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ABSTRACT 

 

 

 To classify the data-set featured with a large number of heavily imbalanced classes, this 

thesis proposed an Extensive Huffman-Tree Neural Network (EHTNN), which fabricates 

multiple component neural network-enabled classifiers (e.g., CNN or SVM) using an extensive 

Huffman tree. Any given node in EHTNN can have an arbitrary number of children. Compared 

with the Binary Huffman-Tree Neural Network (BHTNN), an EHTNN may have a smaller tree 

height, involve fewer component neural networks, and demonstrate more flexibility on handling 

data imbalance. Using a 16-class exponentially imbalanced audio data-set as the benchmark, the 

proposed EHTNN was strictly assessed based on the comparisons with alternative methods such 

as BHTNN and single-layer (canonical) CNN. The experimental results demonstrated promises 

results about EHTNN in terms of Gini index, Entropy value, and the accuracy derived from 

hierarchical multiclass confusion matrices. 
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CHAPTER 1 

 

INTRODUCTION 

 

A long-standing issue for audio classification is low accuracy due to an imbalanced data 

set. This thesis is the result of efforts to discover a better solution to audio classification of voice 

accent on a skewed data set. A skew data set is a data set in which the training or validation data 

is skewed towards a particular class or set of classes, sometimes on an exponential level [1]. 

Skewed data sets can produce too many negative examples vs positive examples, causing the 

classifier to incorrectly predict a class for a given piece of data. Skewed data sets do not perform 

as well as a balanced data set. Likewise, a multi-class classification problem makes the 

prediction accuracy even worse. Skewed data can even alter the ability of the classifier’s training 

by insufficiently providing enough data during training to accurately fit the model. A few 

concepts related to over-sampling or under-sampling have been utilized to help circumvent this 

issue [2]. Random re-sampling or random selective sampling also has drawbacks. This technique 

could also affect the classifier’s ability to train and fit the model appropriately as over-sampling 

less frequent classes doesn’t provide enough data variation to build a model that is trained 

diverse enough to recognize slight variations in data. Moreover, random under-sampling can 

limit the capacity of the model to fit on a diverse dataset in the same sense of under-sampling. 

Lastly, sampling does not account for the likelihood of an input data belonging to a skewed class. 

Sampling indicates the classes are equally weighted to the classifier [2].  
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This thesis explores a Huffman-tree-based approach to classification by breaking down a 

large multi-class problem into several smaller problems. The remainder of this thesis is divided 

into chapters. Chapter 2 will discuss related work to machine learning for audio classification. 

Chapter 3 will describe the Binary Huffman-Tree Neural Network (BHTNN). Chapter 4 will 

pronounce the contribution toward the Extensive Huffman Tree Neural Network (EHTNN). The 

results and comparison of each model is given in Chapter 5, and a conclusion with potential 

future work is denoted in Chapter 6. 
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CHAPTER 2 

 

MACHINE LEARNING ENABLED AUDIO CLASSIFICATION 

The topic of audio classification using machine learning is not a new concept. Plenty of 

research within the artificial intelligence (AI) field of computer science has been performed. 

Many researchers have discovered multiple neural network techniques that can be used in order 

to train an AI machine to accurately classify snippets of audio based on music genre, what 

instrument is playing, or what words an individual is speaking. Most of these audio classification 

techniques use a specific type of neural network called a Convolution Neural Network (CNN). 

This machine learning method is mostly used to identify features of a two-dimensional image. 

Audio can be used as the input to a CNN whenever it is converted into a spectrogram using a 

mathematical signal processing technique called Fourier Transform. This converts the audio 

signal into a frequency vs time graph that highlights the dominant frequency at any given time 

within an audio snippet. This process is shown in Figure 2.1. 

 

 

Figure 2.1 

Diagram illustrating audio files as CNN input (1s sample of WAV) 
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This thesis will cover the practical use of using CNNs to correctly classify an audio 

recording of a human speaking words into a microphone by nationality through identifying 

frequency features of the person’s accent. While this technique isn’t much different than music 

genre classification, this thesis will extend on the concept by exploring how to increase the 

classification accuracy of the network where there are a higher than usual number of categorical 

classes. Having a high number of classes reduces the ability for a single CNN to accurately 

classify an input. Additionally, the data set being used is unbalanced on an exponential scale. 

This thesis will explore a technique for increasing accuracy of the model, reducing the time 

complexity, and minimizing the entropy and impurity (Gini) index. 

