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ABSTRACT

COVID-19, since its discovery in 2019, has posed a major health problem in the world.

It is caused by the SARS-CoV-2 virus and is transmitted via infected respiratory droplets and

contaminated surfaces. There is an urgent need to understand the transmission characteristics

of the virus in response to social interventions. This is important to evaluate the overall impact

of such programs in the management of the disease. We seek to develop a mathematical model

that characterizes the transmission dynamics of COVID-19. The model analyzes the impact

of preventive practices on the spread of SARS-CoV-2 by incorporating human behavior in

modeling disease prevalence depending on contact rates for direct and indirect transmissions

and infectious host shedding. The model is also applied to reported data from Wuhan and the

state of Tennessee. Our results imply that applying strategically created awareness programs to

a geological setting can eradicate COVID-19.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

At present, the world faces a pandemic brought about by the SARS-CoV-2 virus. The

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a spike protein virus is the

causative agent of the widespread coronavirus disease. It is known to belong to a broad family

of viruses known as the coronaviruses. The first severe illness caused by a coronavirus is

the 2003 Severe Acute Respiratory Syndrome (SARS) pandemic which started in China. A

second flare-up was the Middle East Respiratory Syndrome (MERS) which was discovered

in 2012 in Saudi Arabia [1].The coronavirus disease 2019 was first declared a Public Health

Emergency of International Concerns by the World Health Organization on January 30, 2020

[2] and finally a pandemic on March 11, 2020 [1] since the disease was determined to be a

public health risk to all nations through the international spread of diseases. The disease is

mostly transmitted through contact with infected respiratory droplets from coughs, sneezes and

speech[3, 4]. Further research has shown that the disease could be transmitted via airborne

transmission [5]. Contact with contaminated surfaces is also a known risk of infection. Some

confirmed symptoms of COVID-19 known to appear after 2-14 days of exposure are coughs,

fever, windedness, muscle pain, loss of smell, diarrhea sore throat, fatigue and running nose.

As at January 11, 2021 there were 680,908 new infected cases recorded worldwide with

222,921 cases in the USA, 4,255 cases in the state of Tennessee and 134 cases in China [6, 7].

A total of 11,416 deaths were recorded worldwide [6]. The American continent currently has

over 40million confirmed cases with the USA leading all other countries in this region and

the world with about 25million confirmed cases. While there seem to be a rapidly increasing

number confirmed cases, there are also several intervention programs created to combat the

current characteristics of the disease. These programs include the current vaccination programs
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which begun in the last quarter of 2020 [8] , use of disinfectants, social distancing, public

health education, use of nose masks and other protective shields, isolation of infected/exposed

persons, funding of COVID-19 projects etc.

Awareness programs as defined in this project comprises all actions and measures aimed

at the prevention and treatment of COVID-19. These range from individual behavioral change

to organizational and worldwide interventions. Social distancing is one of the most utilized

COVID-19 preventive strategies. It is observed by limiting face-to-face interactions by remain-

ing in any event 6 feet from others and maintaining a strategic distance from swarmed places.

This intervention has resulted in the lockdown of several countries and the closing of orga-

nizations such as schools, churches and businesses. Though these interventions appear to be

drastic as they have negative impact on productivity, virtual alternatives for social gatherings,

meet-ups and workplaces have been discovered. Thus, resulting in the booming economies

of the virtual networking industry. Vaccinations is another ongoing major preventive strategy.

Presently, 86,452,579 doses of the various vaccines have been administered worldwide with

US administering about 32% of the doses.[9] Below are the vaccines currently available with

their efficiencies and approvals discussed.

• The Pfizer/BioNtech vaccine is one of the popular administered vaccines known for its

high efficiency against the SARS CoV-2 virus which is 95%. It was approved for emer-

gency use in USA, UK, Canada and the EU in December 2020. Storage and transporta-

tion of the vaccine requires a temperature of -70oC.[10]

• Moderna- this vaccine like the Pfizer vaccine has a high efficacy rate of 94.1% as they

both use a new vaccine approach involving a messenger RNA. It has been approved for

use in the USA, Canada, UK and the EU. Vaccine can be stored at 2-8oC. [9]

• AstraZeneca/Oxford vaccine was approved in India on January 2, 2021 and the UK on

Dec 30, 2020 for emergency use. With clinical trial size of 65,000 people, results show

that the vaccine is 70% effective at preventing laboratory confirmed COVID-19.[8, 11]

• The Novavax vaccine trials currently show 89.3% efficacy against the SARS CoV-2 virus.
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Initial trial phases were conducted in South Africa and the UK whiles further trials are

been conducted in the USA and Mexico. This vaccine is yet to receive approvals as it

is in its trial stage. [9]

• The Johnson & Johnson vaccine is the easiest to store and transport as it requires standard

refrigeration out of the leading vaccines. The single-dose vaccine’s efficacy rate has

currently dropped from 72% in the United States to 66% in Latin America and 57% in

South Africa, where a profoundly infectious variation is driving most cases. The vaccine

is yet to receive approvals as it is presently in its trial stage. [12]

• Sinovac Biotech vaccine is the least effective vaccine with trial-based efficacy rate of

50.38% in Brazil. Though it has a low efficacy rate, it has been approved in Indonesia and

Turkey where is known to have higher efficacy rates of 65.3% and 91.25% respectively.

Vaccination requires two doses whiles storage and transportation can be done in standard

refrigeration conditions. [9, 11]

• Sinopharm- it was approved in China on Dec 31st, 2020 for general use. Clinical trials

conducted on the vaccine shows 79% efficiency. It is currently been administered in

Morocco, China, Hungary and the United Arab Emirates.[9, 11]

• The CanSino Biologics’ vaccine utilizes an innocuous cold virus to transfer its genetic

payload. Only a shot of the vaccine is required. Though its efficacy is yet to be deter-

mined due to delay in clinical trials, it was cleared in June 29, 2020 for China military

use as it was the first COVID-19 vaccine to enter clinical trials.[9]

Notable side effects of these vaccines are pain at the injection site, tiredness, headache, fever

and chills.

1.2 PROBLEM STATEMENT

The 2019 coronavirus disease is a current health problem which was first discovered in

Wuhan, China. Due to its high mortality and infection rates, and the lack of potent treatment

available, it has claimed over 2.6million lives with over 118million infected cases worldwide.
3



Since its emergence, there has been a rise on intervention programs created with the aim of

mitigating its transmission. However the extent of impact of these intervention programs is un-

known. To date, there is no mathematical model that predicts the efficiency of these programs.

