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a b s t r a c t 

Common representations of functional networks of resting state fMRI time series, including covariance, precision, 

and cross-correlation matrices, belong to the family of symmetric positive definite (SPD) matrices forming a 

special mathematical structure called Riemannian manifold. Due to its geometric properties, the analysis and 

operation of functional connectivity matrices may well be performed on the Riemannian manifold of the SPD 

space. Analysis of functional networks on the SPD space takes account of all the pairwise interactions (edges) as a 

whole, which differs from the conventional rationale of considering edges as independent from each other. Despite 

its geometric characteristics, only a few studies have been conducted for functional network analysis on the SPD 

manifold and inference methods specialized for connectivity analysis on the SPD manifold are rarely found. The 

current study aims to show the significance of connectivity analysis on the SPD space and introduce inference 

algorithms on the SPD manifold, such as regression analysis of functional networks in association with behaviors, 

principal geodesic analysis, clustering, state transition analysis of dynamic functional networks and statistical 

tests for network equality on the SPD manifold. We applied the proposed methods to both simulated data and 

experimental resting state fMRI data from the human connectome project and argue the importance of analyzing 

functional networks under the SPD geometry. All the algorithms for numerical operations and inferences on the 

SPD manifold are implemented as a MATLAB library, called SPDtoolbox, for public use to expediate functional 

network analysis on the right geometry. 
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. Introduction 

The prevailing view on the brain is a highly-organized network,

omposed of interactions among distributed brain regions. Interactions

mong distributed brain regions are often characterized by the cross-

orrelation matrix of spontaneous fluctuations observed in the resting

tate functional magnetic resonance imaging (rs-fMRI) ( Biswal et al.,

995 ). The correlation matrix - a representation of functional brain

etwork - has served as a basis for diverse fields of brain research.

he exemplary areas include exploration of brain diseases using func-

ional connectivity ( Drysdale et al., 2017 ; Jang et al., 2016 ; Lee et al.,

017 ; Yahata et al., 2016 ), behaviorally associated brain networks

 Kyeong et al., 2014 ; Smith et al., 2015 ), dynamic connectivity anal-

sis ( Allen et al., 2014 ; Calhoun et al., 2014 ; Chang and Glover, 2010 ;
∗ Corresponding author at: Department of Nuclear Medicine, Yonsei University Col

epublic of Korea. 

E-mail address: parkhj@yonsei.ac.kr (H.-J. Park). 
1 These authors equally contributed. 

Y  

ttps://doi.org/10.1016/j.neuroimage.2020.117464 

eceived 23 January 2020; Received in revised form 4 August 2020; Accepted 12 Oc

vailable online 17 October 2020 

053-8119/© 2020 The Author(s). Published by Elsevier Inc. This is an open access a
ribben et al., 2012 ; Handwerker et al., 2012 ; Hutchison et al., 2013 ;

eong et al., 2016 ; Monti et al., 2014 ; Preti et al., 2017 ), identification of

ndividuals ( Finn et al., 2015 ), inter-individual variability ( Jang et al.,

017 ) and biomarkers in machine learning ( Dosenbach et al., 2010 ;

rysdale et al., 2017 ; Finn et al., 2015 ; Yahata et al., 2016 ). Par-

ial correlation analysis (inverse covariance matrix) has also been used

 Cho et al., 2017 ; Lee et al., 2017 ; Qiu et al., 2015 ) to exclude pseudo-

onnectivity (spurious connection due to polysynaptic or modulatory

ffects). In those studies, researchers have analyzed the correlation ma-

rices edge by edge (element of correlation matrix) by considering each

dge independently from other edges ( Dosenbach et al., 2010 ; Siman-

ov et al., 2016 ) or by considering multiple edges together to explain

ertain dependent variables ( Leonardi et al., 2013 ; Park et al., 2014 ),

articularly, in a machine learning framework ( Drysdale et al., 2017 ;

ahata et al., 2016 ). All these directions do not much differ in disre-
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Fig. 1. General SPD manifold. The geodesic distance between 

A and B is shorter than that of A and C while it is reverse in 

the Euclidean distance. 
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Fig. 2. Exponential map at x in the direction of v on M. 
arding the topological dependency across elements, a typical property

f the correlation matrix. 

Mathematically speaking, well-known forms of representation for

unctional connectivity, such as covariance and precision along with

orrelation, are symmetric and positive definite (SPD) matrices in com-

on. It is well known that the collection of SPD matrices forms a cone-

hape Riemannian manifold ( Fig. 1 ). Accordingly, the operations on the

PD manifold can better be performed based on the corresponding ge-

metric structure rather than the Euclidean geometry. The geometric

roperties of SPD manifold have not yet been fully recognized in neu-

oimaging communities. Relatively few but increasing number of stud-

es on the functional connectivity have been conducted on the space

f SPD matrices, including evaluating average and variability of group

evel covariance matrices ( Varoquaux et al., 2010 ; Yamin et al., 2019 ),

tatistical testing ( Ginestet et al., 2017 ; Varoquaux et al., 2010 ), change

oint detection ( Dai et al., 2016 ), estimation of individual covariance

atrix ( Rahim et al., 2019 ), regression of functional connectivity in es-

imating structural connectivity ( Deligianni et al., 2011 ) and dimension

eductions for machine learning ( Davoudi et al., 2017 ; Ng et al., 2014 ;

iu et al., 2015 ; Xie et al., 2017 ) to name a few. 

Despite increasing interest for SPD-based analysis, we still lack access

o diverse methods for connectivity analysis on the SPD manifold, such

s smoothing and regression, clustering, principal component analysis,

tate transition analysis of dynamic functional networks and statistical

ests. The purpose of the current study is to provide methods for ana-

yzing correlations (or covariance, inverse covariance matrices) on the

PD manifold. We would like to mention one notable characteristic of

orrelation matrices. Correlation matrix, which is also symmetric and

ositive definite, is a normalized version of covariance matrix and con-

titutes a strict subset or submanifold of SPD. To study distinct structure

n the constrained set, geometry of elliptope rather than SPD can be

 suitable candidate to study correlation matrices. However, it mainly

eals with low-rank structure and has little been investigated ( Grubi š i ć

nd Pietersz, 2007 ). In this study, we consider the correlation as a con-

trained type of SPD matrix that forms a submanifold, inheriting geo-

etric properties of general SPD manifold. This does not diminish the

mportance of SPD manifold and our contribution to study functional

onnectivity since many representations of functional connectivity are

quipped with SPD properties and the proposed methods are presented

or a broader class of SPD matrices. 

The current paper is composed of four main parts. Firstly, we provide

 brief overview and description on the manifold of SPD matrices with

 focus on the correlation matrix. Second, we introduce functions for

perations or learning algorithms for correlation matrices on the SPD

anifold in consideration of practical usages in the functional network

nalysis. The basic operation starts with definition of geodesic distance

etween SPD matrices, which bases evaluation of group mean, variation,

nd statistical tests on the SPD manifold. We also introduce methods for

moothing and regression, principal geodesic analysis and clustering.

hird, we present the need to functional connectivity matrices on the

PD space by simulation and by experimental data. All the algorithms

re implemented in terms of MATLAB (Mathworks, inc. USA) toolbox,
alled SPDtoolbox, which is freely available on GitHub ( https://github.

om/kyoustat/papers ) for public use to expediate functional network

nalysis on the right geometry. 

. Methods 

.1. Review of Riemannian geometry 

.1.1. Elements of Riemannian manifold 

In brief, a manifold  is a topological space that locally resembles

uclidean space at each point. Manifold is called smooth when transi-

ion maps are smooth. A Riemannian manifold ( 𝑀, 𝑔 ) is a smooth man-

fold whose inner product 𝑔 𝑝 on the tangent space for a point p varies

moothly. From a practitioner’s perspective, it is important to keep in

ind that Riemannian manifold is not a vector space. That means, we

re endowed with a concept of distance that satisfies metric properties

n the space that is locally Euclidean-alike but it is not Euclidean space.

For example, consider operations on a sphere 𝑆 2 ⊂ ℝ 

3 and take north

nd south poles with coordinates (0, 0, 1) and (0, 0, -1). If we sim-

ly treat data residing on the surface with Euclidean structure, averag-

ng coordinates of north and south poles would return (0,0,0), which

orresponds to the inner core or origin of the sphere. However, if we

ant mathematical operations to abide by the spherical geometry, sim-

ly ’adding’ coordinates of two poles would be an invalid concept. We

ntroduce some concepts and definitions without rigorous mathematical

xposition in the following. 

