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Abstract:

Evidence from behavioral experiments suggests that intertem-
poral preferences reflect a hyperbolic discount function. This paper
shows that in contrast to exponential discounting, the elasticity of
intertemporal substitution for hyperbolic consumers depends on the
persistence of the change in the intertemporal relative price. In par-
ticular, lasting changes in the real interest rate are likely to generate
a smaller degree of intertemporal substitution in consumption than
temporary changes. This result holds for both sophisticated and
naive hyperbolic consumers. It provides a novel testable implica-
tion of hyperbolic discounting and a new perspective on intertem-
poral substitution.

Keywords: Intertemporal substitution, consumption, quasi-hyberbolic
discounting
JEL codes: D91, E21



Intertemporal Substitution and Hyperbolic Discounting1

Petra M. Geraats2
University of Cambridge

1 Introduction

Temptations are often irresistible, even when they lead to unin-
tended and with hindsight regrettable behavior. This inclination
for immediate gratification reflects a bias in intertemporal prefer-
ences towards present rewards. Behavioral evidence indicates that
intertemporal discount rates decline with the delay in rewards and
are well-described by a hyperbolic discount function (e.g. Ainslie
1992). This paper builds on the seminal contributions by Laibson
(1996, 1997) and shows that in contrast to exponential discount-
ing, the elasticity of intertemporal substitution for hyperbolic con-
sumers depends on the duration of the change in the intertemporal
relative price. This holds for both sophisticated consumers, who
realize that they have dynamically inconsistent preferences and ra-
tionally anticipate their future behavior, and naive consumers, who
do not foresee their future self-control problems and correspond-
ing present bias. The result provides a novel testable implication
of hyperbolic discounting and is relevant for intertemporal substi-
tution effects in micro-founded business cycle models and macro-
economic policy.
Intuitively, the intertemporal substitution of consumption depends

on the difference between the real interest rate and the (effective)
1This paper is a much revised version of “Reconsidering the Microfoundations of

Consumption: The Implications of Hyperbolic Discounting”, which was written at the
International Finance Division of the Federal Reserve Board, which I thank for its
hospitality. In addition, I’m grateful to George Akerlof, David Bowman, Jon Faust,
Maury Obstfeld, Matthew Rabin, Paul Ruud, and seminar participants at the Federal
Reserve Board for helpful discussion. Any views expressed in this paper are entirely
my own.

2Faculty of Economics, University of Cambridge, Cambridge, CB3 9DD, United
Kingdom. Email: Petra.Geraats@econ.cam.ac.uk.
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discount rate. With hyperbolic discounting the discount rate declines
as the time horizon increases and the effective discount rate is a
consumption-weighted average of the high short-run and the low
long-run discount rate. For a short change in the interest rate, future
intertemporal trade-offs are not affected so the effective discount
rate remains constant. But a lasting interest rate change generally
influences the effective discount rate, which alters the effect of the
interest rate on intertemporal substitution. In particular, when the
income effect dominates the substitution effect of a permanent in-
crease in the real interest rate, the consumption rate rises, which
increases the effective discount rate towards the higher, short-run
discount rate. This partially offsets the increase in the real interest
rate and diminishes the degree of intertemporal substitution.
The theoretical literature has identified several ways in which

hyperbolic and exponential consumers differ. Laibson (1998)
provides a useful overview. One interesting distinction is that
hyperbolic discounting helps to explain the empirical anomaly that
the elasticity of intertemporal substitution is less than the inverse
of the coefficient of relative risk aversion. This was first shown by
Laibson (1996) for a permanent change in the real interest rate with
sophisticated consumers in discrete time. The present paper finds
that this result extends to naive consumers and to continuous time.
Moreover, it shows that in all these cases the result no longer holds
for a short change in the interest rate. In other words, the degree
of intertemporal substitution under hyperbolic discounting depends
on the duration of the intertemporal price change. For plausible
levels of risk aversion, the elasticity of intertemporal substitution is
smaller for more persistent changes.
This implication of hyperbolic discounting already applies to the

basic infinite-horizon model with one liquid asset and no financial
market imperfections, for which the consumption behavior of
hyperbolic and exponential agents is otherwise indistinguishable.
But the argument is also relevant for more realistic ‘buffer-stock’
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models. In addition, it provides a potential explanation for the wide
range of estimates of the elasticity of intertemporal substitution
in the empirical literature, including the possibility of negative
elasticity values for naive hyperbolic consumers with a low degree
of self control. All in all, the paper sheds new light on the
importance of persistence for intertemporal substitution.
The remainder of this paper is organized as follows. Section

2 presents the basic discrete-time model with a (quasi-)hyperbolic
discount function and sophisticated consumers. The effect of
the persistence of the interest rate on intertemporal substitution
is analyzed in section 3. The results are extended to naive
consumers, a buffer-stock model and continuous time in section 4.
Empirical and policy implications are addressed in section 5, which
concludes.

