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Abstract:

Ulcerative colitis (UC) is a gastrointestinal, autoimmune disease that causes ulceration and
inflammation of the colon with an incidence 10 out of every 100,000 people in North America and
Western Europe. Though the exact etiology is uncertain, a number of studies have shown that
inflammatory cells along with environmental factors, genetics, and lifestyle habits can contribute to the
sustained inflammatory response. In order to determine the cellular mechanism behind relapse and
remission of UC, researchers have frequently employed immunohistochemistry, western blotting and
gene sequencing, but these destructive analysis methods require the removal of a sample, necessarily
limiting these methods to non-living tissues. There is an emerging interest in using non-invasive
techniques to study the in vivo, longitudinal effects of UC on the mucosa in the colon. Here we have
developed a mouse model of UC using dextran sulfate sodium and a non-invasive spectroscopy

monitoring modality to study the changes in the tissue hemodynamics during active UC.

1. Background

Ulcerative colitis (UC) is an autoimmune disease that causes cyclical inflammation and ulceration
of the colon."? Defects in the mucosal and epithelial barrier within the colon allow the luminal microflora
to trigger an immune response’. Inflammatory cells such as T helper type 9 lymphocytes (Tu9) cells inhibit
mucosal healing while innate lymphoid cells (ILCs) contribute to cytokine production such as interleukin-
12 (IL-17) which drives mucosal inflammation.' The causes of barrier defects are not fully understood, but
genetics, environmental factors, and lifestyle habits are thought to play a role."? There is emerging interest
in using emerging endoscopic optical imaging and spectroscopy methods, along with molecular biology
tools, that may be able to examine the mechanisms behind relapse and remission of UC, as well as identify

putative therapeutic options.

UC affects about 8 to 14 out of every 100,000 people in North America and Western Europe and
is increasing in prevalence.>® UC is a chronic disease, involving many cycles of intestinal inflammation

followed by a remission period.!* The gastrointestinal (GI) tract has a unique oxygenation profile. Even at



the baseline, epithelial cells that line the mucosa exist in a low-oxygen environment.* Countercurrent
oxygen exchange mechanisms show that oxygen from the arterial blood supply diffuses to adjacent venules,
along the crypt villus axis, results in graded levels of low oxygen.* Steep oxygen gradients have also been
documented in the more distal, colonic portions of the GI tract.* Based on this, the normal colonic mucosa
has a reduced O, potential pressure (Poz of approximately 10 mmHg).* Interestingly, the mucosa of an
animal or human with active inflammation has been shown to be even more hypoxic.’ The physiology
behind the change in oxygen saturation is still debated, but some studies have pointed to a decrease in blood
supply from major arteries that supply the rectum as a cause.>* Mucosal hemoglobin concentration has been
observed to increase during active colitis, most likely due to mucosal congestion caused by increased levels

of proinflammatory chemical mediators such as prostaglandin and leukotrienes.>’

Several murine models of UC have been explored, both chemically induced and through genetic
modification. Some common chemically induced models include trinitrobenzene sulfonic acid colitis
(TNBS), oxazolone colitis, and dextran sulfate sodium (DSS) colitis, while Interleukin-10 (IL-10)
knockout mice can be used as a transgenic model.> DSS is a sulfated polysaccharide salt that can be
dissolved in the animals’ drinking water. It is believed to be directly toxic to epithelial cells and results in
the breakdown of the intestinal lining.®° This allows bacteria and other luminal organisms to enter the
lamina propria, which triggers the body’s immune response.” Short term exposure (usually five days to a
week) in a small animal causes inflammation and ulcer formation.®!° The intensity of inflammation can
be controlled by the concentration of DSS solution, although individual mouse strains can differ
significantly from each other in terms of resistance.!®!! For example, BALB/C mice are very resistant to
DSS-induced inflammation while C3H/HeJBir mice are extremely susceptible!®!!. Susceptibility may
also differ between locations of the GI tract. Mice strains such as C57BL6/J are resistant to DSS in the
cecum, but susceptible in the colon.!! This is a fairly simple and reproducible model to induce ulcerative

colitis, however this model is very expensive. In this study, C57BL6/J mice (Jackson Labs) were given



4% DSS (w/v) water solution for 5 days ad libitum then 10 days of recovery. The purpose of the recovery

period was to simulate the “active” and “remission” cycles of UC in a murine model.