A tangent space 𝑇 𝑝  at a point 𝑝 ∈  is a set of tangent vectors

 Fig. 2 ), which are derivatives of curves crossing p . The statement for a

anifold being locally similar to Euclidean space generally refers to the

angent space and its properties as vector space. Two important math-

matical operations are exponential and logarithm maps. Let 𝑣 ∈ 𝑇 𝑥 
e a tangent vector at x . Exponential map 𝑒𝑥 𝑝 𝑥 ( 𝑦 ) ∈  defines a unique

hortest curve (geodesic) from a point x in the direction of v in  so

hat the operation results in a point in  ( Fig. 2 ). Logarithm map is an

nverse of exponential map in that for 𝑥, 𝑦 ∈  , 𝑙𝑜 𝑔 𝑥 ( 𝑦 ) ∈ 𝑇 𝑥  which

orresponds to y when sent back via exponential map. Finally, geodesic

istance is the length of the shortest curve that connects two points x

nd y . 

https://github.com/kyoustat/papers
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.1.2. Fréchet mean and variation 

Given the data 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 ∈  , the sample Fréchet mean 𝜇𝑛 is de-

ned as a minimizer of the sum of squared distances, 

𝑛 = argmin 
𝑝 ∈ 

1 
𝑛 

𝑛 ∑
𝑖 =1 

𝜌2 
(
𝑝, 𝑥 𝑖 

)
here 𝜌 ∶  × → ( ℝ ) is a geodesic distance for x, y ∈ M , the length

f the shortest curve on M connecting two points. If Fréchet mean exists,

he Fréchet variation 𝑉 𝑛 is the attained minimum value for 𝜇𝑛 , 

 𝑛 = 

1 
𝑛 

𝑛 ∑
𝑖 =1 

𝜌2 
(
𝜇𝑛 , 𝑥 𝑖 

)
.1.3. Riemannian metric and geodesic distance 

Riemannian metric g is a symmetric (0,2)-tensor field that is positive-

efinite at every point. Formally speaking, we have 

 𝑝 ∶ 𝑇 𝑝  × 𝑇 𝑝  → ( ℝ ) , 𝑝 ∈  

uch that for every differential vector fields X,Y on M , 𝑝 ↦ 𝑔 𝑝 ( 𝑋 |𝑝 , 𝑌 |𝑝 ) is
 smooth function and 𝑔( 𝑋, 𝑋 ) |𝑝 ∶= 𝑔 𝑝 ( 𝑋 |𝑝 , 𝑋 |𝑝 ) > = 0 and 𝑔( 𝑋, 𝑋 ) |𝑝 = 0
f and only if 𝑋 |𝑝 = 0 . Locally at a point p , it endows an inner product

tructure on tangent space. One observation ( Pennec, 2006 ) is that the

eodesic distance is closely related to the Riemannian metric in that for

, y ∈ M , 

( 𝑥, 𝑦 ) = min 
𝛾∶ [ 0 , 1 ] → 

∫
1 

0 
�̇�( 𝑡 ) dt = ‖lo 𝑔 𝑥 ( 𝑦 ) ‖ = 

√ 

𝑔 𝑥 
(
lo 𝑔 𝑥 ( 𝑦 ) , lo 𝑔 𝑥 ( 𝑦 ) 

)
or 𝛾 is a curve minimizing the distance and logarithmic map lo 𝑔 𝑝 ( ⋅) ∶

 → 𝑇 𝑝  . 

.2. SPD manifold 

Our special interest is the space of SPD to which most representa-

ions of functional connectivity belong. Conventional measures such as

ovariance, precision , and correlation matrices all share identical proper-

ies. 

efinition. SPD ( n ) is a space of symmetric and positive definite ma-

rices SPD ( 𝑛 ) = { 𝑋 ∈ ℝ 

𝑛 ×𝑛 |𝑋 = 𝑋 

⊤, 𝜆min ( 𝑋) > 0} where 𝜆𝑚𝑖𝑛 denotes the

inimum eigenvalue. 

It is well known that SPD is, in fact, a Riemannian manifold. That

eans, there exists certain geometric structures not necessarily similar

o that of Euclidean space. In the following sections, we provide math-

matical characterization and computational issues from pedagogical

erspective. 

.2.1. Matrix exponential and logarithm 

For a square matrix X , the matrix exponential is defined as 

xp ( 𝑋 ) ∶= 

∞∑
𝑘 =0 

1 
𝑘 ! 
𝑋 

𝑘 

nalogous to a real-number case. Matrix (principal) logarithm can also

e defined using the definition above by 

𝑜𝑔 ( 𝑋 ) ∶= 𝑌 such that 𝐸𝑥𝑝 ( 𝑌 ) = 𝑋. 

For more details of matrix exponential, logarithm, and their roles in

hat is known as Lie group in connection with SPD manifold, we refer

o Moakher (2005) for interested readers. 

Due to its pervasive nature, the space of SPD matrices has

een extensively studied ( Bhatia, 2015 ). Many attempts to formal-

ze the non-Euclidean geometry on SPD have been made where dis-

ance between two SPD objects are defined by Cholesky decom-

osition ( Dryden et al., 2009 ), symmetrized Kullbac k- Leibler diver-

ence ( Wang and Vemuri, 2005 ), Jensen-Bregman LogDet divergence

 Cherian et al., 2013 ) and Wasserstein distance ( Takatsu, 2011 ) to name

 few. Among many frameworks, the most popular metrics on the SPD

eometric space are the affine-invariant Riemannian metric (AIRM) and

he log-Euclidean Riemannian metric (LERM). 
.2.2. Intrinsic geometry with AIRM 

Affine-invariant Riemannian metric (AIRM) is one of the most pop-

lar geometric structures on the space of SPD matrices ( Pennec et al.,

006 ). As its name suggests, the specific metric, which takes two ele-

ents in a tangent space to return a number, characterizes the corre-

ponding geometry of the space. For SPD equipped with AIRM, given

wo tangent vectors 𝑣, 𝑤 at a point 𝑝 ∈  = SPD , 

 𝑝 ( 𝑣, 𝑤 ) = < 𝑣, 𝑤 > 𝑝 ∶= Tr 
(
𝑝 −1 𝑣 𝑝 −1 𝑤 

)
here 𝑝 −1 is standard matrix inverse and Tr a trace operator. 

Two important operations that connect the manifold  and the tan-

ent plane 𝑇 𝑥  at a point 𝑥 ∈  are exponential and logarithmic maps

or which SPD manifold is endowed analytical formula. For a tangent

ector 𝑣 at 𝑥 , its exponential map 𝑒𝑥 𝑝 𝑥 ∶ 𝑇 𝑥  →  is defined as 

𝑥 𝑝 𝑥 ( 𝑣 ) = 𝑥 1∕2 𝐸𝑥𝑝 
(
𝑥 −1∕2 𝑣 𝑥 −1∕2 

)
𝑥 1∕2 

nd logarithmic map at 𝑥 , 𝑙𝑜 𝑔 𝑥 ∶  → 𝑇 𝑥  for a point 𝑦 ∈  is 

𝑜 𝑔 𝑥 ( 𝑦 ) = 𝑥 1∕2 𝐿𝑜𝑔 
(
𝑥 −1∕2 𝑦 𝑥 −1∕2 

)
𝑥 1∕2 

o that the geodesic distance 𝑑 ∶  ×  → ℝ + for two points 𝑥, 𝑦 ∈
 = 𝑆𝑃 𝐷 can be computed as 

 

2 ( 𝑥, 𝑦 ) = 𝑔 𝑥 
(
𝑙 𝑜 𝑔 𝑥 ( 𝑦 ) , 𝑙 𝑜 𝑔 𝑥 ( 𝑦 ) 

)
=∥ 𝐿𝑜𝑔 

(
𝑥 −1 𝑦 

)
∥2 
𝐹 
. 

.2.3. Extrinsic geometry under LERM 

The log-Euclidean Riemannian metric (LERM) is another popular

achinery along with AIRM ( Arsigny et al., 2007 ). To briefly introduce,

ERM framework can be considered as an analysis procedure by embed-

ing points in SPD manifold to Euclidean space via matrix logarithm. For

xample, geodesic distance for two points 𝑥, 𝑦 ∈  = 𝑆𝑃 𝐷 under LERM

s defined as 

 

2 ( 𝑥, 𝑦 ) =∥ 𝐿𝑜𝑔 ( 𝑥 ) − 𝐿𝑜𝑔 ( 𝑦 ) ∥2 
𝐹 
, 

ith ∥ ⋅∥𝐹 a Frobenius norm. As we noted before, LERM accounts for

uclidean geometry after the matrix logarithm at the identity I . We can

heck this statement by the fact that 𝐿𝑜𝑔( 𝑥 ) = 𝑙𝑜 𝑔 𝐼 ( 𝑥 ) with conventional

nner product in the Euclidean space. 

We close this section by making a note that AIRM and LERM are

wo principled approaches known as intrinsic and extrinsic analysis of

anifold-valued data. While intrinsic approach is strictly bound by the

nnate geometric conditions and makes all procedures more persua-

ive, extrinsic approach depends on an embedding to Euclidean space

hat preserves considerable amount of geometric information, which

ases computation and theoretical analysis thereafter. The dichotomy

s common in the studies of statistics on manifolds and we suggest

 Bhattacharya and Bhattacharya, 2012 ) to interested readers for de-

ailed description of the dichotomy of principled approaches. 

.3. Algorithms on the SPD manifold 

In this section, several learning and inference functions are described

ith algorithmic details. Across all descriptions in this section, we use

he following notations; { 𝑋 𝑖 } 𝑛 𝑖 =1 ∈  for data residing on the SPD man-

fold, 𝜇 and 𝜇𝑗 means of all data and class j, S i an index set of data

ho belong to the cluster class i , superscript ( t ) an iteration t , and

 ∶  ×  → ℝ + a geodesic distance function as defined in the pre-

ious section. Algorithms introduced in this section are largely gov-

rned by the intrinsic geometry of AIRM framework. For extrinsic log-

uclidean geometry, most of standard algorithms for data in Euclidean

pace can be directly applicable after taking matrix logarithmic trans-

ormation on all data points as long as the final output matrix in the

uclidean space is taken back via matrix exponential. 

.3.1. Fréchet mean and variation (spd_mean.m) 

Given data points 𝑥 𝑖 ∈  , 𝑖 = 1 , … , 𝑛 , empirical intrinsic Fréchet

ean 𝜇𝑛 is a minimizer of average squared geodesic distances 

𝑛 = argmin 
𝑝 ∈ 

1 
𝑛 

𝑛 ∑
𝑖 =1 

𝑑 2 
(
𝑝, 𝑥 𝑖 

)
=∶ 𝑓 ( 𝑝 ) 
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nd corresponding variation is 

 𝑛 = 

𝑛 ∑
𝑖 =1 

𝑑 2 
(
𝜇𝑛 , 𝑥 𝑖 

)
∕ 𝑛. 