2 Hyperbolic Discounting

Intertemporal discounting has been studied extensively in psychol-
ogy. Experiments regarding human (and animal) behavior show
that the rate of time preference depends on the time interval τ be-
tween the moment of choice and the actual events. Imminent out-
comes are discounted at a higher rate than payoffs in the distant
future. This was first described by Herrnstein’s Matching Law
and later refined to the generalized hyperbolic discount function
φh(τ) = (1 + ατ)−γ/α (see Ainslie 1992). The corresponding dis-
count rate γ/ (1 + ατ) decreases in the delay τ , which is consistent
with behavioral data. (e.g. Thaler 1981, Benzion, Rapoport and
Yagil 1989). An axiomatic derivation of the generalized hyperbolic
discount function is provided by Loewenstein and Prelec (1992).
With hyperbolic discounting intertemporal preferences feature

a systematic bias towards immediate gratification. Intertemporal
choices in the distant future are evaluated at a lower discount rate
than immediate choices, which gives rise to dynamic inconsistency.
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Since the currently optimal plan may no longer be optimal in the
future, it is useful to model an individual as distinct ‘temporal
selves’ who are each in control for one period. Generally, the
optimal decision for the current self depends on the anticipated
behavior of future selves. A ‘sophisticated’ person has rational
expectations of future behavior, whereas a ‘naive’ person wrongly
believes that future selves will act in the interest of the current self
(Strotz 1956, Pollak 1968).
Laibson (1996) analyzes a standard consumption model with a

‘quasi-hyperbolic’ discount function that was first used by Phelps
and Pollak (1968)
to model imperfect intergenerational altruism. In particular, it is

assumed that each temporal self t maximizes life-time utility

Ut = u (Ct) + β
∞X
i=1

δiu (Ct+i) (1)

where u (C) is the instantaneous utility from consumption C, β
is the degree of self-control which reduces the ‘present bias’ in
intertemporal preferences (0 < β ≤ 1), and δ is the intertemporal
discount factor (0 < δ ≤ 1). Note that the quasi-hyperbolic
specification conveniently nests exponential discounting as the
special case in which the present bias parameter β = 1.
The quasi-hyperbolic discount function in (1) mimics the hyper-

bolic shape of behavioral discount functions remarkably well. This
is illustrated in figure 1. It shows the discount function constructed
from Thaler’s (1981) survey data in which subjects were asked for
certain payoffs at various delays that would be just as attractive as
an immediate reward of $250. In addition, figure 1 shows the con-
ventional exponential discount function φe(τ) = δτe and the quasi-
hyperbolic specification φq(τ) = βδτ , where τ is time measured in
years. The parameters, δe = 0.768, β = 0.867 and δ = 0.831, are
estimated by nonlinear least squares using Thaler’s (1981) data.3

3To be precise, the data are from Thaler (1981), Table 2, Panel A, for the amount
of $250. The standard errors of the coefficient estimates are 0.044, 0.011 and 0.008,
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Figure 1: Discount functions estimated using Thaler (1981) data.

Following Laibson (1996), utility is assumed to be iso-elastic:

u (C) =
C1−ρ − 1
1− ρ

(2)

where ρ is the coefficient of relative risk aversion (ρ > 0). Each self
s is endowed with life-time wealth Ws and is in control to choose
the consumption level Cs. The subsequent period, self s+1 inherits
the remaining wealth level

Ws+1 = R (Ws − Cs) (3)
respectively. Note that β is significantly different from 1, so the hypothesis of
exponential discounting is rejected. This also holds for the other amounts in the Panel.
Using all the Thaler (1981) data and applying more elaborate econometric techniques,
Keller and Strazzera (2002) also reject the exponential discount function.
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where R is the gross real interest rate. The consumer invests in
one (liquid) asset and faces no credit market imperfections, so
0 ≤ Cs ≤Ws. Finally, it is assumed that each self s is sophisticated
and rationally anticipates the behavior of future selves. Extensions
to this basic model are discussed in section 4.

3 Intertemporal Substitution

First, the key finding by Laibson (1996) is discussed. Subsequently,
it is shown that this result hinges on a lasting intertemporal price
change, so the degree of intertemporal substitution depends on the
persistence of the intertemporal price.
The intertemporal substitution of consumption is described by

the intertemporal Euler equation for self s:4

u0 (Cs) = R [λβδ + (1− λ) δ]u0 (Cs+1) (4)

This is the same as the Euler equation with exponential discounting
except that the discount factor δ is replaced by the effective discount
factor δH ≡ λβδ + (1− λ) δ, where λ is the fraction of life-
time wealth consumed each period: λ = Cs/Ws. The standard
exponential case is obtained for β = 1. The Euler equation shows
that the intertemporal substitution of consumption depends on the
real interest rate R and the effective discount rate δH . The latter
is a weighted average of the short and long run discount factors βδ
and δ, where the weights are the (next period) consumption rate and
savings rate, respectively. The consumption rate λ satisfies

λ = 1− ³
R1−ρδ

´1/ρ
[1− (1− β)λ]1/ρ (5)

This implicitly defines a unique λ, but typically no closed-form
solution exists.5 For β = 1, the outcome under exponential

4The derivations for this section are in appendix A.1. Note that (4), (5) and (6)
correspond to equations (11), (9) and (14) in Laibson (1996), respectively.