So, the impact of the awareness programs is hard to analyze especially on a global scale. Thus,

there is an urgent need for a fit-for-purpose model to probe into the impact of these awareness

programs.

1.3 OBJECTIVES

The study was designed to achieve the following;

• To formulate a mathematical model that measures the impact of current awareness pro-

grams created in efforts of minimizing the spread of COVID-19.

• Analyze the stability of the model developed at the Disease-Free Equilibrium and En-

demic Equilibrium.

• To develop a model to accurately predict the spread of COVID-19.

• Investigate and predict the transmission dynamics of COVID-19 in Wuhan, China and

the state of Tennessee.

1.4 THESIS LAY OUT

Chapter one of the study gives a detailed background of the study, the problem state-

ment, objectives, and thesis lay out. In Chapter 2, we shall put a pertinent related literature on

COVID-19 and the SEIR models. These include publications, journals and seminars. Chap-

ter 3 discusses the model description, model analysis and equilibrium analysis of the model.

Chapter 4 is devoted to numerical simulations and results. Chapter 5, the final chapter presents

the discussion of the results, conclusions, and recommendations for further studies.
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CHAPTER 2

LITERATURE REVIEW

Coronavirinaea, the scientific name of the coronaviruses is a subfamily of enveloped

positive-sense-single stranded RNA viruses known to infect mammals and birds[13, 14] .They

usually cause infectious bronchitis and enteritis in birds, while they cause diarrhea in cows,

rabbits and other mammals alike with a high mortality rate in rabbits. In humans, these viruses

are responsible for several respiratory diseases [13]. Seven strains of the coronaviruses are

known to have infected the human populace[14, 15]. The viruses include;

1. Human Coronavirus OC43 (HCoV-OC43)

2. Human Coronavirus HKU1 (HCoV-HKU1)

3. Human Coronavirus HKU1 (HCoV-NL63) which is also known the New Haven Coron-

avirus

4. Human Coronavirus HKU1 (HCoV-229E)

5. Middle East Respiratory Syndrome-related Corona Virus (MERS-CoV)

6. Severe Acute Respiratory Syndrome

7. Severe Acute Respiratory Syndrome Corona Virus 2 (COVID-19)

Other than the current COVID-19 vaccines, there are no other antiviral treatment to prevent or

cure infections caused by the coronaviruses[16]. Thus there is the need to measure the impact

of the current measures put in place to eradicate the coronavirus disease 2019.

Mathematical modeling has become an increasingly important area as computers are

expanding our innate ability in translating mathematical equations and formulations into precise

conclusions. These models by using basic assumptions and collected statistics can project and
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predict the progress of infectious diseases, show the likelihood of an epidemic, and aid in

deciding which interventions are required.

This chapter focuses on the various studies done in attempt to model the epidemiology

of the coronavirus disease 2019. Several researches have been conducted to aid in the under-

standing of the intrinsic bacterial behavior and transmission dynamics of the causative agents

of COVID-19. However, none has investigated the impact of the intervention programs using

a COVID-19 SEIR deterministic model with compartments for awareness programs and virus

concentration despite the vaccination and preventive measures we have today.

A deterministic model also known as compartmental model, describes the transporta-

tion of materials in a system consisting of a collection of groups that are connected by material

flow. Each compartment comprises of characterized materials and can exchange these materials

with other compartments following some strict principles set for each compartment. The com-

partments are assumed to be homogeneous entities within which the materials being modelled

are equivalent. Materials can also move into a compartment from outside through a source and

be removed to the outside of the biological system under study through a sink or drain. [17]

Deterministic models help to account for the movement of material under study by following

some conservational laws. In the deterministic model, the compartments are developed based

on the law of conservation of energy which states that energy cannot be created nor destroyed

but can change from one form to another. Thus, the differences in energy from one compart-

ment to another can be calculated since no energy is lost during the exchange of materials.

Most deterministic models, in mathematical epidemiology have more than one compartment

represented as equations. These models are generated by following the conservational law of

energy for each equation. Before proposing a model for the transmission behavior of COVID-

19, we briefly examine the earlier proposed models for the study of COVID-19 and their results.

We also in this chapter assess the basic SEIR model and the various ways it has been modified

in disease modelling.
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2.1 THE SEIR MODEL

In 1927, Kermack and McKendrick in their paper “A contribution to the Mathematical

Theory of Epidemics” introduced the idea of having a general procedure to analyze the spread

of contagious epidemics. [18] This general procedure is known today as the SIR model. In the

basic SIR framework, the groups or compartments considered are identified as S-susceptible, I-

infected and R-removed. The process of disease modelling begins with an interaction between

an infected individual and a group of individuals who are at risk of being infected. Several sus-

ceptible people will then become infected, thus joining the infected group. An infected person

then either dies or recovers from the disease. In both cases they are removed from the infected

compartment. When there is an epidemic, the number of susceptible people decreases as it

acts on a brief timeframe and might be portrayed as a sudden outbreak of a disease infecting a

substantial portion of the populace in a geological area before disappearing. In an endemic sit-

uation, however, the disease becomes established in the population and remains for an extended

time.[19]

In constructing epidemics models, demographic effects such are ignored due to the

short duration of the disease since demographic time scales are ordinarily much longer than

the disease timeframe; thus, they are dismissed. Then again, since endemics may endure for a

longer time, it becomes important to include demographic effects in endemic models.[19]

The SEIR model is a modified SIR model which characterizes the incubation period between

the infected period (entry of pathogen) and the stage of infectiousness (shedding of pathogen).

It is very important to model the incubation period (E) explicitly since the individual at the

incubation period has been exposed to a pathogen that may be active or dormant. It has been

used in the study of epidemiological patterns and diseases control since it was proposed by

Cooke and Driessche (1996) [20, 21].

The SEIR model like the SIR model describes the progression of an epidemic consid-

ering the total population to be equally likely to get infected. Here immunity after infection is

assumed, which means individuals do not return to the susceptible compartment after recovery.

Kermack and McKendrick (1927) expressed an epidemic as a sudden outbreak of an infection
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which spreads to several members of a geographical setting [18]. These outbreaks recur until

the majority of the populace develops immunity.