In the clinic, diagnosis and monitoring of UC is commonly done with the help of conventional white light
endoscopic inspection, but currently there is no widespread clinical use of high-resolution
microendoscopic imaging or spectroscopy techniques.’ Microendoscopic modalities use optical fibers or
fiber bundles in conjunction with microscopy techniques to obtain microscopic images of tissues. This
technique can also be used in conjunction with spectroscopy techniques, such as diffuse reflectance
spectroscopy, to quantify longitudinal tissue hemodynamics such as oxygen saturation and total
hemoglobin. Diffuse reflectance spectroscopy (DRS) is a non-invasive, spectral biopsy technique that is
used to estimate optical properties of tissues. The fundamental tissue optical properties are reduced tissue
scattering coefficient (u}) and the absorption coefficient (u,).!? The reduced scattering coefficient
depends on light scattering from cell nuclei, keratin (in skin), lipid membranes of cells and organelles,
and collagenous, elastic, and reticular fibers.!* The absorption coefficient depends on hemoglobin
concentration and oxygen saturation.'? In tissues containing little or no melanin (amelanotic), y, in the
visible and near infrared spectral ranges functionally depends on the oxygen saturation and total
hemoglobin content.'? Changes in these fundamental optical properties has been shown to occur in

epithelial cells with altered morphology.'?

In the C57 mice, developing DSS ulcers were monitored during “active” and “remission” stages using a
commercial colonoscope unit (Karl Storz COLOView) was used in conjunction with a 1 mm diameter
multimodal DRS probe.!* This probe was deployed through a biopsy port of the examination sheath of the
COLOView system and touched to the colonic mucosa to obtain spectra.'* The DRS spectra were then
analyzed to obtain measurements for oxygenation, total hemoglobin content, deoxyhemoglobin, and

oxyhemoglobin.



2. Materials and Methods

2.1 Animal Studies: DSS model
Eight-week-old female C57BL6/J mice (000664 The Jackson Laboratory, Maine) were randomly separated
into two groups: control (n=5) and treatment (n=9). After a week of acclimation to animal facilities, the
treatment mice received 4% DSS water ad libitum for 5 days. The water was changed on the third day. The
control mice received regular tap water ad libitum. After the 5-day cycle was completed, the treatment

group received regular tap water for 10 days before the cycle was repeated (Figure 1).
* Euthanasia
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Figure 1. Sample Timeline of DSS administration with colonoscopies. Control mice are scoped every week
without any DSS. DSS treated mice receive 5 days of 4% DSS with a 10-day recovery period between each
cycle. This simulates the “active” and “‘remission” cycling of UC. DSS was administered for 12 weeks and

the final colonoscopy and euthanasia occurred on day 76.

There were six five-day DSS cycles that were completed in about 12 weeks. All mice were weighed every
day around the same time in the morning. Mice in the treatment group lost weight at around day 4 or 5 of
each treatment cycle. Cages with mice that lost 10% of their pre-DSS weight were supplemented with

NutraGel. The longitudinal changes in raw weight of the DSS and control groups are shown in Figure 2.
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Figure 2. A) Normal colon mucosa. B) DSS-induced ulcer in the mucosa. C) DRS probe making contact
with an ulcer. D) Longitudinal weight changes from C57BL/6J control (n =5) and DSS induced mice (n =
9). Raw weight plots were made in GraphPad Prism®. (* p <0.05, ** p <0.01, *** p <0.0001, Mann-

Whitney test)

