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ABSTRACT

Aerosolized drug delivery in human airways is typically used for the treatment of

several pulmonary diseases. In this study, large-eddy simulation (LES) is used for the nu-

merical investigation of the airflow and the aerosol deposition characteristics within the

upper human airways. LES is performed using the Eulerian-Lagrangian framework where

the airflow is modeled using the Eulerian formulation, and the aerosol evolution is tracked in

Lagrangian manner under the dilute suspension conditions using one-way coupled approach.

First, the computational framework is assessed in terms of the prediction of the mean flow

statistics and the aerosol deposition and comparing with the past experimental and numer-

ical results. Afterward, the effects of inflow Reynolds number (Re) and particle size (dp) on

the deposition fraction (DF ) are examined. The study shows that the effect of Re on DF is

apparent for dp > 5 µm and DF increases with an increase in dp.
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CHAPTER 1

INTRODUCTION

Respiration is a process in living organisms involving the production of energy, typ-

ically with the intake of oxygen and the release of carbon dioxide from the oxidation of

complex organic substances. It is one of the most basic functions required to sustain life.

Breathing and respiratory health are taken for granted, but the lung is an organ that is the

most vulnerable to airborne infections leading to different types of pulmonary diseases. Such

diseases include asthma, cystic fibrosis, chronic obstructive pulmonary disease (COPD), pul-

monary infection, and lung tumors, which occur due to the combined effects of anatomical

modification of the airways, bronchial hyper-responsiveness, inflammation, and basilar air-

flow reduction [3, 4]. According to an estimate, nearly 65 million people suffer from COPD,

and 3 million people die from it, making it the third leading cause of death worldwide [5].

In addition, about 334 million people suffer from asthma affecting 14% of the children glob-

ally [6]. Effective and efficient treatment procedures are critical to the treatment of such

pulmonary ailments.

Several of the pulmonary ailments can be treated by employing aerosolized drug de-

livery [7], where an improved regional deposition of the inhaled drug is key to maximizing effi-

ciency and minimizing the side-effects of the inhaled drugs. Although recent advancements in

radiological imaging techniques such as magnetic resonance image (MRI), positron emission
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tomography (PET), quantitative computed tomography(QCT), high-resolution computed

tomography (HRCT), etc., have enabled an objective assessment of the phenotype of air-

ways and other anatomical features through in vivo and in vitro measurements, the required

information for an effective treatment still tends to be limited. To this end, computational

tools can be immensely useful to predict airflow and localized deposition in the respira-

tory airways as well as in the peripheral regions to optimize the effectiveness of the inhaler

therapies [1, 8–26]. However, numerical investigation of such flow systems is extremely chal-

lenging due to geometrical complexities, the presence of a wide range of flow features, and

aerosol dynamics associated with the inertia of the particles. The present study establishes

a computational framework that can capture both airflow and aerosol statistics in such flow

systems. Such a predictive framework can provide valuable insight for effective treatment in

either prescribing medication or an alternate treatment course.

Aerosol deposition within pulmonary flows corresponds to the broader category of

dispersed multiphase flows, which comprise of carrier phase and a disperse phase [27–29].

Such flows can be classified as a dilute suspension, a dense suspension, or a granular flow,

depending upon the mass and the volume loading of the dispersed phase. In this study, we

consider a dilute suspension approximation with a one-way coupling (only the carrier phase

affects aerosol evolution), which is adequate for such flows [1, 21, 23]. Numerical prediction of

such flows is still extremely challenging due to the added complexity of the aerosol dynamics

to the evolution of the carrier phase flow [1, 21, 23, 27–29]. In particular, the flow field

exhibits the presence of features such as laminar to turbulent transition, separation, re-

circulation, shear-layers, etc., which are difficult to predict [30–32], and in turn significantly
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affects the aerosol dynamics due to the interaction of the inertial aerosol particles with the

flow.

The two well-established approaches for the computational study of such flows in-

clude the Eulerian-Lagrangian (EL) and the Eulerian-Eulerian (EE) frameworks [27–29].

While the carrier phase flow is simulated using an Eulerian approach in both these frame-

works, the dispersed phase evolution is handled differently in these approaches. In particular,

in the EE framework, the dispersed phase is considered a continuum, and transport equa-

tions are solved in an Eulerian manner. However, in the EL framework, the dispersed phase

is treated as a particle or parcel and is evolved in a Lagrangian manner. In this study,

the EL formulation is used to describe the particle evolution where turbulence dispersion,

polydispersity, and collision of particles within the airway are easy to model [1, 21, 23].

The carrier phase flow can be simulated using different numerical approaches with

varying levels of fidelity and computational costs. These approaches include direct numer-

ical simulation (DNS), large-eddy simulation (LES), and Reynolds averaged Navier-Stokes

(RANS). In DNS, all the spatial and temporal scales are resolved, making it suitable for fun-

damental investigation with reduced geometries in the context of pulmonary flows [16, 24]. In

LES, the large-scale structures are explicitly resolved, and the subgrid-scale (SGS) features

are modeled, whereas, in RANS, all the turbulent fluctuations are modeled. Past studies

have shown the superiority of the LES strategy over RANS in the prediction of the aerosol

deposition, particularly for smaller particles [1, 14, 18], and therefore, LES is considered in

this study. Note that LES investigations of aerosol deposition in pulmonary systems using

the EL framework are still limited in terms of geometric simplification, use of monodisperse

3



particles, one-way coupling to the carrier-phase, simplified Lagrangian transport equations,

and neglect of subgrid dispersion [1, 12, 14, 18, 22]. Therefore, further studies are needed to

assess and improve the predictive capabilities of such an approach.

To summarize, the present study focuses on investigating aerosol deposition within

pulmonary systems using the large eddy simulation (LES) within the Eulerian-Largrangian

(EL) framework. Aerosol deposition in the extrathoracic airways occurs due to impaction on

the airway walls resulting from the high-velocity magnitude and rapid changes in the flow

direction. Typically, the larger particles are more prone to deposition by impaction compared

to the smaller particles [1]. Turbulent dispersion plays a significant role [22], particularly

for the deposition of the smaller particles whose trajectories are considerably affected by the

local velocity fluctuations. The present study first establishes the computational framework

by performing verification and validation (V&V) studies by comparing with the past in vitro

measurements and numerical results for the SimInhale benchmark case [1]. Afterward, the

framework is used to examine the effects of Reynolds number and the particle size on the

mean flow and particle deposition statistics.

1.1 Key Technical Objectives

This thesis aims to establish the LES-based computational modeling strategy while

using the EL framework for the investigation of airflow and aerosol dynamics within the

realistic upper human airways. The key technical objectives are as follows:

� Assessment of modeling strategy: The goal here is to assess the accuracy of the

computational strategy considered in this study. To address this, several simulations
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have been performed at conditions matching past studies and comparing results for the

airflow statistics and the aerosol deposition. The assessment is carried out in terms

of examining the role of SGS closure models and the grid resolution. For the SGS

closures, the widely popular Smagorinsky model [33], and the locally dynamic kinetic

energy model [34] have been considered. In this study we have ignored the role of

subgrid turbulence dispersion, which can affect the spatial and temporal evolution of

aerosol.

� Analyze the airflow statistics: The objective is to examine the airflow behavior

observed within human airways, which provides useful a priori information in deter-

mining medication dose, the injection rate, and injection distribution of the drug. All

these parameters are critical for the preferential deposition of the inhaled drug in the

diseased regions. Furthermore, detailed information on the airflow, particularly in the

peripheral region, can be used to model drug deposition in pulmonary fibrosis and

proximal airflow modeling can determine the optimal location for valve placement for

lung volume reduction surgery [35]. In particular, the airflow results sensitivity to the

employed SGS closures, and the grid and the effect of variation of injection flow rate

in terms of inlet Reynolds number (Re) is examined .

