated going through 

the generated pages with the red frames manually. The total error rate percentage, for these 

volumes, is 1.58%. The images with errors where manually extracted and saved. The errors were 

of four different types:

(1) Unavoidable special case

(2) Images cropped too big 

(3) Image missed or not detected

(4) Images cropped too small 

In the case (1), on some PPM pages the images are placed so that they do not have 

rectangular shape. It can create overlapping regions which get detected as one big image instead 

of two. In some cases, the combined region contains unwanted text. Figure 12 is an example of 

that problem.  

These unavoidable errors were counted as cropped too big errors (case 2) when 

conducting the evaluation of the results described in Table 1.  

Cases (2), like cases (1) were not too common. They were occurring mostly if there were 

scanner noise on the page connecting regions to one another. 

Cases (3) usually occur when the image background is very bright, and the foreground 

region detected (if any) is too small and gets rejected.
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Figure 12: Overlapping Problem Example.Extraction result presenting an unavoidable 
problem (Case 1). The area extracted contains two images.

 

Table 1: Image Extraction Result Numbers.Cropping results of Volume1-11 (7 excluded) of 
PPM. All the volumes have been extracted without the overlay subtraction module except for 
volume 11.

 

 Meta Information Number of Images  
ErrorsVolume Images Cropped 

Correctly
Missed Cropped 

too small
Cropped 
too big 

1 1,660 1,653 0 5 2 7
2 1,623 1,620 0 3 0 3
3 1,993 1,982 2 9 0 11
4 2,028 1,995 3 27 3 33
5 1,710 1,687 7 14 2 23
6 1,972 1,910 9 51 2 62
8 2,084 2,019 10 55 0 65
9 1,969 1,927 6 35 1 42

10 820 815 0 5 0 5 
11 1,331 1,282 18 28 3 49

TOTAL 17,190 16,890 55 232 13 300
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This is an extreme case of case (4). In the case (4), most of the time it is part of the sky 

missing in an image because the sky is as bright as the page background and the adaptative 

function has trouble differentiating it from the background, and the page background is not a 

perfect white. It also happens with sketches for the same reason (see Figure 13).

 

Figure 13: Cropped Too Small Problems.Extraction results presenting problems of extraction 
too small (Case 4). The area extracted are too small and do not contain the images fully.

The approach described above works very well for black and white images, but in some 

cases, it does not perform well for images with colored images or pages with yellow 

backgrounds.  This problem occurred so frequently in volume 11 that we developed an 

alternative pre-processing step to improve segmentation.  
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Consequently, volume 11 contains a lot more colored images and the error rate for was 

too high. It was leaving too much labor to be done manually. Table 1 contains the results of the 

extraction method. Volume 1-10 have been extracted using the method described in the previous 

section. Volume 11 has a been processed with the addition of the module presented in the 

following section. Less than 2% of the images had to be extracted manually. For more 

illustration and details on the error encountered please refer to paper [48].

3.4 Yellow tint overlay subtraction

We worked on improving the automatization of the method by adding a module that 

calculates mathematically the yellow tint overlay to subtract it from the pages. This cleans every

scan leaving the background of each page whiter, while at the same time improving the color on 

the images themselves. The module also adds colored pixels as foreground pixels to be 

segmented from the background to further improve the results.  

To recreate the noise overlay from the scan we used a bilinear interpolation which is a 

weighted average of the RGB values from the four corners of the page. 

First, we calculated four values for each corner as the average of each L-shaped area that 

can be seen in Figure 14 below. Let us call these values C1, C2, C3, and C4. We then assumed 

that the noise overlay that is composed of a combination of those four colors. The overlay pixels 

are defined as (2): 

Where w1, w2, w3, and w4 are weights of values ranging from 0 and 1. They are 

calculated bilinear interpolation based on the distance from the pixel to each corner (See Figure 

15). 

 overlayPixel =  C1  w1 +  C2  w2 +  C3  w3 +  C4  w4 (2) 
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Figure 14: L-shaped Corners.Scanned page with L-shaped corners highlighted, representing 
the area of the page used to calculate the four colors to interpolate the noise tint overlay, which is 
usually yellow due to scanning noise. 

 

For instance, the overlay pixel value from the very middle of the image would be: 

Each color’s weight is proportional to the opposite area of the corner color. This is 

illustrated in Figure 15 where the color C1 is proportional to the area grayed out. Meaning w1 

would be equal to (1- -

Alpha and beta are normalized by the size of the image and represent the percentage of 

width and height, respectively.

overlayPixel = C1  0.25 + C2  0.25 +  C3  0.25 +  C4  0.25 (3) 

overlayPixel =  C1(1 )(1 ) + C2( )(1 ) + C3( )( ) + C4(1 )( )  (4) 
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Figure 15: L shaped Corner with Diagram.Page from PPM with the L-shaped corners 
highlighted as well as an overlay expla   calculation. The overlay 
pixel (x,y) is at the intersection of the horizontal and vertical line. The weight w1, w2, w3 and 
w4 are calculated proportionally to the opposite area of the four respective corners C1, C2, C3 
and C4. The area to calculate w1 has been grayed out. 

 

Calculating the specific overlay for each page was essential because the type of noise and 

amount of pixels present differ depending on how the person scanning the page handled the 

book. The page scans do not all have the same number of pixels, so calculating the overlay to be 

specific to each page was essential. Figure 16 shows a before and after of the overlay subtraction.  

We can observe that the yellow tint has completely disappeared. This significantly 

improved the detecting the image borders. 
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Figure 16: Overlay Subtraction Results.On the left, a page scanned from PPM with yellow 
tint. On the right, the yellow tint has disappeared after overlay subtraction. 

 

3.4 Evaluation of the module 

The overlay subtraction was not applied to volumes 1-10 since the initial results of the 

other volumes had already been detected and saved, making the reapplication of the algorithm 

with the new module unnecessary.

Although it would be interesting to compare performances with the heuristic method, we 

chose not to use a deep learning method to extract the images, as it would have required more 

time to create a robust training dataset manually that contained the coordinate of the images to 

extract. Since the margin of error was lower than 2%, we did not explore other methods for 

extraction. 
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Figure 17: Error with the Overlay Subtraction.The top image of this page has not been 
detected (but it was detected without the overlay subtraction module). (a) cropped result 
presented on the raw PPM page. (b) the page with the overlay subtraction applied which brings 
the background close to the images color.

The result of the extraction of volume 11 with the module implemented are in Table 1.

The new module of overlay subtraction and colored pixel addition did improve the results of the 

color images detection but sometimes introduced new problems that were not there before. For 

instance, the top image on the page in Figure 17(a) and 17(b), was correctly detected without the 

module because the image was very white, and the page background had a yellow tint. In this 

case, the improvement of the process created an error that did not exist before. The page 

background without its yellow tint noise got too close to the same color as the image. These 

cases did not counteract the overall positive improvement of the results. 
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4 Collecting text data

The previous chapter described the process we used to extract and collect all the images 

of the PPM volumes. This chapter is dedicated on the extraction of the text information 

associated with the images. 

4.1 Page OCR

To extract the captions from the scanned pages, we first experimented on running the OCR 

algorithm from the library tesseract. By default, the function of the tesseract library applies an Otsu 

algorithm binarization [11], which was degrading the results. To compensate we had to do some 

preprocessing on the scanned pages. We had to pre-process the pages by transforming them into 

grayscale images, then we shifted all the near-white pixels to be absolutely white (255 value), and 

the rest to be zero, which made sure the letters were black. This corresponds to the inverse

binarization of equation (1) with threshold of 200. 

We also applied an erosion of size 3*3 to enhance the letters’ thicknesses. The erosion 

removes pixels from background boundaries which add pixels to the letters because they are part of 

the foreground. Finally, we applied OCR. The results improved significantly, but the OCR tried to 

make up text from the images. To solve this problem, we use the work describe in chapter 3 to save 

a version of the pages without their images (see Figure 18). The OCR did a decent job but there are 

some pages that were completely misinterpreted. When the OCR algorithm failed to detect 

accurately the columns of text, the result was unreadable. It usually happened when two columns 

were interpreted as one single paragraph.  
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Once we had collected all the OCR result of the PPM pages, we had to extract and save in 

separated files the portions of the text containing every single caption with their corresponding 

index.