One of standard methods to obtain 𝜇𝑛 is to use a Riemannian gradient

escent algorithm proposed in Pennec et al. (2006) , in which conditions

or existence and uniqueness are discussed as well as the algorithm.

t each iteration, the gradient of 𝑓 is computed in an ambient space

 𝑓 ( 𝑝 ) = 

∑𝑛 

𝑖 =1 2 𝑙𝑜 𝑔 𝑝 ( 𝑥 𝑖 )∕ 𝑛 and then projected back onto the manifold by

xponential map so that we repeat following steps at iteration 𝑡 , 

 

( 𝑡 ) = 

2 
𝑛 

𝑛 ∑
𝑖 =1 

𝑙𝑜 𝑔 𝜇( 𝑡 ) 
(
𝑥 𝑖 
)

( 𝑡 +1 ) = 𝑒𝑥 𝑝 𝜇( 𝑡 ) 
(
− 𝑊 

( 𝑡 ) )
ntil convergence and the obtained mean 𝜇𝑛 is plugged in to obtain the

orresponding variation of our data. 

On the other hand, computation of extrinsic Fréchet mean and vari-

tion under log-Euclidean geometry is rather straightforward. As men-

ioned before, under LERM framework, data are embedded into some

uclidean space by matrix logarithmic map in that we have the follow-

ng one-liner expression to compute objects of our interests, 

𝑛 = Exp 

( 

1 
𝑛 

𝑛 ∑
𝑖 =1 

Log 
(
𝑥 𝑖 
)) 

 𝑛 = 

1 
𝑛 

𝑛 ∑
𝑖 =1 

‖Log 
(
𝜇𝑛 

)
− Log 

(
𝑥 𝑖 
)‖2 , 

here ∥⋅∥ is a conventional Euclidean norm. 

.3.2. Test for equality of two distributions (spd_eqtest.m) 

It is often a prerequisite to check whether two groups of objects are

dentically distributed for further analysis. In statistics, this is usually

onveyed with hypothesis testing procedures to determine if there ex-

sts difference in certain measures of interests, including mean, variance,

nd so on. One of general test methods is a two-sample testing for the

quality of two distributions. When given two sets of independent ob-

ervations 𝑥 1 , … , 𝑥 𝑚 ∼ 𝐹 and 𝑦 1 , … , 𝑦 𝑛 ∼ 𝐺, we test the null hypothesis

 0 ∶ 𝐹 = 𝐺 against the alternative 𝐻 1 ∶ 𝐹 ≠ 𝐺. 

Among many classes of distribution tests developed for Eu-

lidean data, we employ one nonparametric method by Biswas and

hosh (2014) . This method is solely based on inter-point distances be-

ween data points for inference. Maa et al. (1996) showed that testing

 = 𝐺 is equivalent to test whether three distributions 𝐷 𝐹𝐹 , 𝐷 𝐹𝐺 , 𝐷 𝐺𝐺 

re identical, where 𝐷 𝐹𝐹 , 𝐷 𝐹𝐺 , 𝐷 𝐺𝐺 denote the distributions of ∥𝑋 −
 ∗ ∥, ∥𝑋 − 𝑌 ∥, and ∥𝑌 − 𝑌 ∗ ∥ with 𝑋 ∗ and 𝑌 ∗ being identically distributed

s 𝑋 and 𝑌 . The proof from Maa et al. (1996) is directly applicable to

iemannian manifolds embedded in Euclidean space since the limit in

olume form coincides with Euclidean ball locally. This leads to a conve-

ient adaptation of the method by simply replacing the Euclidean norm

ith geodesic distance on SPD. To briefly introduce the adaptation of

forementioned method, define 

̂𝐷 𝐹 
= 

[ 

2 
𝑚 ( 𝑚 − 1 ) 

𝑚 ∑
𝑖 =1 

𝑚 ∑
𝑗= 𝑖 +1 

𝑑 
(
𝑥 𝑖 , 𝑥 𝑗 

)
, 

1 
𝑚𝑛 

𝑚 ∑
𝑖 =1 

𝑛 ∑
𝑗=1 

𝑑 
(
𝑥 𝑖 , 𝑦 𝑗 

)] 

�̂�𝐷 𝐺 
= 

[ 

1 
𝑚𝑛 

𝑚 ∑
𝑖 =1 

𝑛 ∑
𝑗=1 

𝑑 
(
𝑥 𝑖 , 𝑦 𝑗 

)
, 

2 
𝑛 ( 𝑛 − 1 ) 

𝑛 ∑
𝑖 =1 

𝑛 ∑
𝑗= 𝑖 +1 

𝑑 
(
𝑦 𝑖 , 𝑦 𝑗 

)] 

nd reject the null hypothesis 𝐻 0 ∶ 𝐹 = 𝐺 for larger values of the test

tatistic 𝑇 𝑚,𝑛 = ‖�̂�𝐷 𝐹 − �̂�𝐷 𝐺 
‖2 2 . Since analytical expression for the sam-

ling distribution of 𝑇 𝑚,𝑛 in the limiting sense is not available, we use

he permutation test by rearranging labels of the given data in or-

er to achieve a suitable threshold defining ‘largeness’ of the statistic

 Pitman, 1937 ). In computational aspect, once we have a pre-computed

istance matrix 𝐷 𝐹𝐺 ∈ ℝ 

{ 𝑚 + 𝑛 } × { 𝑚 + 𝑛 } for all observations, permutation

esting procedure described above does not demand intensive comput-

ng resources since acquiring 𝑇 𝑚,𝑛 consists of scalar addition and multi-

lication only. 
.3.3. Pairwise coefficient test of equal distribution (spd_eqtestelem.m) 

In functional connectivity analysis, it is often of interest to locate

hich connections show group-level difference at its significance. One

ommon approach is to perform univariate two-sample testing for each

ntry and apply multiple testing correction. Kim et al. (2014) compared

erformance of some statistical hypothesis tests in detecting group dif-

erences in brain functional networks. The aforementioned approach to

mploy multiple univariate tests is based on an implicit assumption that

ach test for pairwise coefficients is independent of each other. Further-

ore, asymptotic-based tests depend upon additional assumptions in-

luding underlying distribution in that absence of sufficient validation

ecessitates the use of nonparametric procedure ( Wasserman, 2006 ). 

In this study, we introduce a novel procedure for comparing pair-

ise coefficients under geometric constraints imposed by SPD manifold.

utchison et al. (2010) proposed a bootstrap procedure for comparing

oefficients at the vicinity of Fréchet means by logarithmic mapping to

ssure independence of parameters. Instead of local comparison, we take

n alternative approach to use group-level information represented by

réchet mean and compare elements thereafter using permutation test-

ng framework. Given data of two groups 𝑥 1 , … , 𝑥 𝑚 and 𝑦 1 , … , 𝑦 𝑛 all on

PD ( 𝑝 ) , the algorithm goes as follows. 

1 compute Fréchet means 𝜇𝑥 and 𝜇𝑦 and take 𝐷 xy = |𝜇𝑥 − 𝜇𝑦 | ∈ ( ℝ ) 𝑝 ×𝑝 .
2 For 𝑡 = 1 , … , 𝑇 iterations, 

(a) select �̃� 1 , … , ̃𝑥 𝑚 and ̃𝑦 1 , … , ̃𝑦 𝑛 from the data without replacement.

(b) compute Fréchet means 𝜇�̃� , 𝜇�̃� for permuted samples 

(c) record 𝐷 

( 𝑡 ) 
𝑥𝑦 = |𝜇�̃� − 𝜇�̃� |

3 for each ( 𝑖, 𝑗 ) pair, compute 𝑝 -values 𝑝 ( 𝑖, 𝑗 ) by 

𝑝 ( 𝑖, 𝑗 ) = 

# 
{ 

𝑧 ∈ 𝐷 

1∶ 𝑇 
xy ( 𝑖, 𝑗 ) |𝑧 ≥ 𝐷 xy ( 𝑖, 𝑗 ) 

} 

+ 1 

𝑇 + 1 
here 𝐷 

1∶ 𝑇 
𝑥𝑦 

( 𝑖, 𝑗 ) = [ 𝐷 

1 
𝑥𝑦 
( 𝑖, 𝑗 ) , … , 𝐷 

𝑇 
𝑥𝑦 
( 𝑖, 𝑗 ) ] . 

.3.4. k- means clustering (spd_kmeans.m) 

k- means algorithm ( MacQueen, 1967 ) is one of famous clustering

lgorithms for data analysis. As pointed out in Goh and Vidal (2008) ,

he method is easily extensible to non-Euclidean data since it solely de-

ends on the distance measure in determining class memberships. We

mplemented standard Llyod’s algorithm ( Lloyd, 1982 ) modified to our

ontext. 

1 randomly choose k data points as cluster means 𝜇
(1) 
1 , … , 𝜇

(1) 
𝑘 

. 

2 repeat following steps until convergence: 

• assign each observation to the cluster by smallest distances to

cluster centers, 

𝑆 
( 𝑡 ) 
𝑖 

= { 𝑋 𝑖 |𝑑 (𝑋 𝑖 , 𝜇
( 𝑡 ) 
𝑖 

) ≤ 𝑑 

(
𝑋 𝑖 , 𝜇

( 𝑡 ) 
𝑗 

)
for all 𝑗, 1 ≤ 𝑗 ≤ 𝑘 } 

and when it comes to a situation where an observation can belong

to one of multiple clusters, assign the cluster randomly. 

• update cluster centroids by Fréchet means of each class, 

𝜇
( 𝑡 +1 ) 
𝑖 

= argmin 
𝑝 ∈𝑀 

∑
𝑗∈𝑆 ( 𝑡 ) 

𝑖 

𝑑 2 
(
𝑝, 𝑋 𝑗 

)
for 𝑖 = 1 , … , 𝑘 

here |𝑆 𝑖 | refers to the number of observations in class i . 

