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Coastal organisms reside in highly dynamic habitats. Global climate change is expected to alter not only the mean of the
physical conditions experienced but also the frequencies and/or the magnitude of fluctuations of environmental factors.
Understanding responses in an ecologically relevant context is essential for formulating management strategies. In particular,
there are increasing suggestions that exposure to fluctuations could alleviate the impact of climate change-related stressors
by selecting for plasticity that may help acclimatization to future conditions. However, it remains unclear whether the presence
of fluctuations alone is sufficient to confer such effects or whether the pattern of the fluctuations matters. Therefore, we
investigated the role of frequency and initial conditions of the fluctuations on performance by exposing larval sea urchin
Heliocidaris crassispina to either constant or fluctuating pH. Reduced pH alone (pH 7.3 vs 8.0) did not affect larval mortality but
reduced the growth of larval arms in the static pH treatments. Changes in morphology could affect the swimming mechanics
for these small organisms, and geometric morphometric analysis further suggested an overall shape change such that acidified
larvae had more U-shaped bodies and shorter arms, which would help maintain stability in moving water. The relative negative
impact of lower pH, computed as log response ratio, on larval arm development was smaller when larvae were exposed to
pH fluctuations, especially when the change was less frequent (48- vs 24-h cycle). Furthermore, larvae experiencing an initial
pH drop, i.e. those where the cycle started at pH 8.0, were more negatively impacted compared with those kept at an initial
pH of 7.3 before the cycling started. Our observations suggest that larval responses to climate change stress could not be
easily predicted from mean conditions. Instead, to better predict organismal performance in the future ocean, monitoring
and investigation of the role of real-time environmental fluctuations along the dispersive pathway is key.
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Introduction
Coastal organisms reside in highly dynamic ecosystems in
which physical conditions, such as temperature, salinity, pH

and turbulence, vary across multiple spatial and temporal
scales (Guadayol et al., 2014; Helmuth et al., 2016). Organ-
isms’ ability to cope with both extremes and fluctuations in
these conditions, in turn, shape their population dynamics,

D
ow

nloaded from
 https://academ

ic.oup.com
/conphys/article/8/1/coaa008/5816014 by guest on 22 April 2021

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


..........................................................................................................................................................
Research article Conservation Physiology • Volume 8 2020

and, in the long term, the evolution of traits (Frieder et al.,
2014; Evans et al., 2017; Kelly, 2019). Human activities,
in particular the emission of carbon dioxide, have altered
not only the mean of these physical conditions but also the
frequency and magnitude of the variations (Perkins et al.,
2012; Hauri et al., 2013; Takeshita et al., 2015; Kwiatkowski
and Orr, 2018). Understanding the role of environmental
variation in modulating organismal performance is essential
for predicting future population and community dynamics
and, in turn, for informing sound management strategies
(Sorte et al., 2018; Hoshijima et al., 2019).

In coastal systems, pH can vary significantly between tidal
cycles, between the day–night cycle due to primary produc-
tion, between days and weeks due to upwelling or weather
and between seasons (Baumann et al., 2015; Kapsenberg and
Hofmann, 2016; Evans et al., 2019). Anthropogenic climate
change not only reduces mean surface ocean pH but also
intensifies pH fluctuations, in particular in coastal habitats
(Hauri et al., 2013; Takeshita et al., 2015). To better measure
the impact of ocean acidification (OA), several studies have
assessed the role of diel pH (and oxygen concentration) vari-
ation on the early life stages of barnacles, molluscs and fishes,
and their responses to OA (Frieder et al., 2014; Eriander et
al., 2015; Onitsuka et al., 2018). It is, however, important to
note that even if the organisms demonstrate plasticity under
present-day fluctuations, the intensity, duration and severity
of stressful events could exceed pre-industrial conditions as
OA continues to progress (Hauri et al., 2013; Kwiatkowski
and Orr, 2018).