The formulation of the SEIR model was one of the first breakthroughs of mathematical

epidemiology. It has helped in the study of the transmission dynamics of infections such as

cerebrospinal meningitis, malaria, hepatitis A and B [17, 22, 23]. For instance Turner et al

(2016) in their comprehensive study of malaria in humans employed the SEIR model. Com-

bined with a proposed SEI model for malaria in mosquitos they found the causes of the spread

and growth rate of malaria in humans[22]. Side et al (2017) also considered the SEIR frame-

work in their model simulations for Hepatitis B while considering the factors that influence the

dissemination in a population [23]. Several stability analysis have also been conducted on the

SEIR model[24, 25, 20, 26]. The global dynamics of the SEIR model with varying population

size has been studied and found that the endemicity of a disease with non-negligible latent pe-

riod includes the latent and infectious fractions of a population. Li et al (1999) also discovered

three threshold parameters in their disease dissemination analysis; the modified contact number

(measures the ability of a disease to become endemic), the contact number (determines the dy-

namics of the population) and the parameter which measures the extent that diseases regulate

the growth of the host population[24]. Recently, Weinstein et al (2020) in their study of the

SEIR model found the analytical solution of the model by recasting the SEIR model as a single

2nd order nonlinear ODE in ln(s)[26]. Ranjit et al (2019) also proposed and studied the SEIR

model in controlling highly contagious diseases, they recommended the use of the model in

related studies.[27]

COVID-19 colloquially termed as coronavirus, has a fast-spread dissemination rate

which has the attention of all and as such many have conducted studies to understand its dy-

namics. Mathematical epidemiology has played a major role in the research done so far and

several epidemiological models have been formulated and studied to predict and understand

the viral replication and transmission dynamics of the SARS CoV-2 [28, 29, 30]. One of the

early studies was conducted by Li et al (2020) to unravel the cause of rapid dissemination of

the coronavirus disease. Their analysis was done by observing the reported data from Decem-

ber 2019 to January 2020 in Wuhan using a network dynamic metapopulation model. They

8



estimated that about 86% of all infections are undocumented with 95% confidence interval of

82-90%[30]. Thus there were some undetected individuals present in the population who had

been exposed to the virus and were facilitating the spread. The same dynamics are observed

in the disease’s non negligible latent period. Sabbih et al (2020) proposed the SEIS model to

study the disease transmission dynamics suspecting that individual who had recovered from

COVID-19 were still susceptible to reinfection. They also proposed a viral replication model

to help comprehend virus-host cell interactions[28]. Yang and Wang (2020) based on current

clinical diagnosis on reinfection cases proposed the SEIR model in their study of the out-

break of COVID-19 in Wuhan, the epicenter of the disease. Through numerical simulation and

mathematical analysis, they predicted that the coronavirus disease would persist and become

epidemic [31]. Mandal et al (2020) in their investigation to identify rational intervention strate-

gies to control the dissemination of COVID-19 in India employed the SEIR. Their analysis was

limited to quarantine and airport screening as intervention programs. They recommended more

intervention programs to aid in the mitigation response needed[29]. More recently, Mbogo and

Odhiambo (2021) studied the impact of social distancing and mass-testing in Kenya. Their

analysis was conducted using the SEIHQRD model, a modified SEIR epidemic model. Their

findings also suggested that a more dedicated effort from individuals and the government was

required to decrease the infection rate in Kenya[32]. Though several works have been done to

understand the dynamics of the current pandemic, research on the total impact of awareness

programs created is scarce.
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CHAPTER 3

FORMULATION OF MODEL AND ANALYSIS

The population is partitioned into the four SEIR subgroups which consists of individ-

uals who are S-susceptible, E-exposed, I-infected and R-recovered. The number of awareness

programs M(t) and the virus concentration in the environment V(t) at a given time t is included

in the model to simulate the impact of the awareness programs. The model is formulated as;

dS
dt

= Λ−βE(M)SE−βI(M)SI−βV (M)SV −µS+σR,

dE
dt

= βE(M)SE +βI(M)SI +βV (M)SV − (α +µ)E

dI
dt

= αE− (γ +ω +µ)I,

dR
dt

= γI− (µ +σ)R,

dV
dt

= ξ1(M)E +ξ2(M)I−ρV

dM
dt

= χ +ηI−νM

(3.1)

where S, E, I and R denote the number of susceptible, exposed, infected and recoverd individ-

uals respectively, V is the concentration of the virus in the environment and M the number or

density of valid awareness programs. All the parameters involved in the model are positive.

The parameter Λ denotes the population influx, µ the natural death rate of human individuals,

σ the waning rate of the disease induced immunity, α−1 denotes the incubation period, γ the

recovery rate and ω the rate of death induced by infection.βE(M), βI(M), βV (M) represent the

direct and indirect transmission rates by exposed persons, infected individuals and the virus

respectively.

Meanwhile, ξ1(M) and ξ2(M) are host shedding rates from the exposed and infected

individuals respectively and ρ is the rate at which viruses are removed from the environment.
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The number of awareness programs grows with an influx of χ and it is stimulated by disease

prevalence at the rate of η and decays with time at a rate of ν . We assume

1. The transmission and host shedding rates are positive functions on [0,Mmax]

2. β ′E(M)≤ 0,β ′I (M)≤ 0, β ′V (M)≤ 0,ξ ′1(M)≤ 0 and ξ ′2(M)≤ 0

where Mmax =
(

χ +η
Λ

µ

)
/ν

3.1 MODEL ANALYSIS

We begin the model analysis by finding the basic reproduction number,R0 using the

method of next-generation matrix. The new infection matrix and transition matrix were found

as follows;

f =


βE(M)SE +βI(M)SI +βV (M)SV

0

0

 V =


(α +µ)E

−αE +(γ +ω +µ)I

−ξ1(M)E−ξ2(M)I +ρV



F =


βE(M)S βI(M)S βV (M)S

0 0 0

0 0 0

 V =


(α +µ) 0 0

−α (γ +ω +µ) 0

−ξ1(M) −ξ2(M) ρ

 (3.2)

Clearly at the unique disease free equilibrium; DFE

X0 = (S0,E0, I0,R0,V0,M0) = (
Λ

µ
,0,0,0,0,

χ

ν
)

Thus

R0 = ρ(FV−1) =
βE(M0)S0

(α +µ)
+

αβI(M0)S0

(α +µ)k
+

(kξ1(M0)+αξ2(M0))βV (M0)S0

ρ(α +µ)k
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Here ρ implies the spectral radius of the matrix FV−1 and k = (γ +ω +µ)

The first and second terms of R0 ; R0E and R0I comes from the direct transmission route which

is the transmission from the exposed and infected respectively. The last term, R0V represents

the contribution from the indirect transmission route (environment to susceptible).That is;

R0E =
βE(M0)S0

(α +µ)

R0I =
αβI(M0)S0

(α +µ)k

R0V =
(kξ1(M0)+αξ2(M0))βV (M0)S0

ρ(α +µ)k

We continue by comparing the above R0 to the actual R̂0 without the presence of the awareness

programs, thus M = 0.