5An exception is logarithmic utility (ρ = 1), in which case λ = 1−δ
1−(1−β)δ .
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discounting emerges: λE = 1 − ³
R1−ρδ

´1/ρ. Since hyperbolic
discounters have a lower degree of self-control (β < 1), they
consume at a higher rate than exponential consumers: λ > λE.
Suppose there is an unanticipated permanent change in the

intertemporal relative price of current consumption, R. This affects
the intertemporal consumption ratio Ct+1/Ct, which is described by
the ‘permanent’ elasticity of intertemporal substitution

σ̄ ≡ ∂ (Ct+1/Ct)

∂R

R

Ct+1/Ct
=

∂ ln (Ct+1/Ct)

∂ lnR

Using (4) and (2), it follows that

∂ ln (Ct+1/Ct)

∂r
=
1

ρ
− 1

ρ

(1− β)

1− (1− β)λ

∂λ

∂r
(6)

where r ≡ lnR denotes the continuously compounded real interest
rate. Note that with exponential discounting (β = 1), the elasticity
of intertemporal substitution equals the inverse of the coefficient of
relative risk aversion (σ̄E = 1/ρ). But with hyperbolic discounting
this typically no longer holds. Using (5) to compute ∂λ/∂r

and simplifying yields the permanent elasticity of intertemporal
substitution for sophisticated hyperbolic discounters:

σ̄S =
1

ρ+ (ρ− 1) (1− λ) (1− β) /β
(7)

In a hyperbolic economy (β < 1), σ̄S < 1/ρ if ρ > 1.6 Intuitively,
when the income effect dominates the substitution effect of a
permanent increase in the real interest rate r, the consumption rate
λ rises. This puts greater emphasis on the short-run discount factor
βδ, which reduces the effective discount factor δH . This reduction
partially offsets the effect of the increase in the interest rate, thereby
diminishing the degree of intertemporal substitution. But, when the
substitution effect dominates (ρ < 1), the consumption rate declines
after the interest rate rise, which increases the effective discount

6This is Proposition 5 in Laibson (1996).
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factor and reinforces the effect of the interest rate on intertemporal
substitution, so σ̄S > 1/ρ.
As a consequence, for hyperbolic consumers the elasticity of

intertemporal substitution is generally not equal to the inverse of
the coefficient of relative risk aversion. The difference could be
quantitatively significant. This is illustrated by table 1, which
shows σ̄S for several values of ρ, δ and β, assuming r = 0.04.
The column with β = 1 gives the exponential outcome 1/ρ.
However, the results above assume that the intertemporal price
change is permanent and the literature has not analyzed the effect
of temporary changes.
Suppose now there is an unanticipated one-period change in the

gross real interest rate such that it equals Rt in period t and returns
to the initial level R in all future periods (t + 1, t + 2, ...). This
means that the behavior of all future selves s ∈ {t+ 1, t+ 2, ...}
is still described by Cs = λWs, (3), (4) and (5). But for self t,
Wt+1 = Rt (Wt − Ct) so that the Euler equation (4) becomes

u0 (Ct) = Rt [λβδ + (1− λ) δ]u0 (Ct+1) (8)

where λ is the consumption rate of future selves s ∈ {t+ 1, t+ 2, ...},
which is independent of Rt so that ∂λ/∂rt = 0. As a result, in a
hyperbolic economy with sophisticated consumers the elasticity of
intertemporal substitution in response to a one-period change in rt
equals

σS =
∂ (Ct+1/Ct)

∂Rt

Rt
Ct+1/Ct

=
1

ρ
(9)

This is identical to an exponential economy. The reason is that
the intertemporal Euler equation is observationally equivalent for
hyperbolic and exponential consumers, so a one-period change
in the interest rate leads to the same degree of intertemporal
substitution.
Comparing (7) and (9) it is clear that for hyperbolic consumers

(β < 1), the elasticities of intertemporal substitution for permanent
and one-period changes in the interest rate differ, except when
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ρ = 1. More precisely, σ̄S > σS > 1 if ρ < 1 and σ̄S < σS < 1

if ρ > 1. Intuitively, the effective discount factor of hyperbolic
consumers is not affected by a one-period change in the real
interest rate but only be a lasting change. In particular, when the
income effect dominates the substitution effect (ρ > 1), the future
consumption rate λ rises in response to a permanent increase in the
real interest rate r, which increases the weight on the lower short-
run discount factor and reduces the effective discount factor δH ,
thereby decreasing the effect of the higher interest rate. As a result,
the degree of intertemporal substitution for hyperbolic consumers
is smaller for persistent changes in the interest rate, which is in
contrast to an exponential economy. The effect could be significant,
as is illustrated by table 1, where the column β = 1 provides the
short run elasticity σS.

4 Discussion

This section discusses the robustness of the result that hyperbolic
consumers exhibit an elasticity of intertemporal substitution that
typically depends on the persistence of the interest rate. In
particular, it is shown that this result also holds for naive consumers,
imperfect credit markets and continuous time.

4.1 Naive Consumers

Consider the basic consumption model in section 2 with the
quasi-hyperbolic discount function, one liquid asset and no credit
market imperfections, but now suppose the consumer is naive and
incorrectly believes that future selves will act in the interest of
the current self. More precisely, each self t maximizes life-time
utility Ut (1) and thinks that future selves s ∈ {t+ 1, t+ 2, ...} also
maximize Ut (instead of Us). Although the current self t knows
that it is a hyperbolic discounter with an inclination for immediate
gratification, it naively believes that future selves do not have
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present-biased preferences but behave as exponential discounters
(β = 1).
The consumption rate for naive hyperbolic discounters equals:7

λN =
1− ³

R1−ρδ
´1/ρ

1−
µ
1− β1/ρ

¶
(R1−ρδ)1/ρ

(10)

In contrast to the sophisticated case, the naive consumption rate al-
ways has a closed-form solution.8 Setting β = 1 gives the consump-
tion rate under exponential discounting: λE = 1−