Planktonic larvae are often the target of acidification
studies as these propagule shape population abundance
and distribution through dispersal but are vulnerable to
various environmental stresses (Przeslawski et al., 2015;
Chan et al., 2018). However, no consistent result has
emerged from studies on diel variation. For mussel larvae
in the California upwelling system, fluctuating pH reduced
the impact of overall pH reduction on early development
(Frieder et al., 2014). For the barnacle, Balanus improvisus,
variation in pH did not affect the mean response but
changed the variance in growth and shell mineralogy
(Eriander et al., 2015). For fishes, diel pH variation
reduced behavioural abnormality of juvenile damselfish,
Acanthochromis polyacanthus, and clownfish, Amphiprion
percula, but did not affect the growth of Amphiprion
melanopus (Jarrold et al., 2017; Jarrold and Munday,
2018). The patterns of pH variations were not directly
comparable between these studies. For example, Eriander
et al. (2015) used a step function change, whereas Frieder
et al. (2014) compared ambient conditions with minus 0.3
pH unit changes. Thus, it remains unclear which aspect of
the fluctuation experienced, e.g. the magnitude, frequency
and maximum and minimum value, shaped the responses
observed.

This study focuses on the response of the larval sea urchin
Heliocidaris crassispina to fluctuating pH levels at different

time scales. Overall negative responses to OA are well doc-
umented for echinoid pluteus larvae (Dupont et al., 2010a;
Przeslawski and Byrne, 2013). Typically, metabolic costs (res-
piration rate, protein turnover and proton pumping) increase
with reduced pH for echinoid larvae (Applebaum et al., 2014;
Chan et al., 2015; Hu et al., 2018). On the contrary, digestion
and clearance rate decrease with pH reduction (Stumpp et al.,
2013; Hu et al., 2017). To date, only two published studies
have assessed larval urchin responses to fluctuating pH. In
situ observations of Lamare et al. (2016) at a CO2 vent
found that Echinometra embryos had stunted and abnormal
development: responses of individuals in this fluctuating envi-
ronment are similar to those exposed to static conditions in
the laboratory. Similarly, exposure to diel variation in pH did
not affect larval Paracentrotus lividus growth to acidification
(García et al., 2018).

Reduction in growth rate of larval body and arms is often
reported in OA studies (Dupont et al., 2010b). However, the
functional consequences of these morphological changes are
little explored. Pluteus larvae use their ciliated arms for both
feeding and swimming (Strathmann et al., 2006). Operat-
ing in low Reynold’s number environments, changes in size
have biomechanical implications for swimming and foraging
efficiency (Vogel, 2008). Another consequence of changes in
morphology is the altered larval ability to maintain directed
upward movement (hereafter referred to as stability). Move-
ment of many passively stable planktonic organisms, e.g.
larval sand dollars and algae, subjected to linear shear mimic
that of inertial ellipsoids (Durham et al., 2009; Clay et al.,
2010; Bearon et al., 2011). When size increases and/or shape
changes, fluid exerts an increased torque on the body because
the force is applied at points further away from the centre of
mass. Meanwhile, the moment of inertia is not significantly
increased as the mass remains concentrated at the posterior of
the body. This tendency to tilt could, therefore, compromise
an organism’s ability to control vertical position in the water
column (Chan, 2012). For the pluteus morphology, a hydro-
dynamic model has suggested that a reduction in the distance
between pairs of arms (i.e. an increase in arm elevation angle)
could confer stability (Clay et al., 2011). Using geometric
morphometric analysis, Chan et al. (2011) argued that the
observed changes in overall morphology among acidified
larval sand dollars were not isometric shrinkage. Instead,
larval sand dollars had coordinated shape changes leading
to an elevated arm angle when exposed to low pH, which
could account for the maintenance of swimming speeds in still
water. However, whether these responses in larval echinoids
would translate to fluctuating pH exposure is unknown.

The sea urchin H. crassispina ranges from the rocky coasts
of Japan and Korea to China (Chiu, 1985). This sub-tropical
species plays an important role in biogeochemical cycling in
coastal habitats through grazing (Wai et al., 2005) and is
commercially harvested in South China (Ding et al., 2007). In
Hong Kong, this species reproduces from March to October
(Urriago et al., 2016). Monthly local marine water monitoring
showed that, during the reproductive season, the pH value of
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surface seawater ranged from pH 7.2 to 8.6 (extreme values
from 1986 to 2016; Pecquet et al., 2017). By measuring larval
survivorship and growth of sea urchins exposed to static
and fluctuating pHs, this study aims to test (i) if variation
in rearing pH alleviates the negative impact of low pH; (ii)
if experiencing less frequent fluctuation (48-h cycle vs 24-
h cycle) reduces larval performance and (iii) if experiencing
low pH at the first phase of the cycle negatively affects larval
performance.