R̂0 =
βE(0)S0

(α +µ)
+

αβI(0)S0

(α +µ)k
+

(kξ1(0)+αξ2(0))βV (0)S0

ρ(α +µ)k

Based on the assumptions made above, it is observed that R0 ≤ R̂0, indicating that the aware-

ness programs reduces disease transmission risk.
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CHAPTER 4

EQUILIBRIUM ANALYSIS

Let (S, E, I, R, V, M) be an equilibrium of model (3.1), which satisfies the following

equations;

Λ−βE(M)SE−βI(M)SI−βV (M)SV −µS+σR = 0,

βE(M)SE +βI(M)SI +βV (M)SV − (α +µ)E = 0,

αE− kI = 0,

γI− (µ +σ)R = 0,

ξ1(M)E +ξ2(M)I−ρV = 0

χ +ηI−νM = 0

(4.1)

which yields;

S =
1
µ
[Λ− (α +µ)E +σR]

E =
kI
α

R =
γI

(µ +σ)

V =
kξ1(M)+αξ2(M)

αρ
I

M =
χ +ηI

ν

(4.2)

It follows from S+E + I +R = Λ

µ
and the second and third equations of (4.2)

S1 =
Λ

µ
−b1I = φ(I), (4.3)

with b1 = 1+ k
α
+ γ

(µ+σ)
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Combining equation 2 of (4.1) with (4.2) we get

S2 = ψ(I) =
(α +µ)

f (I)
(4.4)

where f (I) is defined with h(I) = M = χ+ηI
ν

as;

f (I) = βE(h(I))+
α

k
βI(h(I))+

kξ1(h(I))+αξ2(h(I))
kρ

βV (h(I))

We now consider the curves S = φ(I) and S = ψ(I), I ≥ 0

The intersection of the curves in R2
+ determines the non-DFE equilibria. Note that

f ′(I) = h′(I)

β
′
E(h(I))+

α

k
β
′
I (h(I))+

kξ ′1(h(I))+αξ ′2(h(I))
kρ

βV (h(I))

+
kξ1(h(I))+αξ2(h(I))

kρ
β
′
V (h(I))


Using assumptions 1 and 2, and the fact that h′(I) = η

ν
> 0, we see that f ′(I) ≤ 0. Which

implies that ψ(I) is an increasing function. On the other hand,

b1 > 0 and φ
′(I) =−b1 < 0

Thus φ(I) is strictly decreasing.

Additionally, one is able to verify that at I = 0, φ(0) = λ

µ
= S0

ψ(0) = (α +µ)

[
βE(

χ

ν
)+

α

k
βI(

χ

ν
)+

kξ1(
χ

ν
)+αξ2(

χ

ν
)

kρ
βV (

χ

ν
)

]−1

=
S0

R0

At I = Λ

µb1
, φ( Λ

µb1
) = 0 and ψ( Λ

µb1
)> 0. Therefore we can conclude that;

1. If R0 > 1, these two curves have a unique intersection lying in the interior of R2
+, due to

ψ(0) < φ(0) and ψ( Λ

µb1
) > φ( Λ

µb1
). Moreover, at this intersection point, equation (4.2)

yields E,R,V,M > 0 (since I > 0).

2. If R0 ≤ 1, the two curves have no intersection in the interior of R2
+ as ψ(0)≥ φ(0).
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Therefore, by Equation (4.2), we find that if R0 ≤ 1, the model (3.1) admits a unique equi-

librium, the DFE, X0 = (S0,E0, I0,R0,V0,M0); and it admits two equilibria, the DFE and an

endemic equilibrium (EE), X∗ = (S∗,E∗, I∗,R∗,V∗,M∗), if R0 > 1.

In what follows, we perform a study on the global stability of the DFE. By a simple comparison

principle, we find that 0≤ S+E + I +R≤ S0,

0≤V ≤ (ξ1(0)+ξ2(0))S0
ρ

and M0 ≤M ≤Mmax

Thus it leads to a biological feasible domain

Ω =

 (S,E, I,R,V,M) ∈ R6
+ : S+E + I +R≤ S0,0≤V ≤ (ξ1(0)+ξ2(0))S0

ρ

and M0 ≤M ≤Mmax



Theorem 4.0.1. The following statements hold for model (3.1)

1. If R0 ≤ 1,the DFE of system (3.1) is globally assymptotically stable in Ω.

2. If R0 > 1, the DFE of system (3.1) is unstable and there exists a unique endemic equilib-

rium. Moreover the disease is uniformly persistent, namely, liminft→∞ (E(t), I(t),V (t))>

(c,c,c) for some c > 0 with the initial condition in the interior of Ω, denoted by Ω̊.

Proof

Let x = (E, I,V )T We can easily verify that

dx
dt
≤ (F−V )x

where the matrices F and V are given above in equation (3.2)

Take u =
(
βE(

χ

ν
),βI(

χ

ν
),βV (

χ

ν
)
)
. It follows from the fact that R0 = ρ(FV−1) = ρ(V−1F) and

direct calculation that u is a left eigenvector associated with the eigenvalue R0 of the V−1F ,

that is uV−1F = R0u.
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We continue by considering a Lyapunov function;

L = uV−1x

Differentiating L along the solutions of (3.1), we have

dL

dt
= uV−1 dx

dt
≤ uV−1(F−V )x = u(R0−1)x

Case 1: If R0 < 1, the equality dL
dt = 0 implies that ux = 0 which lead to E = I = V = 0 by

noting the positive components of u. Hence, R0 < 1, equation (3.1) yields S = S0, M = M0 and

E = I = R =V = 0. Thus, the invariant set on which dL
dt = 0 contains only one point, DFE.