� Characterize the effects of injection flow rate and particle size: To treat

pulmonary ailments, specific regions and sometimes peripheral areas are of interest

where the drug needs to be delivered. Furthermore, it is also required that the inhaled

drug does not get deposited in healthier regions to minimize the side effects. However,

the inhaled drug may not reach specific regions depending upon the effects of airflow
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on the aerosol evolution. The variation of injection flow rate in terms of inlet Reynolds

number (Re) and the particle size in terms of diameter (dp) can alter the particle

characteristic time scales, which in turn can affect the aerosol dynamics by altering

the local Stokes number, which is a critical parameter that governs particle dynamics

[27–29]. Therefore, further investigation is carried out to characterize the role of Re

and dp on the global and the local aerosol deposition fraction in different segments of

the human airways.

1.2 Thesis Layout

The thesis is organized as follows. The current state-of-the-art pertaining to the

investigation of airflow and aerosol characteristics within human airways is discussed in

chapter 2. The governing equations, subgrid models, and numerical methodology considered

in this study are described in chapter 3. The details of the computational setup are described

in chapter 4. Chapter 5 discusses the results from the V&V studies. The effects of inlet Re

and dp on the airflow and aerosol statistics are described in chapter 6. Finally, the key

accomplishments of this study and the future directions are summarized in chapter 7.
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CHAPTER 2

AIRFLOW AND AEROSOL DEPOSITION IN AIRWAYS

Aerosol deposition within the human airways corresponds to the category of the

dispersed multiphase flows, also referred to as particle-laden flows. In such flows, the two

phases are referred to as the carrier phase, and the dispersed (particle) phase and the inter-

phase dynamics are of secondary importance. To examine the characteristics of airflow

and aerosol dynamics in such flows, several studies, including analytical, experimental, and

computational have been performed in the past. A detailed survey of past studies and

their key findings can be found in the review articles [1, 21, 23]. Here, we first summarize

the numerical approaches that the past studies have considered for the investigation of this

particular particle-laden flow configuration. Afterward, we provide a brief review of the key

findings of the past studies.

2.1 Modeling of Airflow

The upper part of the human airway, also referred to as the extra-thoracic airway,

includes nasal passages, mouth-throat region, larynx, pharynx, trachea, and carina. The

inhaled and exhaled air passes through the nose or mouth as the main inlet. A detailed

understanding of the airflow characteristics is required before modeling pathogenesis of res-

piratory diseases [36, 37]. In the upper airways, the flow is mostly turbulent or transitional

in nature, even at a very low inhalation rate [38]. In fluid dynamics, turbulent flow is char-
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acterized by chaotic changes in the flow field. It contrasts with the laminar flow, which

occurs when the fluid flows in parallel layers, with no disruption between those layers. In

particular, a turbulent flow is characterized by different types of length scales, such as the

integral scale (l), the Taylor micro-scale (λ), and the Kolmogorov microscale (η). It is usually

impossible to resolve all the small scales in the flow, particularly, in the complex airway ge-

ometry. Therefore, we have considered adopting an accurate and robust turbulence modeling

strategy.

To computationally model the airflow dynamics in the upper airways or parts of it,

three methods are usually considered, which include the RANS, LES, and DNS techniques.

These approaches are listed in the increasing order of fidelity of description and the compu-

tational cost. Although the most accurate method to represent the underlying structure of

turbulence and particle transport in turbulent flow is DNS, it is usually relegated to investi-

gating the fundamental physics of turbulence and associated transport processes in canonical

configurations and at low to moderately high Re. In RANS, all turbulent fluctuation is mod-

eled, mainly based on the empirical data from canonical flows or other equilibrium flows,

thus making it a computationally tractable approach for design studies. The large-eddy sim-

ulation (LES) approach separates large-scale, and small-scale components of turbulent flow

field through a filtering process, and the large energy-containing scales of motion are calcu-

lated directly while the effect of the small subgrid scales of motion is modeled. Thus the LES

prediction is less sensitive to modeling error compared to the RANS calculation, and since

the subgrid-scale is universal than the large scale, it is possible to represent the effect of the

subgrid-scale using a relatively simple model. Here, we focus on using a modeling approach
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instead of relying on DNS to investigate the airflow dynamics. However, in a RANS, all of

the turbulent fluctuations are modeled thus the evolution of particles in airways and their

subsequent deposition can be significantly affected. A significant advantage of LES over

RANS is that it permits a much more accurate accounting of particle-turbulence interaction

[39]. Therefore, LES tends to be a relatively accurate approach when particles unsteady

dynamics and the effects of turbulent fluctuations on the deposition are significant.

As mentioned before, in LES, the large energy-containing scales are computed di-

rectly, while the subgrid-scale (SGS) models represent the dynamical effects of the smaller

scales resulting from the filtering operation. Past LES based studies of airflow in human

airways [1, 13, 14, 18, 22, 25] have primarily considered the well-established SGS models,

which include the Smagorinsky eddy viscosity model [33], the dynamic eddy viscosity model

[40], and wall adapting eddy viscosity based model (WALES) [41]. Note that LES of high

Re, complex wall-bounded flows, such as those observed in human upper airways face certain

unresolved challenges. The challenges are a realistic representation of subgrid stress tensor

[42], to accurately resolve the dynamically dominant near-wall structures [43] and modeling

laminar-to-turbulent transition and the transition between near-wall and far-field free shear

flows without requiring ad hoc fixes.

2.2 Modeling of Aerosol Dynamics

The key mechanisms for aerosol deposition in the human airways include impaction

and dispersion. The impaction occurs due to higher velocity magnitude and rapid changes

in the flow direction. The particles tend to deviate from the streamline of the flow field
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and collide with the walls due to their inertia leading to the subsequent deposition. As the

size of the particle increases, the probability of deposition due to impaction also increases.

However, the turbulent dispersion plays a crucial role in the smaller particle’s deposition as

the underlying flow field fluctuations considerably influence their trajectories.

The transport of particles in the upper airway can be modeled with the Eulerian

or the Lagrangian approach. The Eulerian or two-fluid approach models both the dispersed

(particles) and the carrier phases as continuous phases, solving the coupled conservative

equations for both the phases. On the other hand, in the Lagrangian approach, the dispersed

phase is treated as an individual point particle in the continuous carrier phase. The particles

are tracked in the fluid flow by solving the equation of motion for each particle with relevant

forces acting on them [27, 29]. There are three different coupling possibilities between the

carrier and the dispersed phases: 1) one-way coupling where the fluid flow affects the particle,

2) two-way coupling where the fluid flow affects the particle, and the particles affect the

fluid flow, 3) four-way coupling where the particles affect the flow and vice-versa and the

particles also affect the neighboring particles through collision. The Lagrangian approach

is more naturally suited for depicting the turbulent dispersion and the collision of particles

with the walls in the upper airway model. Due to this, most of the past studies have

used the Lagrangian approach for modeling the aerosol deposition in the upper airways

[11, 15, 18, 26, 39]. In these studies, the particles are assumed to be spherical, non-interacting,

and non-rotating. The particles are modeled with one-way coupling, which means that the

effect of the particle on the flow is neglected. However, in reality, the aerosol particles are

usually not spherical and may collide with each other making it a four-way coupled particle-
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laden flow. In the present study, we have followed the past studies and considered a one-way

coupled particle-laden turbulent flow scenario.

2.3 Key Findings of Past Studies

In this section, we summarize the key observations of the past experimental and

computational studies.

2.3.1 Experimental Studies

A flexible model of the upper airway is challenging to investigate. Therefore, most

of the past experimental studies have been carried out using a rigid airway. Such studies

have mainly focused on measuring the quantities such as the mean velocity and Reynolds

stress of the carrier phase, particle velocity, and particle concentration in different regions

of the flow. One of the earliest attempts was through in vivo clinical observation, where the

distribution of inhaled powder in nasal cavities was examined. Very little could be learned

through these experiments due to the complexity of the human airway [44, 45]. Therefore,

researchers started using the in vitro models of the nasal cast, which was usually obtained

from cadavers. In these life-size models, smoke was released through the nasal cavities to

examine the flow field such as the presence of recirculating flow regimes [45, 46].