³
R1−ρδ

´1/ρ, which
is the intended future consumption rate of the naive hyperbolic con-
sumer. However, future selves are also affected by the self-control
problem, which gives rise to unanticipated present-biased prefer-
ences (β < 1) in every period and causes the naive hyperbolic dis-
counter to consume more than intended (λN > λE).
The permanent elasticity of intertemporal substitution for naive

hyperbolic discounters also differs from the exponential case:

σ̄N =
1

ρ
− ρ− 1

ρ

λN − λE
λE

(11)

A hyperbolic economy with naive consumers features σ̄N < 1/ρ

if ρ > 1, like the sophisticated case. For β = 1, λN = λE
and the exponential result σ̄E = 1/ρ emerges. The difference
between σ̄N and σ̄E could be significant, as is illustrated in table
2. Comparing the results with table 1 suggests that σ̄N ≤ σ̄S
for ρ > 1. Interestingly, naive hyperbolic discounters could even
have a negative permanent elasticity of intertemporal substitution
for ρ > 1 and β sufficiently small.9 For instance, for ρ = 3,
β = 0.2, δ = 0.9 and r = 4%, σ̄N = −0.093. Intuitively,
when the income effect dominates the substitution effect and the
degree of self-control is small enough, an increase in the interest

7The derivation of the results for naive consumers is in appendix A.2
8In the case of logarithmic utility (ρ = 1), naive and sophisticated behavior coincide

(λN = 1−δ
1−(1−β)δ = λ), which is consistent with Pollak (1968).

9This follows from limβ→0 σ̄N = [1− ρ (1− λE)] /ρλE.
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rate could raise current consumption so much that wealth drops
and the intertemporal consumption ratio Ct+1/Ct actually declines.
Regarding comparative statics, tables 1 and 2 suggest that for both
sophisticates and naifs, σ̄ tends to decrease in ρ, slightly decrease
in δ and increase in β. In the case of logarithmic utility (ρ = 1),
σ̄N = σ̄S = σ̄E = 1.
The one-period elasticity of intertemporal substitution for naive

hyperbolic discounters is identical to the exponential outcome:

σN =
1

ρ
(12)

Comparing (11) and (12) shows that again, the degree of intertem-
poral substitution depends on the persistence of the real interest
rate. In particular, σ̄N < σN < 1 for ρ > 1, which means that
shorter interest rate changes have a larger effect on intertemporal
substitution.

4.2 Buffer-Stock Model

So far, the paper has considered a deterministic model in which
consumers have access to perfect credit markets. In practice,
income is stochastic and consumers face liquidity constraints. In
particular, suppose that labor income Yt is stochastic and that the
consumer cannot borrow against uncertain future income so that
Ct ≤ Xt, where Xt is cash-on-hand in period t, which satisfies
Xt = R (Xt−1 − Ct−1) + Yt. Harris and Laibson (2001) show that
the hyperbolic Euler relation for sophisticated consumers in such a
‘buffer-stock’ model similar to Carroll (1997) equals:10

u0 (c (Xt)) ≥ EtR
h
c0 (Xt+1)βδ +

³
1− c0 (Xt+1) δ

´i
u0 (c (Xt+1))

(13)
where c (Xt) is the consumption function. For periods in which
the liquidity constraint is non-binding so that c (Xt) < Xt, (13)
10To be precise, this is the ‘strong’ hyperbolic Euler relation formally derived by

Harris and Laibson (2001) and it assumes that the consumption function c (.) is
Lipschitz continuous, which holds in a neighborhood of β = 1.
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holds with equality. This resembles the Euler equation (4), but
the fraction of life-time wealth consumed λ is now replaced by
the marginal propensity to consume out of cash-on-hand c0 (Xt+1)
because of the borrowing constraint.
Intertemporal substitution in response to a permanent change in

the real interest rate is given by

∂ ln (Ct+1/Ct)

∂r
=
1

ρ
− 1

ρ

(1− β)

1− (1− β) c0 (Xt+1)
∂c0 (Xt+1)

∂r

which is the buffer-stock equivalent of (6). For ρ > 1, the income
effect dominates the substitution effect, so ∂c0 (Xt+1) /∂r > 0 and
σ̄S < 1/ρ (Laibson 1998, p. 867). Following the same approach as
in section 3, (13) can be used to find that σS = 1/ρ whenever the
consumer is not liquidity constrained. As a result, the conclusions
of section 3 hold more generally.

4.3 Continuous-Time Model

As a further robustness check, consider a continuous-time version
of the basic model in section 2. Harris and Laibson (2004)
have adapted the quasi-hyperbolic discount function to continuous
time.11 They assume that time can be divided into the ‘present’
and the ‘future’, which arrives with a stochastic hazard rate. The
discount function is exponential and the additional present bias
factor β applies to future utility flows. As the hazard rate increases,
the model converges to an ‘instantaneous gratification’ model in
which the present is infinitesimally short.
To complete the description of the continuous-time version of

the basic model, the change in life-time wealthW (t) is given by

Ẇ = rW (t)− C (t)
11Barro (1999) and Luttmer and Mariotti (2003) present alternative approaches to

modeling hyperbolic discounting in continuous time, but the model by Harris and
Laibson (2004) provides greater analytical tractability, with closed-form solutions for
iso-elastic utility.
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where Ẇ ≡ dW (t) /dt. Finally, following Harris and Laibson
(2004) it is assumed that β > 1 − ρ and γ > (1− ρ) r. These
conditions are satisfied for plausible parameter values for ρ, β, γ
and r.
The elasticity of intertemporal substitution in response to an

unanticipated permanent change in the real interest rate r equals12

σ̄c ≡ dĊ/C
dr

=
1

ρ+ (ρ− 1) (1− β) /β
(14)