2.2 Animal Studies: Endoscopic Examination
A commercial colonoscope unit (Karl Storz COLOView) was used in conjunction with a miniaturized,
multimodal DRS probe to monitor the development of ulcers in the distal colon.!* The probe was deployed
through the biopsy port of the examination sheath of the COLOView system (Figure 3). The DRS
acquisition has been described elsewhere.!* A shutter was used to block white light from the colonoscopy

system while obtaining spectroscopic measurements.
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Figure 3. A) DRS Probe and Endoscope Setup: A — examination sheath B - Air Pump Hose C — Optical

fiber D — Camera E — Imm DRS probe. B) Examination sheath close-up
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Figure 4. Spectroscopy and Endoscopy Setup. A) LabView Software and DRS spectra. B) Laptop and probe

connections to Ocean Optics spectrometer and Tungsten-Halogen lamp. C) Diagram of Karl Storz

ColoView system setup

Colonoscopies and DRS acquisition took place every week for the first 8 weeks of DSS administration.
DSS-treated mice were scoped on the day after the 4% DSS cycle was stopped and then again a week later

to monitor any changes in the “active” and “remission” stages. The control mice were also scoped once
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every week. The mice were anesthetized at 2.5% isoflurane and underwent colonoscopies to visually
monitor developing ulcers and obtain DRS data from the submucosa in the distal colon. The probe was
extended to touch the mucosa and the colonoscopy system light was blocked. About 10 DRS spectra were
taken at a time. The position of the probe was checked in between each acquisition time by briefly allowing
the shutter to open. The process completed until around 100 spectra were collected from the same location.
The spectra were collected between 400 and 800 nm at an integration time of 50 ms and a boxcar width
(number of pixels to the left and right of individual pixel averaged together) of 10 (Figure 4A).

2.3 DRS Spectral Analysis

Once the spectral data was collected, they were placed into a filtering algorithm (Figure 5) to discard data
that had displacement artifacts to avoid biasing of the DRS data. First, if the spectra reflectance was
above 0.05 or below 0.01 at 475 nm, it was discarded. Then, the Qratio is calculated.'* The Q ratio is
defined as the ratio between the scattering region at 630 and 575 nm and the second Q band of
hemoglobin per each optimal ex-vivo spectra defined as

Ras(i)

Qratio (D) = RAQ(L')

Where i denotes each recorded reflectance in the 475 to 685 nm range and Rj;(;), Rjo(iare the values of
the i’th reflectance at 630 and 575 nm, respectively. The Qratio was calculated for all the ex-vivo spectra
with different displacement/angular variations that can occur during an endoscopy. If the Qratio was outside
the range of previously calculated mean in vivo value (< 2.20 and > 3.35), this value would be discarded."
Finally, a confidence interval was created for any remaining spectra by calculating the mean and standard
deviation (SD) across all wavelengths. Any spectra outside the mean +1 SD were discarded. Values for

oxygen saturation, total hemoglobin, oxyhemoglobin and deoxyhemoglobin were then calculated.'*
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Figure 5. A) Flowchart used for filtering spectra. B) A spectrum obtained from the distal colon mucosa.

The line of best fit (ved) generated by MATLAB.

A Generalized Additive Model (GAM) was used to analyze the DRS-derived perfusion values because the
data was not following a linear trend and several observations were missing throughout the course of the
study."® Repeated measures analysis of variance (rm-ANOVA) is commonly used in biomedical data
analysis but assumes complete observations and linearity. Any mouse with incomplete observations would
have to be removed from the analysis, which would negatively impact the already small sample size and
any important measurements that would contribute to the differences between groups would be lost. GAMs
work by using a basis function (such as a cubic spline) to approximate the temporal non-linear variations
in the data.'® GAMs do not output a p-value that can be used to determine significance, but the confidence
intervals can be compared to the smooth to see if treatment has a significant effect. The difference between
the smooths can if there are any changes in the parameter at a particular point in time. If two trend lines
follow the same pattern, their difference will be zero, thus implying that the treatment has had no significant

effect on the parameter. If the difference is not zero at some time point, the treatment is causing a change



in the response. For this study, GAMs were used to compare oxygenation (StO,), total hemoglobin (tHb),
deoxyhemoglobin (dHb), and oxyhemoglobin (HbO,) values across control and DSS-treated mice.