Materials and methods
Adult urchin collection and spawning
Adult sea urchins (H. crassispina) were collected by snorkelling
near the rocky intertidal outside the Coastal Marine Labo-
ratory at Hong Kong University of Science and Technology
(22.33897◦N, 114.266815◦N). They were kept in a flow-
through system at ∼ 24◦C and salinity of 32 psu and fed
ad libitum with pre-dried kelp (Laminariaceae) prior to use
in the experiment (up to 2 months). Injection of < 0.6 ml of
0.35 M KCl into the coelomic cavity induced urchin spawning
(Strathmann, 1987). Sperms were collected dry and kept on
ice. Eggs were collected in filtered seawater (FSW, 0.22 μm
filtered). The gametes from two males and three females
were used in this experiment. The eggs from each female
were divided into two beakers and fertilized by the sperm
of each male at ∼ 1000 sperm ml−1. Fertilization success
was confirmed by lifting of the fertilization envelope 15 min
post-fertilization. After confirming fertilization success, the
fertilized eggs were washed with FSW and mixed eggs from
the three females were gently pipetted into 2-l rearing jars to
achieve a final density of 2 individual ml−1.

Carbonate chemistry manipulation
To assess the effect of pH fluctuations on growth and survival
of larval urchins, fertilized eggs were assigned to one of the
six treatments. The first two were constant pHs: pH 8.0 as
control (Clt) and pH 7.3 representing the average open ocean
condition in 2300 and the present-day extreme for Hong
Kong (Low; Pecquet et al., 2017). The next two treatments
had pH change every 24 h such that the initial conditions
(pH 8.0 or pH 7.3) were slowly ramped up or down to
the next target pH (pH 7.3 and pH 8.0, respectively) over
6 h (hereafter, Clt2Low_24 and Low2Clt_24). The last two
treatments had pH change every 48 h, with the pH level in
each jar also altered slowly over 6 h (hereafter, Clt2Low_48
and Low2Clt_48). The experiment ran for a total of 8 days.
Each treatment had three replicate jars. All jars were kept
at 24.0 ± 0.1◦C, salinity of 32 psu, and larvae were fed
starting 1 h post-fertilization with Rhodomonas salina at
5000 cells ml−1. Algae were cultured at ambient pH in f/2
medium and counted with a hemocytometer.

All rearing jars were continuously aerated to provide water
mixing through gentle air bubbling. The low pH treatment

was achieved by the addition of pure CO2 controlled by
a mass flow controller (GFC17, AALBORG, USA). The
temperature, salinity and total scale pH for each jar were
measured every 24 h. pH was measured with a glass electrode
(Unitrode, Metrohm, Switzerland) and calibrated with TRIS
(Tris/HCl) buffer solution (T31) with a salinity of 33.0
provided by the Dickson Lab at Scripps Oceanographic
Institute. Complete water change was performed every
other day. Filtered water samples were collected on these
days for total alkalinity titration (Metrohm 800 Dosino
titrator, Metrohm, Switzerland). Additional samples were also
collected on water change days for dissolved inorganic carbon
analysis with LiCor Mass Spectrometry (AS-C3, Apollo
Technology Solutions LLC, USA). These measurements were
benchmarked against standard seawater provided by the
Dickson Lab (Batch 140). The carbonate system parameters
(pCO2, Ωa and Ωc) were calculated from these measurements
with the R package seacarb (Lavigne et al., 2011) using the
dissociation constants from Mehrbach et al. (1973) as refitted
by Dickson & Millero (1987).

Larval growth and mortality
Duplicate, 10-ml subsamples were taken from each rearing jar
daily. The number of larvae was counted under a dissecting
microscope. The change in larval density over time was used
to represent larval survivorship. Individuals from the sub-
samples were preserved with 2% buffered paraformaldehyde.
Micrographs were taken for a haphazardly selected subset of
the preserved larvae under a compound microscope (H600L,
Nikon, Japan) equipped with a digital camera (D5600, Nikon,
Japan). The total body length (TBL) and postoral arm length
(POL) were measured for 15 individuals from each repli-
cated jar daily (N = 2160, Fig. 1) with Fiji ImageJ (Schindelin
et al., 2012). Fifteen 8-day-old larvae were selected haphaz-
ardly from each treatment for landmark analysis after Chan
et al. (2011). Coordinates were extracted with tpsDIG2w32
(Rohlf, 2018).