Using machine learning to analyze audio is not a new concept. Several different types of 

neural networks exist that are used to process audio depending on the goal of the model. In 

practice, many audio classifications are transformed into images during the data pre-processing 

stage of the neural network [3]. The 2D visual representation of the audio is produced by a 

Fourier transform which generates a frequency vs time plot. This image is useful for 

classification and sequential analysis because a Fourier transform highlights dominant 

frequencies at any given moment throughout the duration of the audio sample [3]. A Fourier 

transform (often referred to as a spectrogram) is then delivered as input into an image based 

neural network model. 

 

Data Preparation for Accent Recognition 

Many datasets are available for this type of work. For this thesis, the “common-voice” 

dataset was retrieved from Kaggle. This dataset comprises of hundreds of thousands of mp3 files 

containing words spoken by many different people. On average, each mp3 file is only a few 
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seconds long. A quick sample of a few of the files reveals the person is either speaking a 

sentence or multiple random words, some with a brief pause in between. The dataset is 

accompanied by a meta data file that contains a record for each mp3 file – indicating the 

corresponding filename, words spoken, and some demographics about the person speaking 

(gender, age, and accent) [4]. To simplify the training process, a subset of the data was used to 

speed up the training process and to prevent the learning engine from exceeding system 

resources. The first twenty-five thousand records in the training dataset that contained a value for 

the accent field were used. 

To further prepare the data, each audio file was sampled for 1 second to create the same 

spatial resolution for the spectrogram. The audio recordings provided in the data set are not of 

equal length and the resolution mismatch would cause false positives in the neural network’s 

convolution and max-pooling layers. 

Each spectrogram image for the model input was prepared using the ImageDataGenerator 

class within the Keras API. This class simplifies the import of training and validation data into a 

tensor data type as well as loading the correct classification labels for each piece of data. 

Additionally, the spectrograms were resized to a square image (which is ideal for CNNs) and 

converted to grayscale to eliminate color differences on the dataset. 

 

Support Vector Machine Enabled Audio Classification 

Support Vector Machines (SVM) are occasionally used to classify images in a machine 

learning model where a finite feature can be chosen [3,5]. The SVM can be used to classify 

images using more than one feature; however, additional features are computationally more 

expensive quadratically [5]. This thesis uses CNN over SVM as the model for these reasons. 
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However, SVMs are most applicable to binary classification models where the neural network 

must classify an image input between one class or another [5]. SVMs can be used to classify 

images into multiple classes; however, they must be implemented in a chained manner [5]. 

 

Convolutional Neural Network Enabled Audio Classification 

Convolutional Neural Networks (CNN) are also used for classification by using filters to 

identify multiple features within the image that are similar to other images within the same class 

[6]. Each image from the input is trained by convoluting a subset of pixels from the image with a 

kernel matrix, resulting in a convoluted matrix. Weights are then applied to the parameters of the 

network during training as the network is identifying important features and enhancing the 

prediction accuracy of the network [6]. The convolutional layer is followed by a pooling layer, 

extracting the most important features from the convolution and reduces the feature dimensions 

[6]. Finally, an activation function is used to determine which neurons of the neural network are 

important to the classification. Recent studies have concluded the Rectified Linear Unit (ReLU) 

function is best for CNNs because it does not activate all neurons at once [6]. ReLU has also 

been shown to have better performance than other functions, such as sigmoid [6]. 
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CHAPTER 3 

 

BINARY HUFFMAN TREE NEURAL NETWORK 

As a remedy to the skew data set, a SVM-based Binary Huffman Tree Neural Network 

was proposed in [7] as a refined method to increase classification and prediction accuracy. 

However, due to the computational limitations of SVM-based neural networks for data with 

multiple features, we are proposing a CNN-based Binary Huffman Tree Neural Network. 

 

Huffman Tree Architecture and Numerical Analysis 

The Huffman tree increases accuracy by predicting if inputs are classified as the highest 

frequently occurring class first, followed by another classification of the next higher occurring 

class, and so on [7-9]. As a result, this technique requires a numerical analysis to be performed 

on the data set. The analysis will determine how to initially configure the Huffman tree. Each 

class is listed in descending order with the frequency of occurrence within the dataset. Such an 

analysis is given in Table 3.1. 
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Table 3.1 

 

Frequency of Common Voice Accents for Sub-Sample of 25,000 

 

Code Accent Frequency 

a US 11974 

b England 5751 

c India 1806 

d Australia 1677 

e Canada 1486 

f Scotland 565 

g Africa 445 

h New Zealand 422 

i Ireland 364 

j Philippines 125 

k Wales 104 

l Bermuda 80 

m Malaysia 75 

n Singapore 50 

o Hong Kong 42 

p South Atlantic 34 

 

Huffman coding defines the algorithm and procedure in order to build a visual binary tree 

that represents the frequency table. Starting with the classes of the lowest frequency, create two 
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tree nodes. Create a parent node with the sum of the frequencies of the child nodes. As you move 

up the table, if the next class’s frequency exceeds the total of the recently created parent node, a 

new tree should be created and then combined with the current tree with a new parent node [7-9]. 