For β = 1 the familiar exponential result σ̄E = 1/ρ emerges.
With hyperbolic discounting (β < 1), σ̄c < 1/ρ for ρ > 1, just
like in the discrete-time model with sophisticated consumers. In
fact, comparing (7) to (14) shows that σ̄c is very similar to σ̄S.
Although the deviation from the exponential outcome σ̄E is larger
in continuous time (to be precise, |σ̄c − 1/ρ| > |σ̄S − 1/ρ|), the
quantitative difference with the discrete-time results tends to be
small, as is clear from a numerical comparison of σ̄S and σ̄c in table
1 and 3, respectively. For logarithmic utility (ρ = 1), σ̄c = σ̄S =

σ̄E = 1.
The ‘instantaneous’ elasticity of intertemporal substitution in

response to an unanticipated, infinitesimally short change in the
real interest rate r (t) from r to rs is again equal to the exponential
elasticity:

σc ≡ dĊ/C
drs

=
1

ρ
(15)

As a result, in the continuous-time hyperbolic model the elasticity
of intertemporal substitution also generally depends on the duration
of the intertemporal price change. In particular, for the empirically
likely case in which ρ > 1, the degree of intertemporal substitution
is smaller for more persistent changes.
12The results for the continuous-time model are derived in appendix A.3.
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5 Conclusion

Intertemporal substitution tends to be a key mechanism in micro-
founded business cycle models. This paper shows that intertempo-
ral substitution for consumers with a hyperbolic discount function
differs significantly from the behavior of exponential consumers.
With an exponential discount function, the elasticity of intertem-
poral substitution is independent of the duration of the change in
the intertemporal price ratio. In contrast, for hyperbolic discoun-
ters, the intertemporal substitution elasticity typically depends on
the persistence of the intertemporal price change.
For a short change in the real interest rate, the elasticity of in-

tertemporal substitution with iso-elastic utility equals the inverse
of the coefficient of relative risk aversion for both exponential and
hyperbolic discounters. Essentially, this is the structural preference
parameter that measures the curvature of the intertemporal indiffer-
ence curves. However, for a lasting change in the interest rate, the
degree of intertemporal substitution is generally different for hyper-
bolic consumers because the effective discount rate is affected. The
reason is that a persistent interest rate change typically influences
the future consumption rate, which shifts the weight between the
high short-run and the low long-run hyperbolic discount rate. This
adjustment in the effective discount rate alters the effect of a last-
ing interest rate change on intertemporal substitution. For plausible
values of risk aversion, the elasticity of intertemporal substitution
for hyperbolic consumers is smaller when the change in the real
interest rate is more persistent.
These results hold both for sophisticated hyperbolic discoun-

ters, who rationally anticipate the dynamic inconsistency of their
preferences, and for naive consumers, who do not realize that the
‘present bias’ in their intertemporal preferences continues to exert
itself in the future. In addition, the result is shown for the stan-
dard quasi-hyperbolic discrete-time model and for the continuous-
time ‘instantaneous gratification’ model. The finding that hyper-
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bolic discounters display a different degree of intertemporal substi-
tution than exponential consumers already holds for a basic model
with a single liquid asset and perfect credit markets. So, it does
not rely on the presence of (partial) commitment devices, such as
illiquid assets, that is usually required to distinguish (sophisticated)
hyperbolic from exponential consumers. The result is also rele-
vant in more realistic ‘buffer-stock’ models that feature stochastic
income and liquidity constraints. Although the focus of the paper
is on the intertemporal consumption decision, a similar argument
applies to the intertemporal substitution of leisure. The sensitivity
of the elasticity of intertemporal substitution to the duration of the
intertemporal price change appears to be a robust feature of hyper-
bolic discounting and provides a novel testable implication.
There is a large empirical literature on intertemporal substitu-

tion, includingMankiw, Rotemberg and Summers (1985), Hall (1988),
Attanasio and Weber (1995) and Mulligan (2002). Such empiri-
cal studies have obtained a remarkably wide range of estimates for
the elasticity of intertemporal substitution, with a typical parameter
value of about 0.3. Although a large variety of parameter estimates
would not be expected with exponential discounting, under hyper-
bolic discounting it is natural to get different estimates depending
on the persistence of the interest rate in the sample. In fact, it is
not unusual to find empirical elasticity estimates that are negative,
which is difficult to reconcile with the standard model of exponen-
tial discounting. But interestingly, naive hyperbolic consumers with
plausible risk aversion and a sufficiently low degree of self control
could exhibit a negative elasticity of intertemporal substitution for a
lasting interest rate change. Thus, hyperbolic discounting could ex-
plain empirical findings on intertemporal substitution that are puz-
zling under exponential discounting.
The fact that the degree of intertemporal substitution for hyper-

bolic agents tends to depend on the duration of intertemporal price
changes could have important implications for the understanding of
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business cycle fluctuations and the formulation of macroeconomic
policy. For instance, it suggests that shorter changes that affect
the intertemporal price ratio are likely to be more important for in-
tertemporal substitution, and that permanent policy measures (e.g.
adjustments to tax rates) could have significantly smaller intertem-
poral effects than predicted by models with exponential discounting
or by empirical estimates based on temporary policies. It would be
an interesting avenue for future research to explore these issues fur-
ther and to pursue the testable implication suggested by this paper,
leading to a better understanding of intertemporal substitution and
the empirical relevance of hyperbolic discounting.
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A Appendix

This appendix contains the derivation of the basic hyperbolic model
with sophisticated consumers presented in section 2. In addition,
it derives the results for naive hyperbolic consumers, presented
in section 4.1, and the continuous-time version of the model,
discussed in section 4.3.