Statistical analysis
All analyses but the landmark analysis were performed with
SPSS 25.0 (IBM, USA) with the significance level set at 0.05.
Normality and homogeneity of variance of data were tested
with Wilk–Shapiro’s and Levene’s test, respectively. A two-
way ANOVA was used to test if the carbonate chemistry
varied between date and replicated jars within a treatment.
The difference between the two pH levels was confirmed with
a t test. Linear regression between larval densities and time
was performed on individual replicate jars, and the slope of
the significant regressions was considered the survivorship
(proportion larvae day−1). Larval growth rates (both TBL and
POL) were determined as the slope of significant logarithmic
regression of the lengths and time (μm ln(day)−1). The effects
of treatments on larval survivorship and growth rates were
tested with ANOVAs. To better visualize the impact of pH
reduction and fluctuation, log response ratios (LnRR) were
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Figure 1: Larval survival decreased under constant pH 8.0, constant pH 7.3 and fluctuating pH between these two levels over 8 days post
fertilization (dpf ). Each symbol represents the raw count observed within one replicate jar (a–c). Linear regressions between the observed
proportions and time were used to determine the mortality rate (Table S1). Larval growth rate was determined by measuring the total body
length (d–f) and postoral arm length (g–i) of 15 haphazardly selected individuals from each treatment daily. Means and standard error of means
for each replicate jar were plotted for d–i. Logarithmic regressions between the body/arm length and time were used to determine the growth
rate (Table S1). Open symbols represent treatments that started with control (pH 8.0) condition, and solid symbols are for those starting with
pH 7.3.

computed by comparing the mean of each treatment against
that of the control after Hedges et al. (1999). The 95%
confidence interval for each LnRR was also determined to
test if it overlaps with zero. Pairwise comparisons between
LnRR were performed with Z-tests. A Procrustes analysis was
performed on the landmarks collected, a sequent canonical
variant analysis was performed to visualize the difference
in shape between treatments and the effect of treatment
was compared with a Procrustes ANOVA. These geometric
morphometric analyses were performed with the software
MorphJ (Klingenberg, 2011).

Results
Treatment conditions
Overall, the ambient pH for the nominal pH 8.0 treatments
was measured as a pHT of 8.00 ± 0.05 (mean ± S.D., (n = 36),
total alkalinity of 2111 ± 56 μmol kg−1 (n = 36) and dissolved
inorganic carbon of 2013 ± 90 μmol kg−1 (n = 36). The pH 8.0
treatment corresponded to a pCO2 level of 445 ± 49 μatm
(Table 1). The measured carbonate chemistry parameters
were significantly different between those in the nominal
pH 8.0 and pH 7.3 treatments (F1, 72 = 1774, P < 0.001). The
low pH treatments measured pHT of 7.34 ± 0.02 (n = 72),
total alkalinity of 2119 ± 48 μmol kg−1 (n = 36) and dissolved
inorganic carbon of 2174 ± 79 μmol kg−1 (n = 36). These
acidified treatments corresponded to a calculated pCO2
level of 2364 ± 122 μatm and under-saturation of aragonite
(Ωar = 0.7 ± 0.03) but not calcite (ΩCa = 1.08 ± 0.05).

Although pH varied over time in the constant treatments
(F1, 24 ≥ 21.1, P < 0.01), the actual variations were negligi-
ble: the range across the duration of the experiment was
only 0.06 unit for low pH treatment and 0.11 unit for the
control only bubbled with ambient air. The pH between
the two target levels was significantly different at all times.
In the constant low pH treatment (Low), replicate jars did
not have a significant effect on the pHT level (F2, 24 = 2.22,
P = 0.146). While there was a statistically significant differ-
ence in pHT between replicate jars in the constant pH 8.0
control (F2, 24 = 2.20, P = 0.02), the maximum difference was
only 0.03 pH unit on any given day. As expected, there
were significant effects of time (days) in the remaining four
fluctuating treatments (clt2low_24, low2clt_24, clt2low_48
and low2clt_48; F1, 24 ≥ 1544.441, P < 0.0001). However, no
significant difference was detected between replicate jars in
these fluctuating treatments (F2, 24 ≥ 2.039, P ≤ 0.167).