Case 2: If R0 = 1 then the equality dL
dt = 0 implies that

(
βE(M)S

S0
+

αβI(M)

k
+

(kξ1(M)+αξ2(M))βV (M)

kρ
− α +µ

S0

)
E

+

(
S
S0

βI(M)−βI(
χ

ν
)

)
I +
(

S
S0

βV (M)−βV (
χ

ν
)

)
V = 0

One can easily see that

S
S0

βI(M)−βI(
χ

ν
)≤ 0,

S
S0

βV (M)−βV (
χ

ν
)≤ 0 and

βE(M)S
S0

+
αβI(M)

k
+

(kξ1(M)+αξ2(M))βV (M)

kρ
− α +µ

S0

≤ α +µ

S0

(
βE(

χ

ν
)S0

(α +µ)
+

αβI(
χ

ν
)S0

(α +µ)k
+

(kξ1(
χ

ν
)+αξ2(

χ

ν
))βV (

χ

ν
)S0

ρ(α +µ)k
−1

)

=
α +µ

S0
(R0−1) = 0

Note that M0 =
χ

ν

Thus, we have either E = I = V = 0, or βE(M) = βE(
χ

ν
), βI(M) = βI(

χ

ν
), βV (V ) =

βV (
χ

ν
), and S = S0. As processed before, each of these cases would indicate the DFE X0 is the

only invariant set on
{
(S,E, I,R,V,M) ∈Ω : dL

dt = 0
}

.
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Therefore, in either case, the largest invariant set on which dL
dt = 0 consists of the

singleton X0 = (S0,0,0,0,0,M0). By LaSalle’s invariant principle (LaSalle 1976), the DFE is

globally asymptotically stable in Ω if R0 ≤ 1.

In contrast, if R0 > 1, then it follows from the continuity of vector fields that dL
dt = 0

in a neighborhood of the DFE in Ω̊. Thus the DFE is unstable by the Lyapunov stability theory.

The last part can be proved by the persistent theory[33] which is similar to the proof of Theorem

2.5 in Gao and Ruan (2011)[34].

We proceed to conduct an analysis on the global asymptotic stability of the endemic

equilibrium. For simplicity, we denote;

βE(M) = βE , βI(M) = βI , βV (M) = βV , βE(M∗) = β ∗E , βI(M∗) = β ∗I , βV (M∗) = β ∗V .

To establish the global stability of X∗, we assume

(
1− βEE

β ∗EE∗

)(
1−Mβ ∗EE∗

M∗βEE

)
≥ 0 (4.5)

for 0≤ E ≤ Λ

µ
and M0 ≤M ≤Mmax.

Theorem 4.0.2. Suppose that equation (4.5) holds; ξ1(M)≡ ξ1 and ξ2(M)≡ ξ2 are constants;

σ = 0, and βE(M)E, βI(M)I and βV (M)V are non-decreasing functions of the variable M. If

R0 > 1, then the unique endemic equilibrium X∗ of (1) is globally asymptotically stable in Ω̊.

Proof

Let LZ =
∫ Z

Z∗
X−Z∗

X dX for Z > 0 where Z∗ > 0 and Z can be replaced by S,E, I,V or M. Clearly

LZ ≤ 0 with the equality holding if and only if Z = Z∗. Differentiating LS,LE ,LI,LV and LM

along the solutions of (3.1) with the equlibrium equations in (4.1) yields;

L′S =
(

1− S∗
S

)
S′ =

(
1− S∗

S

)[
β
∗
ES∗E−βESE +β

∗
I S∗I−βISI +β

∗
V S∗V −µS

(
1− S∗

S

)]
≤
(

1− S∗
S

)
[β ∗ES∗E−βESE +β

∗
I S∗I−βISI +β

∗
V S∗V ]

= β
∗
EE∗S∗

(
1− S∗

S
− βEES

β ∗EE∗S∗
+

βEE
β ∗EE∗

)
+β

∗
I I∗S∗

(
1− S∗

S
− βIIS

β ∗I I∗S∗
+

βII
β ∗I I∗

)
+β

∗
VV∗S∗

(
1− S∗

S
− βVV S

β ∗VV∗S∗
+

βVV
β ∗VV∗

)
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L′E =

(
1− E∗

E

)
E ′ =

(
1− E∗

E

)
[βESE +βISI +βV SV − (α +µ)E]

= β
∗
EE∗S∗

(
1− E

E∗
+

βEES
β ∗EE∗S∗

− βES
β ∗ES∗

)
+β

∗
I I∗S∗

(
1− E

E∗
+

βIIS
β ∗I I∗S∗

− βIISE∗
β ∗I I∗S∗E

)
+β

∗
VV∗S∗

(
1− E

E∗
+

βVV S
β ∗VV∗S∗

− βVV SE∗
β ∗VV∗S∗E

)
Adding L′S and L′E , we obtain the following the results,

L′S +L′E ≤ β
∗
EE∗S∗

(
2− S∗

S
− E

E∗
+

βEE
β ∗EE∗

− βES
β ∗ES∗

)
+β

∗
I I∗S∗

(
2− S∗

S
− E

E∗
+

βII
β ∗I I∗

− βIISE∗
β ∗I I∗S∗E

)
+β

∗
VV∗S∗

(
2− S∗

S
− E

E∗
+

βVV
β ∗VV∗

− βVV SE∗
β ∗VV∗S∗E

)

Notice that x−1≥ In(x) for x > 0 and equality holds if and only if x = 1. Together with (4.5)

we find that;