The adaptation of laser-based flow measurement techniques has revolutionized the

experimental studies of turbulent dispersed flow. A laser-Doppler anemometer (LDA) mea-

sures the velocity of the dispersed particles. LDA can be easily adapted for larger particles

(dp > 5µm) as larger particles scatter more light, which produces stronger signals [29]. To

study the carrier phase, one adds a fine tracer particle. The LDA signal processing discrim-
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inates between the Doppler burst produce by the dispersed particle and the tracer particle.

Usually, the Doppler signal amplitude is much smaller for the tracer element than the dis-

persed particle. For measuring the velocity of both phases, the photo-detector output is fed

to two separate processors. One processor is set for low gain, detecting the particle, while

the other detects the tracer element. Girardin et al. [47] used LDA to determine velocity

field in the human nasal cavity model made out of cadaver. Measurements were taken at one

flow condition and five coronal sections. They observed that the flow was more significant in

the lower half of the fossa and closer to septum regions. Furthermore, it was observed that

the velocity fields appear to give more information on the intra-nasal aerodynamics than the

Reynolds number and the calculated flow field [47].

Recently, particle image velocimetry (PIV) has been preferred over laser-Doppler

anemometer (LDA) as it measures the velocity of both the phases simultaneously over an

imaged area. For dilute flow, a larger particle produces a bright image using conventional

cameras and laser, easy to interpret. Similarly, like LDA, PIV also faces difficulty while

measuring the velocity of the carrier phase. Most problems are encountered while measuring

the carrier-phase velocity near the particle surface. Turbulent kinetic energy dissipation rate

is vital for understanding turbulence modulation by particles, which is difficult to measure

because it requires spatial derivatives of all velocity components. Paris [36] tried direct

calculation of dissipation from particle image velocimetry (PIV) but found that the measured

dissipation rate was sensitive to PIV spatial resolution. Brucker and Park [48] used the

PIV method to investigate the velocity field in the human nasal cavity. To overcome the

difficulties of digital PIV measurements in the air medium, they used liquid instead of air
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(Tetrahydronaphtalene was used as the carrier medium). As the model was constructed

using low-resolution anatomical data, they observed high velocity in the olfactory region,

which is uncommon.

Stereo PIV, usually provides 2D data. The newly developed tomographic PIV tech-

nique can obtain 3D measurements. Kim and Chung [49] investigated the airflow in normal

and abnormal nasal cavities by tomographic PIV. Average and root mean square distribu-

tion of velocities in both sagittal, as well as coronal planes, were obtained for inspiratory

and expiratory nasal airflow. Later Kim and Chung [50] extended their previous study

[49] where tomographic measurements were taken for the nasal cavity to a full respiratory

model that extends from the nasal cavity on the superior to the trachea in the inferior end.

They observed that the mainstream went through the backside of the larynx and trachea in

inspiration and the frontal side in expiration during respiration cycles. Averaged and root-

mean-square velocity flow distributions in both coronal and sagittal planes were obtained

during seven temporal points along the respiratory cycle.

There have been several advances in experimental measurement techniques for the

simultaneous measurement of the velocity of both the carrier and the dispersed phases.

However, measurement of the carrier-phase velocity near the particle remains a significant

issue that has to be addressed separately for each new experiment [29]. Radiological imaging

techniques can also be applied in the in vivo experiments to obtain deposition measurements

for validation. The in vivo measurements are of great importance as they can describe the

real state, but studies remain limited by spatial and temporal resolutions of current imagining

techniques and patient exposure to radiation [1].
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2.3.2 Computational Studies

As mentioned in Sec. 2.1, Direct Numerical Simulation (DNS) is computationally

prohibitive as it requires a very fine mesh to resolve all the scales of motion in the flow.

Therefore, only a few DNS studies have been done on the human airway, where the geometry

is simplified for computational tractability. For example, Lin et al. [16] compared the flow

in the upper and intra-thoracic airways. The geometry included the mouth and the throat

regions with the intra-thoracic airway. It was observed that turbulence induced by the

laryngeal jet significantly affects the airway flow patterns and trachea wall shear stress.

Thus airflow modeling, particularly subject-specific evaluations, should consider upper as

well as intra-thoracic airway geometry. Ball et al. [51] used the lattice Boltzmann method

(LBM) to conduct a DNS of the airflow inside an idealized human upper airway. LBM

simulation results were compared to those from experimental results [52]. The LBM results

yield better results for the mean flow statistics compared to the RANS methods. Nicolaou

and Zaki [24] performed DNS in realistic mouth-throat geometry, where it was shown that

the geometric variation has an enormous impact on both the mean velocity profiles and the

turbulence intensities.

Two RANS models have been used for simulating the flow in the airway geometry.

These include the well-established k-ε and the k-ω model. The k-ε model-based RANS has

been performed for the upper airway by Finlay et al. [53], where they found that most of

the model is designed for high Re flow in simple geometry, which makes it unsuitable for

low Re turbulence in complex geometry such as the upper airway. Finlay [53] observed

RANS yield poor results with inflows having recirculating regions, free-shear layers, and
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mean streamline curvature, all of which are present in the airway flow. Stapleton et al. [9]

studied the suitability of k-ε turbulence model for aerosol deposition in the mouth and throat

regions and compared it with the experimental results. Two simulations were performed

corresponding to laminar flow and turbulent flow conditions. Overall, good agreement was

obtained for the laminar case but not for the turbulent case. The measured and predicted

pressure drop agreed well for the laminar condition but differed slightly for turbulent flow

conditions. The laminar case showed good agreement with the in vitro measurements, but

the turbulent flow case over-predicted the particle deposition. The principal difficulty in

predicting particle-laden turbulent flow is that RANS models using gradient hypotheses do

not accurately account for the complex interaction between particle and turbulence [39].

Another major shortcoming of the RANS model is the prediction of the properties of the

Eulerian turbulence field.

Most of the upper airway studies have used micron-sized particles and have taken

into account only the gravitational and drag forces and neglected all the other forces [11,

15, 26]. Some studies have only considered dynamic drag force and neglected even the

gravitational forces [17, 54]. For example, Ma and Lutchen [55] simulated aerosol deposition

in human airway with and without gravitational force and concluded that when the gravity

was ignored, there was a 10% reduction in the total deposition. While drag force’s impact is

significant for deposition in the upper airway, we cannot ignore the effects of gravitational

force. For larger particles, gravity’s effect is more significant, and its effect decreases with a

higher flow rate. Due to the large particle-fluid density ratio for aerosol particles in the air,

the Saffman lift, pressure gradient, added mass, and Basset forces are typically considered
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insignificant in the upper airways [53]. Jayaraju et al. [18] simulated fluid flow in normal

breathing conditions in the human mouth-throat model using LES (Large Eddy Simulation)

and RANS (Reynolds-Averaged Numerical Simulation) approaches. Velocity and kinetic

energy showed good agreement with LES while less so with RANS as compared with the

experimental data. Particle deposition has been examined with particle diameter from 2 to

10 µm. In comparison with the experimental data, LES showed better results than RANS

in predicting deposition for particle size below 5 µm. For large size particles, RANS and

LES model showed similar predictions as compared with the experimental results. Since the

upper limit for the particle size for the inhalation drug is 5 µm, LES is considered a better

option than the RANS model [18].
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CHAPTER 3

FORMULATION AND NUMERICAL METHODOLOGY

In this chapter, first, the governing equations for LES within the EL framework are

described. Afterward, SGS closure models considered in this study are discussed. Finally,

a description of the numerical methodology employed in this study to solve the governing

equations is presented.

3.1 Governing Equations

A one-way coupled particle-laden turbulent flow is considered in this study, which

is a valid approximation under dilute conditions. In such a flow, the carrier phase affects the

dispersed phase’s dynamics, whereas the dispersed phase does not affect the carrier phase.

The interaction between the dispersed phase in terms of the particle to particle collisions is

also neglected in this study. Here, the carrier phase is considered an incompressible fluid,

and the dispersed phase comprises spherical particles with uniform diameter and density.