Larval mortality, growth and overall shape
Larval density, computed as the proportion of larvae remain-
ing from the initial concentration, declined linearly in all repli-
cate jars of all treatments (Fig. 1, Table S1). Larval survivor-
ship, i.e. the slope of these significant regressions, differed sig-
nificantly between treatments (F5, 18 = 7.26, P = 0.002). Post
hoc analysis suggested that larvae in the Clt2low_24 treat-
ment had significantly lower survivorship than those in the
Low treatment (Fig. 1). Log response ratio (LnRR) of the
mortality rate of acidified treatment compared to the control
suggested that four out of the five treatments experienced an
increase in mortality relative to the control (Fig. 2).
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Table 1: Measured carbonate chemistry parameters (pHT, TA, DIC) in the experimental treatments (mean and standard errors)

Measured Computed

Treatment Days pHT TA (μmol kg−1) DIC (μmol kg−1) Temp (◦C) pCO2 (μatm) Ωar Ωca

Clt 1–8 8.02 ± 0.016 2121 ± 17 1981 ± 21 23.9 ± 0.03 415.2 ± 8.5 2.8 ± 0.03 4.3 ± 0.05

Low 1–8 7.33 ± 0.004 2122 ± 12 2196 ± 13 24.1 ± 0.02 2407.1 ± 33.0 0.7 ± 0.01 1.1 ± 0.01

Clt2low_24 1, 3, 5, 7 7.99 ± 0.012 NA NA 24.0 ± 0.02 NA NA NA

2, 4, 6, 8 7.34 ± 0.004 2099 ± 15 2167 ± 13 23.9 ± 0.02 2369.0 ± 30.2 0.7 ± 0.01 1.1 ± 0.02

Low2clt_24 1, 3, 5, 7 7.35 ± 0.005 NA NA 23.9 ± 0.03 NA NA NA

2, 4, 6, 8 7.95 ± 0.004 2125 ± 9 2058 ± 20 23.9 ± 0.05 483.2 ± 6.8 2.5 ± 0.03 3.9 ± 0.04

Clt2low_48 1, 2, 5, 6 8.03 ± 0.007 2060 ± 10 1903 ± 6 23.9 ± 0.03 403.6 ± 7.6 2.7 ± 0.03 4.2 ± 0.05

3, 4, 7, 8 7.34 ± 0.002 2133 ± 15 2105 ± 36 24.0 ± 0.02 2362.7 ± 32.3 0.7 ± 0.003 1.1 ± 0.04

Low2clt_48 1, 2, 5, 6 7.35 ± 0.003 2120 ± 16 2156 ± 24 24.1 ± 0.01 2347.3 ± 28.8 1.1 ± 0.02 0.7 ± 0.01

3, 4, 7, 8 7.96 ± 0.008 2116 ± 21 2097 ± 13 24.0 ± 0.03 448.0 ± 12.2 2.7 ± 0.04 4.1 ± 0.07

Salinity of the system was maintained at 32 psu. pCO2 and carbonate saturation state were computed with CO2SYS. As Ta and DIC samples were only collected every
other day, these data were not available for two treatments Clt2low_24 and Low2clt_24 on the odd experiment days.

Figure 2: Survivorship (rate of decline in density), total body length and postoral arm length growth rate of larval urchins exposed to constant
and fluctuating pH between 8.0 and 7.3. Means and standard errors of means of the three replicate jars per treatment were plotted (N = 18, a–c).
Exposure to constant low pH did not significantly increase mortality (pH 7.3 in a) but did compromise the growth rates of arms (pH 7.3 in c). Log
response ratio (LnRR) for each treatment relative to the constant pH 8.0 (control) and their corresponding 95% confidence intervals are shown
(d–f). The log response ratio relative to constant pH 8.0 (control) affirmed the pattern observed in the direct measurements i.e. increased larval
mortality (d) and a significant reduction in arm growth (f ) in the acidified treatments. Pairwise comparisons of the LnRR with Z-test showed that
the frequency (24- vs 48-h cycle) and the initial condition (clt2low vs low2 clt) can modulate pH impact (d–f ). The LnRR and variance of sampling
are listed in Table 2.

TBL and POL of larval urchins significantly increased over
time in a logarithmic pattern (Fig. 1, Table S1). Treatment
alone did not have a significant effect on the growth rate
of TBL (F5, 18 = 1.29, P = 0.331, Fig. 2), but had a significant
effect on the growth rate of POL (F5, 18 = 8.917, P = 0.001).
Post hoc analysis showed that larvae exposed to constant
pH 7.3 had significantly shorter POL than those in control.