2− S∗
S
− E

E∗
+

βEE
β ∗EE∗

− βES
β ∗ES∗

=−
(

1− βEE
β ∗EE∗

)(
1−Mβ ∗EE∗

M∗βEE

)
+3− S∗

S
− βES

β ∗ES∗
−Mβ ∗EE∗

M∗βEE
− E

E∗
+

M
M∗

≤−
(

S∗
S
−1
)
−
(

βES
β ∗ES∗

−1
)
−
(

Mβ ∗EE∗
M∗βEE

−1
)
− E

E∗
+

M
M∗

= ln
(

S∗
S

βES
β ∗ES∗

Mβ ∗EE∗
M∗βEE

)
− E

E∗
+

M
M∗

=
M
M∗
− ln

M
M∗
− E

E∗
+ ln

E
E∗

Thus,

L′S +L′E ≤ β
∗
EE∗S∗

(
M
M∗
− ln

M
M∗
− E

E∗
+ ln

E
E∗

)
+β

∗
I I∗S∗

[(
βII

β ∗I I∗
−1
)(

1− β ∗I
βI

)
+

I
I∗
− E

E∗
− ln

I
I∗
+ ln

E
E∗

]
+β

∗
VV∗S∗

[(
βVV
β ∗VV∗

−1
)(

1−
β ∗V
βV

)
+

V
V∗
− E

E∗
− ln

V
V∗

+ ln
E
E∗

]
≤β
∗
EE∗S∗

(
M
M∗
− ln

M
M∗
− E

E∗
+ ln

E
E∗

)
+β

∗
I I∗S∗

(
I
I∗
− E

E∗
− ln

I
I∗
+ ln

E
E∗

)
+β

∗
VV∗S∗

(
V
V∗
− E

E∗
− ln

V
V∗

+ ln
E
E∗

)
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The last inequality follows assumption (2) and Theorem 4.0.2 which implies that βD(M)

and βD(M)D, where D represents E, I orV are non-increasing and non-decreasing respectively.

Therefore

1− β ∗D
βD
≤ 0⇐⇒ D∗ ≤ D⇐⇒ βDD

β ∗DD∗
−1≥ 0

Similarly, we obtain the following;

L′I =
(

1− I∗
I

)
I′ = αE∗

(
E
E∗
− I

I∗
− I∗E

IE∗
+1
)
≤ αE∗

(
E
E∗
− I

I∗
+ ln

I
I∗
− ln

E
E∗

)

L′V =

(
1− V∗

V

)
V ′ = ξ1E∗

(
E
E∗
− V

V∗
− V∗E

V E∗
+1
)
+ξ2I∗

(
I
I∗
− V

V∗
− V∗I

V I∗
+1
)

≤ ξ1E∗

(
E
E∗
− V

V∗
+ ln

V
V∗
− ln

E
E∗

)
+ξ2I∗

(
I
I∗
− V

V∗
+ ln

V
V∗
− ln

I
I∗

)

L′M =

(
1−M∗

M

)
M′ =−χ

M
M∗

(
1−M∗

M

)2

+ηI∗

(
I
I∗
− M

M∗
−M∗I

MI∗
+1
)

≤ ηI∗

(
I
I∗
− M

M∗
+ ln

M
M∗
− ln

I
I∗

)
We proceed to consider the Lyapunov function below.

L = LS +LE + c1LI + c2LV + c3LM

where ci > 0, for (i = 1,2,3) are constants to be determined. It is easy to verify that L ≥ 0 for

all S,E, I,V,M > 0 and,

L ′ ≤(β ∗EE∗S∗+β
∗
I I∗S∗+β

∗
VV∗S∗− c1αE∗− c2ξ1E∗)

(
ln

E
E∗
− E

E∗

)
+(β ∗I I∗S∗− c1αE∗+ c2ξ2I∗+ c3ηI∗)

(
I
I∗
− ln

I
I∗

)
+(β ∗VV∗S∗− c2(ξ1E∗+ξ2I∗))

(
V
V∗
− ln

V
V∗

)
+(β ∗EE∗S∗− c3ηI∗)

(
M
M∗
− ln

M
M∗

)
=0
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Taking c1 =
β ∗I I∗S∗

αE∗
+

β ∗E E∗S∗
αE∗

+
ξ2β ∗VV∗S∗

(kξ1+αξ2)E∗
, c2 =

kβ ∗VV∗S∗
(kξ1+αξ2)E∗

and c3 =
β ∗E E∗S∗

ηI∗

It is observed by direct calculation that the right-hand side of the inequality is zero, with the

equality holding if and only if (S,E, I,V,M) = (S∗,E∗, I∗,V∗,M∗) This shows that L ′ ≤ 0 with

the chosen positive constants c1, c2, and c3. Moreover, if L ′ = 0, then there exists a constant q̂

such that

S = S∗, E = q̂E, I = q̂I∗, V = q̂V∗, M = q̂M∗ (4.6)

However, by the last equation of (4.1),0 = χ +η q̂I∗− ν q̂M∗ This implies that q̂ = 1. Mean-

while, R = R∗ which follows from the third equation of (4.1). Thus, the largest invariant set for

which L ′ = 0 contains only the EE, that is X∗. Therefore, by LaSalle’s invariant principle [35],

the EE is globally asymptotically stable in Ω̊ when R0 > 1.
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CHAPTER 5

NUMERICAL SIMULATIONS AND RESULTS

We now run simulations on the proposed model to obtain visual interpretations of the

disease transmission at the disease-free equilibrium and the endemic equilibrium. We also

run data fitting simulations with reported data from Wuhan, the epicenter of the coronavirus

disease and the state of Tennessee [36, 7]. In exploring the disease dynamics at selected values

of R0 = 2.672 and R0 = 0.663, we used most parameter estimates from Yang and Wang (2020)

[31]. We expressed the transmission and shedding rates functions as;

βE = βE0−bM βI = βI0−bM βV = βV 0−bM

ξ1 = ξ10− cM ξ2 = ξ20− cM
(5.1)

where βE0, βI0, βV 0, b and c are all positive valued constants. We initially make calculated as-

sumptions on the values of χ , η , ν and c as their estimates are not available in published models

and eventually estimate their actual values in our data fitting using the standard least squares

method. In the table below we define and indicate the parameters and their estimated values

used in our model simulations. The initial condition was set as (S(0),E(0), I(0),R(0),M(0)) =

(8998505,1000,475,10,10000,5)
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Table 5.1
Definitions and Estimates of Model Parameters

Parameter Definition Est. MeanR0 > 1 Est. MeanR0 < 1
Λ Population influx rate 271.23/d 271.23/d
µ Natural death rate 3.01×10−5/d 3.01×10−5/d