Figure 18: OCR Pre-Processing.Page before and after the preparation for the OCR. (a) Page 
scan before the text enhancement and image deletion. (b) Page scan without its images and with 
the text enhancement. 

 

4.2 Collecting caption indexes and cleaning 

To extract each caption into a single file, we had to go through every OCR page file and 

try to detect the begin and end of a caption. Every caption starts with a different possible pattern 

(beginning patterns): 
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1. Regular caption: “X.” 

2. Caption with a letter index: “Xa.”

3. Same caption for multiple images: “X-Y.” 

4. Same caption for multiple images with a letter index: “X-Ya.”

5. Same caption for multiple images with letter indexes: “Xa-Yb.”

6. Same caption for multiple images with letter indexes: “Xa-b.” 

The X and Y values are numbers, for instance, a beginning pattern of shape (1) would be 

“2.”. We created an algorithm that goes through every page text file, detects, and saves the 

caption into another file. A caption starts to be recorded and written into a separate file when a 

specific pattern is detected. Which is defined by:  

*new line* *beginning pattern* 

Or by: 

*Start of document* *beginning pattern* 

We had to add the *new line* as part of the beginning pattern because some captions had 

numerical information in them. A caption is complete when it is either the end of the page or the 

beginning of another caption is detected.  

4.3 Problems and future work 

The algorithm does not handle cases with the beginning patterns of “Xa-Yb” nor “Xa-b”. 

It also does not handle cases where the caption continues on the following page, therefore some 

caption files do not contain their caption entirely. Some captions have not been detected 

altogether due to OCR noise or have a wrong index (see Figure 19). With the latter, we have 
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been able to automatically fix most of these problems when it is preceded and followed by a 

logic sequence. For instance, in the case of Figure 19(b), we were able to assign the caption to its

correct caption index number because the previous caption index detected was 176 and the 

following one 178. 

 

Figure 19: OCR Noise Examples.Two caption results with OCR noise in their index. On the 
left the caption 72 has ’72. On the right the caption 177 is written 1°77.

The results obtained from the sections above method have not been checked manually. 

However, the validity of the caption number and association with their image has been checked. 

This evaluation process in described in chapter 5.  

4.4 Collecting the image indexes 

The images in PPM are indexed with a small number, located at the image’s top or 

bottom corner. This number associates the image to a caption indexed with the same number, 
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sometimes located on a separate page (usually no more than 5 pages apart). Figure 20 illustrates 

the index’s placement of the images and captions. 

Figure 20: Caption and Image Indexes’ Location.Page scan example with the caption indexes 
circled on the left and the images indexes circled on the right. 

 

We ran experiments trying to detect the image indexes by running OCR on the whole 

page, but the indexes did not show up in the results. We tried cropping out only the area with the 

number to detect the number with OCR, which showed better results, but a complex program 

would have been required to check each corner of every image due to the inconsistent location of 

the numbers between pages. Moreover, the OCR was performing at less than 100% accuracy.

The PPM volumes are organized by regions in Pompeii (Regio I-IX), and within each 

volume, the content is structured by city blocks within that region and properties within the 
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block. An unindexed map introduces the discussion of each property, and every image index 

restarts at 1 after the map is displayed, indicating that the images of frescoes, mosaics, artifacts, 

and architecture that follow belong to the property depicted in the map. Figure 21 shows an 

example of two consecutive pages of PPM, the first one containing a map image.  

Figure 21: Reset of Image Index Example.Scan of page 150 of Volume 2 on the left next to 
page 151 of Volume 2 on the right. The page on the left has a map which resets the image index 
for the image on the following page. 

We can observe that the following image has an index of 1. Therefore, we went through 

each image in order of appearance and indexed them with a counter that restarts when a map is 

presented. Thanks to some of our previous work, detailed in the chapter 7, we had knowledge of 

which images were maps. This way, we assigned the image index numbers to their appropriate 
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captions and saved it in our database. Indeed, previously in our project, we retrained the last 

layer of a pretrained Inception V3 Convolutional Neural Network [29] to classify images of 

PPM. The retrained CNN automatically classified the images in volume 2 into 6 categories: 

ruins, frescoes, schemas, mosaics, ruins with frescoes present, and maps. In classifying maps, our 

CNN had an error rate of 0.3%, a precision of 99.4%, a recall of 97.8%, and an accuracy of 

99.7%.  

This method works well, except that the image files have been extracted and saved

assuming that the images would always be numbered in order from top to bottom/left to right. 

This is unfortunately not the case. It is inconsistent throughout the pages. 

Another problem was images with indexes of the form “Xa”, with “X” being a number 

and “a” a letter. Thankfully, that was not the case often but if it encountered an image with a 

letter index it would disturb all the following images until a map is encountered again. To fix this 

problem and assign all the correct image indexes, we did two passes on the data using the linking 

process as a first pass to detect the images with problems (see chapter 5 for details).  
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5 Data Organization

In this chapter we describe how we linked the images with their captions and how we 

organized the data in the database.

5.1 Database Organization 

Our database is organized with 3 tables:

(5) Page 

(6) Image

(7) Caption 

Each table has an “ID” field which corresponds to the file name, which is unique.  

The Page table has the following fields: 

(8) ID 

(9) Page Number 

(10) Volume Number

(11) Location

The Image table has the following fields:

- ID 

- PageName (foreign ID) 

- ImageIndex 

- Category (Maps or no maps) 

- VolumeNumber 

- PageNumber 
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- Caption (foreign ID) 

- Correct 

- Regio (Region of Pompei) 

- Location (Insula doorway information) 

The caption table has the following fields: 

- ID 

- PageNumber 

- VolumeNumber 

- CaptionIndex 

- ImageID (foreign ID) 

- Category (same as the Image table) 

- Regio 

- Location

The Location information was retrieved by observing that the information is located on 

the page with odd page numbers. To save and extract it, we ran a program that detects the “INS.” 

keyword on the OCR page with an odd page number. Every image on that page and the previous 

page are from the same location. The region information is located on the page with even page 

number. To save and extract the region, we ran a program detecting the key word “REGIO” on 

the page with even page number. The images on that page and the following page are from that 

region. Note, that each volume of PPM is specific to one to three regions. Volume 2 is specific to 

Region I only.
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5.2 Linking the indexes

The caption associated with each image is either on the same page or in its vicinity. No 

more than 5 pages before or 5 pages after. From this observation, we made an algorithm that 

assigns a caption to an image choosing the closest matching caption index counting from the 

display page. 

At this point the linking errors are due to:

(12) Caption not extracted

(13) Caption not being extracted or wrongly extracted due to OCR noise.  

(14) Image indexes of the form “Xa”.

(15) Wrong image index assignment due to placement on the page during 

extraction. 

(16) Wrong image index assignment due to a previous image index of the form 

“Xa”.

After doing this process once, we were able to detect the images with problems. In other 

words, we knew the images triggering indexing problems such as an index of the form “Xa”. 

Therefore, we went through the image data a second time with a program that displayed the page 

scan and the image not having a caption assigned or having a caption with an unexpected 

number. Once the problematic image is displayed the program enables the user to enter an index 

manually and it updates the database. This way, we have saved all the images with their correct 

index number of any form (with or without letters). Figure 22 illustrates the way the images were 

manually corrected. 
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Figure 22: Image Indexes Correction. Illustration of the program to help on the program to 
help manually assign the image indexes. The program goes through all the images, displays the 
ones with an indexing problem and their page scan. Then, it asks for the correct index and 
modifies the database accordingly. On the left side of the figure there is the page scan zoomed in 
to be able to see the index. On the right side, is displayed the image that the program is asking 
the index for. 

 

Once the images were all correctly indexed, we ran the linking algorithm once more. The 

remaining problems are only due to the captions. To check the results, we built a software tool 

which goes through all the images and displays the caption that has been assigned to them as 

well as their corresponding scanned page. This tool allowed to manually check the results. The 

person checking the results has two buttons they can click on: “Correct” and “Incorrect”. Figure 

23 illustrates the interface of the checking tool.  

This process assigns to the image entries in the database a 0 or 1 value to their “Correct” 

field. It allows us to store if their index assign is correct as well as if their accurate caption has 

been found. Table 2 summarizes the results of the indexes matching for volume 2 of PPM.  