A.1 Sophisticated Consumers

This section provides a derivation of the equations in section 2. It
largely follows Laibson (1996), with the exception of the derivation
of σS which is new.

Derivation of (4):
Each self s faces the same infinite-horizon optimization problem
without credit market imperfections. Let λ denote the fraction of
life-time wealth Ws that is consumed by self s, so that Cs = λWs.
It is shown below that λ is constant for iso-elastic utility (2). Using
(1), the optimal life-time utility of self s can be written as

Us = u (Cs) + βδV (Ws+1) (16)

where
V (Ws+1) =

∞X
i=s

δi−su (λWi+1)

Using (3), the continuation-value function satisfies

V (Ws+1) = u (λWs+1) + δV (R (1− λ)Ws+1) (17)

Maximizing (16) with respect to Cs subject to (3) yields the first
order condition for each self s:

u0 (Cs) = RβδV 0 (Ws+1) (18)

Differentiate (17) and substitute for V 0 (Ws+2) using (18) to get

u0 (Cs) = Rβδ
h
λu0 (Cs+1) +R (1− λ) δV 0 (Ws+2)

i
= R [λβδ + (1− λ) δ]u0 (Cs+1)

17



This is the quasi-hyperbolic intertemporal Euler equation (4) and it
corresponds to equation (11) in Laibson (1996).

Derivation of (5):
Using (2), the Euler equation (4) can be written as

Cs+1/Cs = (Rδ)
1/ρ [1− (1− β)λ]1/ρ (19)

Using Cs = λWs and (3), Cs+1/Cs = R (1− λ). Substituting into
(19) and rearranging yields:

λ = 1− ³
R1−ρδ

´1/ρ
[1− (1− β)λ]1/ρ

This is condition (5) for the optimal consumption rate and it
corresponds to equation (9) in Laibson (1996).

Derivation of (6):
Rearranging (19) and taking logs gives

ln (Ct+1/Ct) =
1

ρ
{lnR+ ln δ + ln [1− (1− β)λ]}

Differentiating yields (6):

σ̄S =
∂ ln (Ct+1/Ct)

∂r
=
1

ρ
− 1

ρ

(1− β)

1− (1− β)λ

∂λ

∂r

which corresponds to equation (14) in Laibson (1996).

Derivation of (7):
Totally differentiating (5), using R = er and simplifying gives

∂λ = −1− ρ

ρ
(1− λ) ∂r +

1

ρ
(1− β)

1− λ

1− (1− β)λ
∂λ

Rearranging produces
∂λ

∂r
=
− (1− ρ) (1− λ) [1− (1− β)λ]

ρ [1− (1− β)λ]− (1− β) (1− λ)

Substituting into (6) yields

σ̄ =
1

ρ
− 1

ρ

(1− β) (ρ− 1) (1− λ)

ρ [1− (1− β)λ]− (1− β) (1− λ)
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which corresponds to equation (15) in Laibson (1996). Further
simplifying gives (7):

σ̄S =
β

ρβ + ρ (1− β)− ρ (1− β)λ− (1− β) (1− λ)
=

1

ρ+ (ρ− 1) (1− λ) (1− β) /β

Derivation of (9):
Now suppose that the gross real interest rate equals Rt in period
t and R in all future periods (t + 1, t + 2, ...). This means that
Cs = λWs, (3), (4) and (5) still hold for all future selves s ∈
{t+ 1, t+ 2, ...}. However, in period t, Wt+1 = Rt (Wt − Ct). Re-
tracing the derivations above shows that (18) becomes u0 (Cs) =
RtβδV

0 (Ws+1), so the Euler equation for self t becomes

u0 (Ct) = Rt [λβδ + (1− λ) δ]u0 (Ct+1)

Note that λ is the consumption rate for future selves s ∈ {t+ 1, t+ 2, ...},
which is still implicitly defined by (5) and independent of Rt. This
means that ∂λ/∂rt = 0. Using (2) and taking logs,

ln (Ct+1/Ct) =
1

ρ
{lnRt + ln δ + ln [1− (1− β)λ]}

Differentiating and using rt ≡ lnRt yields (9):

σS ≡ ∂ ln (Ct+1/Ct)

∂rt
=
1

ρ

A.2 Naive Consumers

This section derives the results for the basic hyperbolic model when
consumers are naive. In particular, each naive self t maximizes Ut
in (1) believing that future selves s ∈ {t+ 1, t+ 2, ...} are exponen-
tial discounters that maximize Us with β = 1. Since it seems that
an analysis of the basic consumption model with naive hyperbolic
discounters has not appeared elsewhere, the finite-horizon case is
considered first, although it is not required for the derivation of the
infinite-horizon results presented in section 4.1.
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A.2.1 Finite Horizon