Figure 3.1 shows the resulting binary Huffman Tree derived from the Common Voice Accent 

data set [4]. The parent tree nodes represent binary neural network classifiers. 
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Figure 3.1 

Binary Huffman Tree Neural Network (BHTNN) with 15 component classifiers 
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BHTNN Based on Support Vector Machines 

Since SVMs are binary classification networks; they must be chained together when 

implementing a multi-class output [5]. Such a method can be achieved by implementing a Binary 

Huffman Tree Neural Network (BHTNN) with multiple individually trained SVM networks. 

Using a binary tree allows the machine learning engineer to create multiple SVM networks in a 

one-against-all or one-against-one dataset. Eventually, each class will be represented within the 

decision tree [5]. Using a BHTNN tree will increase the classification accuracy because the most 

commonly occurring class will be the first neural network in the model in a one-against-all 

implementation [7]. Using the Huffman encoding algorithm, a binary tree is developed with all 

childless nodes representing a class and all parent nodes referring to an individually trained 

neural network [7]. 

 

BHTNN Based on CNN 

 Each decision point within the BHTNN is a separately trained CNN. Each network is 

configured for binary classification as a one-against-all, some-against-all, or a one-against-one 

data-set.  At the top of the tree, the first classification is a one-against-all. Mid-way through the 

tree, there are a few some-against-some networks. It should be noted that these networks are no 

more than three classes-against-all. In this case, the network is predicting if an input is any of the 

two or three classes vs everything else. Accuracy suffers slightly in the some-against-all and the 

some-against-some networks. The one-against-one networks are simpler than the others as they 

are only predicting between two classes. 

The model is created on a Python Anaconda interpreter using TensorFlow’s Keras API 

library for machine learning. The CNN contains five convolution layers each followed by a max-
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pooling layer. These convolution and max-pooling layers highlight and pinpoint the identifiable 

features of each input. The model is then followed up by a dropout layer that randomly 

eliminates some of the input units to prevent over-fitting. The dropout factor is set to 0.5 due to 

the vast nature of multiple features within the data on spectrograms. The model then passes 

through a flatten layer and two dense layers. The final dense layer’s output size is one since the 

loss objective function is binary-crossentropy (indicating a yes or no which is illustrated by the 1 

or 0 on the tree path in Figure 3.1). Up to forty training epochs were performed for each network. 

For the first two CNNs, a steps-per-epoch value was specified to prevent over-fitting due to the 

high number of training data for the two most frequent classes. The dropout factor was reduced 

to 0.2 to compensate for the reduced training steps. The CNN at each decision point in the 

BHTNN is illustrated in Figure 3.2. 

 

 

Figure 3.2 

Illustration of the Convolution Neural Network (CNN) Model 
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A few other model callbacks were used to further prevent over-fitting. An early stopping 

callback was established to stop the training if the validation accuracy had not increased after 

fifteen epochs. Also, the ReduceLRonPlateau function was utilized – which reduces the learning 

rate of the optimizer function if the validation accuracy does not increase after five epochs. 

Finally, a model checkpoint was used to save the parameter weights of the epoch that yields the 

highest validation accuracy. These peak accuracy values are given in the results section. 

 

Binary Huffman Tree Neural Network 

Huffman encoding is typically used as a lossless compression algorithm by indicating 

frequently used values first with less frequently used value later. The bit-storage technique is 

optimal by using less bits for commonly occurring values and more bits for less commonly 

occurring values. Visually, this would represent a higher position in a binary tree, and a lower 

position in a binary tree respectively. The bit length indicates how many branches to travel in the 

tree in order to find a particular value. More bits will result in a higher time complexity for the 

worst-case scenario [7].  