Scatterplots with the raw values of each parameter were overlaid with the trend line calculated by the GAM
(Figure 6). There were different smooths observed for oxygenation, deoxyhemoglobin, and
oxyhemoglobin, but there was no difference in the trends between total hemoglobin. Intervals at 95%

confidence were constructed for each smooth and plotted separately (Figure 7).

Results

Oxygenation trends downwards over time for the control mice while the DSS-treated mice experienced an
overall increase in trend. Comparison with the confidence interval shows that the biggest difference
between the groups occurred at Week 2 and near Week 7, where a pair-wise comparison between the

confidence intervals of the smooth was close to zero (Figure 7).
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Figure 6: GAM trend line overlays scatterplot of raw data for A) Oxygenation, B) Deoxyhemoglobin, and
C) Oxyhemoglobin. Total hemoglobin did not show any difference between trends, so it is not included

here.

Control mice experienced a slight decrease then increase in deoxyhemoglobin levels while the DSS mice
saw a steady decline in dHb until Week 6, when it began to increase. The corresponding confidence interval

shows that the greatest difference between the two groups occurred around Weeks 2 and 7, where the upper
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and lower limits of the interval are close to zero. Finally, HbO, remains constant for the control mice, but
DSS mice experienced a steady increase in oxyhemoglobin until Weeks 5 and 6, when it began to taper off.
The confidence interval shows that the greatest difference between the groups occurred at around Week 5.
All statistical analysis was performed using R (version 1.3.1093)!7, using the packages mgcv'® and ggplot2

(see Appendix A).'8
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Figure 7: Confidence Intervals for the smooth curves at the 95% significance level. A) Oxygenation, B)
Oxyhemoglobin, and C) Deoxyhemoglobin trend differences across 8 weeks of treatment. Arrows indicate
where the confidence level limits almost cross zero meaning that there would be a significant difference

between the two groups at that time point.

Discussion

The study found that oxygenation in DSS-treated mice increased over time while the control mice
experienced a decrease in oxygenation. The trend in total hemoglobin content did not differ between control
and treatment group although there were different trends in deoxyhemoglobin and oxyhemoglobin. As

previously mentioned, several studies attest that tissue oxygenation tends to decrease during active colitis
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while total hemoglobin content is increased.>’ There may have been a combination of several factors that
contributed to the result of this study. DSS-induced colitis does not replicate the exact pathophysiology of
human UC; it causes inflammation and ulceration by chemical means.®!! It may be possible that the
difference in symptom mechanism led to a change in the oxygenation or hemoglobin trends. Furthermore,
the use of DRS in animal or human UC models is not common in biomedical research, so it can be difficult
to compare the results of other studies with different technologies. For future studies, DRS could be
employed in alternative colitis models to see if the underlying inflammation mechanism has a significant
impact on perfusion values. TNBS colitis is another common murine model, as well as IL-10 knockout
mice.>!? These methods induce colitis in other ways and may provide better models for human UC.

The positioning of the DRS probe itself while touching the mucosa can also have an impact on the spectra
obtained.'*Although great care was taken to make complete contact with the same section of tissue, some
variability will always be present due to user handling and the natural motion artifacts, such as breathing.
The filtering algorithm accounts for most variation, but the threshold levels used to filter DRS spectra may
need to change depending on mouse species and type of colitis model. As more spectra are collected from
a model, it would be prudent to ensure that the threshold values accept most spectra without including
anomalies or poor fits. This would be done by extracting the Q-ratio values from each data set and checking
the average maximum and minimum before adjusting the second threshold. This step should be examined
further in future studies.