To guide the selection of cluster numbers k , we implement an adap-

ation of celebrated Silhouette method ( Rousseeuw, 1987 ) as a clus-

er quality score metric since it only relies on any distance metric

 spd_clustval.m ). Silhouette is a measure of proximity for observations

n a cluster to the points in its neighboring clusters. Each observation

s measured with a score between [ − 1,1] where large positive number

ndicates an observation is well separated by the current clustering. For

ach observation i , a silhouette value is 

 ( 𝑖 ) = 

𝑏 ( 𝑖 ) − 𝑎 ( 𝑖 ) 
𝑚𝑎𝑥 { 𝑎 ( 𝑖 ) , 𝑏 ( 𝑖 ) } 

here 

 ( 𝑖 ) = 

1 ||𝑆 𝑖 || − 1 

∑
𝑗∈𝑆 𝑖 ,𝑖 ≠𝑗 

𝑑 
(
𝑋 𝑖 , 𝑋 𝑗 

)
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Fig. 3. A schematic description of extrinsic local regression. 

Fig. 4. A schematic description of principal geodesic analysis (PGA). 
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 ( 𝑖 ) = min 
𝑖 ≠𝑗 

1 |||𝑆 𝑗 |||
∑
𝑗∈𝑆 𝑗 

𝑑 
(
𝑋 𝑖 , 𝑋 𝑗 

)
rom the expression above, a ( i ) is the average distance between an ob-

ervation i and the rest in the same cluster of X i , while b ( i ) measures the

mallest average distance from i- th observation to all points in all other

lusters. When a cluster is singleton consisting of a single observation,

et s ( i ) = 0. Once silhouette values are computed for all data points,

lobal score is computed by averaging individual silhouette values and

 partition of the largest average score is said to be superior to others. 

.3.5. Modularity-based clustering 

It should be noted that every execution of k- means clustering shows

ariations in its result due to initialization. To make a consistent re-

ult for multiple k- means clustering and thus make clustering robust to

nitial values, we adopt modularity analysis of multiple k- means cluster-

ng, which was applied to sort neural time courses in our previous study

 Jung et al., 2019 ). The algorithm repeats k- means clustering N times for

ample covariance matrices with an empirical K or evaluated by Silhou-

tte score. Then, it evaluates the frequency for each pair of covariances

eing a same cluster among N times of k- means clustering. This com-

oses a frequency adjacency matrix for every pairs of covariance ma-

rices. The element of the frequency adjacency matrix designates how

requently two nodes (covariances) are clustered as a same cluster. The

odularity optimization algorithm ( Newman and Girvan, 2004 ), imple-

ented in the Brain Connectivity Toolbox ( Rubinov and Sporns, 2010 ),

dentifies optimal clusters from the frequency adjacency matrix while

aximizing the modularity index Q. The modularity index Q for an ad-

acency matrix A is defined as: 

 = 

1 
𝑉 

∑
𝑖𝑗 

( 

𝐴 𝑖𝑗 − 

𝑠 𝑖 𝑠 𝑗 

𝑉 

) 

𝛿𝑀 𝑖 𝑀 𝑗 

here A ij is the edge weight between the i -th and j -th nodes, V is the

otal sum of weights. 𝛿𝑀 𝑖 𝑀 𝑗 
is a kronecker delta function that assigns

 if the i -th and j -th nodes are in the same module (M i = M j ) and 0

therwise. 

In addition to k- means clustering, the SPDtoolbox provides cluster-

ng of sample covariance matrices by evaluating an adjacency matrix of

egative geometric distances among the samples. The modularity opti-

ization algorithm finds clusters that maximize the modularity index. 

.3.6. Smoothing and regression (spd_smooth.m) 

Suppose we have paired data ( 𝑡 𝑖 , 𝑋 𝑖 ) , 𝑖 = 1 , … , 𝑛 where 𝑡 𝑖 ∈ ℝ rep-

esents one-dimensional covariate such as age or time and 𝑋 𝑖 ∈ 
anifold-valued data. One of the most fundamental questions would be

o model the relationship between 𝑡 and 𝑋, i.e., 𝑋 𝑖 = 𝐹 ( 𝑡 𝑖 ) + 𝜖𝑖 . This re-

ression framework, however, is not easily defined even for parametric

amily of 𝐹 ( ⋅) since the concept of subtraction on Riemannian manifold

ay not be straightforward. Nevertheless, it is needless to emphasize

he importance of such problem since the learned regression function

ay be used for prediction, smoothing, and so on. 

A fast yet powerful method was recently proposed by

in et al. (2017) for manifold-valued response 𝑋 ∈  and vector-

alued explanatory variable 𝑡 ∈ ℝ 

𝑝 . We focus on introducing a special

ase 𝑝 = 1 for simplicity along with its usage as a nonparametric

egression framework against one-dimensional covariate. The key idea

s to graft kernel regression ( Nadaraya, 1964 ; Watson, 1964 ) onto

og-Euclidean geometric structure. 

Let 𝐽 ∶  → ℝ 

𝑁 , 𝑁 ≥ dim (  ) be an embedding of our SPD mani-

old  onto high dimensional Euclidean space ( Fig. 3 ). A convenient

hoice for 𝐽 is an equivariant embedding, which is known to pre-

erve substantial amount of geometric structure ( Bhattacharya and Bhat-

acharya, 2012 ). For SPD manifold, the embedding is 𝐽 ( 𝑋) = 𝐿𝑜𝑔( 𝑋) ,
hich is logarithmic mapping of 𝑋 at identity 𝐼 , 

 ( 𝑋 ) = 𝐿𝑜𝑔 ( 𝑋 ) = 𝐼 1∕2 𝐿𝑜𝑔 
(
𝐼 −1∕2 𝑋 𝐼 −1∕2 

)
𝐼 1∕2 = 𝑙𝑜 𝑔 𝐼 ( 𝑋 ) 
hose inverse 𝐽 −1 is therefore exponential mapping. Given two map-

ings, the extrinsic kernel estimate of the regression function 𝐹 𝐸 is de-

ned as 

 𝐸 ( 𝑡 ) = 𝐽 −1 (  ( 𝐹 ( 𝑡 ) ) ) 

here 

 ( 𝑡 ) = 

𝑛 ∑
𝑖 =1 

𝐽 
(
𝑋 𝑖 

)
𝐾 ℎ 

(
𝑡 𝑖 − 𝑡 

)∑𝑛 

𝑗=1 𝐾 ℎ 

(
𝑡 𝑗 − 𝑡 

)
or a kernel function 𝐾 ℎ ( 𝑧 ) = 𝐾( 𝑧 ∕ ℎ )∕ ℎ with a positive bandwidth ℎ > 0
hat controls the degree of mass concentration and projection  ∶ ℝ 

𝑁 →
(  ) . Kernel bandwidth ℎ is either fixed or determined via cross-

alidation. SPDtoolbox provides k- fold cross validation to determine op-

imal ℎ ( spd_smoothcv.m ). 

.3.7. Principal geodesic analysis (spd_pga.m) 

Principal component analysis (PCA) is a well-known method for ex-

loratory data analysis ( Hotelling, 1936 ; Pearson, 1901 ). To review in

revity, it aims at finding a basis that captures the largest variance

nto which the data is projected. This nature allows us to exploit the

ethod for dimension reduction and feature extraction. Given a data

atrix 𝑋 = [ 𝑥 1 |⋯ |𝑥 𝑛 ] ∈ ℝ 

𝑝 ×𝑛 where each row has zero mean, top eigen-

ectors 𝑤 𝑖 , 𝑖 = 1 , … , 𝑘 , such that Σ𝑤 𝑖 = 𝜆𝑖 𝑤 𝑖 , 𝜆1 ≥ 𝜆2 ≥ … ≥ 𝜆𝑝 are taken

s basis where Σ = 𝑋 𝑋 

⊤∕ 𝑛 is an empirical covariance matrix. The

educed matrix 𝑌 = [ 𝑦 1 |⋯ |𝑦 𝑛 ] ∈ ℝ 

𝑘 ×𝑛 is obtained by 𝑌 = 𝑉 ⊤𝑋 where

 = [ 𝑣 1 |⋯ |𝑣 𝑘 ] ∈ ℝ 

𝑝 ×𝑘 is a matrix consisting of eigenvectors as above -

lso called as principal components or loadings. 

Fletcher et al. (2004) grafted the very idea onto the setting where

ata lies on manifold. Since there is no direct counterpart of empirical

ovariance matrix and eigen-decomposition on Riemannian manifold,

 local approach was first taken. After obtaining a Fréchet mean 𝜇 for

iven data 𝑋 1 , … , 𝑋 𝑛 ∈  , every observation is pulled back onto the

angent space 𝑇 𝜇 by 𝑢 𝑖 = 𝐿𝑜 𝑔 𝜇( 𝑋 𝑖 ) ( Fig. 4 ). Recalling that 𝑇 𝜇 is lo-
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Fig. 5. Concept for covariance and precision (inverse co- 

variance) duality test. The conceptual diagram of duality 

test (a) and examples (b) for covariance { Σi , i = 1 , ..., N} 
and precision matrices { Λi , i = 1 , ..., N} are presented. Σg 

and Λg represent geodesic average and precision matri- 

ces. Σe and Λe denote Euclidean average and precision 

matrices. 
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Fig. 6. The result of covariance and precision (inverse covariance) reciprocity 

test. 
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m

ally a vector space, now tangential covariance matrix 𝑆 = 

∑𝑛 

𝑖 =1 𝑢 𝑖 𝑢 
⊤
𝑖 
∕ 𝑛

an be obtained whose eigen-decomposition returns { 𝜆𝑗 , 𝑣 𝑗 } for 𝑗 =
 , … , dim (  ) where 𝑆 𝑣 𝑗 = 𝜆𝑗 𝑣 𝑗 . This gives local coordinates for each

bservation 𝑦 𝑖 = [ 𝑣 1 |… |𝑣 𝑘 ] ⊤𝐿𝑜 𝑔 𝜇( 𝑋 𝑖 ) ∈ ℝ 

𝑘 , projected variance 𝜆𝑗 on

he tangent space and loadings 𝑊 𝑗 = 𝑒𝑥 𝑝 𝜇( 𝑣 𝑗 ) ∈  for 𝑗 = 1 , … , 𝑘 . The

ame principal geodesic comes from the fact that loadings or principal

omponents are not vectors on 𝑇 𝜇 but rather a projected eigenvector

y exponential mapping along the geodesic. That means an element 𝑦 𝑖𝑗 
rom a local coordinate vector 𝑦 𝑖 = [ 𝑦 𝑖 1 , … , 𝑦 𝑖𝑘 ] for an observation 𝑋 𝑖 

nduces an approximate weight/significance of 𝑖 -th observation along

-th geodesic direction. Please note that principal geodesics { 𝑊 𝑖 } 𝑘 𝑖 =1 are

ot orthogonal to each other as in conventional PCA so that they should

e understood as approximate basis in a local sense around the Fréchet

ean 𝜇. 