Suppose the consumer is born at time t = 0 and lives until t = T .
The current self t setsCt to maximizeUt = u (Ct)+βδV (Wt+1;T − t)
subject to (3), where V (Wt+1;T − t) is the continuation-value func-
tion for self t:

V (Wt+1;T − t) ≡ max
{Ct+i}T−ti=1

T−tX
i=1

δi−1u (Ct+i)

= max
Ct+1

[u (Ct+1) + δV (Wt+2;T − t− 1)]

However, the naive current self t thinks that the optimization prob-
lem for future selves t+ i (i = 1, . . . , T − t) is different and that they
will set Ct+i to obtain V (Wt+1;T − t). So, the first order conditions
for present and intended future consumption are

u0 (Ct) = RβδV 0 (Wt+1;T − t)
u0 (Ct+i) = RδV 0 (Wt+i+1;T − t− i) for i = 1, 2, . . . , T − t− 1
Differentiating the continuation-value function and using the first
order condition for t+ i,

V 0 (Wt+i;T − t− i+ 1) = u0 (Ct+i)
∂Ct+i
∂Wt+i

+RδV 0 (Wt+i+1;T − t− i)
Ã
1− ∂Ct+i

∂Wt+i

!

= u0 (Ct+i)

This is in fact the envelope theorem. Thus, the first order conditions
for intended consumption reduce to

u0 (Ct) = Rβδu0 (Ct+1) (20)
u0 (Ct+i) = Rδu0 (Ct+i+1) (21)

So, for future periods t + i, the naive consumer intends to be-
have as an exponential discounter. The naive beliefs about future
consumption can be obtained recursively. Let λ̃T−τ = Cτ/Wτ de-
note the intended future consumption rate. In the final period,
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CT = WT = R (WT−1 − CT−1) so that λ̃0 = CT
WT

= 1. Substitut-
ing Cτ+1 = λ̃T−τ−1Wτ+1 and (3) into (21) and using (2), Cτ =³
δR1−ρ

´−1ρ λ̃T−τ−1 (Wτ − Cτ )which implies thatCτ = λ̃T−τ−1
(δR1−ρ)1/ρ+λ̃T−τ−1

Wτ .
Thus, the intended consumption rates λ̃T−τ for τ = t, t+1, . . . , T−1
can be obtained using the recursion formula

λ̃T−τ =
λ̃T−τ−1

(δR1−ρ)1/ρ + λ̃T−τ−1
(22)

But in the current period t the present-bias in intertemporal pref-
erences prevails. Substituting intended future consumption Ct+1 =
λ̃T−t−1Wt+1 and (3) into (20) and using (2),
Ct =

³
βδR1−ρ

´−1ρ λ̃T−t−1 (Wt − Ct) which implies that
Ct =

λ̃T−t−1
(βδR1−ρ)1/ρ+λ̃T−t−1

Wt. Therefore, the consumption rate of the
naive hyperbolic consumer equals

λT−t =
λ̃T−t−1

(βδR1−ρ)1/ρ + λ̃T−t−1
(23)

where the sequence
n
λ̃T−τ

oT−1
τ=t

is given by the recursion (22) with
λ̃0 = 1 and λ0 = 1. Note that for β = 1, (23) reduces to (22), which
is the recursion formula for exponential discounting. A lower de-
gree of self-control β yields a higher consumption rate λT−t for
every period t. As a result, the naive consumer is running down
life-time wealth faster and has less wealth remaining to consume at
the end of his life-time than an exponential consumer.
The consumption profile of naive hyperbolic discounters depends

on the parameters δ, β, R and ρ.13 A higher discount factor δ
tends to give a consumption profile that is initially more upward
(or less downward) sloping. Intuitively, a higher δ means that the
consumer is more patient and values future consumption relatively
more. Similarly, a higher degree of self control β tends to increase
the initial slope of the hyperbolic consumption profile and make the
13 The properties for sophisticated hyperbolic consumers are very similar.
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difference between hyperbolic and exponential consumers smaller.
A higher gross real interest rate R results in a more upward sloping
profile because the relative price of future consumption is lower.
For ρ = 1, the income and substitution effects offset each other and
the consumption rate λi is independent of the interest rate R. It is
straightforward to verify that λ̃i = 1/

Pi
k=0 δ

k and the naive hyper-
bolic consumption rate equals λi = 1/

³
1 + βδ

Pi−1
k=0 δ

k
´
in that case.

Interestingly, hyperbolic discounting is able to generate hump-
shaped consumption profiles similar to those observed empirically,
even in the basic hyperbolic model without liquidity constraints,
‘buffer stock’ behavior or changes in demographics and labor sup-
ply. Intuitively, when the interest rate R is sufficiently high to gen-
erate an initially upward sloping consumption profile, hyperbolic
consumers spend so much of their wealth due to their lack of self
control that they have to reduce consumption when they get old.