This thesis explores a machine learning model that will increase the accuracy of a 

canonical CNN in order to achieve a better performing model. These models are typically ideal 

for image classification; however, when CNNs have a higher number of output classes, the 

prediction accuracy of the model decreases [6]. This technique will extend the CNN by 

encompassing multiple CNNs in a Huffman Tree Architecture (HTA). The goal of this method is 

to improve accuracy of a multi-class CNN by implementing a HTA with binary CNNs. This will 

improve the classification accuracy of an exponentially unbalanced dataset (as compared to a flat 

multi-class categorical cross-entropy CNN). HTAs within neural networks have been used 
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before, but with SVMs [8-9]. Since SVMs are not computationally efficient for multiple features 

within an input image, this thesis will explore a CNN-based HTA, an extensive CNN-based HTA 

with a reduced height, and an improved CNN-based HTA, utilizing entropy and impurity (Gini) 

index calculations to re-arrange nodes for better accuracy. 

  



 

15 

 

 

 

 

 

 

CHAPTER 4 

 

EXTENSIVE HUFFMAN TREE NEURAL NETWORK 

For a given n-class classification problem, Binary Huffman Tree Neural Networks 

(BHTNN) always consist of (at most) (n-1) component binary classification neural networks; 

therefore, BHTNN lacks flexibility in architecture configuration. In the worst case (the height of 

the tree is n-1), a decision may be made by passing through (n-1) neural networks.  

As a remedy, this thesis proposes an Extensive Huffman-Tree Neural Network (EHTNN): 

• Each non-leaf EHTNN node has an arbitrary number of (two or more than two) sub-trees. 

As a result, a lesser number of component neural networks (binary or multi-class) are 

needed. The height of the resulting EHTNN can be reduced as well. 

• The EHTNN is improved according to specific measurement metrics such as entropy or 

Gini index. 

In order to select the appropriate numbers of classes to move to the canonical CNN portion of 

the EHTNN, Algorithm 2 is considered. The goal of the algorithm is to find the ideal number of 

classes, k, that will result in the standard deviation of k classes being lower than some arbitrary 

fraction, α of the frequency of the smallest class. Different from BHTNN (constructed using 

Algorithm 1), EHTNN fabricates multiple neural networks (or nodes) together using an 

extensive Huffman tree, whose construction is described by Algorithm 2. 
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Accuracy of each decision point in the tree is one metric to consider when determining 

the overall effectiveness of a BHTNN with an unbalanced data-set. However, there is a concern 

for point-of-no-return if an inaccurate decision is made at a higher point in the tree for an input 

that belongs to another class. Further learning on an input data that does not belong to either 

class in a BHTNN can negatively affect the overall performance of each neural network in the 

tree. The EHTNN is a concept to combine a multi-class CNN with a Huffman tree to converge 

the benefits of both models. Referring back to the frequencies given from the numerical analysis 

in Table 3.1, the unbalance of the data becomes less apparent as we move down the table. This is 

the point in which we stop the Huffman tree and convert to a multi-class CNN to handle the 

remaining classes that are more balanced to each other as compared to the more frequently 

occurring classes at the top of the table. For our analysis, the splitting point will be after the fifth 

class in the table, resulting in a tree as illustrated in Figure 4.1. Additionally, reducing the height 

of the tree also decreases the time complexity and training efforts for the entire EHTNN. 
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Figure 4.1 

Extensive Huffman Tree Neural Network (EHTNN) with 6 Component Classifiers 
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Measurement Metrics of the EHTNN 

Decision-tree-based neural networks can be measured for efficiency using multiple 

parameters. Two major factors are the entropy value and the impurity (Gini) index. By applying 

these concepts to the EHTNN, we can improve the configuration of tree through minimizing the 

Gini index and the entropy. Another measurement factor is the confusion matrix which visualizes 

the accuracy of each component neural network with a table of correct and incorrect guesses of 

each class. 

 

Entropy 

The information entropy value is a statistical measurement of the uncertainty in an 

outcome. Values are between zero and one. The goal of the decision tree is to arrange the 

decisions in the tree to minimize the entropy value. Our EHTNN is rearranged by changing the 

value of α to increase the number of classes move to the canonical portion of the tree. The 

entropy value is then re-computed to determine the improvement of the decision tree 

arrangement. The entropy formula is given by Equation 4.3 where 𝑝𝑗 represents the probability 

of the class within its respective network. Each class within the tree has a computed entropy and 

it is weighted by multiplying by the probability of each class within the dataset, given by 

Equation 4.1. The weighted entropy values are summed to determine the final weighted entropy 

of the tree [8]. 