. Results 

.1. Simulation 1. Why SPD geometry should be used? 

Other than mathematical characterization of SPD that is clearly dif-

erent from that of a vector space, we describe why the geometry of SPD

ndows a natural interpretation with respect to analysis of representa-

ions for functional connectivity. Assume we have a population of 𝑁 co-

ariance connectivity matrices {Σ} = { Σ1 , … , Σ𝑁 

} . It is of often interest

o investigate partial association among different ROIs using precision

atrices {Λ} = { Λ1 , … , Λ𝑁 

} where each Λ𝑖 is an inverse covariance ma-

rix Σ−1 
𝑖 

. That means we must have Σ𝑖 Λ𝑖 = Λ𝑖 Σ𝑖 = 𝐼 for all 𝑖 where 𝐼 is

n identity matrix. Then it is natural to question whether averages Σ̄
nd Λ̄ also satisfy the above relationship Λ̄Σ̄ = Σ̄Λ̄ = 𝐼 as well. This idea

s represented in Fig. 5 that Λ̄ is an inverse of Σ̄. 

If we consider Euclidean geometry, this is not necessarily true. Con-

idering {Σ} and {Λ} as elements in Euclidean space, we can define
verages as follows 

̄ = 

1 
𝑁 

𝑁 ∑
𝑖 =1 

Σ𝑖 and Λ̄ = 

1 
𝑁 

𝑁 ∑
𝑖 =1 

Λ𝑖 = 

1 
𝑁 

𝑁 ∑
𝑖 =1 

Σ−1 
𝑖 

n that 

̄ Λ̄ = 

1 
𝑁 

2 

{ 

𝑁 ∑
𝑖 =1 

Σ𝑖 Σ−1 
𝑖 

+ 

∑
𝑖 ≠𝑗 

Σ𝑖 Σ−1 
𝑗 

} 

= 

1 
𝑁 

2 

{ 

𝑁𝐼 + 

∑
𝑖 ≠𝑗 

Σ𝑖 Σ−1 
𝑗 

} 

. 

Therefore, it is not guaranteed that Euclidean averages of covariance

nd precision matrices are inverse of each other unless Σ𝑖 Σ−1 
𝑗 

= 𝐼 for all

 ≠ 𝑗. 

On the other hand, averages defined as Fréchet means over {Σ} and

Λ} under the geometry induced by AIRM satisfy the above statement

nder mild conditions. Since matrix inverse is a bijective map while

eodesic distance is preserved under inversion, Fréchet mean of preci-

ion matrices is an inverse of Fréchet mean of covariance matrices if the

ean is unique. 
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We empirically showed how the choice of geometry and correspond-

ng definition of average/mean leads to the consistency with our in-

uition. We generated 100 covariance matrices Σ𝑖 , 𝑖 = 1 , … , 100 identi-

ally and independently from Wishart distribution  𝑝 ( 𝑉 , 𝑛 ) with 𝑝 = 5
imension (network size), 𝑛 = 20 degrees of freedom (the length of time

eries) for strict positive definiteness, and 𝑉 = 𝐼 5 a scale matrix. After

omputing precision matrices Λ𝑖 = Σ−1 
𝑖 

, we compute both Euclidean and

réchet means with both AIRM and LERM frameworks on covariance

nd precision matrices respectively. For each run, the gap is obtained as

Λ̄Σ̄ − 𝐼 5 ∥𝐹 to see how close Λ̄ is to Σ̄−1 where ∥ 𝐴 ∥𝐹 = 

√
Trace ( 𝐴 

⊤𝐴 )
s a Frobenius norm. If an average precision matrix is truly an inverse

f a mean covariance matrix, the gap should be close to 0. Fig. 6 shows

istribution of Euclidean and Fréchet gaps on repeated experiments for

000 times. Empirical observation is that the geometry-induced concept

f Fréchet mean aligns with our intuition while simply taking Euclidean

verages of covariance and precision matrices does not preserve an in-

erse relationship of two averages. 

.2. Simulation 2. Modularity-optimization of multiple k- means clustering 

As an example of clustering for covariance matrices, we generated

hree types of covariance matrices with a size of five. We generated 30

ovariance matrices from three model matrices C1, C2 and C3 (10 for

ach). The three covariance matrices ( Fig. 7 a) were derived from human

onnectivity matrices obtained from resting state fMRI, which are mu-

ually distant from each other based on all distances under Euclidean,

IRM, and LERM geometries 

1 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 . 0000 0 . 6409 0 . 2196 0 . 1736 −0 . 1886 
0 . 6409 1 . 0000 0 . 7230 0 . 1348 −0 . 6583 
0 . 2196 0 . 7230 1 . 0000 0 . 2734 −0 . 6156 
0 . 1736 0 . 1348 0 . 2734 1 . 0000 −0 . 1824 
−0 . 1886 −0 . 6583 −0 . 6156 −0 . 1824 1 . 0000 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
2 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 . 0000 −0 . 0015 0 . 7898 0 . 7135 −0 . 3713 
−0 . 0015 1 . 0000 0 . 2193 0 . 2861 0 . 1240 
0 . 7898 0 . 2193 1 . 0000 0 . 8958 −0 . 3887 
0 . 7135 0 . 2861 0 . 8958 1 . 0000 −0 . 4185 
−0 . 3713 0 . 1240 −0 . 3887 −0 . 4185 1 . 0000 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
3 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 . 0000 0 . 5027 0 . 1763 0 . 2011 0 . 4440 
0 . 5027 1 . 0000 0 . 0052 0 . 2146 0 . 6810 
0 . 1763 0 . 0052 1 . 0000 −0 . 0690 −0 . 0401 
0 . 2011 0 . 2146 −0 . 0690 1 . 0000 0 . 3426 
0 . 4440 0 . 6810 −0 . 0401 0 . 3426 1 . 0000 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
We then added a zero mean Gaussian noise matrix to each covari-

nce matrix after weighting it by 0.15. The generated covariance matri-

es are shown in Fig. 7 b. For the 30 covariance matrices, we executed

00 k- means clustering with k = 3 and constructed a frequency adja-

ency matrix ( Fig. 7 c). From the frequency adjacency matrix, modular-

ty optimization identifies three modules and their cluster indices. We

xtracted cluster centroids for each cluster by taking geodesic average

f all members for each cluster ( Fig. 7 d). 

.3. Simulation 3. Dynamic connectivity and state transition analysis 

As an extension of the clustering example, we conducted a state-

ransition analysis of functional connectivity dynamics ( Allen et al.,

014 ; Damaraju et al., 2014 ) on the SPD manifold. For a given tran-

ition matrix, we simulated a state sequence (length = 30) consisting of

hree heterogeneous states which correspond to initial covariance ma-

rices, C1, C2 and C3 ( Fig. 8 a). The transition matrix used is 

 = 

⎡ ⎢ ⎢ ⎣ 
9 2 3 
4 4 1 
2 2 2 

⎤ ⎥ ⎥ ⎦ 
For the 30 correlation matrices ( Fig. 8 b), we conducted a modularity-

ptimization of multiple k- means clustering. The method generates a
Fig. 7. An example for clustering covariance matri- 

ces. Three initial covariance matrices (a) were used to 

generate 30 random variation of covariance matrices 

around initial covariance matrices (10 for each C1, C2, 

and C3) (b). (c) displays the frequency adjacency ma- 

trix of the 30 covariance matrices used for modular- 

ity optimization. The frequency adjacency matrix indi- 

cates the frequency for each pair of covariances being a 

same cluster after 100 repeated k- means clustering. (d) 

displays the centroids for the three covariance groups. 
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Fig. 8. State transition analysis of dynamic connectiv- 

ity. Based on three main correlation matrices C1, C2 

and C3 (a), total 30 covariance samples were gener- 

ated according to a state transition sequence (b). The 

modularity-based k- means clustering was done after 

composing a frequency adjacency matrix (c) for 100 it- 

erations of k- means clustering. The resulting centroids 

are displayed in (d) and the sequences of original (red) 

and estimated (blue) ones are displayed in (e) (For in- 

terpretation of the references to color in this figure leg- 

end, the reader is referred to the web version of this 

article.). 
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r  
requency adjacency matrix by applying 100 repetitions of k- means clus-

ering ( Fig. 8 c), which was used for modularity optimization. The cluster

entroids are displayed in Fig. 8 d and the initial sequence and resulting

equence are displayed in Fig. 8 e. 

.4. Simulation 4. Smoothing and regression 

We conducted smoothing of simulated noisy covariance matrices.

ovariance matrices simulated were geometrically positioned between

he two covariance matrices C1 and C2 with an exponentially increas-

ng distance weight w ( w = t 2 for t = [0, 0.1, 0.2, …, 1]) for C2 and

- w for C1 on the tangent plane ( Fig. 9 a). We then added a zero mean

aussian noise matrix to each covariance matrix after weighting it by

.1 and projected the noisy covariance matrices back onto the manifold

o make them as perturbed observations along the geodesic. The gen-

rated covariances and their noisy matrices are shown in Fig. 9 b. We

onducted 5-fold cross-validation to determine the kernel bandwidth h

rom an exponentially equi-spaced interval of length 10 from exp(-1) to

xp(1). For each level of h , we applied smoothing function to the noisy

ovariance matrices. The results for smoothing and bandwidth selection

re presented in Fig. 9 b and 9 d. 