βE0 Transmission rate const. between S and E 3.11×10−8/p/d 0.8×10−8/p/d
βI0 Transmission rate const. between S and I 0.62×10−8/p/d 0.15×10−8/p/d
βV 0 Transmission rate const. between S and V 1.02×10−8/p/d .2×10−8/p/d
b Transmission adjustment coefficient 0.02×10−9/p/d 0.02×10−9/p/d
c Shedding adjustment coefficient 0.5×10−9ml/d 0.5×10−9ml/d

ξ10 Shedding rate constant from E 5.0×10−8ml/d 1.7×10−8ml/d
ξ20 Shedding rate constant from I 4.0×10−8ml/d 1.5×10−8ml/d
α−1 Incubation period 7d 7d

ρ Virus removal rate 1/d 1d
ω Disease-induced death rate 0.01/d 0.01/d
γ Recovery rate 1/15per d 1/15per d
σ Waning rate of immunity 0.4/d 0.4/d
χ Awarneness programs influx 2.5d 2.5d
η Disease prevalence rate 0.2×10−8/d 0.2×10−8/d
ν Decay rate of awareness programs 0.5/d 0.5/d

Figure 5.1
Model simulations showing the compartmental flow at R0 = 2.672

22



Figure 5.2
Model simulations showing the compartmental flow at R0 = 0.663

To demonstrate the global stability of the DFE and EE we proceed with the plotted

phase portraits using the initial conditions below;

Initial condition1 (magenta)= (8998505 1000 475 10 100000 5)

Initial condition2 (green)=(8992500 5000 2475 15 110000 50)

Initial condition3 (blue)=(8978990 20000 9000 100 150000 25)

Initial condition4 (black)=(8949340 35000 23250 500 20000 1000)

Initial condition5 (red)=(8932090 50000 25000 1000 30000 100)

Initial condition6 (yellow)=(8937090 45000 24000 2000 25000 500)
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Figure 5.3
A phase portrait in the Exposed-Infected plane at R0 = 2.672

Figure 5.4
A phase portrait in the Exposed-Infected plane at R0 = 0.663

The table 5.2 was set up based on the daily reported infection data from Wuhuan (Jan-

uary 23 to February 10). We fit our model to the data by using the standard least squares

method. Based on reported data, the initial condition is set as (S(0),E(0), I(0),R(0),V (0),M(0))=

(8998505,1000,475,10,10000,M(0))[36]
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Table 5.2
Estimates of Model Parameters

Parameter Estimated Mean Source
Λ 271.23/day [31, 37]
µ 3.01×10−5/day [31, 37]

βE0 3.11×10−8/person/day [31, 38]
βI0 0.62×10−8/person/day [31, 38]
βV 0 1.03×10−8/person/day [31]
b fitting by data -
c fitting by data -

ξ10 2.30/person/ml/day [31]
ξ2 0ml/day -

α−1 7days [31, 39]
ρ 1 per day [31, 40]
ω 0.01per day [31, 37]
γ 1/15per day [31, 39]
σ 0per day -
χ 0 per day -
η fitting by data -
ν fitting by data -

Based on the parameter values from data fitting, we are able to evaluate the basic repro-

duction number R0 = 2.899. Specifically, we find that

R0E = 1.959; R0I = 0.727; R0V = 0.213;

The normalized mean square error (NMSE) for the data fitting is found as 0.05372.

Parameter estimates from data fitting from setting M(0) = 0

Table 5.3
Estimates from Data Fitting

Parameter Fitting value 95% Confidence Interval

b 20.539×10−9/person/day (0,0.0016)

c 4.0239×10−12ml/day (0,2.436)

η 2.762×10−11/day (0,0.00219)

ν 2.253×10−11/day (0,0.0455)
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Figure 5.5
Simulation result of cumulative confirmed cases in Wuhan

Figure 5.6
Plot showing the evolution of exposed and infected cases at R0 = 2.899
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Table 5.4
Estimates of Parameters from Data Fitting

Parameter Fitting value 95% Confidence Interval
b 8.0389×10−12/person/day (0,19.281×10−9)
c 2.30×10−10ml/day (0,0.586)
η 0.0009/day (0,0.113)
ν 1.1×10−7/day (0,9.33)

Figure 5.7
A growth curve of awareness programs in Wuhan at M(0) = 0

Below are the data fitting results obtained by extending the initial reported data (January

23, 2020 to March 1, 2020);

The values for the basic reproduction unit in all three transmission routes remained same [36].

The normalized mean square error (NMSE) for the data fitting is found as 0.0389.

Parameter estimates from data fitting from setting M(0) = 5
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Figure 5.8
The cumulative confirmed cases from Jan 23, 2020-Mar 1, 2020 in Wuhan

Figure 5.9
A plot showing the estimated growth of exposed and infected cases in Wuhan
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Figure 5.10
Growth curve of awareness programs in Wuhan in 300 days

We now consider reported data from the state of Tennessee in the USA particularly, the

daily reported data from May 1, 2020 to July 14, 2020[7]. Due to the change in geographical

setting we adjust the major affected parameters and initial conditions whiles maintaining trans-

mission coeffiecient estimates from Wuhan [31, 38]. We fit our model to the data by using the

standard least squares method to obtain values for the awareness programs growth in the state.

Based on the reported data, the initial condition was set as (S(0),E(0), I(0),R(0),V (0),M(0))=

(6896375,2000,1100,15,10000,0). Based on the results from the data fitting, we evaluated the

basic reproduction number at; R0 = 2.223. Specifically, we found;

R0E = 1.502; R0I = 0.558; R0V = 0.1634;

The normalized mean square error (NMSE) for the data fitting is found as 0.05711.
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Table 5.5
Estimates of Model Parameters

Parameter Estimated Mean Source
Λ 198.49/day [41]
µ 2.88×10−5/day [42]

βE0 3.11×10−8/person/day [31, 38]
βI0 0.62×10−8/person/day [31, 38]
βV 0 1.03×10−8/person/day [31, 38]
b fitting by data -
c fitting by data -

ξ10 2.30/person/ml/day [31]
ξ2 0ml/day -

α−1 7days [31, 39]
ρ 1 per day [31, 40]
ω 0.01per day [31, 37]
γ 1/15per day [31, 39]
σ 0per day -
χ 0 per day -
η fitting by data -
ν fitting by data -

Table 5.6
Estimates of Parameters from Data Fitting

Parameter Fitting value 95% Confidence Interval
b 8.039×10−10/person/day (0,2.703)
c 8.30×10−10ml/day (0,0.241)
η 0.005/day (0,4.114)
ν 0.0001/day (0,7.586×10−9)
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Figure 5.11
Cumulative confirmed cases in Tennessee with Wuhan transmission coefficient