3.1.1 Equations for Carrier Phase

In Large-Eddy Simulation (LES), the spatial filtering of a field variable φ(x, t) leads

to the resolved field φ(x, t) and the unresolved SGS field φ′(x, t), which are related through:

φ′(x, t) = φ(x, t) − φ(x, t). In the present study, a box filter is used with filter width ∆,

which corresponds to a local volume-averaging operation in the physical space, and has a
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global support in the spectral space. Additionally, an implicitly filtered LES formulation is

considered here, which uses the computational grid as the filter. Applying the spatial filtering

operation to the incompressible Navier-Stokes equation leads to the following filtered LES

equations for the carrier phase

∂ui
∂xi

= 0, (3.1.1a)

∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

−
∂τ sgsij

∂xi
. (3.1.1b)

Here, ui is the velocity component, p is the pressure scaled with density, ν is the

kinematic viscosity, and i = 1, 2, 3 denotes Cartesian coordinate directions. The term

τ sgsij = uiuj − uiuj denote the SGS stress, which require further modeling to close the LES

equations.

3.1.2 Equations for Dispersed Phase

The dispersed phase is governed by the following equations for the position (xpi)

and velocity (vpi) of particles

dxpi
dt

= vpi, (3.1.2a)

mp
dvpi
dt

= mp
φ(Rep)

τp

(
u+i − vpi

)
− g(mp −mf )δi2, (3.1.2b)

where, mp is the particle mass, mf is the fluid mass, u+i is the instantaneous velocity of

the carrier phase at the location of the particle, τp =
d2p

18ν

ρp
ρ

is the particle time constant

and φ(Rep) is an empirical correlation used to modify the Stokes drag for large Rep with
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Rep being the particle Reynolds number, and g is the magnitude of the acceleration due to

gravity. Here, a large particle to fluid density ratio (ρp/ρ) is considered. Furthermore, other

terms such as unsteady drag, added mass, Basset history forces are neglected as the effects

of such forces on the evolution of particles are negligible for large ρp/ρ.

The particle Reynolds number Rep is defined as

Rep =
ρpdp

∣∣u+i − vpi∣∣
ρν

, (3.1.3)

and the empirical correlation φ(Rep) is given by [56]

φ(Rep) =


1 +

1

6
Re

2
3
p , Rep ≤ 1000

0.424
Rep
24

, Rep ≥ 1000

. (3.1.4)

3.2 Subgrid Modeling

In this study, two different closure models are used to model the subgrid scale (SGS)

stress tensor. These models correspond to the algebraic (SM) and the one-equation-based

closures (LDKM),

3.2.1 Modeling of SGS Stress

A well-established and popular approach to close the SGS stress tensor τ sgsij is to use

the gradient diffusion hypothesis through:

τ sgsij −
τ sgskk

3
δij = −2νtSij. (3.2.1)
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Here, νt is the subgrid eddy viscosity, and

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.2.2)

is the resolved strain-rate tensor. A classical method to obtain νt is to use Smagorinsky

algebraic model [33], which relates νt to the magnitude of the resolved strain-rate tensor and

the employed grid resolution through:

νt = Cs∆
2|S|, where |S| =

√
2SijSij, (3.2.3)

where Cs is the Smagorinsky coefficient. To obtain Cs, the rate of energy transfer from large

scale to small scale is set equal to the rate of viscous dissipation, which leads to

Cs =
(

3cKπ
4
3/2
)−3

4 ≈ 0.16, (3.2.4)

where the empirical value of Kolmogorov constant cK ≈ 1.6 is used [57]. However, this is

only valid for isotropic turbulent flows. For other types of non-homogeneous turbulent flows

such as wall-bounded, shear or transitional flows, the value of Cs produces higher dissipation.

In such cases, Cs can be determined in a dynamic manner as proposed by Germano et al.

[58]. Alternatively, a closure of νt can be obtained by relating it to the SGS turbulent kinetic

energy ksgs through [59]

νt = Cν∆
√
ksgs, (3.2.5)
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where ksgs =
1

2
(ukuk − ukuk) =

τ sgskk

2
. An additional modeled transport equation is solved to

determine ksgs [34, 59, 60], and the coefficient Cν is determined locally (both in space and

time) in a dynamic manner using the locally dynamic kinetic energy model (LDKM) [34, 60].

In the present study, Smagorinsky and LDKM approaches are considered for the

closure of τ sgsij . While a detailed description of these approaches is provided in the cited

references, next, we provide further details of the one-equation-based LDKM for the closure

of the SGS stress.

In the LDKM [34, 60], a modeled transport equation for ksgs [59] is solved to deter-

mine νt through Eq. (3.2.5). This equation is given by

∂ksgs

∂t
+

∂

∂xj
(ujk

sgs) = −τ sgsij Sij +
∂

∂xj

[
(ν + νt)

∂ksgs

∂xj

]
− Cε

(ksgs)3/2

∆
. (3.2.6)

In the right-hand-side of the above equation, the three terms denote production, molecular

and turbulent diffusion, and dissipation of ksgs, respectively. Furthermore, Cε is another

model coefficient, which is also determined dynamically in a similar manner to the other

model coefficient Cν [34]. To determine the two model coefficients, test filter fields are used,

where the test filter (∆̂) is consistent with the grid filter (∆). It is prescribed as ∆̂ = 2∆

[58]. Here, we briefly describe this procedure, and for further details, the reader is referred

to the cited references.

The Leonard stress after application of the test-filter is given by

Lij = ûiuj − ûiûj, (3.2.7)
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where (̂·) denotes the test-filtering operation. In Eq. (3.2.7), all the terms are known. After-

wards, based on the experimental observations [61], a scale similarity assumption is employed

to relate the Leonard stress Lij with the SGS stress τ sgsij to determined the model coefficients.

Due to the application of test-filtering, the test-filtered kinetic energy can be defined as

ktest =
1

2

(
ûkuk − ûkûk

)
=

1

2
Lkk, (3.2.8)

which is similar to ksgs, but is fully resolved at the test filter level. Due to the assumed

similarity of Lij and τ sgsij , the Leonard stress tensor can be expressed in a manner similar to

Eq. (3.2.1) yielding

Lij = −2Cν∆̂
√
ktestŜij +

1

3
δijLkk. (3.2.9)

The above equation explicitly provides a way to determine the model coefficient Cν ,

as the other terms are known. However, it is an over-determined system of equations, and

therefore, Cν is obtained approximately using the least-square method leading to

Cν =
1

2

LijMij

MlmMlm

, (3.2.10)

where Mij = −∆̂
√
ktestŜij. To determine the other model coefficient Cε, which is required

for closure of the subgrid scale (SGS) dissipation of the turbulent kinetic energy, i.e., εsgs,

we employ similarity between the turbulent kinetic energy εsgs and the dissipation of ktest,
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which is given by

E = (ν + νt)

(
∂̂ui
∂xj

∂ui
∂xj
− ∂ûi
∂xj

∂ûi
∂xj

)
, (3.2.11)

and can be modeled in the following manner,

E = Cε
(ktest)

3/2

∆̂
, (3.2.12)

in the above equation, the only unknown is Cε, which can be now determined as all other

terms are known.

Note that the LDKM formulation is well-posed and does not require algorithmic

adjustments such as spatial averaging along homogeneous directions [60]. In terms of the

computational cost, the LDKM formulation has an extra cost compared to the Smagorinsky

model, which is associated with the solution of the transport equation for ksgs. However, it

has the advantage over the algebraic approach as the equilibrium assumption is not required.

Finally, ksgs provides a more accurate estimate for the SGS velocity scale, which can be used

for problems related to turbulence interaction with other transport processes such as heat

transfer, mass transfer, combustion, etc., and modeling of the subgrid dispersion.

3.2.2 Modeling of Subgrid Dispersion

It is apparent from Eq. (3.1.2)(b) that the coupling between the carrier and the

dispersed phase is through u+i , which needs to be computed at the location of the particle

at each time step. While performing Direct Numerical Simulation (DNS), it is obtained
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by interpolating instantaneous velocity ui from the computational grid to the location of

the particle. However, while performing LES, ui is not available as LES only solves for the

filtered velocity field ui, thus requiring an approximation of u+i . The models used for solving

subgrid dispersion can be grouped into two main categories, structural and stochastic [62].

The structural models are aimed at reconstructing the entire subfilter velocity field while the

stochastic model is aimed at retrieving only some statistical feature of the subfilter velocity

field [63].