We utilized this approach to a regression problem ( Fig. 10 ). We

quared 50 uniformly distributed weights and used them as interpo-

ation weights w for geometric locations between the two covariance

atrices C1 and C2. We then added a Gaussian noise in the tangent

pace and projected noisy matrices to suffice SPD condition. Using the

andwidth h corresponding to the minimal k- fold cross-validation error,

e estimated an interpolation function, which predicts the covariance

atrix at any geometric location (corresponding to a weight w ). 

.5. Simulation 5. Principal geodesic analysis 

We generated 30 covariance samples by interpolating three target co-

ariances (C1, C2 and C3) with random weights ( Fig. 11 a). The weights

ere derived from a uniform distribution but the weights for C1 were
ultiplied by 1.2 from the initial weights to emphasize variations of

1. The weighted sum was done in the tangential space. The result co-

ariance samples are presented in Fig. 11 b. We then applied principal

eodesic analysis to the covariance matrices to find principal geodesics

nd their weights for the samples ( Fig. 11 c). 

.6. Simulation 6. Test of equal distributions 

In statistical literature of hypothesis testing, simulation study is

ften adopted to demonstrate the power of a proposed procedure

 Lehmann and Romano, 2010 ). Among several indices, we report empir-

cal type 1 error, which measures ratio of false rejections when the null

ypothesis of 𝐻 0 ∶ 𝐹 𝑥 = 𝐹 𝑦 is true. In our simulation, we use two exem-

lary tests with samples drawn from the correlation matrices C2 and C3.

or each group, we generate time series samples from Wishart distribu-

ion by using designated correlation matrix as a scale parameter and 𝜈

egrees of freedom (time series length) and normalize the matrices to

ave unit diagonals. We used 𝜈 = 50 to guarantee strict positive definite-

ess. We varied the number of observations (corresponding to subjects

n the group study) belonging to each set from n = 5 to 50 in order to

heck an impact of sample size on the performance. For T = 500 iter-

tions, two sets of correlation matrices with varying sample sizes from

 = 5 to 50 are randomly generated in accordance with the procedure

escribed above and p-values are recorded. Then, empirical type 1 error

t the pre-defined significance level 𝛼 is obtained by 

ype 1 Error = 

# { 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑝 - 𝑣𝑎𝑙𝑢𝑒𝑠 ≤ 𝛼} 
𝑇 

nd we conclude the test is valid if empirical type 1 error is similar to 𝛼.

s shown in Fig.12 , both examples show similar levels of type 1 errors

nd 𝛼 = 0 . 05 for different numbers of observations. 

.7. Experimental data analysis 

For the experimental data analysis, we used 734 rs-fMRI data (2016

elease, male: N = 328, female: N = 405, age: 22~37, mean: 28.7, std:3.7)
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Fig. 9. An example for smoothing of continuously varying correlation matrices with Gaussian noises. A set of noisy continuous covariance matrices (the first row in 

(b)) were generated by weighted summing of two covariance matrices (C1 and C2 in Fig. 7 ) with a Gaussian noise in the tangent plane. The weight is presented in 

(a). For ten different bandwidths, the distances between samples and their corresponding regressed ones are presented in (c). The 5-fold cross validation (CV) errors 

for all bandwidths are presented in (d). The original covariance samples are displayed in the first row and their noisy versions are displayed in the second row of 

(b). The lowest CV error was found at the bandwidth of 1.396, the 9th row in (b). 
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rom the Human Connectome Project (HCP) database ( Van Essen et al.,

012 ). All data was sampled at 0.72 Hz during four sessions, with 1200

ime points per session. rs-fMRI data was preprocessed according to

he HCP minimal preprocessing pipeline and mapped into cortical sur-

aces ( Glasser et al., 2013 ). For the analysis of brain networks, we ex-

racted time series at ten brain regions in the cortical surface-based at-

as ( Desikan et al., 2006 ) corresponding to the default mode network

DMN). They are the superior frontal gyrus (SFG, also known as the

orsomedial prefrontal cortex), medial orbitofrontal cortex (MOF, cor-

esponding to ventromedial prefrontal cortex), parahippocampus (as a

art of the hippocampal formation), precuneus and inferior parietal lobe

n each hemisphere ( Fig. 13 A), which are commonly found in previous

tudies of DMN ( Buckner et al., 2008 ; Power et al., 2011 ; Yeo et al.,

011 ). The first eigenvariate derived from the principal component anal-

sis of fMRI time series at surface nodes for each region was used as a

egional BOLD signal summary for the region. Pearson correlation of

s-fMRI was used as a measure for functional connectivity of the time

eries. The geodesic average of all the 734 rs-fMRI data and exemplary

unctional connectivity (correlation) matrices of 30 subjects are pre-

ented in Fig. 13 b and 13 c. 

.8. Experiment 1. Regression analysis 

We conducted a regression analysis of connectivity matrices ac-

ording to behavior scores. Among many behavior scores in the

CP database, we chose Penn Matrix Test (PMAT) and Pittsburgh

leep Quality Index (PSQI) to test the feasibility of geodesic re-

ression analysis for SPD. The PMAT24 which was developed by
ur and colleagues ( Bilker et al., 2012 ) is a shortened version

f the Raven’s Progressive Matrices that measures fluid intelli-

ence. To represent fluid intelligence, number of correct responses

PMAT24_A_CR) and total skipped items (PMAT24_A_SI) were used.

he PSQI test is a widely used 19 self-rated questionnaire that as-

esses sleep quality and disturbances over one month time inter-

al ( Buysse et al., 1989 ). In the SPD regression analysis, we de-

ermined the kernel bandwidth by utilizing 5-fold cross valida-

ion at 20 exponentially equidistant bandwidths ( Fig. 14 a, c and

). With the kernel bandwidth showing minimal CV errors (for

oncave CV-error curves, e.g., PMAT24-A-CR and PMAT24-A-SI) or

nee of CV-error curves (for curves without any local minima, e.g.,

SQI-scores), 734 connectivity matrices at different scores for each

easure were used to estimate regression function. The represen-

ative connectivity matrix at each score according to the learned

egression function is presented in Fig. 14 b, d and f. 

.9. Experiment 2. Principal geodesic analysis (PGA) 

Principal geodesic analysis was applied to the 734 connectivity ma-

rices, from which nine principal geodesic components were derived.

he explained variances of all nine components and top three principal

eodesic components and their coefficients (the weight of connectivity

atrices projected onto each component) are displayed in Fig. 15 a–c.

he component 3 differs from the other components in that the mod-

le composed of the bilateral inferior parietal lobe and the precuneus

re differentiated from other brain regions. The component 2 differs

rom the component 1 in the isolated medial orbitofrontal cortex. The
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Fig. 10. An example for regression analysis of covariance samples. By weighted summation of C1 and C2 covariance matrices (a) using a square weighted function 

w (the third panel of a), followed by adding Gaussian noise, we generated 30 samples of correlation matrices (b). The evaluation of regression performance was 

done at the weight points shown in (c). For ten different bandwidths, the distances between samples and their corresponding regressed ones are presented in the 

middle panel of (c). The 5-fold cross validation (CV) error for each bandwidth is presented in the bottom panel of (c). The original covariance samples and regressed 

correlation matrices (with an optimal bandwidth) at ten uniformly spaced weight points are displayed in (d). 
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eodesic component 1 explains most portions of variability of connec-

ivity matrices as shown in the distribution of coefficients ( Fig. 15 c).

e also evaluated Euclidean principal component analysis for the co-

ariance matrices as a set of vectors (one per each subject) without con-

idering covariance architecture. The results are presented in Fig. 15 d–f.

he distributions of components and their coefficients in the Euclidean

nalysis differ from those of geodesic analysis. 

.10. Experiment 3. Clustering 

Modularity-optimization of multiple k- means clustering was applied

o 734 connectivity matrices. A total of 100 runs of k- means clustering

onstitutes a frequency adjacency matrix ( Fig. 16 a), which was sorted

y modularity optimization ( Fig. 16 b). The frequency adjacency matrix

ndicates how much each pair of nodes is assigned to a same cluster for

artitions from k- means clustering. Connectivity matrices of 734 sub-

ects are categorized into three clusters according to this approach. The

eodesic mean and Euclidean mean for each cluster and their difference

re presented in Fig. 16 c-e. The cluster centers 1, 2, and 3 match highly

ith geodesic principal components 1, 3 and 2 in Fig. 15 . 
.11. Experiment 4. Dynamic connectivity 

Dynamics in the functional connectivity was evaluated by clustering

liding-windowed connectivity matrices, followed by calculating a tran-

ition matrix among the clusters. rs-fMRI time series data (1200 tempo-

al scans) from a subject was divided into 83 epochs by a sliding window

pproach with a window size of 42 (30 s, 0.72 sec/sample) and an over-

ap of 28 (20 s) ( Fig. 17 a). We calculated correlation matrices for all

he epochs. Total 100 k- means clustering were applied to the 83 corre-

ation matrices in the SPD space to compose a frequency adjacency ma-

rix ( Fig. 17 b), which was used for modularity optimization ( Fig. 17 c).

e presented the three geodesic cluster centers ( Fig. 17 d) and the tran-

ition matrix that shows the number of transitions among the clusters

 Fig. 17 e). 