Similarly, the LnRR suggested a slight decrease in the TBL
growth rate (∼−0.01) and a relatively larger reduction in
the POL growth rate (∼−0.15) when larvae experience a
reduction in pH.

Pairwise comparisons between the LnRRs of different
treatments with Z-tests suggested that larval urchins exposed
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Table 2: Log response ratios and their variances of the acidified treatments relative to the constant pH 8.0 control

Mortality rate Total body length Postoral arm length

Growth rate Growth rate

Treatment LnRR Variance LnRR Variance LnRR Variance

Low −0.078 0.009 −0.027 0.002 −0.216 0.005

Clt2low_24 0.345 0.010 −0.062 0.002 −0.186 0.005

Low2clt_24 0.194 0.003 −0.041 0.006 −0.136 0.006

Clt2low_48 0.278 0.004 0.008 0.003 −0.148 0.005

Low2clt_48 0.220 0.017 0.059 0.002 −0.076 0.006

to constant pH 7.3 had a larger relative increase in mortality
(Z ≥ 15.7, P < 0.001) than those exposed to fluctuating pH
(24 and 48-h cycles). Larval urchins under constant low
pH also had a larger relative reduction in POL growth rate
(Z ≤ −4.33, P < 0.001). Frequency of the fluctuation affected
the LnRRs: larvae experiencing more frequent changes (24-
h cycle) had a significantly larger negative change in growth
rates (TBL and POL) than those exposed to the 48-h cycle
(Z ≤ −5.53, P < 0.001). Within the same temporal pattern,
initial condition also significantly affect the LnRRs: larvae
that were initially exposed to pH 8.0 and subsequently a pH
drop had a significantly larger relative increase in mortal-
ity (Z ≥ −3.39, P < 0.001), and relative decrease in growth
rate for TBL (Z ≤ −20.4, P < 0.001) and POL (Z ≤ −16.4,
P < 0.001).

In terms of overall morphology, the different pH treat-
ments had marginally significant effects on both centroid
size (F5, 80 = 2.36, P = 0.047) and shape (F110, 1760 = 1.42,
P = 0.049) of the subset of 8-day-old larvae measured.
Canonical variate analysis (CVA) visualized these observed
differences i.e. differences in within-treatment distribution
(centroid sizes) and the difference between treatments (shape,
Fig. 3). Together, the first two CV accounted for 64.9% of
the variance between groups (CV1, eigenvalue = 0.939, %
variance = 37.6; CV2, eigenvalue = 0.683, % variance = 27.4).
The 90% confidence ellipse of the control (constant
pH 8.0) did not overlap with the other five treatments that
experienced low pH (Fig. 3). The general morphology is that
control larvae had a more V-shaped body (CV1) and relatively
longer arms (CV2) than those in the acidified treatments.

Discussion
Coastal ecosystems are highly variable in space and time.
Quantifying the impact of temporal fluctuations could help
better predict organismal responses to future climate con-
ditions and therefore inform sound conservation and man-
agement strategies. Using the early development of the sub-
tropical sea urchin H. crassispina as a model system, we
demonstrated that even if the total duration of exposure were
identical, the frequency and initial condition of the temporal

fluctuations could lead to significant differences in mortality
and growth rate. Individuals experiencing temporal fluctua-
tion in pH also exhibited an intermediate shape between the
constant low and control pHs. Such a change in morphology
would have functional consequences for larval swimming
and/or feeding. Our results highlight the need to extend mon-
itoring to better record pH fluctuation and larval distribution
patterns in the field in order to improve experimental designs
and to aid translation of lab-based observations to the wild.

Sublethal OA impacts have population-level
implications
For most of the echinoid pluteus previously studied, larval
mortality was not significantly affected by the reduction
of pH within the near-future prediction or within natural
variability (Dorey et al., 2013). The reduction in growth,
measured through body lengths or arm lengths, is linked
to increased metabolic costs, as represented by changes in
respiration rate, protein synthesis and digestion rate (Evans
et al., 2017, Hu et al., 2018, Lee et al., 2019). The overall
acidification impacts observed here are consistent with this
earlier work. While there is existing plasticity, it is important
to note that, as OA continues to progress, both the mean and
extremes of pH and carbonate saturation state experienced by
individuals would continue to decrease and could eventually
exceed the present-day extremes (Hauri et al., 2013, Takeshita
et al., 2015). Long-term, multiple generation experiments
are needed to test if such non-genetic variations could be
inherited and/or help provide the basis for rapid evolution
(Pespeni et al., 2013, Thor et al., 2015, Putnam et al., 2016,
Thomsen et al., 2017). Even if only sub-lethal change in larval
growth is observed, an increase in pelagic larval duration
and the associated mortality could, in turn, reduce larval
connectivity between populations (Gerber et al., 2014). These
potential climate-driven larval losses have implications for
marine reserve designs, e.g. increasing reserve sizes to enhance
retention and reducing distance between reserves to promote
exchange of individuals (McLeod et al., 2009).