In the present study, we have considered the no-model (NM) strategy, which com-

pletely neglects the effects of subgrid dispersion. Therefore, the approximation of u+i is given

by

u+i = ui, (3.2.13)

such an approach in an LES can lead to inaccuracies in the prediction of particle dynamics,

particularly when the SGS kinetic energy is significant or the particle time constant is small

[64]. Both these conditions are prevalent in LES of practically relevant flows where usually

coarse grids are used for computational efficiency. However, as a first step to establish the

computational strategy, we have considered this simplified approach. Future studies will

examine the role of subgrid dispersion models on aerosol deposition characteristics.

3.3 Numerical Methodology

We use the Eulerian-Lagrangian framework of the OpenFOAM software framework

[65] to carry out simulations in this study. The solver is extended in this work for LES
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of particle-laden flows using the Eulerian-Lagrangian (EL) formulation by extending the

baseline solver for the unsteady incompressible turbulent flows. The details of the Eulerian

and Lagrangian solver are provided below.

3.3.1 Eulerian Solver Description

The governing equation for the carrier phase given by Eq. (3.1.1) is spatially dis-

cretized using the finite volume method (FVM). One of the essential features of the FVM

is it can be easily formulated for unstructured meshes and, by construction, enforces con-

servation laws. In the framework, we are using, unstructured body-fitted meshes with a

collocated cell-centered variable arrangement. A formally second-order-accurate method is

used for advancing the spatially discretized equations; the time integration is performed us-

ing a backward difference scheme. The PIMPLE algorithm, which is a combination of the

PISO [66] (Pressure Implicit with Splitting of Operator) and the SIMPLE [67] (Semi-Implicit

Method for Pressure-Linked Equations) algorithms are used to ensure pressure-velocity cou-

pling while solving for incompressible flow.

3.3.2 Lagrangian Solver Description

The Lagrangian equation for the dispersed phase given by Eq. (3.1.2) is advanced

in time using the first-order-accurate Euler scheme where the source terms are treated im-

plicitly. The dispersed phase’s evolution is performed using the enhanced version of the

computationally efficient and robust particle tracking algorithm [68]. For example, new po-

sition of the particle xn+1
p is computed from the velocity of the particle at the previous time
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step vnpi through

xn+1
pi = xnpi + vnpi∆tp. (3.3.1)

Here, the time step size ∆tp can be different from the flow time step as the particles are

tracked from cell to cell by calculating and identifying the face crossings. The face crossing

approach is more efficient in the tracking of particles in complex geometries of unstructured,

arbitrary polyhedral cells, compared to methods that redetermine the hosting grid cell in

every iteration. Therefore a series of individual tracking events can be performed for a flow

time step size ∆tf , which ends when the particle crosses a face of a cell or when it arrives

at the final destination. The maximum time step used to track a particle is one defined for

continuous phase simulation (∆tf ). When the particle reaches a new destination either on

a face that has been crossed or at the particle’s final destination, the new particle velocity

at that point is calculated by integrating Eq. (3.1.2)(b) using the implicit Euler scheme.
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CHAPTER 4

DESCRIPTION OF COMPUTATIONAL SETUP

In this chapter, the details of the computational setup and cases considered in this

study are discussed. These details include the geometry, the computational mesh, the bound-

ary conditions, a list of all the cases, and the simulation strategy considered in this study. We

briefly discuss the configuration of the SimInhale geometry used in the benchmark case[1].

4.1 Geometrical Configuration

The geometry considered in this study corresponds to a truncated portion of the

SimInhale benchmark flow configuration [1]. Therefore, for the sake of completeness, first,

the SimInhale benchmark configuration is described briefly. Afterward, the details of the

truncated geometry are presented.

4.1.1 SimInhale Configuration

The computational framework considered in this work utilizes the SimInhale bench-

mark case [1]. This realistic geometry shown in Fig. 4.1 comprises the oral cavity, larynx,

and tracheobronchial airways down to the 12th generation of branching, where the tree was

obtained from the human lung of an adult male followed by performing high-resolution com-

puted tomography (HRCT) [69]. HRCT was performed on a rubber cast model based on

an adult male’s inflated human lung excised at autopsy with the lung tissue and the bones
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Figure 4.1 The full geometry corresponding to the SimInhale benchmark case (left) and the
truncated geometry (right) considered in the present study

removed [69]. While the extrathoracic airways correspond to an upper airway model, which

was obtained from the Lovelace Respiratory Research Institute (LRRI), the oral cavity corre-

sponds to an in vivo dental impression of a Caucasian male at approximately 50% of the full

opening. In contrast, the remaining model was obtained from a cadaver [70]. The geometry

obtained from the Lovelace Respiratory Research Institute (LRRI) was a wax cast, which

was scanned using Atos device and then converted to STL format and concatenated with the

bronchial tree model at trachea [1]. A detailed description of the construction of the airway

model is provided elsewhere [71]. This configuration has been used to perform in vitro mea-

surements of aerosol deposition at different sections which we would use for verification and

validation purposes. The experimental study was performed at steady-state inhalation with

three different flow rates (15, 30, and 60 L/min) and two different median sizes of particles

(2.5 mm and 4.3 mm). The deposition in different sections was obtained using computed to-

mography (CT) and positron emission tomography (PET) images from a PET-CT scanner.
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(a) (b)

Figure 4.2 The computational mesh in the central y−z plane of the upper geometry (a) and
the cross-sectional plane in the trachea region (b)

To get the edges of the sections’ precise location, the CT images are useful, whereas to find

the aerosol deposition, positron emission tomography (PET) images were used. Apart from

the regional deposition, airflow data at different sections are available, which is being used

to assess the numerical methods and models and the employed grid in the present study. A

detailed description of the procedure to obtain the SimInhale configuration is provided by

Lizal et al. [72].

4.1.2 Truncated Geometry

In the present study, a truncated model of the full geometry (see Fig. 4.1) is con-

sidered to examine the airflow and aerosol dynamics in the upper airways. The truncated

geometry comprises the extrathoracic and a part of the intrathoracic airways, including ca-

rina and left and right main bronchus. The flow within the upper airways exhibits a wide
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range of variation with several complex flow features such as laminar-to-turbulent transition,

shear layers, separation, etc. Such flow features significantly affect the aerosol dynamics

primarily due to the inertial impaction and the dispersion mechanisms. Furthermore, the

geometrical complexity associated with the bronchial generations can be eliminated to make

the computation and the assessment of the computational framework tractable. Due to these

reasons, the truncated geometry has been considered in this study. Note that several of the

past studies [73] have employed a hybrid 3D/1D approach, where the 3D flow is simulated

only in the upper airways, and a 1D network model-based approach is used for the bronchial

airways for computational efficiency. The use of truncated geometry allows performing sev-

eral simulations to examine the capabilities of different modeling strategies in predicting the

flow and aerosol dynamics in the regions where a significant portion of the deposition occurs,

particularly for the large-sized particles.

4.2 Computational Mesh

The computational domain is spatially discretized using an unstructured mesh com-

prising of tetrahedral elements in the interior of the domain and prism layers adjacent to the

wall (see Fig. 4.2). The prism layers are used in the near-wall region to ensure better control

on the near-wall grid resolution to capture the near-wall dynamics. This study considers

two computational meshes to examine the behavior of the statistical features of the airflow

and aerosol evolution. Table 4.1 summarizes vital statistics of the two grids considered in

this study, which include the volume of the computational cell Vcell, the height of the cell

adjacent to the wall ∆r, the average expansion ratio of the prism layers (λ), and near-wall
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Table 4.1 Key statistics of the two computational meshes considered in this study

Mesh Baseline Fine

∆rmin(mm) 0.09 0.07

Prism Layers 3 3

λ 1.5 1.3

Number of cells (×106) 1.6 6

(Vc,min, Vc,avg, Vc,max)(mm
3) (0.0004, 0.062, 0.22) (0.0003, 0.02, 0.21)

y+avg 0.2 0.8

resolution in terms of y+. The total number of computational cells in the two meshes are

1.6 M and 6 M, respectively. Both the meshes have a near-wall resolution of less than 1 in

wall-units, and therefore, the LES cases correspond to wall-resolved Large Eddy Simulation

(LES) in this study.