.12. Experiment 5. Performance comparison between AIRM and LERM 

We presented the reliability and computational burden innate to

ntrinsic Fréchet mean computation using AIRM against log-Euclidean

ounterpart (LERM) in Fig. 18 . It is common practice to take extrinsic
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Fig. 11. An example for principal geodesic analysis (PGA) of correlation matrices. 30 correlation matrices in (b) were generated by randomly weighting C1, C2 and 

C3 correlation matrices in (a). The weights for C1 were multiplied by 1.2. The explained variances of principal components are displayed in the first panel of (c). The 

sample distributions in the principal component axes are shown in the second panel of (c). The initial weights for C1 and weights for the first principal component 

(PC1) are displayed in the third panel of (c). 
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ean as a starting point for gradient descent algorithm due to its asymp-

otic convergence ( Bhattacharya and Bhattacharya, 2012 ). This means

hat the strategy we take inevitably requires additional computing time

or an iterative scheme but it may be negligibly small by taking a good

tarting point. We compare the performance of two aforementioned

rameworks in computing Fréchet mean of 1000 covariance matrices

𝑖 , 𝑖 = 1 , … , 1000 independently generated from Wishart distribution

 𝑝 ( 𝑉 , 𝑛 ) for a range of dimensions (network size) 𝑝 = 50 , 100 , … , 500 ,
 = 𝐼 𝑝 a scale matrix with 𝑛 = 10000 degrees of freedom which is suf-

cient to guarantee the definiteness of generated samples. The mean

quared difference between mean covariances estimated by using AIRM

nd LERM is presented in the left panel of Fig.18 and the CPU time

n seconds are displayed in the right panel of Fig. 18 . The experiment

as conducted on a personal computer with a quad-core Intel i7 CPU
unning at 4 GHz and 24GB RAM (Apple iMac, 2014) using MATLAB

2019b without any explicit parallel computing involved. 

. Discussion 

Use of correlation matrix for resting state or task-dependent fMRI has

een a basic tool for functional brain network analysis. The implicit as-

umption of conventional functional network analysis is that each edge

s constructed (and can be dealt with) separately from other edges by

epetitive pairwise correlation analysis. It has little considered the cor-

elation matrix as a whole and often neglects correlated nature of edges.

n some applications, multiple edges are modeled to be jointly involved

n the brain diseases or cognitions. However, the vectorization-based

ultivariate approach does not acknowledge that each edge itself is a
Fig. 12. Test of equal distributions. (a) and (b) show empirical 

type 1 errors with increasing number of observations in the x-axis 

for simulations with C2 and C3 at the significance level 𝛼 = 0 . 05 . 
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Fig. 13. The brain regions used in the evaluation of the default mode network. a) The brain network includes the superior frontal gyrus (SFG), medial orbitofrontal 

cortex (MOF), parahippocampus (PHC), precuneus (PrC) and inferior parietal lobe (IPL) according to the Desikan-Killiany atlas ( Desikan et al., 2006 ). The brain 

regions in the left hemisphere are presented. The first letters “l ” and “r ” in each region’s name indicate left and right hemisphere. b) The geometric average of a 

group of 734 functional connectivity matrices (FC) is presented. All square pixels in the connectivity matrix indicate edges among the brain regions. Dots in (b) 

indicate edges that show 5% differences between Euclidean average and geometric average of group connectivity matrices. c) Functional connectivity matrices of 

30 exemplary subjects are displayed. 
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esult of multi-nodal activities and has interrelatedness with others in

onsequence. It is not difficult to find neurobiological examples that the

asic assumption does not hold. For example, some nodes (such as the

entral tegmental area and the substantia nigra pars compacta in the

opamine pathway or the raphe nucleus in the serotonin pathway) play

odulatory roles for multiple edges (thus, they are interrelated). There-

ore, a single edge may well be considered in association with other

dges. This is the rationale to deal with correlation matrix as a whole. 

Since the correlation matrix is a type of SPD objects which have a

one-shape Riemannian geometry, we need to take advantage of dealing

orrelation matrices as manifold-valued objects with corresponding ge-

metric structure. Persistent inversion of covariance matrices for groups

n Figs. 5 and 6 is such an example. We can also find several examples

n the functional connectivity analysis using the correlation matrix on

he SPD manifold ( Dai et al., 2016 ; Dai et al., 2020 ; Deligianni et al.,

011 ; Ginestet et al., 2017 ; Ng et al., 2016 ; Qiu et al., 2015 ; Rahim et al.,

019 ; Varoquaux et al., 2010 ; Yamin et al., 2019 ). 

Varoquaux et al. (2010) introduced Fréchet mean and variation of

orrelation matrices to detect functional connectivity difference in the

ost-stroke patients using group-level covariance averages and demon-

trated an increased statistical power in the detection compared to the

uclidean space. They also proposed a bootstrap procedure for pairwise

oefficient analysis on the tangent space to ensure mutual independence

mid coordinates. In compared to their study, we propose bootstrap-

ing directly on intra-group differences to infer statistical significance

f edge difference. Rahim et al. (2019) utilized SPD geometry in esti-

ating functional connectivity of individuals by pulling all covariance

atrices to tangent space around Fréchet mean and constructed an em-

irical prior derived from the tangentialized data to be used as a group-

evel shrinkage mechanism for individual covariances. In estimating be-

aviors using covariance matrix, Ng et al. (2016) utilized a whitening

ransport approach which applies log mapping along the identity matrix

fter removing the reference covariance effect instead of conventional

arallel transport approach. Ginestet et al. (2017) proposed a method

o hypothesis testing for binarized connectivity matrix in the SPD space
sing the graph Laplacian matrix which inherits SPD structure by its na-

ure. Yamin et al. (2019) compared brain networks between twins with

eodesic distance on the SPD manifold. Deligianni et al. (2011) proposed

 regression analysis on the SPD manifold in inferring brain functional

onnectivity from anatomical connections. The change point detection

as also been conducted in the SPD space by Dai et al. (2016) who con-

ucted stationarity testing of functional connectivity obtained by the

inimal spanning tree in conjunction with resampling-based decision

ules. Dai et al. (2020) also proposed a metric for trajectories on the SPD

anifold to learn individuals’ dynamical functional connectivity at the

opulation level based on distance-based learning methods. This mainly

iffers from current smoothing approach proposed by Lin et al., (2017 )

n that we stand in line for a nonparametric modeling of the smoothed

rajectory itself. Besides fMRI study, Sadatnejad et al. (2019) intro-

uced a clustering method on the SPD to represent EEG. Several studies

ave conducted dimension reduction for machine learning in the SPD

pace. Qiu et al. (2015) conducted a manifold learning on functional

etworks using regression upon age after transforming covariance to

he Euclidean space by applying logarithmic map at the identity ma-

rix. Davoudi et al. (2017) suggested a dimensionality reduction based

n distance preservation to local mean for symmetric positive definite

atrices. Xie et al. (2017) also conducted classification after dimension

eduction based on bilinear sub-manifold learning of SPD. 

The current study can be in line with and an extension of those

revious studies, by introducing more algorithms in particular to func-

ional brain network analysis, which were previously used or concep-

ualized in the SPD research fields. The inference algorithms we newly

ntroduced in the functional connectivity analysis are smoothing and re-

ression, principal geodesic analysis, clustering and statistical tests for

orrelation-based functional connectivity. 

The regression of SPD is to find a relationship between a covariate

nd covariance matrix, which was generally approximated by minimiz-

ng errors (measured data minus predicted ones with a learned regres-

ion function). This regression framework for SPD is not trivial since the

oncept of subtraction may not be straightforward. Lin et al. (2017) pro-
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Fig. 14. Geodesic regression analyses for connectivity matrices with Pittsburgh Sleep Quality Index (PSQI) score (a and b), Number of Correct Responses of Penn 

Progressive Matrices (PMAT24_A_CR) (c and d) and Total Skipped Items of Penn Progressive Matrices (PMAT24_A_SI) (e and f). To optimize the regression kernel 

bandwidth, 5-folds cross-validation (CV) errors were calculated for every bandwidths h (a, c and e). The bandwidths were set to be exponentially increasing from 

exp(-3) to exp(1) in 20 steps. The bandwidth that have minimal CV errors or curve knee points were chosen to be optimal (green rectangle). The regression results 

were presented in the form of connectivity matrix for a 10 equispaced scores (x) from the minimum to the maximum scores (b, d and f). To designate changes in 

the edges for visualization purpose, we marked edges that have 20%, 30% and 40% change ratios between the connectivity matrices of the lowest (the regressed 

connectivity for the first score, C 1 ) and highest scores (the regressed connectivity for the last score, C n ). The ratio r was defined by the absolute difference between the 

connectivity for the first and last scores, normalized by the mean connectivity across all scores, 𝑟 = |𝐶 𝑛 − 𝐶 1 |
1 
𝑁 

∑𝑛 

𝑖 =1 𝐶 𝑖 
× 100 , where C i indicates the representative (regressed) 

connectivity matrix at the score i (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 
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osed a powerful regression method associating manifold-valued re-

ponse and vector-valued explanatory variables by applying kernel re-

ression onto transformed responses under some embedding that pre-

erves geometric information ( Nadaraya, 1964 ; Watson, 1964 ). We uti-

ized this nonparametric regression framework to associate functional

onnectivity against one-dimensional covariate. Although we focused

n a one-dimensional covariate for simplicity in the current study, this

egression can be easily extended to cases with multiple covariates.

his approach differs from most of previous studies on regression anal-

sis of functional networks, which have dealt with correlation matri-

es element (edge) by element (edge) separately from each other edge

 Dosenbach et al., 2010 ; Siman-Tov et al., 2016 ). The introduced regres-

ion also differs from Qiu et al. (2015) which performs Locally Linear
mbedding to embed manifold-valued covariates into Euclidean space

o that conventional regression models can directly be used. However,

he method by Qiu et al. (2015) does not guarantee straight-forward

nterpretation of acquired regression coefficients. 