44
 

There are 88.72% of the images of volume 2 that have been correctly matched. 

The errors left are the ones with:

(17) The images with indexes containing a letter and the captions (no linking 

attempt) 

(18) Caption containing OCR noise

 

Figure 23: Linking Correction Software Tool Screenshot.Screenshot of the evaluation tool 
utilized to check if the image indexes match caption indexes. 

 

 
Table 2: Table of the results from linking the image indexes with the caption indexes from 
volume 2. 

Index matching
Total number of images 1,623

Map images 67
Missing Caption 78

Incorrect Matching 108
Usable data 1,440
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From the work described in chapters 3,4 and 5, we have collected and save data from the 

PPM volumes, and more specifically:

(19) Entered in the database all the pages entries for volume 2. 

(20) Extracted all the images from volumes: 1, 2, 3, 4, 5, 6, 8, 9, 10, 11. 

(21) Extracted and correctly linked 1,440 pairs of caption/image from volume 

2.

(22) Saved category information on the map images of volume 2. 

(23) Prepared the groundwork to extend this work to the other volumes. 

The following part of the document is focused on data analysis research and specifically 

data analysis implementation on the 1,440 pairs correctly collected, as well as the software tool 

built to navigate through the data. 
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PART II: DATA ANALYSIS
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6 Word Search and Word Similarity 

Being able to quickly look up specific artifacts from the PPM volumes is nearly 

impossible with the print versions of the books. It would require a little bit of luck and a lot of 

patience to browse through entire volumes to find one specific thing you are looking for and 

impossible to find the 10 images most similar to this image, scattered across all the volumes. 

Having the volumes digitized should counter this problem and make the artifact easily 

searchable. This chapter is dedicated to the method we used to create the part of the tool which 

can return images with their captions using words. The users can enter keywords they are 

interested in inside an input field. Clicking on a search button would then return the results of the 

matching artifacts in the PPM. 

6.1 Prepping the corpus 

To be searchable, all the words contained in the volumes of PPM need to be pre-

processed. It is necessary to have a table containing each caption file name and its associated

searchable words. Once captions have been cleared of line break dashes that occur in the text, we 

collected every word. To do so, we had to eliminate separator characters and other strings such 

as:  

- Period: “.” 

- Comma: “,” 

- Colon: “:” 

- Semicolon: “:” 

- Apostrophe: “‘“ 

- Parentheses: “(” and “)” 
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- Extra spaces and tabs 

- Numerical data 

- Words containing less than 2 characters

All words have also been transformed to lowercase. Using python, we created a loadable 

table containing the caption names and their corresponding searchable word lists that can be used 

in all the lookup search implementations. 

6.2 Term Frequency Search 

We proceeded with a first implementation to retrieve a caption and its image using the 

Term Frequency (TF) (X reference in the background) only. TF measures the frequency of a 

word in a document. It is defined as (5): 

In our case, the document is one caption, and the terms are the query (reference from 

notation X) entered by the user in the input field. That query can be one or several words. When 

the query is composed of several words, the TF of the terms is defined as (6): 

When a user looks up terms, we calculate a TF score of each term for every caption and 

add them together. We then collect and return the caption with the highest score. We made it 

return 10 results by default, but this a value that the user can modify. Algorithm 1 describes the 

process, in pseudo code, of returning the highest TF scores for a word which has been 

implemented in python and run by the research tool. Algorithm 1 can be summarized in 2 parts:

 ( , ) = number of occurrences of term  in document total number of words in document (5)

( , ) =  ( 1, ) + ( 2, )where is composed of 1 and 2 (6)
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- Calculate the TF score of each query term for each caption

- Return the top TF scores  

 

Algorithm 1: TF only Term Look Up Algorithm.Pseudo-code for the algorithm for calculating 
and returning the top N captions with the highest FT scores from the PPM caption database. The 
pseudo code describes the process for searching one term. For multiple terms, an additional 
foreach loop is required to go through all the words in the terms searched. This pseudo code has 
been implemented in Python and is integrated in the search tool. 

 

This method serves its purpose, but it does tend to prioritize the caption with fewer 

words. This is because the total number of words of a caption is in the denominator of the score 

calculation, see (5). Therefore, the caption with fewer words will have a higher score even if the 

term only appears one time.  

The idea of the formula (5) is that the term has more value in a caption with fewer words, 

which is valid. However, PPM has many captions with both very short and long descriptions. So, 

this method is not ideal if we want to enhance the user experience to show more homogeneous 

and relevant results. Figure 24 shows the first 6 results from the search of the term “Apollo” 

(which was recognized as the god of music and prophecy in Greek and Roman religion, often 

identified with the sun). 

1. Function Calculate_TF_Score(term, numberOfResultToReturn):
2.    initialize All_TF_scores to 0; 
3. foreach caption IN PPM{
4.    FOREACH word IN caption{ 
5. IF word IS EQUAL TO term{
6.      TF_score increase of 1; 
7.     } 
8. }
9.   TF_score is divided by the number of words in caption; 
10. TF_score is appended to All_TF_scores;
11. } 
12. return the tops numberOfResultToReturn of highest 

All_TF_scores; 
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Figure 24: First 6 results of “Apollo” using Term Frequency.First 6 results of the term 
“Apollo” in the research tool using the TF only method. The captions are returned ranked in TF 
scores. The big 1-6 digits describe the order of appearance of the captions according to their TF 
scores. It is observable that the captions are returned in the order of their length. Number 3 might 
appear longer than number 4 to the human eye, but this is only because the caption contains a 
line return due to OCR noise. One might also notice the word “apollo” was searched and the 
results contain “Apollo”. The search “apollo” or “Apollo” will return the same results because of 
the pre-processing describe in section 6.1.
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Figure 24 illustrates that the results are returned in order of the caption length. One 

approach to counteract this is the use of an improved method, Term Frequency and Inverse 

Dense Frequency (TF-IDF). 

6.3 TF-IDF 

Term Frequency and Inverse Dense Frequency (TF-IDF) allows us to measure how 

relevant a word (or term) is to a document in a collection of documents. TF-IDF makes it 

possible to analyze a word with respect to the entire corpus of PPM and not only to one caption. 

It combines the TF score as explored in section 6.2 above and the Inverse Dense Frequency 

(IDF) (7). The IDF serves as an indicator of how frequently a term appears. The less frequent a 

word the higher its IDF because the word becomes “rarer”. 

The Inverse Dense Frequency is equal to zero if the word does not appear in the corpus. 

Otherwise, it is the logarithm of the total number of documents over the number of documents 

containing the word. The logarithm (base e) is used so that the value does not explode when the 

number of documents expands considerably. 

The final relevance score of a word is then calculated as TF (5) times IDF (7) for each 

document (8). When searching for a word using the TF-IDF measure in PPM, each caption will 

have a TF-IDF score calculated according to that word, the highest score can then be selected. 

In our specific case, the equation is used with the word w being a word from the search 

query of the search tool and the document d is a caption from PPM. 

 ( ) =  0                      if  is not in any documentln total number of documentsnumber of documents containing           otherwise  (7)

 ( , ) = ( , ) ( ) (8) 
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When searching for multiple words at once, the relevance is calculated as a TF-IDF 

vector. For instance, with a search query of 2 words, the relevance vector or TF-IDF vector for 

each caption will be of size 2 as well. Each element of the relevance vector is calculated as 

equation (8) describes. To select and rank the results of the caption search, we use a distance 

calculation between the query vector and the relevance vectors (see section 6.4 under for details). 

The query vector is calculated the same way that the TF-IDF is calculated considering the search 

query as a document. For example, a search query of “Apollo uccello” would have a vector of [½ (“ ”) ½ (" ")]. 
The IDF scores of each word of PPM have been pre-calculated beforehand to be used in 

the query vector and TF-IDF vectors calculation. They have been saved in a matrix that we call 

the IDF matrix. 