𝑊𝐻 =  ∑ 𝑤𝑚 ∗  𝐻𝑚

𝑚

 

Equation 4.1 

Weighted Entropy of Class Probability 
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 The weight, 𝑤𝑚 of the m-th component classifier is defined in Equation 4.2 where 𝑓 is 

the frequency of the respective class, and the entropy of the m-th component classifier, 𝐻𝑚 is 

defined in Equation 4.3.  

𝑤𝑚 =  
𝑓𝑚

∑ 𝑓𝑖𝑖
 

Equation 4.2 

Computed Weight of m-th Class 

 

𝐻𝑚 =  − ∑ 𝑝𝑗 ∗  log2 𝑝𝑗

𝑗

 

Equation 4.3 

Entropy Value of the m-th Class 

 

Gini Index 

The Gini index is a measurement that indicates a level of dataset contamination or 

impurity. Similar to information entropy, the Gini index is a value between zero and one and a 

higher value indicates more data contamination. As a result, the goal of a decision tree is to 

reduce the value of the Gini index. A lower measurement value would signify the purity of the 

dataset. As a continuation of the information entropy arrangement, this thesis will apply a 

weighted Gini index given by Equation 4.4 where the weight, 𝑤𝑚 of the m-th component 

classifier is defined in Equation 4.2 and the corresponding Gini index, 𝐺𝑚 is given in Equation 

4.5  [9]. 
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𝑊𝐺 =  ∑ 𝑤𝑚

𝑚

∗ 𝐺𝑚 

 

Equation 4.4 

 

Weighted Impurity (Gini) Index of Class Probability 

 

 

 

𝐺𝑚 = 1 − ∑ 𝑝𝑗
2

𝑗

 

 

Equation 4.5 

 

Impurity (Gini) Index of Class Probability 

 

 

 

Hierarchical MultiClass Confusion Matrix 

 As addressed above, EHTNN consists of multiple neural network classifiers organized in 

a hierarchical architecture. The accuracy of m-th component classifier can be measured using 

micro-averaged F1-score, known as Precision and Recall and defined in Equation 4.6, where 𝑀 

indicates the multiclass confusion matrix for component classifier, 𝑚. This measurement 

illustrates that when we are calculating the metrics globally, all of the measures (accuracy, 

precision, recall, and micro-averaged F1-score) become equal. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑚 = 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚 =  𝑅𝑒𝑐𝑎𝑙𝑙𝑚 =  
∑ 𝑀𝑖𝑖𝑖

∑ 𝑀𝑖𝑗𝑖≠𝑗
 

Equation 4.6 

F1 Score – Precision and Recall are Equivalent to Accuracy 

 



 

21 

 

The confusion matrices for the first two component classifiers of EHTNN are given in Table 4.1 

and Table 4.2.  

 

Table 4.1 

 

Confusion Matrix – 1st Component Classifier (US vs NotUS – 67% Accuracy) 

 

  Actual Class 

  US NotUS 

Predicted Class 

US 8022 3952 

NotUS 4299 8727 

 

Table 4.2 

 

Confusion Matrix – 2nd Component Classifier (England vs NotEngland – 72% Accuracy) 

 

  Actual Class 

  England NotEngland 

Predicted Class 

England 4130 1621 

NotEngland 2051 5224 

 

 Following Equation 4.7, we have a global accuracy value of EHTNN that can be 

formulated as the weighted sum of the component classifiers. 
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𝑊𝐴 =  ∑ 𝑤𝑚 ∗  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑚

𝑚

 

Equation 4.7 

Weighted Accuracy 

 

 Matthews Correlation Coefficient (MCC) or phi coefficient is a metric that is used to 

determine the quality of binary classifiers based on the confusion matrix. Values range from -1 to 

0 to +1, incorrect prediction to random prediction to perfect prediction respectively. MCC is not 

considered for a metric in this thesis because it is only applicable for a completely binary 

classification Huffman tree. Therefore, it is not applicable for EHTNN. While many of the 

component classifiers in the EHTNN are binary, the canonical classifier is categorical. As a 

result, MCC cannot be applied to the entire tree. 

  



 

23 

 

 

 

 

 

 

CHAPTER 5 

 

EXPERIMENTAL RESULTS 

In order to establish a baseline, the same CNN model was trained in categorical mode; 

however, the loss function was changed to categorical-crossentropy with the number of output 

layers on the final dense layer set to sixteen (the total number of unique classes in [4]). This is 

the control model to make an improvement comparison to the BHTNN and EHTNN models. 