Figure 5.12
A data fitting result showing growth of exposed and infected cases for 400 days
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Table 5.7
Estimates of Model Parameters

Parameter Estimated Mean Source
Λ 198.49/day [41]
µ 2.88×10−5/day [42]

βE0 fitting by data
βI0 fitting by data
βV 0 fitting by data
b 8.0389×10−12/person/day Table5.6
c 2.30×10−10ml/day Table5.6

ξ10 2.30person/ml/day [31]
ξ20 0ml/day -
α−1 7days [31, 39]

ρ 1 per day [31, 40]
ω 0.01per day [31, 37]
γ 1/15per day [31, 39]
σ 0per day -
χ 0 per day -
η 0.0009/day Table5.6
ν 1.1×10−7/day Table5.6

Figure 5.13
Growth of awareness programs in Tennessee for 300 days

The results derived from the data fitting above showed some abnormalities evident in

Figure 5.12.Thus we change the parameters to be fitted to find the transmission rate coefficients

as indicated in the table below. The results obtained were as follows, the basic reproduction
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Table 5.8
Estimates of Parameters from Data Fitting

Parameter Fitting value 95% Confidence Interval
βE0 11.457×10−9/person/day (10.384×10−9,12.531×10−9)
βI0 3.660×10−9/person/day (3.010×10−9,4.310×10−9)
βV 0 6.523×10−9/person/day (6.320×10−9,6.727×10−9)

number was evaluated at; R0 = 0.8621. Specifically,

R0E = 0.5145; R0I = 0.2569; R0V = 0.0907;

The normalized mean square error (NMSE) for the data fitting is found as 0.04391.

Figure 5.14
Cumulative confirmed cases from May 1, 2020-July 14,2020 in Tennessee
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Figure 5.15
Growth curve of exposed and infected cases for 400 days

Figure 5.16
Estimated growth curve based on reported data from Tennessee

We also fit our model to the reported data from November 1st- December 16th 2020 by

using the standard least squares method [7]. The initial condition was set as (S(0),E(0), I(0),R(0),V (0),M(0))=

(6896375,2000,800,10,10000,500). Below are the results obtained. R0 = 1.886.
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Table 5.9
Estimates of Parameters from Data Fitting

Parameter Fitting value 95% Confidence Interval
βE0 2.7979×10−8/person/day (0,7.445×10−7)
βI0 5.4×10−9/person/day (0,5.022×10−4)
βV 0 1.0613×10−8/person/day (0,1.421×10−7)

Specifically, we find that

R0E = 1.357; R0I = 0.324; R0V = 0.205;

The normalized mean square error (NMSE) for the data fitting is found as 0.00636.

Figure 5.17
Cumulative confirmed cases from Nov. 1, 2020-Dec.15, 2020 in Tennessee
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Figure 5.18
A data fitting result of growth curve of exposed and infected cases in Tennessee

Figure 5.19
A growth curve of awareness programs in Tennessee at M(0) = 500
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CHAPTER 6

CONCLUSION

In this study, we examined the extent of impact of intervention programs on the spread

of the coronavirus disease 2019 by developing and discussing a modified SEIR model. Specif-

ically, the model was expanded to consider the virus concentration in the environment and the

growth dynamics of awareness programs created to mitigate the spread. The transmission rate

functions of the model were expressed as decreasing functions of the awareness programs, M.

We conducted a thorough analysis of the model and applied it in our study of reported data

from Wuhan, China and the state of Tennessee in the USA. In order to facilitate the assessment

of the intervention programs on the virus dissemination via all transmission routes, we itemized

the basic reproduction threshold parameter, R0 into R0E , R0I and R0V . The R0E represented

the infection via direct transmission route from exposed individuals. R0I measured infection

via direct transmission route from infected individuals and R0V , the indirect transmission from

the virus concentration in the environment.

Our equilibrium analysis demonstrated that the dynamics of the disease shows a regular

threshold when R0 = 1. We also proved that when R0 < 1 the disease-free equilibrium X0 is

globally asymptotically stable and at R0 > 1 the endemic equilibrium X∗ is globally asymp-

totically stable (Figures 5.1, 5.2, 5.3, 5.4). Results from our numerical simulations show a

transition of the disease occurrence from the endemic state to a disease-free state as the num-

ber of control measures increases. In particular, our data fitting result of Wuhan (reported data

from January 23, 2020- February 10, 2020[36]) estimated R0 = 2.899 which is less than earlier

recorded estimates of R0[31, 38]. Our simulations also highlighted the possibility of reaching

a disease free equilibrium in the data fitting results of Tennessee (Figures 5.15, 5.16). R0 was

estimated at 0.8621 with the initial awareness program set at M(0) = 100 (reported data from

May 1st, 2020-July 14th, 2020 [7]). Our findings also confirmed the differences recorded in vi-
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ral transmission dynamics globally as our estimates for βE0, βI0 and βV 0 in Tennessee differed

from the estimates from Wuhan, China [31, 38].

6.1 RECOMMENDATIONS

There still remain many unanswered questions concerning the SARS CoV-2 virus and

its infectious disease which when answered would help the field of mathematical epidemiology

in the analytical study and predictions of the transmission dynamics of COVID-19.

Moving forward, we recommend the expansion of this work to evaluate the impact

of each awareness program, especially the ongoing vaccination programs globally. Moreover,

efforts should be made to track exposed persons as currently, data of individuals in the latent pe-

riod is not available. Further studies of the model would assess the effect of unavailable means

of tracking exposed persons (both symptomatic and asymptomatic) and inadequate testing kits

on the transmission dynamics of the coronavirus disease.

Our data fitting results for Tennessee was based on the accumulation of newly infected

cases from the set start date, thus accumulated data of infected cases prior to the set date were

discarded. This helped in our understanding of the response pattern of awareness programs to

newly infected cases. We however hope to include initially accumulated data in future studies

of the model.

We also hope to expand this study to better understand the dynamism of the newly

discovered COVID-19 variant [43, 44]. Overall, the result of this study imply that applying

more strategically created intervention programs based on the viral transmission behavior at a

setting can potentially eradicate COVID-19.
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