The overall process of searching using TF-IDF is described in the pseudo code of 

Algorithm 2 and Algorithm 3 which can be summarized in 4 parts:  

- Calculating the IDF matrix for each word of PPM (Algorithm 3 part 1) 

- Calculating the TF-IDF of the search query (Algorithm 2) 

- Calculating the TF-IDF of each caption of the terms in the query ( Algorithm 3 part 2) 

- Returning the top results. (Algorithm 2) 

- A multiple search request using the TF method calculates a score for each caption, which 

is then ranked from high to low. A multiple search request using the TF-IDF method 

calculates a vector for each caption, which then needs to be compared to the query vector 

to be ranked as more or less relevant. This is what brings us to the next part of this 

chapter which presents the different method we use to compare the query vector and the 

caption vector. 
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Algorithm 2: TF-IDF Search Process.Function taking a query and the number of results to 
return as input. It returns the “numberOfTopResults” top results. It cleans the query as explained 
in section X, calculates the TF-IDF vector of the query, calls the function to calculates the TF-
IDF vectors of all the captions, calls the function to calculate the distance matrix between the 
query vector and all the caption vectors (see details in section 6.4). Then returns the top result 
recorded in the later. This pseudo code has been implemented in Python and is integrated in the 
search tool. 

 

6.4 Vector Comparison 

When comparing vectors, we can either calculate how similar they are to one another or 

how different they are. This following part discusses different ways to compare vectors and what 

has been implemented in the PPM research tool. When entering a query in the research tool, one 

has the possibility to search using the TF measure or the TF-IDF measure. When using the TF, 

the results are returned using a max function. When using the TF-IDF, we need to compare the 

query vector and the caption vectors to one another.  

 

1. function LookupQuery_using_TF_IDF(query, numberOfTopResults){
2.     query = CleanQuerry(query) 
3.     query_vect = Initialize query vector with values of ones; 
4.     index=0; 
5.     for w in querry: 
6.         idf = GetIDFScore_from_IDFMAtrix(w); 
7.         query_vect[index] = (float(query_vect[index])/len(query)); 
8.         query_vect[index] *=float(idf); 
9.         IDF_vect[index]=idf; 
10.         index++; 
11.     // Need to calculate a vector of the size of the query for 
12.     // each document 
13.     captions_TF_IDF = CalculateTF_IDF_vectors(query, IDF_vect); 
14.     distanceMatrix = CalculateDistanceMatrix(captions_TF_IDF, 

query_vect); 
15.     return the numberOfTopResults top results from the distance 

matrix; 
16. } 
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Algorithm 3: Calculating the IDF Matrix and the TF-IDF vectors for each caption. Two 
functions used in the TF-IDF search process (called by Algorithm 2). The first one (part 1) 
calculates the IDF matrix of each word contained in PPM.  The second (part2) calculates the TF-
IDF vectors of all the captions. 

 

1. Function CalculateIDFMatrix(){
2. Initialize empty IDFMatrix;
3.    //Counting the number of documents containing each word 
4.    //which creates word -> number of documents, to be appended in 
5.    //the IDFMatrix 
6.    foreach(caption c in PPM){ 
7.       Initialize empty words checked list; 
8.       foreach(word w in c){ 
9.          if(w has already been checked in the caption) 
10.             skip; 
11.          else{ 
12.             Increase document count of w in the IDFMatrix; 
13.             Put w in the words checked list; 
14.          } 
15.       } 
16.   } 
17.   //Calculating the IDF values in the IDFMatrix 
18.   foreach(element in IDFMatrix){ 
19.      element = ln(total number of document in PPM/element)   ; 
20.   } 
21.   return IDFMatrix; 
22. } 

 

23. Function CalculateTF_IDF_vectors(query, IDF_vect){ 
24.    //IDF_vector contains the IDF values of the words in the query 
25.    Initialize tf_idf_vectors-result; 
26.    foreach caption c in PPM{ 
27.       index=0; 
28.       Initialize tf_idf_score to a list of size of len(query)to 

zero  values; 
29.        foreach word w in query{ 
30.           foreach w2 in the words in_caption c{ 
31.              if(w == w2){ 
32.                 tf_idf_score[index]=tf_idf_score[index]+1; 
33.              } 
34.            } 
35.          

tf_idf_score[index]=(tf_idf_score[index]/len(words_in_caption))*IDF_
vect[index]) 

36.           index ++ 
37.         } 
38.         append tf_idf_score to tf_idf_vectors-result;  
39.    } 
40.    return tf_idf_vectors-result; 
41. } 
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6.4.1 Euclidean distance 

One way to evaluate the closeness between two vectors is to calculate the distance 

between them. One way to do so is to use the Euclidean distance, see equation (9). 

In the research tool, when using the Euclidean distance to compare the query and the 

captions, it collects the Euclidean distances from the query TF-IDF vector to each caption vector.  

Then it returns the results with the lowest value. The bigger the value the more distant the 

two vectors are. The Euclidean distance gets more complex to calculate as the vectors grow and 

does not take into consideration the direction of the vectors.

6.4.2 Cosine similarity 

 Another way to compare two vectors, is to calculate how similar they are to one 

another. Cosine similarity measures the similarity between two vectors of an inner product space

which is equal to the cosine of the angle between them see equation (10). 

The cosine of the angle is the inner product of the two vectors normalized to both have 

length 1. This is because the inner product is defined as equation (11). 

The cosine similarity can also be viewed geometrically as shown in Figure 25. The 

smaller the angle between the vectors the more similar they are. Therefore, the similarity value 

( , ) =  = ( )  (9)

( , ) =  cos = (10)

 = = cos (11)
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will be between zero and one. The higher the cosine (closest to 1) the more similar the two 

vectors are, see Figure 26 for a trigonometry reminder.

Figure 25: Angle between vector and .Illustration of the angle  between two vectors.
The bigger the angle, the bigger the difference between the vectors.

Figure 26: Trigonometry Circle.Schema of a trigonometry reminder which illustrates why the 
similarity value is between 0 and 1. It also exposes why a value of 0 means the vectors are very 
different and a value of 1 means they are similar.
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One advantage of cosine similarity is its low complexity, especially for sparse vectors. 

However, with a query composed of 1 word, the Euclidean distance is more helpful because the 

cosine similarity returns the results containing the word in the caption in order of their 

appearance in PPM (because of the normalization).

Using the Euclidean distance or cosine similarity for a query with several words will not 

necessarily prioritize the captions containing both words. It will depend on their TF and TF-IDF 

score which depends on their frequency in PPM. To get a result with a particular word in the 

captions, using a filter is needed. 

6.5 Filters 

To help researchers to get relevant artifacts related to specific information, the tool needs 

to return results containing that specific data. Using the search query with multiple words might 

not return first the captions containing all the words from the query. It might instead return some 

with the first word appearing multiple times (with greater term frequency score). Therefore, we 

added a word list filter input field to the research tool. When using the filter field, the results 

from the query appear only if they contain at least one of the words in the filter list. 

The filter field is particularly useful for instance to retrieve artifact data combined with 

spatial data. For example, the query “apollo” with the filter “mediana”, will return Apollo 

artifacts appearing around the middle zone of a wall. It would be relevant to implement more 

types of filters like:  

- A result must contain all the words from the filter field 

- A result must not contain the words front the filter field 

- Filter a specific area of Pompeii like an insula or region 
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All the components and options available when looking for a list of words in PPM have 

been described. The following part is an overview and a discussion of all the functionalities in 

the research tool. 

6.6 Overview 

This segment presents an overview of the tool and presents the different search options.

The research tool has an input query field, a filter field, and an option window so the user can 

pick which search option to use. Figure 27 explains visually where to find all these components 

and how to do a word search with the research tool.  

 

Figure 27: Overview of the Research Tool: Word Look Up Area. Overview of the search 
tool, with an example of a “Apollo” search query and the filter “grifo” with top 10 results to 
return. All the components descriptions are displayed and assigned with arrows. The results area 
and option panel are boxed. The option panel contains the search options examined chapter 6.
The user can pick one term frequency option and one comparison option by clicking on toggles. 
The search displayed in the figure presents one result after clicking on the search button. 
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6.7 Word Similarity

We have examined how we used the OCR results from chapter 4 to explore the data in 

PPM. This section is dedicated to another way to search and use the text data to find connection 

between artifacts of PPM.

6.7.1 LDA

To compare and analyze captions together we needed to extract feature vector from them. 