After several epochs, the learning converged on 47% accuracy. In comparison, the BHTNN and 

EHTNN both yielded (on average) a 66% accuracy. By the accuracy values alone, it can be 

observed that the Huffman-tree based models provide a better classification prediction for 

spectrograms. The validation accuracy of each CNN is given in Table 5.1. 
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Table 5.1 

 

Accuracy Results for Each CNN in the BHTNN 

 

Code CNN Accuracy 

a US/notUS 0.6718 

b England/NotEngland 0.7180 

 Australia or Canada/neither 0.6562 

de Australia/Canada 0.5282 

c India/notIndia 0.6250 

 Scotland, New Zealand, or Ireland/neither 0.6750 

f Scotland/notScotland 0.5797 

hi New Zealand/Ireland 0.6842 

g Africa/notAfrica 0.6078 

 Philippines or Wales/neither 0.5926 

jk Philippines/Wales 0.7143 

 Malaysia or Singapore/neither 0.6923 

mn Malaysia/Singapore 0.6250 

l Bermuda/notBermuda 0.6670 

op Hong Kong/South Atlantic 0.6670 
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As indicated, each CNN and class are not equally weighted to others, so the overall 

accuracy of the BHTNN and EHTNN cannot be computed by a mean. We can compute the total 

accuracy of each model by using a weighted mean. The formula for a weighted arithmetic mean 

is given in Equation 4.7. By applying Equations 4.1, 4.4, and 4.7, we obtain the results for each 

method as indicated in Table 5.2.  

 

Table 5.2 

 

Measurement Metrics of Each Method 

 

Method Accuracy (WA) Entropy (WH) Gini (WG) 

Flat CNN 0.47 0.65 0.72 

Binary HTNN 0.66 0.99 0.49 

EHTNN (α = 0.5) 0.66 0.96 0.53 

EHTNN (α = 1.5) 0.77 0.89 0.48 

 

 

As indicated in the results above, the accuracy remains steady at 66% for both the 

BHTNN and the EHTNN, but rose slightly to 77% for the second EHTNN (α = 1.5). The entropy 

decreased from 0.96-0.99 to 0.89 on the second EHTNN while the Gini index fell from 0.72 on 

the flat CNN to 0.48 for the second EHTNN. When the EHTNN is improved for lower entropy 

and Gini index values, the accuracy of the model increases [10-11]. 

This work also includes a method for training a canonical SVM to support the decision of 

choosing the CNN methodology over SVM. The training time is given only for the canonical 
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methodologies to illustrate the difference between SVM and CNN. This comparison is shown in 

Table 5.3 

 

Table 5.3 

 

Canonical Training Time for SVM and CNN Methods 

 

Method Training Time (sec) Epochs Time per Epoch 

Flat SVM 1683 14 120.2 

Flat CNN 1451 16 90.7 
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CHAPTER 6 

 

CONCLUSION AND FUTURE WORK 

The work of this thesis yielded a higher accuracy value for the prediction model by using 

a HTNN. As stated, the Huffman tree is not a new concept for machine learning models. It was 

previously used with an SVM-based model. Due to the limitation of SVM-based decision trees, 

this thesis explored increasing model prediction accuracy when a high number of output classes 

are present and the input must be trained on multiple features. The CNN-based HTNNs yielded 

an accuracy increase of roughly twenty percent to twenty-five percent (20%-30%). While the 

entropy value and Gini indices decreased with a HTNN vs canonical, the rearranged EHTNN 

lowered these values for improved accuracy. Even though a lower entropy and Gini index are 

ideal in a machine learning model, the higher values are an acceptable trade-off for higher 

accuracy. 

Future work can be explored to further develop and optimize the EHTNN by utilizing 

more data preparation. Expanding on the audio processing functionality before generating a 

spectrogram can decrease the over-fitting potential of the model. The spectrograms produced by 

the Python matplotlib library were adequate for use in the model; however more analysis can be 

performed to detect a higher audio amplitude so the data sample isn't a brief moment of silence. 

Additionally, more work is needed to further arrange a decision tree based on the lowest 

values for entropy and the Gini index. An ideal implementation would be to compute the entropy 

and Gini index for each possible arrangement of the decision tree and train the networks as such. 

Further research and studies can be conducted to re-arrange the decision tree after initial training 
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to keep the accuracy high while keeping the entropy and Gini index low as the tree predicts and 

obtains more data throughout the lifecycle of the tree. 
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