Despite that a significant difference between the two groups for all parameters cannot be seen, a difference
in trend was observed for three out of four parameters. The small size of the study can obviously be pointed
out as a factor. Based off the observed trends, it is likely that further studies with an increased number of
subjects would lead to significant differences between control and DSS mice. Once the measurement of
physiological parameters with DRS has been sufficiently established for a DSS model of UC, another
treatment group may be added to examine the effect of an immunotherapy such as anti-TNF-o on mucosal

hemodynamics.'®
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5. Conclusion
This study describes the use of a multimodal DRS probe in conjunction with a veterinary endoscope to
measure physiological values in the colonic submucosa of a murine model of Ulcerative Colitis. Colitis was
chemically induced with dextran sulfate sodium salt in nine mice. The hemodynamic values were obtained
longitudinally for 8 weeks in both DSS treated mice and control mice. The data was analyzed using a
Generalized Additive Model and noticeable, though not significant, trends were observed for tissue
oxygenation, deoxyhemoglobin, and oxyhemoglobin concentration. The small sample size of the study and
the high variability due to the nature of UC symptoms and DRS probe use are factors that may be addressed
in future to obtain more statistically significant data. These methodologies may also be used to examine

treatments of UC or other types of chronic inflammation.
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Appendix

(A) R code used for the Generalized Additive Model

## This code fits GAMs to different DRS-derived endoscopic perfusion markers.

# Ariel Mundo, Department of Biomedical Engineering, University of Arkansas,
2021.

#loading packages
library(ggplot?2)
library(tidyverse)
library(mgcv)
library(ggsci)
library(gratia)
library (patchwork)
library(svglite)

dat<-read.csv("GAM data weeks.csv") #read the data

#create new column for the Treatment and Control Groups (for plotting
purposes)
dat<-dat %>%

mutate (General Group=factor(ifelse(grepl("C",Group),"Control","Treatment™)))

#fcreate scatter plots for each variable
#3t02
al<-ggplot (data=dat, aes (x=Week, y=St02))+
geom_point (aes(color=General Group))+
labs (y=expression(paste (StO[2], "' (%) ")))+
scale color aaas()+
theme classic()+
facet wrap(~General Group)

#tHb

a2<-ggplot (data=dat, aes (x=Week, y=tHb))+
geom_point (aes(color=General Group))+
labs(y=expression(paste(tHb, ' (mg/mL)"')))+
scale color aaas()+
theme classic()+
facet wrap(~General Group)

#HbO2
a3<-ggplot (data=dat, aes (x=Week, y=HbO0O2))+
geom point (aes(color=General Group))+
labs (y=expression(paste (HbO[2],"' (mg/mL)"')))+
scale color aaas()+
theme classic()+
facet wrap(~General Group)

#dHb

ad<-ggplot (data=dat, aes (x=Week, y=dHDb))+
geom_point (aes(color=General Group))+
labs (y=expression(paste(dHb, ' (mg/mL)"')))+
scale color aaas()+
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theme classic()+
facet wrap(~General Group)

#plot all graphs together
(al+a2)/ (a3+ad)+plot layout (guides="collect") #plotting all together

#H#f###E###4#This section fits the GAM Models###########4###4H444H 444444
G

#Fit model for St02, by time. Different smooth by group
St02 GAM<-gam(StO2~s (Week, by=General Group, k=7),data=dat)
plot (St02 GAM)

appraise (St02_ GAM)

#Model for tHb by time. Different smooth by group

tHb GAM<-gam(tHb~s (Week, by=General Group, k=7),data=dat)
plot (tHb GAM)

appraise (tHb GAM)

#Model for HbO2, by time. Different smooth by group

HbO2 GAM<-gam (HbO2~s (Week, by=General Group, k=7),data=dat)
plot (HbO2 GAM)

appraise (HbO2 GAM)

#Model for dHb, by time. Different smooth by group
dHb GAM<-gam(dHb~s (Week, by=General Group,k=7),data=dat)
plot (dHb_ GAM)

appraise (dHb_ GAM)