First, we got rid of line breaks and dashes that were in the caption text file from the OCR 

process. Indeed, the captions in the books are laid out in columns which forced the writers to cut 

a lot of the words with dashes to create line breaks. To create feature vectors for each caption we 

used the Latent Dirichlet Allocation (LDA) method. LDA states that each document in a corpus 

is a combination of fixed numbers of topics. A topic has a probability of generating various 

words, where the words are all the observed words in the corpus. By calculating the likelihood of 

word co-occurrence, we can uncover these “hidden topics” in the text. In our case, the LDA 

model would generate a predefined number of topics from PPM, represented by a distribution of 

words. Then each caption would be represented by a distribution of these topics, aka its feature 

vector. To generate the LDA model or the caption feature vectors, there are 5 preparatory steps: 

- Tokenization: Splits all the corpus into sentences and the sentences into words. It also 

makes all the words lowercase and removes punctuation. 

- Words that have fewer than 3 characters are removed. 

- Numerical values are removed. 

- All common Italian stop-words are removed (most common words in the language). 

- Stemming: words are reduced to their root form. 
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All those steps have been performed using the NLTK (Natural Language Tool Kit) library 

specific to the Italian language. After these steps, the LDA model is ready to be calculated by 

defining the bag words: 

- Mapping each existing word of the corpus with an ID number and a number of 

occurrences (creation of a dictionary).

- Mapping each caption with the number of words it contains and their number of 

occurrences in that same caption (bag of words). 

From these two elements and a designated number of topics, we can generate and save an 

LDA model. Selecting the number of topics to use is tricky and requires the performance of 

various iterations. We collected three different models to observe: 

- 10 topics (illustrated in Figure 28) 

- 50 topics 

- 100 topics 

In the stemming step, we wanted to make sure the cardinal coordinates information 

(North, South, West, East) would be taken into account in the feature vector. Indeed, the captions 

often include detailed spatial information to specify where the image is located on a wall in a 

room in a house. For instance, a caption might indicate that an image was located in the middle 

horizontal zone of the left vertical track of the northern wall of certain room which in a specific 

house. This is critical to attempt to understand what kind of decoration is found in what kind of 

space. For example, the northern wall would be described as “parete N” in the caption; however, 

by default, the stemming process of the LDA cuts the word’s ending and any word shorter than 

three letters. Therefore, “parete N” would become “par”, and we would lose the cardinal 
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information. To avoid this, we pre-processed the text and moved the cardinal letter to the 

beginning of the word so the stemming would not get rid of it.  

Figure 28: LDA model 10 Topics Visual.Visual on the LDA model with 10 topic word 
distributions. The topic number 8 is highlighted in red on the left. The word distribution of that 
topic is displayed on the right. 

 

For instance, “parete N” would be transformed into “Nparete” which would be stemmed 

to be “npar”. The captions also sometimes contain a fresco’s style designation, classifying it as 

one of the four main styles of Roman wall painting, appearing in the text as “stile I”, “stile II”, 

etc. To conserve the style information in the feature, we changed the wording to “Istile,” which 

gets transformed into “istil”. After the LDA creates a topic distribution, we can observe in our 

results that the algorithm did consider topics containing cardinal information and style 

information. 
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Figure 29: Zoom on Words.Zoom on the word distribution of topic number 8. “npar”, “iistil”, 
and “epar” are emphasized. The blue parts of the bars represent the overall term frequency over 
the whole data. The red parts of the bars represent the estimated term frequency within the topic. 

 

Figure 28 is the illustration of the topic distribution created with the LDA model with 10 

different topics. In Figure 29, we zoomed in on the word distribution of topic number 8 so that 

we can observe that one of the predominant words is “npar”, “iistil” and “epar”. This means that 

topic 8 contains cardinal information and style information. It also implies that we could detect 

captions describing images similar to one another containing location information in the houses 



63
 

of Pompeii in their feature vectors. We could potentially answer questions such as such as 

whether bird representations are often located on the southern part of walls. We used the feature 

vectors of the captions from the LDA model to calculate a distance matrix of each vector to one 

another using the cosine similarity. This is the matrix that is used in the research tool to return 

the captions that are found to be similar to one another. 

6.7.2 Caption similarity search

Within the software research tool, the user has access to the similarity calculation area by 

clicking on either the image or caption on one of the image/caption pairs returned. 

Figure 30: Caption Similarity Search Overview. Overview of the similarity search area of the 
tool. The legend explains the different functionality of the tool. The image/caption displayed on 
the left is used for the caption similarity displayed in the result area. The results showed on this 
figure are from an LDA model of 50 topics and 500 passes.

 

Once they have clicked on that image or caption, they will be presented on a screen 

where they can perform similarity search on the image they have clicked on. Figure 30 is the 
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tool’s view of the similarity search area. The parts associated with the caption similarity 

calculation have been emphasized. 

We have calculated the three LDA model: 10 topics, 50 topics, and 100 topics. We put in 

the software research tool the option to pick one of the models to use for the similarity search. 

We have precalculated in advance the distance matrices for each model. Therefore, when a user 

clicks on the button search, it takes the distance matrix of the selected LDA model, looks for the 

row containing the feature vector from the caption on the left and returns, ranked in order, the 

most similar ones with in the whole corpus (volume 2 data only so far). 

Figure 31: Caption Similarity Example.Example of a caption similarity search result with the 
search tool. The image/caption pair on the far left is the one used for the similarity search. the 
two image/caption pairs on the right are the top 2 results from a caption similarity search using 
an LDA model with 100 topics.

Figure 31 illustrates the results of a caption similarity search using an LDA model with 

100 topics (only the top 2 images are visible). The results are returned fast because the distance 
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matrices have been pre-calculated. There is no significant increase in speed of response going 

from 10-50-100 topics either. What takes the longest for the tool is displaying the images within 

Unity. 
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7 Image Similarity 

We have presented how one user of the tool can look up image/caption pairs from PPM 

using either terms or using an entire caption. In this chapter we study how to use the image 

information from the pair to retrieve artifact connections. 

7.1 Previous Analysis

We had explored the feasibility of finding a way to classify the images, and possibly 

create a program to automatically annotate the image of PPM. It would have been a program that 

classifies each image into a category such as: Maps, Mosaics, Ruins, Schemas, Murals, Ruins 

with mural. These categories were too broad, and a lot of images of PPM are composed with 

elements from these different categories. Although the classification was presenting decent 

results for these categories, they are too arbitrary to be accurate enough and useful. However, 

this was handy to categorize and identify very quickly the images that were maps. Thanks to 

these pre-categorizations, we have put in the database if the image is a map or not. This is what

we used to index all the images since they reset the number to 1 (see chapter 5). 

To improve our image classification results, we retrained the last layer of a pre-trained 

Inception V3 [29] CNN architecture. We got the image training set by going over manually 

images from the volume 1 of PPM, and manually assigning them to a category. Once we had at 

least a hundred images in each, we used them to retrain and adjust the weights of the CNN. Once 

retrained, we tested it on all the images of volume 2. In information retrieval, the quality of 

search results is typically described in terms of how the retrieval results match the true results.  

To do this, we calculate the following: true positive (TP), true negative (TN), false positive (FP) 

and false negative (FN). 
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7.1.1 Accuracy results  

Accuracy: The accuracy describes how often the classifier is correct.

 With the formula: Acc = (TP+TN)/total.

The accuracy of each class is:

1. Maps: 0.997

2. Mosaics: 0.979

3. Ruins: 0.916

4. Schemas: 0.986

5. Murals: 0.944

6. Ruins with Murals: 0.939

7.1.2 Error rate results

Misclassification Rate or Error Rate: The error rate describes how often the classifier is 

wrong: ER = (FP+FN)/total.

1. Maps: 0.003

2. Mosaics: 0.021

3. Ruins: 0.084

4. Schemas: 0.014

5. Murals: 0.056

6. Ruins with Murals: 0.061
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7.1.3 Recall results 

What percentage of the correct results does the model predict? That is the question the recall 

represents. It can be defined as: Recall = TP/(TP + FN).

Sensitivity or Recall results: 

1. Maps: 0.978 

2. Mosaics: 0.558

3. Ruins: 0.913

4. Schemas: 0.739

5. Murals: 0.877

6. Ruins with Murals: 0.858

7.1.4 Precision Results 

What percentage of the predicted matches were correct? This is what the precision answers. 

Precision can be defined as: Precision = TP /(TP + FP).