Interestingly, when compared to the congener Heliocidaris
tuberculata, which experienced a 25% decrease in arm length
72-h post fertilization when reared at pH 7.4 (Byrne et al.,
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Figure 3: Landmark analysis shows the overall shape of larval sea urchins changed when exposed to acidification stress. Thirteen landmarks
were used (circles in the top right inset, total body length (TBL) and postoral arm length (POL) are also labelled). The body shape (V-shape vs.
U-shape, CV1) explained 37.6% of the variance, and relative arm length (CV2) explained 27.4% of the variance. Individuals exposed to
fluctuations appeared to have an intermediate form. Each data point represents an individual measured (n = 15 for each treatment), and the
90% confidence ellipse of the mean is also plotted. Wrapped wireframe (solid line) illustrates the shape change compared to the mean shape
(grey, dotted line).

2013), the arm length of H. crassispina exposed to pH 7.3
decreased only by 5–7% at 8 days post-fertilization. Hardy
and Byrne (2014) suggested that the non-feeding larvae of
another congener H. erythrogramma are more resilient to
acidification than H. tuberculata due to relatively larger
egg size (>370 μm compared to ∼ 90 μm). Interestingly,
the average egg size of H. crassispina is ∼85 μm (N = 899,
Chan unpublished data). This comparison suggested that in
addition to maternal provision, variations in stress tolerance
between congeners could be shaped by other environmental
and/or biological factors.

Biomechanical consequences of
morphological shifts
The ciliated arms of larval urchins are involved in both
swimming and feeding, and thus the observed changes in

growth rate of arms and their overall morphologies could
affect their swimming speeds, stabilities in moving water and
abilities to capture food (Strathmann and Grunbaum, 2006;
Chan, 2012). Larvae exposed to constant low pH (7.3) had
a more U-shaped body and shorter arms (Fig. 3). This overall
morphological change could affect weight distribution, lower
the centre of gravity and increase the distance between the
centres of gravity and buoyancy, these changes in turn helping
to increase the restoring force when an individual is rotated
along its vertical axis by shear or turbulence (Grünbaum et al.,
2003, Chan et al., 2015). Earlier work on sand dollars, Den-
draster excentricus, exposed to low pH also reported a coor-
dinated change in shape which increases arm elevation angle.
Such change in shape was suggested to help maintain stability
as the individual was less likely to cut across streamlines in
moving water (Chan et al., 2011). The current observations
on H. crassispina reinforce the notion that maintaining swim-
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ming capability is essential for pluteus larvae. Interestingly,
individuals exposed to fluctuation shared similar scores with
the constant pH 7.3 group along CV 1, i.e. more U-shaped
body, but they shared similar scores with the constant pH 8.0
group along the CV 2, i.e. longer arms. Further observations
are needed to test if the ecological functioning (swimming
speed, stability and clearance rate) of these individuals is
intermediate between those in constant control and low pHs.

Fluctuations that modulate OA impact
highlight the need for monitoring
Our observations agree with previous observations on
bivalves and fishes that the presence of fluctuation could
ameliorate acidification stress (Frieder et al., 2014, Gobler et
al., 2017, Jarrold et al., 2017, Jarrold and Munday, 2018).
Larval H. crassispina exposed to fluctuation between pH 7.3
and pH 8.0 had relatively lower mortality and faster arm
growth compared to those held at constant pH 7.3 (Fig. 2).
This comparison suggested that the stress response was not
determined by the minimum pH level experienced. Earlier
work on another urchin species Paracentrotus lividus suggests
that diel fluctuation from pH 8.1 to 7.7 had no significant
effect on the growth rate of arms (García et al., 2018). These
contrasting outcomes could be attributed to the differences
in experimental design, especially in terms of the magnitude
of the pH change. Kapsenberg et al. (2018) showed that
the percent of individuals showing abnormal development
increases with increasing amplitude of the pH fluctuation in
larval mussels. Alternatively, the difference reflects species-
specific buffering capacity and/or ion regulation (Catarino et
al., 2012).