#Create grid of points to use the previously created model and obtain
estimates from the
#previously fitted GAM models

#5t02

St02 GAM pred<-
with(dat,expand.grid(SstO2=seg(min (St02),max(St02), length=400),General Group=l
evels (General Group),Week=Week))

St02 GAM pred<-cbind(StO2 GAM pred,predict(St0O2_ GAM,St02 GAM pred,se.fit =
TRUE, type='response'))

#dHb

dHb GAM pred<-

with(dat, expand.grid(dHb=seq(min (dHb),max (dHb), length=400),General Group=leve
ls (General Group),Week=Week))

dHb GAM pred<-cbind(dHb GAM pred,predict (dHb GAM,dHb GAM pred,se.fit =
TRUE, type='response'))

#HbO2
HbO2 GAM pred<-

with(dat,expand.grid(HbO2=seqg(min (HbO2) ,max (HbO2), length=400),General Group=l
evels (General Group),Week=Week))
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HbO2 GAM pred<-cbind(HbO2 GAM pred,predict (HbO2 GAM,dHb GAM pred,se.fit =
TRUE, type='response'))

#Creating the plots
txt<-20 #this controls the text size

prl<-ggplot (data=dat, aes(x=Week, y=St02, group=General Group)) +
facet wrap(~General Group) +
geom_point(colour='black',size=1l,alpha=0.5)+
geom_ribbon(aes(ymin=(fit - Z*se.fit), ymax=(fit + Z*se.fit), x=Week),

data=St02 GAM pred, alpha=0.3,
inherit.aes=FALSE) +
geom_line (aes (y=fit,color=factor(General Group)),

size=l,data=St02 GAM pred, show.legend = FALSE) +
theme (text=element text (size=txt))+theme(

strip.background = element blank(),
strip.text.x = element blank())+

#scale_color_manual(values:c(map_colors(15),map_colors(lS),map_colors(lS)))+

scale x continuous (breaks=seqg(0,8,2))+labs (y=expression(paste(StO[2], " (%) ")))

pr2<-ggplot (data=dat, aes(x=Week, y=dHb, group=General Group)) +
facet wrap(~General Group) +
geom point(colour='black',size=1,alpha=0.5)+
geom_ribbon (aes(ymin=(fit - Z*se.fit), ymax=(fit + Z*se.fit), x=Week),
data=dHb_ GAM pred, alpha=0.3,
inherit.aes=FALSE) +
geom line(aes(y=fit,color=factor(General Group)),
size=1,data=dHb GAM pred, show.legend = FALSE) +
theme (text=element text (size=txt))+theme(
strip.background = element blank(),
strip.text.x = element blank())+

#scale color manual (values=c(map colors (15),map colors(1l5),map colors(1l5)))+
scale x continuous(breaks=seq(0,&,2))+labs(y="dHb \n (mg/mL)")
i

pr3<-ggplot (data=dat, aes(x=Week, y=HbO2, group=General Group)) +
facet wrap(~General Group) +
geom_point(colour='black',size=1,alpha=0.5)+
geom ribbon(aes (ymin=(fit - 2*se.fit), ymax=(fit + 2*se.fit), x=Week),

data=HbO2 GAM pred, alpha=0.3,
inherit.aes=FALSE) +
geom_line (aes (y=fit,color=factor(General Group)),

size=l,data=HbO2 GAM pred, show.legend = TRUE) +
theme (text=element text (size=txt))+
theme (

strip.background = element blank(),
strip.text.x = element blank(),
legend.title = element blank(),
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legend.position="bottom"

)+
guides(colour = guide legend(override.aes = list(size=10)))+
#scale_color_manual(values:c(map_colors(15),map_colors(lS),map_colors(lS)))+

scale x continuous (breaks=seq(0,8,2))+labs (y=expression(atop(paste (HbO[?]),
"(mg/mL) ")))