4.3 Description of Cases

A total of five cases have been simulated in this study to perform the V&V study,

assessing the role of grid resolution and the subgrid models for the SGS stress, and finally

to examine the effects of Re and dp on the airflow and the particle deposition statistics.

Table 4.2 summarizes all the cases considered in this study. Here, Re =
UinDin

ν
is the inlet

Reynolds number with Uin, Din, and ν denoting bulk velocity at the inlet boundary, the inlet

diameter and the kinematic viscosity, respectively. The Stokes number Stref =
τp
τf

where
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Table 4.2 Details of simulations considered in this study

Case Re Stref × 102 Mesh size SGS model

AS 1000 0.01− 1 1.6 M SM

BL 3745 0.05− 5 1.6 M LDKM

BS 3745 0.05− 5 1.6 M SM

BFL 3745 0.05− 5 6.0 M LDKM

CS 5000 0.06− 6 1.6 M SM

τp =
ρpd

2
p

18νρ
is the particle response time and τf = Din/Uin is the characteristic time scale of

the flow.

In all the cases considered here, a uniform velocity profile is specified at the inflow

boundary, which is superimposed with 10% turbulence intensity. At the outlet boundary,

the mass flow rate is specified to be constant. However, the mass flowrate at the right and

the left outlet boundaries is specified to be 71%, and 29% of the total inlet mass flow rate

to account for the observed high asymmetry for the airflow in the experiments [1, 71]. The

no-slip boundary condition is imposed on all the airway walls.

To examine the effects of Re, three cases labeled as ‘A’, ‘B’ and ‘C’ with Re = 1000,

3745, and 5000, respectively (see Table 4.2), are simulated. These values of Re are considered

to demonstrate the effects of transitional behavior of the flow on the airflow and the particle

statistics. The evolution of particles with different values of dp is examined by considering

seven different values of dp of 1, 2, 2.5, 4.3, 6, 8, and 10 µm, which leads to a variation

32



from 0.01 to 6 for the Stokes number in different cases. As stated in Sec 3.1, one-way

coupled particle-laden flow is considered where the airflow affects the evolution of particles,

but particles do not affect the airflow. Also, the forces resulting from only drag and gravity

are considered during the particles’ evolution, and all particle-to-particle interactions are

neglected. Furthermore, the particles approaching the wall sticks to the wall, whereas they

can exit out of the domain through the outlet boundary.

A key focus of the study is on the assessment of closure models for the SGS stress.

To address this, two widely-popular closures for SGS stress, namely the Smagorinsky eddy

viscosity model (SM) [33], and the locally dynamic kinetic energy model (LDKM) [34] are

considered. The cases are labeled with superscript ‘S’ and ‘L’ for the SM and LDKM models.

The description of these closure models is provided in Sec. 3.2. Finally, an additional case

labeled as ‘BFL
S ’ is simulated to examine the effects of the grid resolution.

All the simulations are first evolved for 2 flow-through times (Tf). Here, Tf = Lc/Uin

with Lc is a representative length of the domain along the direction of the mean flow.

Afterward, turbulence statistics are gathered for running the simulations for an additional

2 flow through time, and computing the running average of the flow quantities. With the

evolved flow field, 100,000 particles with seven different values of dp are injected at the rate

of 40000 particles per second for 0.025 seconds, and the simulation is carried out till the

global deposition of the particles reaches a quasi-stationary state.

All the simulations are carried out in parallel using the message passing interface

(MPI) library. The computational cost of the cases employing LDKM is about 30% more

than the cases using SM for the SGS stress closure. This is due to the need to solve an
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additional transport equation for the SGS kinetic energy (ksgs) while using the LDKM for

the closure of the SGS stress. As expected, the cost of the fine-mesh case is higher compared

to the coarse mesh case. In particular, the cost of the fine mesh case is about 1.5 times the

cost of the baseline mesh case.
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CHAPTER 5

ASSESSMENT OF COMPUTATIONAL FRAMEWORK

In this chapter, we focus on case B (Re = 3745) to examine the performance of

the computational modeling strategy. We compare the airflow results against the reference

experimental and numerical results [1]. The reference numerical results correspond to the

LES of the entire SimInhale geometry using a very fine mesh comprising of 50 M computa-

tional cells. The subgrid scale model used in the reference numerical results was Dynamic

Smagorinsky. First, we analyze the results for airflow, and then we assess the accuracy

of the results for the global and the local aerosol deposition by comparing the Deposition

Fraction (DF (%)). Finally, we analyze the role of grid refinement on the global deposition

characteristics.

5.1 Comparison of Airflow

The comparison of the airflow prediction is performed in the term of time-averaged

(mean) velocity magnitude profile extracted at six different cross-sectional locations within

the airway geometry. These locations are shown in Fig. 5.1 where contours of the mean

velocity magnitude (|〈ũ〉|) are shown in the central y−z plane. We can observe a significant

variation of |〈ũ〉| along the airway geometry, which is expected due to the complexity of

the geometry and rapid changes in the flow direction. In particular, we can observe the

presence of shear layers, asymmetric distribution of the flow in the cross-sectional planes,
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Figure 5.1 Contour of mean velocity magnitude (|〈ũ〉|) in central y − z plane with cross-
sectional locations identified (A through F) where profiles are extracted

flow acceleration, separation/reattachment, etc. The presence of such features significantly

affects aerosol deposition, which is discussed later.

Figure 5.2 shows comparison of the profiles of |〈u〉| obtained using LDKM and SM

cases with respect to the reference LES results [1] extracted at six different cross-sectional

locations. Overall, we can observe a reasonable agreement in the results from the cases sim-

ulated in this study against the reference case. The agreement improves in the later sections

of the airways, with significant differences occurring near the inlet sections, particularly at

section A-A. This can be attributed to a difference in the inlet velocity boundary conditions

used in the current study compared to the reference study. In our cases, we employ a con-

stant velocity inlet with imposed turbulent fluctuations, whereas in the reference case, an

auxiliary simulation is performed to specify a fully developed turbulent inlet velocity pro-
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Figure 5.2 Comparison of profiles of the mean velocity magnitude (|〈ũ〉|) at six different
cross-sectional locations obtained using DEVM and LDKM cases with respect to
the reference LES results [1]
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file. Note that in the nasal cavity region, i.e., in the vicinity of section B-B, the flow field

changes abruptly due to the underlying geometrical changes, which in low Re flows leads

to transition-to-turbulence behavior. Therefore, the effects of inlet velocity boundary con-

ditions reduce beyond this region, which is apparent from a better agreement of the results

at section B-B and at the further downstream sections.

A key feature of the flow is the presence of asymmetrical behavior as evident in

Fig. 5.1, which is also evident in profiles at all the locations except at section A-A, which

is close to the inlet. At section B-B, located at the center of the nasal cavity, a large

separated flow region is observed (see Fig. 5.1). This manifests into a reduced magnitude

of the velocity field in the vicinity of the upper portion of the nasal cavity. At section C-C,

located in the upper part of the pharynx, the effect of bending of the flow is evident in the

form of the higher values observed in the vicinity of the posterior wall. At section D-D,

located immediately below the larynx, the glottal constriction in the airway accelerates the

flow causing an enhanced mean velocity magnitude in the core region of the airway. The

curvature of the airway leads to the formation of shear layers. The sections E-E and F-F are

located above the trachea and at the Carina, respectively. We observe a transition of the

location of the peak velocity magnitude from the anterior to the posterior walls.

Both SM and LDKM cases can capture the mean flow statistics within the airways

in good agreement with the reference results, thus illustrating the employed computational

framework’s ability to capture the mean flow variations. Furthermore, we notice only minor

differences in the results from the cases employing SM and the LDKM for the closure of

the subgrid-scale (SGS) stress, thus demonstrating that either of the subgrid-scale (SGS)
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closure models can be used for modeling the airflow. However, further investigations are

needed to examine the behavior of the second-order turbulence statistics while using these

closure models.