1. Maps: 0.994

2. Mosaics: 0.674

3. Ruins: 0.810

4. Schemas: 0.739

5. Murals: 0.964

6. Ruins with Murals: 0.841
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7.2 A New Road 

The goal of our work is to develop a functionality that could help archeologists and 

historians make connections between images that they might not have been exposed to by just 

looking at the paper version of PPM. This functionality is calculating a degree of similarity 

between the image of PPM. One user could find quickly, for instance, an artifact’s image with 

the same color range or same motifs as one they are interested in.

7.2.1 Transfer Learning 

To implement this similarity search with images, we had to extract features from each 

image. Using transfer learning and comparing CNNs’ feature extraction will answer the research 

questions of which CNN architecture would work best for calculating similarity between 

archaeological images.  

Transfer learning is an important tool in machine learning to solve the basic problem of 

insufficient training data. It tries to transfer the knowledge from the source domain to the target 

domain by relaxing the assumption that the training data and the test data must be independent 

and identically distributed. We wanted to collect the feature from a pre-trained CNN to transfer 

into another model. 

We first used the Inception V3 pre-trained on 1,000 classes on the ImageNet dataset 

which has over a million images, meaning that all the weights of the CNN were already adjusted 

to detect over 1,000 types of various images. We ran it through our PPM images from Volume 2 

and it provided us with a 1,000 long feature vector for each image.

Once we had this data, we implemented a K-Nearest Neighbors (KNN) algorithm to 

classify the images into 10 classes. First, we picked a feature vector far away from all the other 
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ones as the first seed, a second vector was selected the furthest away from the first one, a third 

the furthest away from the first and second vectors, and so on until we had 10 seeds. We then 

added all the feature vectors into clusters according to how close they were to a seed and

recalculated the seeds according to the vectors in the clusters, repeating that step until the seeds 

did not change anymore.

Figure 32 and Figure 33 show a sample of each class that the KNN created with the 

features from Inception V3. The following list is a description of each category as one could 

observe: 

– 0: 183 images, mostly images of ruins, black and white. 

– 1: 52 images, frescoes containing square structures. 

– 2: 69 images, long walls with rectangular shapes (either vertical or horizontal). 

– 3: 386 images, maps and schemas, and complex shapes.

– 4: 47 images, close-ups black and white, flying people or animals.

– 5: 62 images, closeups with round shapes.

– 6: 79 images, people, and animal representations.

– 7: 30 images, animals, and angels. 

– 8: 274 images, big walls. 

– 9: 259 images, big spaces. 
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Figure 32: KNN Results Classes 0-4.
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Figure 33: KNN Results Classes 5-9.
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The CNN was clearly picking out some patterns. For instance, all the maps were 

successfully put in the same class, although with other types of images. We concluded that these 

feature vectors were relevant to be used as a descriptor vector for further analysis of the images. 

Hence, we prepared the feature vectors to be used inside the research tool by calculating a 

matrix containing how close each vector was to one another using the cosine similarity (see 

chapter 6).

7.2.2 Image Similarity Search

Within the software research tool, the user has access to the similarity calculation area by 

clicking on either the image or caption on one of the image/caption pairs returned. 

Figure 34: Image Similarity Search Overview. Overview of the similarity search area of the 
tool. The legend explains the different functionality of the tool. The image/caption displayed on 
the left is used for the image similarity displayed in the result area. The results showed on this 
figure are with the features from ResNet v2. 
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Once they have clicked on an image, they will be presented on a screen where they can 

perform similarity search on the image they have clicked on. Figure 34 is a tool’s view of the 

similarity search area. The parts associated with the image similarity calculation have been 

emphasized. 

With the image similarity, the user can choose either the CNN inception V3 [29] or 

Inception ResNet v2 [28] for the feature vectors to be used. We explore the difference between 

the two in chapter 9. Once they have picked how many results they want to visualize, and the 

CNN features they want to use, the tool displays image/caption pairs ranked by how similar they 

are to one another using the cosine method. Figure 35 is an example of a similarity results with 

the same image/caption pair as in Figure 31. 

Figure 35: Image Similarity Example.Example of an image similarity search result with the 
search tool. The image/caption pair on the far left is the one used for the similarity search. the 
two image/caption pairs on the right are the top 2 results from an image similarity search using 
Inception ResNet v2. 
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The results are returned almost immediately because the distance matrix has been 

calculated beforehand. What takes the longest in the tool is loading the images which are big. 

Although we shrunk the images down in size to increase the tool’s speed, loading the images can 

still slow it down. 
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8 Combination of word and image similarity

In the previous two chapters, we presented a way for a user to look for image/caption 

pairs using either caption similarity or image similarity. In is chapter we study a way to return 

similar image/caption pairs using both the image and text information.

8.1 Combination Similarity Search Overview 

Within the software research tool, the user has access to the similarity calculation area by 

clicking on either the image or caption on one of the image/caption pairs returned. 

 

Figure 36: Overview Combination Similarity Search.Overview of the similarity search area of 
the tool. The legend explains the different functionality of the tool. The image/caption displayed 
on the left is used for the combination similarity displayed in the result area. The results showed 
on this figure are from the features from ResNet v2 and an LDA model with 100 topics. The 
similarity search has been done using weights of 0.5 (50 percent). 
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Once they have clicked, they will be presented on a screen where they can perform 

similarity search on the image/caption they have clicked on. Figure 36 is a tool’s view of the 

similarity search area. The parts associated with the combination similarity calculation have been 

emphasized. 

We wanted to allow the user the additional option of returning results that took into 

account the similarity of the image and the caption at the same time. An image similarity search 

returns results with similar images without considering the information in the caption. Vice 

versa, a caption similarity search does not take into consideration the similarity of their 

corresponding image. We decided to use weights to calculate how much the score of one 

similarity would matter to an overall combined score. The weights can be chosen by the user. We 

have implemented a slider for the users to pick the weight they would like. Putting the slider at 

50% would return results where the similarity with the image matters as much as the similarity 

with the caption. This slider is visible in the overview of the combination similarity in Figure 36 

and it is displayed up close in Figure 37. The user defines the exact weights by moving the slider 

handle along the bar. The percentages or weight amounts are displayed on both sides of the bar, 

see Figure 37 for illustration.

Figure 37: Slider Bar. Slider in the interactive research tool. The slider value determines the 
weight values for the image similarity and caption similarity. The numbers on the right side of 
the slider display the exact values of the weight percentages according to the handle position. 
The example displays a value at 42percent for the image similarity and 58 percent for the caption 
similarity. 
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The result for combination similarity with the image/caption pair from Figure 31 and 

Figure 35 gives the same top 2 results as the ones in the image similarity search (Figure 35). The 

results are calculated fast but not as fast as for the caption or image alone similarity. The 

calculation for the combined score is still minimal compared to the time for the software to 

display the images. Pulling up the images and rendering in the tool is what takes the longest 

when loading the results.

8.2 Combination Score Calculation 

We used the previously calculated distance matrices between each feature vector to return 

the combination results. For a given image feature vector, we have the distances between that 

vector and all the other image feature vectors. We also have that information for the caption 

feature vectors. This information can be merged into a single vector using weights. This final 

vector contains the final score to consider for returning the similarity search results. 

  is the vector of distances between the feature vector of the picked image for the 

similarity search and all the other image feature vectors of PPM. is the vector of 

distances between the feature vector of the picked caption for the similarity search and all the 

other caption feature vectors of PPM. is the weight for the image distance chosen by the 

user. is the weight for the caption distance chosen by the user. The similarity results are 

returned in order from the higher score to the lowest score taken from their values in .. Another way to visualize the calculation is described in Figure 38. 

= +   (12)
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Figure 38: Distance combination vector calculation.Visual on the distance combination vector 
calculation. The distance matrices between each feature vector are calculated in advance using 
the cosine similarity function describe in chapter 6. The “i” represents the index of the image and 
caption that the user has clicked on. The weights are extracted using the user input from the 
slider. The result contains the scores used to rank the image\caption pairs to be returned. The 
vectors in the distance matrices are the ones used for the caption only similarity and the image 
only similarity.
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9 Evaluation 

In the tool we can look up words to return image/caption pair from volume 2 of PPM. A 

user can click on one and perform similarity searches on the image and/or the caption. To 

evaluate the functionalities and different methods described in the previous chapters, we have 

conducted an experiment with 8 experts. This chapter will discuss the experiment results and 

address various research questions. 