In the SPD smoothing and regression analysis, the main issue is how

o determine the kernel bandwidth (or smoothness) residing in the SPD

ata. Since the current geodesic smoothing is a data-driven approach,

e opted for a cross-validation scheme to determine the kernel band-

idth ‘ h ’. When we applied the proposed regression analysis to func-

ional networks according to behavior scores, i.e., the PSQI scores or

MAT scores, it estimates meaningful architecture in the functional net-

ork. The result suggests the advantage of SPD regression in exploring

ow functional network changes along a covariate as a whole, not ele-
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Fig. 15. Principal geodesic analysis and Euclidean principal component analysis of connectivity matrices. The explained variance for 9 components is presented 

in (a). The top three principal geodesic components (gPC) derived from 734 connectivity matrices are presented in (b). The distributions of coefficients for all 

connectivity matrices projected onto the top three components are presented in (c). Euclidean principal component analysis shows different explained variance curve 

(d) and components (e) compared to those of geodesic component analysis. Distributions of 734 coefficients for the three principal components, ePC1, ePC2 and 

ePC3, are displayed in (f). 
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ent by element. In the current study, we evaluated the performance of

he current smoothing and regression analysis for a prespecified noise

evel. Further elaboration with a more extensive range of noise lev-

ls will be worthy in understanding the performance of the proposed

ethod. 

As a multivariate analysis of covariance matrices, principal com-

onent analysis ( Leonardi et al., 2013 ) or independent component

nalysis ( Park et al., 2014 ) has been used in the Euclidean space.

letcher et al. (2004) introduced a principal geodesic analysis onto

he setting with manifold-valued data. Since there is no direct counter-

art of empirical covariance matrix and eigen-decomposition on Rie-

annian manifold, a local approach was first taken in the study of

letcher et al. (2004) . So far, the principal geodesic analysis has been

pplied to shape analysis ( Aljabar et al., 2010 ; Fletcher et al., 2004 )

nd diffusion tensor analysis ( Fletcher and Joshi, 2004 ). In this study,

e introduce principal geodesic analysis to the analysis of functional

etworks in the form of correlation matrices. As shown in Fig. 15 , there

re significant differences in the principal components and their coeffi-

ients between the two approaches. As a limitation in principal geodesic

nalysis for the network analysis, not much is known for noise effects

in the covariance matrix) on the principal geodesic analysis. We can-
ot disregard the computational cost for the large-sample, large-scale

etwork analysis. 

k- means, though powerful in the clustering, is known to suffer from

wo major drawbacks. First, it is NP-hard in general so that finding

he optimal solution is troublesome ( Aloise et al., 2009 ). Lloyd’s al-

orithm provides a heuristic approach to obtain suboptimal solutions

iven an initialization but outcome variability cannot be removed by

ifferent initial partitioning ( Celebi et al., 2013 ). Although many vari-

nts have been proposed to overcome such instability including a pop-

lar initialization method k-means ++ ( Arthur and Vassilvitskii, 2007 ),

e still choose random initialization scheme since extra computational

omplexity by such methods can be high especially in our context. Some

ethods cannot be directly transferred due to our geometric restrictions

here the structure of Euclidean geometry cannot be directly transfer-

ble. We can achieve good-enough solutions via parallel computing on

ultiple initializations. The second drawback of is the selection of clus-

er numbers k . Unlike probabilistic and Bayesian methods where statis-

ical inference on k is achievable within their modeling framework, a

amily of k- partitioning algorithms - k- means and its variants – requires

ost hoc model selection procedures to determine the number of clus-

ers. Among many cluster quality scores, we implement an adaptation
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Fig. 16. Modularity optimization of multiple k- means clustering. Total 100 runs of k- means clustering compose a frequency adjacency matrix of all pairs of two 

nodes being in a same cluster (a). The modularity optimization of the frequency adjacency matrix results in sorted clusters (b). The centers for all three clusters 

derived by geodesic mean (c), Euclidean mean (d) and their difference (e) are presented. 
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f celebrated Silhouette method ( Rousseeuw, 1987 ) to our context since

t only relies on any distance metric. 

To overcome the problems inherent in the k- means clustering such

s dependency on the initial value and cluster number, we grafted a

odularity-based clustering method ( Jung et al., 2019 ) onto SPD space.

his clustering approach constructs a frequency adjacency matrix that

ounts partition co-occurrence for each pair of samples after multiple

uns of k- means clustering. The modularity optimization of the fre-

uency adjacency matrix leads to reliable clustering of correlation ma-

rices, robust to selection of initial values and cluster numbers. 

To note, Cluster Validity Index is a thematic program to measure ef-

ectiveness of a given clustering though it has not been fully extended

or Riemannian manifold. The extension of the popular evaluation in-

ices from literature to large-scale clustering of functional connectivity

atrices remains to be researched further. 

Any SPD clustering algorithms can readily be used to the analysis of

ynamic functional networks as shown in Fig. 17 . The dynamics of func-

ional connectivity has been summarized by transition matrix among

everal representative states, which was estimated by k- means cluster-

ng in the Euclidean space ( Allen et al., 2014 ; Damaraju et al., 2014 ).

e showed that this framework for dynamic connectivity analysis can

e applied in the SPD space. 

As mentioned earlier, a collection of correlation matrices takes ac-

ount into a submanifold of SPD matrices with a unit diagonal con-

traint. This causes some operations with correlation matrices not neces-

arily resulting in another correlation matrix. In this study, we normal-

zed resulting matrices into correlation matrices whenever necessary un-

er the philosophy of iterative projection onto the submanifold, which

s a constrained set within SPD manifold. If we consider one convention

o normalize BOLD signals to rule out the effect of signals’ magnitude,

his inevitably converts covariance to correlation matrices while the lit-

rature has been little careful in distinguishing unexpected impact of

uch scenario. At this stage, we resort to an ad-hoc approach to deal

ith correlation matrices even within the SPD geometric structure. One
andidate to overcome such inconvenience includes elliptope structure

ven though current literature largely deals with rank-deficient correla-

ion matrix and lacks concrete theoretical studies at the moment. For the

ull-rank scenario, it is possible to consider a Riemannian submersion by

n isometric action by the set of positive diagonal matrices from the Lie

roup theory to extend the affine-invariant framework. However, this

xponentiates the computational burden while the gain is thin compared

o that of our ad-hoc approach. This necessitates to further extensive in-

estigation of what we would benefit from adopting such structure. 

Statistical analysis or classification of functional connectivity over

he SPD manifold is recommended compared to directly applying those

ethods to vectorized correlation matrices because the inter-relatedness

mong elements in the covariance matrices violates “the uncorrelated

eature assumption ” implicit in most statistical analysis or classification

lgorithms ( Ng et al., 2016 ). In practice, however, analysis of functional

onnectivity under SPD framework may not always be beneficial com-

ared to the Euclidean treatment in statistical analysis or in the machine

earning. This may be particularly true in the high dimensional net-

orks which incurs high computational cost. One possible bottleneck

omes from an observation that in both AIRM and LERM geometries, an

tomic operation that is no more algorithmically divisible involves ma-

rix exponential and logarithm which are of comparable complexity as

igen-decomposition of symmetric matrices. Still, it does not necessarily

amper application of geometric approaches as long as one avoids anal-

sis at the scale larger than tens of thousands of variables with modern

omputing capabilities. Although this is not usual in the general neu-

oimaging researches (mostly less than 500 ROIs – it takes about 300 s

o calculate geometric mean of 1000 covariances matrices with a size of

00 as shown in Fig. 18 ), executing aforementioned operations requires

eavy exploitation of computing hardware, efficient design of memory

se, and specialized libraries designed for scalable computation, which

s an interesting research direction of its own importance in the future. 

We would also like to point out one requirement for application of

he introduced framework. When the number of scans is small or not
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Fig. 17. State transition analysis of dynamic functional connectivity. A rs-fMRI time series of 1200 samples was divided into 83 consecutive epochs (a window size 

of 42 samples with 28 samples of overlap) (a) and correlation matrices were calculated from each epoch. The vertical lines indicate the starting point of each epoch 

(the gap is 28 samples). The 83 correlation matrices were clustered into three clusters using the modularization optimization of frequency adjacency matrix (b) from 

100 runs of k- means clustering. The sorted frequency adjacency matrix is presented in (c). The centers for the three modules were evaluated by geodesic average of 

the connectivity matrices of the three modules (d). The state transition matrix among the three states (connectivity matrix) is presented in (e). 

Fig. 18. Comparison between AIRM and LERM. The mean squared difference between Fréchet mean of 1000 generated covariances estimated by using AIRM and 

LERM with different matrix sizes (left) and the average computational time (in seconds) to compute Fréchet mean of 1000 covariance matrices with different matrix 

sizes (right). 
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ufficient enough compared to that of variables, empirical covariance,

recision, and correlation matrices (conventionally used for fMRI con-

ectivity analysis) are likely to be rank-deficient while two geometries

e revisited require those representation matrices to be strictly positive

efinite. To mitigate this issue, some of the aforementioned frameworks

uch as Wasserstein, Procrustes, Cholesky, and any other geometries that

o not require operations like matrix exponential and logarithm can be

n alternative ( Dryden et al., 2009 ; Takatsu, 2011 ). Also, it is natural

o consider using more elaborated methods to estimate such matrices

nder assumptions like sparsity, strict non-singularity, and others. Esti-

ation of high-dimensional covariance and precision matrices has long

een a major problem in statistics and related communities in that we

efer interested readers to Fan et al. (2016 ), Hong and Kim (2018 ), Lam

2019 ) for reviews to explore deep and expanded line of research on the

opic. 

The geometric approach to functional connectivity analysis is still

arly in the neuroimaging fields and we expect to find more examples

hat show advantages of dealing correlation matrices on the SPD space.

e also expect that a MATLAB based toolbox for analyzing connectivity

atrices would expediate geometric analysis of functional networks on

he SPD manifold. 
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