5.2 Comparison of Aerosol Deposition

For the SimInhale benchmark case, we have reference numerical results available

for global and regional aerosol deposition at Re = 3745 for several discrete particle sizes,

and in vitro measurements are also available for the same flow conditions for the particle

size of 4.3 µm. We use these reference results to perform the verification and validation

(V&V) of the computational modeling strategy. The aerosol deposition is affected by the

inertial impaction, gravitational sedimentation, interception, and the turbulence dispersion

[74], but in the upper airway region, the aerosol deposition is primarily affected by two

key mechanisms, namely, the inertial impaction and the turbulence dispersion. The inertial

impaction occurs when the particle has sufficient momentum and cannot follow the flow

field [75]. Essentially, the larger particles are more influenced by inertial impaction than the

smaller particles due to their inertia. The other mechanism, which affects the deposition

characteristics in a turbulent flow field, is the turbulent dispersion of the particles. It occurs

due to the irregular mixing of fluid in the turbulent regime, due to which the fluid speed

and the trajectory of a particle changes, leading to the eventual deposition on the airway

walls [74]. In particular, the smaller particles tend to be more influenced by turbulence

dispersion than the larger particles. In the present study, the particles that are stuck to

the geometry walls are considered to be deposited. For discrete particle sizes, the DF (%) is
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Figure 5.3 Comparison of global deposition fraction as a function of the particle size for
Re = 3745 case

calculated across the entire geometry for global deposition. The DF (%) is calculated as a

ratio of the number of particles stuck to the wall and the number of particles injected at the

inlet boundary.

Fig. 5.3 shows the global DF as a function of dp for case B. The results obtained from

cases BS and BL differ in the type of the SGS model and are compared with the reference

LES and in vitro results. We observe that the deposition fraction increases with an increase

in dp, showing that inertial impaction is the more dominant deposition mechanism in the

upper airways. The deposition fraction for the particle size less than 5 µm is small(DF <

7%), which shows that turbulence dispersion does not affect the deposition as much as inertial

impaction. We can also observe a large variability in the value of DF with the increase in

the value of dp (DF increases by 5 to 6 times). Here, we observe that the case employing
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Figure 5.4 Contour of velocity magnitude with segments for deposition

LDKM shows marginally better agreement with the reference results compared to the case

when SM is used for closure of the subgrid scale (SGS) stress. Note that, in the LDKM,

an additional transport equation is solved for the SGS kinetic energy, which in turn is used

to obtain the eddy viscosity (see Eq. (3.2.5)). However, the predictions by the SM based

closure can be considered reasonable as it can capture all the trends, and is, therefore, used

for further investigation of the effects of Re on the global and local variation of DF with

respect to dp.

For a more detailed assessment of the employed computational modeling strategy, we

analyze the local deposition characteristics now. We divide the upper airway geometry into

three segments to perform this analysis, as seen in Fig. 5.4. The first segment corresponds

to the section of the airway from the inlet to the larynx region. The second segment includes
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the region below the larynx up to the trachea. The last segment corresponds to the region

from the carina to the outlets.

Fig. 5.5 compares the local value of DF obtained using the SM and LDKM closures

with the reference data at different segments for different particle sizes. We observe a large

variability in the regional deposition fraction with respect to dp, which is consistent with the

global value of DF shown in Fig. 5.3. We can notice a significant increase in the deposition

with the increase in particle size in all three segments. The DF increases by 5 to 6 times for

particle sizes greater than 5 µm.

The variation of local deposition is consistent for all the particle sizes, where we

observe the highest deposition in the first segment, which reduces in the second segment,

followed by an increase in the last segment. This trend is captured by both the closures in a

manner consistent with the reference results. For the particle sizes of dp =1 µm and 2.5 µm,

both the cases show a marginal overprediction in the regional deposition. However, for higher

values of dp, an under-prediction is observed. Overall, similar to the global deposition, the

case employing the LDKM closure shows a marginally better prediction than the case using

the SM closure, particularly for higher values of dp. Furthermore, for large-size particles, the

differences with respect to the reference case are large, as for such particles, Stokes number

is high, which leads to an increase in the particle evolution’s sensitivity to the flow field.

5.3 Grid Sensitivity Study

In Secs. 5.1 and 5.2, we showed that the computational modeling strategy considered

in this study with the baseline grid of 1.6 M computational cells can capture the mean flow
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Figure 5.5 Region deposition fraction (DF ) in the airway geometry for particles of different
sizes (1-10 µm)
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Figure 5.6 Comparison of the global deposition fraction obtained using two different mesh
and compared with respect to the reference case

and the aerosol deposition characteristics in good agreement with the reference results. Now,

we examine the role of the grid resolution on the prediction of the global deposition.

Compared to the baseline mesh, the fine grid mesh comprises approximately 6 M

cells. Fig. 5.6 compares the global deposition fraction for the cases using two different

computational mesh with the reference data for different particle sizes. Overall, with both

meshes, we obtain a similar variation of the global deposition fraction with respect to the

particle size, thus demonstrating the baseline grid’s adequacy. In particular, for dp / 5

µm, the fine grid case shows marginally better results than the baseline grid case. However,

for dp = 6 and 8 µm, we observe that the baseline grid shows a better agreement with

the reference data while for dp = 10 µm, both cases show similar results. The observed

differences with the reference results and between the two cases can be attributed to the role

of subgrid dispersion, which is neglected in the present study.
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CHAPTER 6

EFFECTS OF REYNOLDS NUMBER

In this chapter, we assess the effects of Reynolds Number (Re) on the statistics of

the airflow and the aerosol deposition. As mentioned in Sec. 4.3, we have considered three

different values of Re (1000, 3745, and 5000) to analyze the effect of low (1000) and high

(5000) Re compared to the reference case with Re = 3745. Here, Re = 1000 is considered

because for this value of Re, the flow exhibits quasi-laminar characteristics near the inlet

region of the computational domain, whereas Re = 5000 has fully developed turbulent

characteristics. First, we assess the effect of Re on the first-order statistics of the airflow,

and then we analyze the effects on the deposition characteristics.

6.1 Effects of Re on Airflow

The instantaneous coherent vortical structures reveal the physical characteristics and

dynamics of the flow field. These structures are responsible for the production and transport

of the turbulent kinetic energy [76] and can be identified using the second invariant of the

velocity gradient tensor denoted by Q [2], which is defined as

Q =
1

2
(ΩijΩij − SijSij) , (6.1.1)

Where Sij and Ωij are strain- and rotation-rate tensors, respectively. Figure 6.1
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(a) Re = 1000 (b) Re = 3745 (c) Re = 5000

Figure 6.1 Instantaneous vortical structures in the three cases identified using the iso-surface
of Q-criterion [2] and colored by the instantaneous velocity magnitude

shows the vortical structures identified using a positive value of Q for all three cases and

colored by the corresponding instantaneous velocity magnitude. A wide range of flow struc-

tures tends to form in all the cases, which starts particularly in the nasal cavity region. The

intense shear layer is evident within the larynx, pharynx, and trachea regions. The effects

of Re is particularly evident between the Re = 1000 and 5000 cases, with Re = 3745 case

exhibiting a behavior similar to the Re = 5000 case. The difference between the low and the

high Re cases is evident in terms of the appearance of fine-grained structures in the regions

past the nasal cavity in the high Re case. The complexity of the flow is also evident in all

three cases thus demonstrating the observed variation of the aerosol deposition in different

segments as discussed in chapter 5.
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Figure 6.2 Profile of the mean velocity magnitude at different cross sections for different
values of Reynolds number (Re). The reference results correspond to a fine-grid
LES [1] at Re = 3745
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Fig. 6.2 shows profiles of the normalized mean velocity magnitude (|〈ũ〉| /uB) at

different cross sections as seen in Fig. 5.1. We can observe asymmetric profiles of |〈ũ〉| /uB at

different cross sections, except cross-section A-A in all cases. In particular, at cross-section

A-A, we observe that the effects of Re are marginal, with case AS exhibiting slightly higher

values. At cross-section B-B, the effects of Re is apparent, and in all cases a significant

asymmetry is prevalent. The difference between high Re cases, i.e., case BS and case CS is

much smaller compared to that with respect to case AS.