Each expert had accessed to the tool and was asked to perform six tasks. The first five 

tasks introduced the functionality of the tool and the last task was a freedom question where they 

could use the tool as they pleased. The instructions were given in the form of a survey, after they 

were done with one task, they had to answer a few questions and leave comments. 

9.1 Task 1: TF vs TF-IDF 

In the task 1 the user was asked to look for the word “uccello” and observe the result with 

the TF and then the TF-IDF. The question in the survey asked them which one they preferred. 

The following list summarizes the results of the task with numbers: 

- 75% picked TF-IDF better. 

- 50% of the experts did not notice a difference between the two results.  

- 50% of the experts thought that TF-IDF was returning more precise results. 

From these results, we can conclude that the TF option could be removed from the tool and that 

TF-IDF does present a noticeable difference in performance when looking for terms. 
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Comparing Euclidian and Cosine similarity was not part of the test, but we know that the 

Euclidean distance is more relevant when searching with one term. The two methods should be 

compared when doing a multiple search term query. 

9.2 Task 2: Inception V3 vs ResNetV2 

During task 2, the experts were asked to perform a similarity search using the 

image/caption pair of Figure 39. The image represents a bird on a branch with a dark rectangular 

background. The following list summarizes the results of the task with numbers:

- 87.5% preferred the results of the Inception V3, because the ResNetV2 first results 

did not contain birds. The one person who picked ResNetV2 agreed with the previous 

statement but found the other results (ranked lower) about birds of ResNetV2 more 

relevant than the result in Inception V3. 

 

Figure 39: Image/Caption pair.Image/caption pair used to perform the similarity search for 
task 2, task 3 and task 4 of the evaluation experiment. 
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We can conclude that for this particular image the Inception V3 was more relevant. Task 

6 does give more input on the comparison of Inception V3 and ResNetV2. It seems that the 

InceptionV3 does a better job at comparing similarities for images with geometric shapes and the 

overall global shape of the image whereas the ResNetV2 does a better job finding similarities 

between images with curvy motifs.  

We performed three other tests with images where we asked five individuals (four of 

them with archaeological background) to choose a group of ranked images they found the most 

similar given a specific image (no access to the captions). Figure 40 present the test 1, 100% of 

the experts chose the results provided by ResNetV2. Figure 41 presents the test 2, 100% of the 

experts chose the results provided by Inception V3. Those result help identify the usefulness of 

the CNNs and where to they excel the most. Figure 41 is a close up of a fresco motif corner, the 

Inception V3 features pick up on it more than ResNetV2 features. Indeed, we can observe the 

cornet of another motif being return higher up. In the test 1, the global look of the images 

returned by InceptionV3 do look alike the picked one, but it neglects the faint image of the 

woman in the center. For these type of images, ResNetV2 features are more useful. When 

presented with a scene with many elements as shown in test 3 (Figure 42), the InceptionV3 

features and ResNetV2 features are closer competitors and both provide somewhat relevant 

results, 40% of the individuals picked the ResNetV2 features choice. The hypothesis that 

Inception V3 is better at recognizing geometric shapes and that ResNetV2 is more tuned to 

details within the images seems to be valid according to the results of the 3 test images and 

observing the user behavior from task 6. 
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Figure 40: Test 1.This image was presented to experts, they were asked to pick a group of 
image A or B in regard to the image on the top of the page. In this test, group A was the top 5 
results from the image similarity search performed with ResNet v2. Group B was the top 5 
results from the image similarity search performed with Inception V3.
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Figure 41: Test 2. This image was presented to experts, they were asked to pick a group of 
image A or B in regard to the image on the top of the page. In this test, group A was the top 5 
results from the image similarity search performed with ResNet v2. Group B was the top 5 
results from the image similarity search performed with Inception V3. 
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Figure 42: Test 3.This image was presented to experts, they were asked to pick a group of 
image A or B in regard to the image on the top of the page. In this test, group A was the top 5 
results from the image similarity search performed with Inception V3. Group B was the top 5 
results from the image similarity search performed with ResNet v2.
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9.3 Task 3: 50 Topics vs 100 Topics (LDA models)

During task 3, the user is asked to switch the parameters and to do a caption similarity 

search on the same image/caption pair than from task 2 (see Figure 39). The following list 

summarizes the results of the task with numbers: 

- 100% of the experts preferred the result from the 100 topics distribution. 

We can conclude that we could eliminate the 50 topics distribution from the tool and 

experiment by building LDA models with a lot more hidden topics. 

9.4 Task 4: Combination similarity vs Image similarity vs Caption Similarity 

In task 4, the expert was asked to perform a similarity using 50/50 weights on image 

features and caption features, using the same image/caption pair as Figure 39. The options were 

Inception V3 and an LDA model of 100 topics. The survey then asked which one they preferred. 

The following list summarizes the results of the task with numbers: 

- 75% of them liked the combination similarity search, they find the combination 

similarity search presented a wider and more precise selection. 

- 25% liked all of them (image, caption, and combination search), they could see all 

similarity functionalities being useful depending on what they are looking for. 

From these numbers and their comments, we can conclude that having all three possible 

searches is useful. If one user is looking for very precise results with much closeness to their 

image/caption, the combination search will be more useful. However, it is relevant for users to be 

able to not be as precise if they are looking to explore PPM; for instance when looking for 

similar global shape or color distribution.  
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9.5 Task 5: Filters

Task 5 introduces the filter functionality to the user, the survey asked them to go back to 

the word lookup area and to add the word “volo” in the filter (meaning “in flight” in English). 

This task does not have a specific question but has a comment section. 100% of them find this 

functionality useful and 25% of them expressed that having the filter implemented with the 

“AND” rather than “OR” would be more useful. Indeed, as of now, the filters return the captions 

if and only if they contain at list one of the words from the filters entered (“OR”). 

9.6 Task 6: Freedom question 

During task 6, the experts were free to use the tool as they wanted. Each expert searched 

different things such as:  

- A specific element (swan, skull, Apollo) at a few different locations (center, upper, or 

lower zones on a wall). 

- Mythological scenes. 

-  Facades and doorways. 

- Snakes. 

- Round shapes/motifs. 

- Flowers and gardens. 

- Motifs or elements (serpente, mercurio, grifo) in specific rooms 

- Fountains 

Then they were asked what they found the most useful for their search: 

- 50% of the experts had the word look up and filters in their answer. 
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- 50% of the experts had the combination similarity in their answer. 

- 37.5% had the image similarity search in their answer.

The caption similarity function was never mentioned as the most relevant for their 

freedom searches. The users were then asked what functionalities they wished the tool had. This 

part of the survey helped define the ideas described in chapter 10:

- 62.5% mentioned UI improvements.

- 37.5% mentioned being able to look for specific house/location.

- 25% mentioned word look up improvements.
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10 Discussion and Future Work 

This Chapter will bring a reflection over the entire work done and convey a summarized 

overall evaluation as well as explore potential future work for the project. 

10. 1 Research questions and hypothesis 

The goal of our research was to present and defend the theory that it is possible to help 

archeologist researchers to conduct and check hypothesis on historical findings using computed 

correlation between artifacts using image data, text data and a combination of both. To meet this 

objective, we answered the following research questions.

- Is it possible to find and retrieve image data and text data digitally from scanned documents 

with the same shape and form as PPM? Yes. 

- Can the OCR algorithm run on whole pages without caring about the images being in the 

way? Or is pre-processing to remove text/image needed? We had to preprocess the page 

using the methods described in chapter 3 and 4.

- What OCR library works best for our application? We used the “tesseract” library, but we did 

not try to modify its source code or any other one. 

- Is it possible to use text information to assist in the classification of the Pompeii images? we 

have detailed the work done to create various LDA models that helped with extracting 

features. We did implement a KNN and observed results using an LDA model of 10 topics. It 

was working well, that is why we went on using the other LDA models in the similarity 

search. The preliminary results of the LDA classification have not been detailed in this 

document because they were very similar to the results given by the classification of the 

images using KNN in chapter 7.
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- Is it possible to create a computer vision algorithm capable of extracting and classifying 

images more efficiently than a human could? Thanks to our work we were able to extract 

automatically and accurately thousands of images that would have taken countless hours to 

do so manually. The map images were also automatically classified thanks to the work

described in chapter 7.