###
#plotting them together

figl<-prl+pr2+pr3+plot layout(guides="collect")+
plot annotation(
tag levels='A'"') & theme(legend.position = 'bottom')
figl
ggsave ("Smooths for poster.svg",width =28 ,height =8 )

FHAFHFE SRR F A Palr-wise comparisons##fH#dddfdtHadddtdaddatdtdaddaadas
FHEFA AR A R A R R A A R R A R R A R R R R R

#creating grid of points of Day to evaluate smooths for timewise comparisons
pdat <- expand.grid(Week = seqg(0, &, length = 400),
General Group = c('Treatment', 'Control'))

smooth diff <- function(model, newdata, fl, £2, alpha = 0.05,
unconditional = FALSE) {
xp <- predict(model, newdata = newdata, type = 'lpmatrix')
cl <- grepl(fl, colnames(xp))
c2 <- grepl(f2, colnames(xp))

#rl <- newdatal[[var]] == f1l
#r2 <- newdatal[[var]] == f2
rl <- with(newdata, General Group == fl)
r2 <- with(newdata, General Group == f2)

## difference rows of xp for data from comparison

X <- xp[rl, 1 - xpl[r2, ]

## zero out cols of X related to splines for other lochs
X[, ' (cl | c2)] <=0

## zero out the parametric cols

X[, 'grepl('”s\\ (', colnames(xp))] <- O

dif <= X $*% coef (model)

se <- sqgrt(rowSums ((X %*% vcov(model, unconditional = unconditional)) * X))
crit <- gt(alpha/?, df.residual (model), lower.tail = FALSE)
upr <- dif + (crit * se)

lwr <= dif - (crit * se)

data.frame (pair = paste(fl, f2, sep = '-'"),
diff = dif,
se = se,
upper = upr,
lower = lwr)

}

#Create objects of pairwise comparisons
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compl<-smooth diff (StO2 GAM,pdat, 'Control', 'Treatment')
length = 400),

comp St02 <- cbind(Wee

k

= seq(0,

rbind (compl))

cl<-ggplot (comp_ St0O2,
geom_ribbon (aes (ymin

- !

aes(x = Week, y

lower,

facet wrap(~ pair) + theme(
element blank(),

strip.text.x = element blank()
)+ theme (text=element text (size=txt))+
expression(paste(StO[2]1)))

strip.background =

labs(x ='lWeeks', y =

ymax

diff,
upper),

group
alpha

pair,color=pair)) +
0.2) + geom line() +

comp2<-smooth diff (HbO2 GAM, pdat, 'Control', 'Treatment')
length = 400),

comp HbO2 <- cbind(Wee

k

= seq(0,

rbind (comp2))

c2<-ggplot (comp_ HbOZ,
geom_ribbon (aes (ymin

4

aes(x = Week, y

lower,

facet wrap(~ pair) +theme(
element blank(),

strip.text.x = element blank()
) +theme (text=element text(size=txt))+
expression(paste (HbO[2]1)))

strip.background =

labs(x = 'Weeks', y

ymax

diff,
upper),

group
alpha

comp3<-smooth diff (dHb GAM,pdat, 'Control', 'Treatment')

comp dHb <- cbind(Week

seq (0,

rbind (comp3))

8, length = 400),

c3<-ggplot (comp_ dHb, aes(x = Week, y

geom_ribbon (aes (ymin

lower,

facet wrap(~ pair) +theme(
element blank(),

strip.text.x = element blank()
) +theme (text=element text(size=txt))+
labs(x = 'Weeks', y = 'dHb")

strip.background =

#plot the results

ymax

diff, group =

upper),

alpha

p

pair,color=pair)) +
0.2) + geom line() +

air,color=pair)) +
0.2) + geom line() +

fig2<-cl+c2+c3+plot layout (guides="collect")+plot annotation(tag levels =

'A')

#save plots

ggsave ("Confidence Intervals for poster.svg",width =

,height =10 )
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