At cross-section C-C, which corresponds to the larynx region, the effects of Re are

much more apparent, where the peak location of the velocity magnitude shifts to the posterior

airway region. The peak value is sharper in the low Re case compared to the other two cases.

The shift in the peak location is due to the bend in the trachea region. We observe that

all three cases exhibit a very similar behavior at cross-section D-D below the larynx region

except in the posterior wall region.

At cross-sections E-E and F-F, the effects of Re again get pronounced, where the

low Re case differs significantly from the other two and the reference cases. Notably, at

cross-section E-E, due to the bend in the trachea region, the high-speed flow moves towards

the anterior region from the posterior wall. However, we observe that in the low Re case,

the velocity magnitude near the anterior wall increases comparatively higher than the other

high Re cases. Finally, at the cross-section F-F, the flow at the anterior end decreases much

more in the low Re case than the high Re cases, and we also observe a sudden increase in

velocity magnitude in the core region in this case.

Overall, a summary of the mean flow characteristics for different values of Re as
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shown in Fig. 6.2 are given below:

� The case at low Reynolds number Re shows significant differences with the other two

values of Re because this particular Re flow exhibits a transitional behavior. The

normalized velocity magnitude profiles from the other two high Re cases show a near

collapse at all the cross-sections due to fully developed turbulence conditions in these

cases.

� The low Re case shows little or no variation till the flow reaches the larynx when the

flow characteristics change to a fully developed turbulent flow. It shows that the inflow

conditions do not have a significant effect after the larynx region.

� The profiles of the normalized velocity magnitude from the two high Re cases exhibit

a good agreement with the reference LES results.

These results indicate that the aerosol deposition characteristic will be, as expected, Re

dependent apart from Stref dependent. This aspect of the global and local deposition char-

acteristics is examined next.

6.2 Effect of Re on Aerosol Deposition

The effects of Reynolds number Re on the variation of the global deposition fraction

(DF) with respect to the particle size (dp) is shown in Fig. 6.3. We can observe that

with an increase in Re, the value of Deposition Fraction DF remains largely unaffected for

particle size less than 5 µm, which can be attributed to an insignificant effect of turbulent

fluctuations on the deposition of the smaller size particles. However, for larger particles size,

i.e., for dp > 5 µm, we observe that with an increase in dp, DF increases and the increase
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Figure 6.3 Deposition fraction as a function of particle size comparing different Reynolds
number

is higher as Re is increased. Such a variation of DF with dp has been observed in Fig. 5.3.

With the increase in Re, the effect of inertial impaction is more significant than turbulence

fluctuations as we observe deviation in the deposition results primarily for the larger size

particles.

Fig. 6.4 shows the regional deposition fraction across different segments for the six

particle sizes comparing the three different Reynolds number values. Similar to the global

deposition for smaller size particles as shown in Fig. 6.3, we can observe in Fig. 6.4(a)-(c) that

for particle size less than 5 µm, the effect of Re on the local deposition is minimal. However,

with an increase in the particle size dp, we start to observe differences in the local deposition

as Re is increased. In particular, for particle size greater than 5 µm at cross-sections D-D,

E-E, and F-F, the increase in deposition across the entire airway geometry occurs. Similar

to the variation of the global deposition, the effects of Re is much more apparent for larger
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Figure 6.4 Deposition Fraction at various segments comparing different Reynolds number
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particle size. Overall, for all the particle sizes considered in this study, the largest deposition

occurs at section 4, which corresponds to the region between the pharynx and larynx. The

effect of Re on the local deposition is also significant in this region. Note that while the

smaller particles show higher deposition in the nasal cavity, larynx, and outlet regions, the

larger particles show higher local deposition near the larynx and the outlet regions.

The dependence of the regional deposition characteristics described here as a func-

tion of Re, i.e., the inlet mass flow rate and the particle size dp can be used to guide the

specification of aerosolized drug delivery for the treatment of pulmonary ailments. In partic-

ular, the predictive computational tool employed in this study can be used to estimate the

parameters of the inhaler-based therapy for curing regional issues within the airways, which

can maximize the efficiency and minimize the side effects of the prescribed medication.
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CHAPTER 7

CONCLUSIONS

In this chapter, first, the key accomplishments of this study are highlighted in terms

of the critical technical objectives described in Sec. 1.1, and then the future scope of the

present work is outlined.

7.1 Key Accomplishments

The specific accomplishments of this thesis are as follows:

� Assessment of modeling strategy: In this study, the capabilities of the compu-

tational framework to carry out Large-Eddy Simulation(LES) of particle-laden flow

within the human airways using the Eulerian-Lagrangian framework has been estab-

lished. This is achieved by simulating cases corresponding to a truncated geometry

of the well-established SimInhale benchmark configuration and comparing the results

for the mean flow and local and global deposition of particles in the upper airway.

We have assessed the performance of two SGS closure models, namely, the algebraic

SM and the one-equation-based LDKM. Overall, similar results were obtained through

both methods for the mean flow, but slightly better results were obtained by the the

one-equation-based LDKM for the aerosol deposition. The reason for better results

with the LDKM method can be attributed to the solution of an additional transport

equation for the subgrid kinetic energy, which is used to obtain the eddy viscosity for
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the closure of the SGS stress. However, LDKM also tends to be computationally ex-

pensive by around 30% for the cases considered in this study due to the need to solve

an additional transport equation.

� Analyze the airflow statistics: The mean flow statistics have been assessed by

adopting different closure models, three sets of Reynolds numbers, and different mesh

sizes. A reasonable comparison was found with the reference data. We observe the flow

to be quasi-laminar near the inlet boundary, and it transitions to turbulence at the

back of the nasal cavity. The velocity magnitude is low at the inlet up to the pharynx,

and it accelerates near the larynx. The low Reynolds number flow shows little to no

variation until the flow reaches the larynx, after which the inflow conditions do not

show a significant effect on the mean flow field.

� Characterize the effects of injection flow rate and particle size: As stated

above, we compared the deposition characteristics of particles with different sizes

(Stokes number) for three different values of Reynolds numbers to study the effects

of injection flow rate and particle size. For airflow, we observed that Re = 3745 and

5000 cases show the collapse of normalized mean velocity magnitude while the low Re

flow differs; this is due to the transitional nature of the flow at lower Re. We also

observe that for aerosol deposition, the smaller particle size (less than 5µm) deposition

is largely unaffected while for particle size greater than 5 µm Re has significant effects

on the deposition characteristics. Finally, as expected, a higher Re leads to enhanced

inertial impaction, which in turn increases the deposition, particularly for the particles

with a higher Stokes number.
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7.2 Future Outlook

Some of the directions that one can pursue to extend this research activity in the

future are summarized below:

� Improve upon predictive capabilities of the computational strategy: The

computational framework considered here neglects the subgrid dispersion, which is

important, particularly while using a coarse grid for LES (Large-Eddy Simulation).

So, a future study can focus on examining the results with different models for subgrid

dispersion. In addition, other closure models for the Subgrid scale (SGS) stress can

also be assessed for their accuracy and efficiency compared to the closures considered

in this study. Finally, the two- and four-way coupled particle-laden flow scenarios can

also be considered.

� Examine the deposition characteristics for polydisperse injection: In this

study, we have used seven discrete particle sizes ranging from 1 to 10 µm, but in the

future, instead of discrete particle size, a different distribution method can be used. For

example, particles can be distributed by Gaussian size distribution or by mean-variance

distribution methods at the inlet.

� Develop correlations for deposition: We have established a strong dependence of

the deposition fraction (DF ) with the Reynolds number and particle size or the Stokes

number. These results can be used to develop correlations for the deposition fraction

in terms of the non-dimensional parameters.

� Simulate the full geometry: In the current study, we have focused on the upper

airway geometry. However, one can extend the study to include the entire airway model
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from extra-thoracic airway to tracheobronchial airways, which could lead to improved

understanding of the deposition characteristics in the peripheral regions, which is key

for the treatment of several pulmonary ailments.
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