Not only does our work show that the presence of tem-
poral fluctuation could shape the developmental response
of urchins to acidification stress; we also highlighted that
the pattern of fluctuation matters. In situ observations of
coastal habitats suggest that pH fluctuations similar to the
ones used in our experiments are present at the scale of days.
Often, these multi-day fluctuations are of a magnitude larger
than those observed in a diel cycle (Hofmann et al., 2011,
Yu et al., 2011, Kapsenberg and Hofmann, 2016). Similar
to mussel larvae, for which exposure to pH fluctuations
elevated metabolic cost (Mangan et al., 2017), we observed
that more frequent pH fluctuations (24 vs 48-h cycle) are
more detrimental to larval survival and growth. These obser-
vations highlight the importance of long-term and continuous
monitoring of carbonate chemistry changes in order to better
assess biological and socio-economic impacts.

However, it is unclear whether such results can be directly
applied to repeated exposure to sub-lethal acidification stress
in the field. Acclimation to temperature, salinity and pH
stress have been reported in adult urchins (Roller et al., 1993,
Uthicke et al., 2013, Suckling et al., 2015, Brothers et al.,
2016). Such stress tolerances in acclimated adult echinoderms
have been suggested to be passed onto their offspring (Dupont

et al., 2013, Pespeni et al., 2013, Hu et al., 2018). If heritable
acclimation occurs, high-frequency pH fluctuations could
potentially act as a selective filter (Sunday et al., 2014). Nev-
ertheless, a survival-reproduction trade-off has been reported
in Drosophila melanogaster exposed to repeated, sub-lethal
stress (Marshall et al., 2010). To better predict physiological
responses in the wild, further investigations into the accli-
mation to repeated pH stress, the possibility of facilitation
towards acclimating to other abiotic stress, and trade-offs
(e.g. larval vs. post-settlement survival) are needed.

Our results also suggested that larvae that experienced
an initial pH drop (Clt2Low_24 and Clt2Low_48) were
more negatively impacted in terms of survival and growth
than those that experience a pH increase (Low2Clt_24 and
Low2Clt_48). Sensitivity to pH and other environmental
stress, e.g. warming, has been reported to be stage-dependent
in sea urchins (Dupont et al., 2010b, Przeslawski and Byrne,
2013, Collin et al., 2016). Given H. crassispina is a tropical
species with fast development (Onoda, 1931), larval energy
allocation might have shifted during the first 48 h of larval
development. Differential OA responses observed between
pre-feeding and feeding stages have been reported in other
urchins. Acidified purple urchins increased the relative alloca-
tion of total ATP to protein synthesis and ion transport from
47% on Day 2 to 81% when feeding was initiated on Day 6
(Pan et al., 2015). Lee et al. (2019) also observed a reduction
in oxygen consumption for larval purple urchins exposed to
pH 7.0 during the pre-feeding stage, whereas, in contrast,
respiration rate was three times higher at pH 7.0 than at
pH 8.2 for feeding larvae. Given that the pre-oral ciliated
band develops in front of the mouth of H. crassispina within
the first 48 h (Thet et al., 2004), the observed difference in sen-
sitivity between larvae experiencing an initial pH drop versus
those that experience an increase highlights the need to per-
form finer temporal observations to test the hypothesis that
initiation of feeding elevates sensitivity to acidification stress.

Early development of the sea urchin H. crassispina is
robust to reduced pH as low as pH 7.3. Larvae exposed
to fluctuating pH were less impacted compared to those
exposed to constant low pH, suggesting that mean pH and
not the minimum pH experienced is a better predictor of
larval response to acidification. Temporal variability (fre-
quency and initial condition) of the fluctuation further mod-
ulates the impact, highlighting the importance of quanti-
fying repeated acute stress exposure and stage-dependent
stress responses. To better predict larval performance under
near-future conditions, we need to better quantify varia-
tions in environmental conditions along the dispersive path-
ways and measure how larvae integrate and respond to this
information.

Supplementary material
Supplementary material is available at Conservation Physiol-
ogy online.
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