- Is it possible to use the results of the classification to build a tool to look up Pompeii images?

The classification of the map images did help in the making of the tool and was crucial to 

assign the images their correct indexes.

- Is it possible to detect multiple objects and/or features of an image when they are present?

this a hypothesis that has not been tested. However, the image search similarity is able to 

return images containing similar objects. This has been proven to be true with amphora

images in PPM among others (observable in KNN classification in chapter 7 and during 

experiments).

- Which framework or CNN architecture would be the best for each of the task that we are 

undertaking for image and text analysis? It seems that the evaluation from task 2 and the 

observation of the users from task 6 that the Inception V3 is better for recognizing global 

shapes and geometric patterns. ResNetV2 is better at extracting feature more detailed 

oriented as well as more curvy shapes. We did not try to use a CNN nor a NN to perform text 

analysis. However, we did conclude that, for the volume 2 of PPM, a LDA model with at 

least 100 topics performs better to extract features from captions/text.

- Is it better to use one CNN to classify the images all at once or to use different ones in 

phases? We have used different ones in phases in our work, one to classify maps and one that 
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we used to extract feature that we put into another classifier. We have not tested any 

architecture feeding input and output directly into one another. 

- How can we save our content classification results? We have saved them by creating a 

database with an entry for a category, and table following the third normal form.

- How can we easily get content experts to evaluate our classified results? We created an 

interactive software tool. The tool is only on one machine for now. The software tool will be 

able to be online in the future. Building the tool on a WebGL platform is our plan. Tool, aka 

PPMExplorer, is detailed and illustrated throughout part II of the dissertation. 

- How can we use the word information from the pages to help the image classification? We 

implemented the combination similarity search, we are able to use both the text features and 

the image features to ranked images by how close they are to one another, see chapter 8. 

- How can we use the location information to help with the image classification? We have 

made sure that the LDA model was taking into account the cardinal information by 

preprocessing the text. However, the doorways, region and house number are not searchable 

at the moment.

- Can we combine the text information with the image information to get better classification 

results? According to the experiment with the experts, our combination similarity search does 

provide more precise result in regard to similarity, see details in chapter 9.

- Can we use location information to calculate similarities between images? The LDA does 

take into consideration the cardinal location of a wall’s room or a wall area. We did not try to 

extract geolocation of images to calculate a distance. That is something that we believe as 

feasible. We could compute a distance matrix using meters of the location from each image 

to another. Those numbers could be used as an additional feature. It could be added to a 



92
 

combination search with a new weight. That would be useful to collect a feature that 

describes the physical closeness of the images. The similarity in the kind of space the images 

are is contained in the LDA models, but it is not explicit. We could be more precise and 

define manually the space kind the images are in and then manually add those descriptors to 

the caption feature vector. 

- Is there a correlation between the location of an artifact and its style? This is an archeological 

research question that we believe our tool can help answer.

- How can we do object detection or segmentation on images containing several different types 

of elements? This is something that we did not explore but only briefly thought about. In a 

sense, the features extracted through the CNNs potentially do object detection and 

segmentation but not explicitly. This is a relevant unexplored research question. 

- What kind of feature vectors should we used to calculate similarities between images? We 

have decided to test two methods. One with Inception V3 and one with ResNetV2. We 

picked Inception V3 because we had done previous work with it and it was presenting good 

results. ResNetV2 was picked because it was bigger and had better results in the 

classification of the ImageNet dataset competition than Inception V3. Interestingly, our 

research showed that even though the ResNetV2 performed better in the ImageNet 

competition, it was not always outperforming Inception V3 in our PPM dataset.  

- Can we use results from a “random” CNN as a feature vector for one image? We 

experimented with Inception V3 and ResNetV2, they both extracted relevant features. 

- Should we separate an image that has several elements into different parts in order to analyze 

it by comparing feature vectors on each part, or should we use a CNN specialized in object 

detection? We have not experimented with that idea. However, with our work as groundwork 
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it could be possible to ask a user to select an area of an image, they like to perform a new 

type of similarity search on the area they have selected (possibly with a mouse select).

- Is it possible to build a tool to help content experts rapidly evaluate results of image 

classification? We did not build a tool to evaluate any classification results.

10.2 Potential Functionalities

While conducting this research, we identified several areas of future research and features 

to add to our PPM exploration tool.  These are listed below (not ranked in any order).

- Add all the data from all the volumes to the tool. Adding all the other images and caption 

from the PPM volumes in PPMExplorer will create more correlation and more searchable 

data to the user.  

- Perform regular testing and evaluation to improve user experience. Getting user feedback is 

essential to be aware of what archeologists and historians would want to be able to do with 

the tool. Then we can assess and maybe implement new functionalities as well as 

improvements on the user interface.

- Add the possibility to choose the type (AND, OR, NOT) of filter for each word added in the 

filter input field. This would help the user to be more precise when using the word search 

functionality. 

- Add the possibility to a user to send feedback or a bug report within the tool. 

- Have access to a suggested word list within the tool. This would help users to find inspiration 

on what word to look for as well as informing the lexical used the PPM volumes. 
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- Being able to copy and paste. User could copy and paste words they have in a separate 

document to search them or even take one from a displayed caption. This would make the 

word search functionality more practical. 

- Add a map display of where the image/caption pairs are located in Pompeii (simplified map). 

- Add the possibility to zoom in and out on the results. To be able to see how many of the 

returned results at once and to be able to see one image full screen. 

- Add the functionality to look by houses (name or number) and region of Pompeii. 

- Having the plural or words of the same family as part of the results or suggested search. This 

could be implementable using the techniques of the pre-processing of the text for the LDA. 

- Fix UI elements such as: scrollbar, button and animation, user feedback on loading, resetting 

views, displaying number of available results, displaying score of similarities, displaying the 

page name of the image location within PPM. 

- Add other known sources of the same element described in PPM. Images from the web. 

- Have a colorized version of one image generated by either new technology algorithm used to 

automatically colorized image or images of the same element but colored within PPM or with 

another source (tourist photos? Web?). 

- Make the tool able to be modifiable, to some extent, by the users to improve results and 

calculation as the tool gets utilized. For instance: caption OCR corrections, adding labels, 

marking images as irrelevant or relevant.  
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11. Conclusion 

The thesis of this dissertation is that image processing combined with natural language 

processing, data mining and machine learning provide the means to explore archaeological and 

historical data in new ways. Our work opens doors to re-discover Pompeii by taking a new look 

into the Pompei: Pitture e Mosaic volumes. Part I explored information retrieval, from scanned 

paper version of the volumes to usable image data and text data. Part II examined data analysis, 

how to make best usage of the retrieved data and how to connect them in a smart manner that can 

help archeologists and historians test hypothesis and find new theories on the world’s history. 

During the information retrieval process, we favored image processing heuristic methods 

over machine learning methods. The heuristic methods have shown good and efficient results. 

Nowadays, there is a lot of hype around using big data to solve any problem. Data mining does 

present a lot of promising outcomes in a wide range of domains. However, one constraint to the 

use of these methods is having access to reliable and robust data in a huge bulk. This data is 

essential for training and testing architectures. Moreover, because of the exponential progress in 

computer power which provides us with almost unlimited mathematical capabilities, a lot of the 

outcomes relies on the quality and quantity of the data. This works shines lights on the fact that 

even with a modest data set of a few thousand images and captions data, it is possible to build a 

system that works and that is useful. Not only does is provide fruitful information but it also 

produces groundwork for a multitude of improvement possibilities. One of them being the 

preparation of an environment ready to receive more data, to grow, and to eventually be used for 

various data mining methods.  
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The data analysis part of our work has made use of transfer learning methods which was

good way to use big data methods having little data. We did use heuristics functions such as 

KNN to check the integrity of the features data that we extracted from the machine learning 

methods. The results evaluated show the great potential of machine learning to be applied to 

analyzing archeological images.

Our research leads us to conclude that we are just standing at the start of the road towards 

finding even greater artifact correlations. We have proven that using a combination of heurist 

methods and data mining methods with combining both image and text information presents

tremendous potential. There is still much to be done, but the journey ahead is an exciting one.
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