A.2.2 Infinite Horizon

Derivation of (10):
The naive hyperbolic consumer maximizes (16), where V (Ws+1) is
now the anticipated continuation-value function for future selves,
which are believed to be exponential discounters without present-
biased preferences. Substituting β = 1 into (5) gives the anticipated
consumption rate for future selves

λE = 1−
³
R1−ρδ

´1/ρ (24)

which corresponds to the exponential outcome. So, the anticipated
continuation-value function satisfies

V (Ws+1) = u (λEWs+1) + δV (R (1− λE)Ws+1) (25)

The first order condition for the current self s = t is still given by
(18). However, for future selves s ∈ {t+ 1, t+ 2, ...}, which are
believed to be exponential discounters with β = 1, the anticipated
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first order condition is

u0 (Cs) = RδV 0 (Ws+1) (26)

Differentiating (25) and substituting for V 0 (Wt+2) using (26), (18)
yields

u0 (Ct) = Rβδ
h
λEu

0 (Ct+1) +R (1− λE) δV
0 (Wt+2)

i
= Rβδu0 (Ct+1) (27)

Using (2) and substituting Ct+1 = λEWt+1 and (3), (27) gives

Ct = (Rβδ)
−1/ρ λER (Wt − Ct)

Substituting (24) and solving for Ct gives

Ct =
1− ³

R1−ρδ
´1/ρ

1−
µ
1− β1/ρ

¶
(R1−ρδ)1/ρ

Wt

As a result, the naive hyperbolic consumption rate equals (10):

λN =
1− ³

R1−ρδ
´1/ρ

1−
µ
1− β1/ρ

¶
(R1−ρδ)1/ρ

Comparing this to (24) shows that the current consumption rate λN
exceeds the intended future consumption rate λE of the naive hy-
perbolic discounter (β < 1). But when the future arrives, the naive
consumer faces the same self-control problem and chooses the con-
sumption rate λN again, which is higher than intended. So, (10) de-
scribes the actual consumption rate of naive hyperbolic discounters
in every period.
Note that (10) corresponds to the limiting case of the finite hori-

zon outcome as T →∞. In particular, limT→∞ λ̃T−t = 1−
³
R1−ρδ

´1/ρ
using (22), so λT−t in (23) converges to λN .

Derivation of (11):
Since the naive intertemporal Euler equation (27) only describes
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intended behavior, an alternative approach is required to compute
the actual consumption ratio Ct+1/Ct. The consumption rate of
the naive consumer is the same in every period, so Ct+1/Ct =
Wt+1/Wt = R (1− λN), using (3). Differentiating yields

σ̄N =
∂ (Ct+1/Ct)

∂R

R

Ct+1/Ct
= 1− R

1− λN

∂λN
∂R

Differentiating (10) and simplifying gives

∂λN
∂R

=
ρ− 1
ρ

³
R1−ρβδ

´1/ρ
µ
1−

µ
1− β1/ρ

¶
(R1−ρδ)1/ρ

¶2 1R =
ρ− 1
ρ

λN
λE

1− λN
R

Substituting for ∂λN/∂R and rearranging produces (11):

σ̄N =
1

ρ
− ρ− 1

ρ

λN − λE
λE

Derivation of (12):
Now suppose that the gross real interest rate equals Rt in period
t and R in all future periods (t + 1, t + 2, ...). This means that
Cs = λEWs, (24), (3) and (26) still hold for all future selves s ∈
{t+ 1, t+ 2, ...}. However, in period t, Wt+1 = Rt (Wt − Ct). Re-
tracing the derivations above shows that (18) becomes u0 (Ct) =
RtβδV

0 (Wt+1), so the naive intended intertemporal Euler equation
equals

u0 (Ct) = Rtβδu0 (Ct+1)

Using (2) and substitutingCt+1 = λEWt+1 andWt+1 = Rt (Wt − Ct),
gives

Ct = (Rtβδ)
−1/ρ λERt (Wt − Ct)

Solving for Ct gives

Ct =
λE

µ
R1−ρt βδ

¶−1/ρ
1 + λE

µ
R1−ρt βδ

¶−1/ρWt
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Substituting this intoWt+1 = Rt (Wt − Ct) and Ct+1 = λEWt+1

Ct+1 =
λERt

1 + λE
µ
R1−ρt βδ

¶−1/ρWt

As a consequence,
Ct+1
Ct

= (Rtβδ)
1/ρ

Hence, the one-period elasticity of intertemporal substitution for
naive hyperbolic discounters equals (12):

σN =
∂ (Ct+1/Ct)

∂Rt

Rt
Ct+1/Ct

=
1

ρ

A.3 Continuous Time

This section derives the results for the continuous-time version of
the basic hyperbolic model. First, there is a heuristic derivation
of the optimality condition. For a rigorous derivation, see Harris
and Laibson (2004) who consider a more general model with labor
income, liquidity constraints and stochastic asset returns. Subse-
quently, the elasticities of intertemporal substitution σ̄c and σc are
derived.

Derivation of optimality condition:
Suppose first that each period lasts dt. The continuous time model
is the limiting case dt → 0. The change in life-time wealth W (s)

for self s is given by (cf (3) where R = er)

dW = (rW (s)− C (s)) dt (28)

The optimal life-time utility can be written as the sum of the present
utility flow and the value of future utility flows discounted by the
long run discount rate γ and the present-biased discount factor β (cf
(16) where δ = e−γ):

U (s) = u (C (s)) dt+ βe−γdtV (W (s) + dW ) (29)
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where the continuation-value function equals

V (W (s)) =
Z ∞
s
e−γ(t−s)u (C (t)) dt (30)

Maximizing (29) with respect to C (s) subject to (28) yields the first
order condition

u0 (C) dt = βe−γdtV 0 (W + dW ) dt

Simplifying and taking the limit dt → 0 yields the optimality con-
dition for the instantaneous gratification model:

u0 (C) = βV 0 (W ) (31)

This corresponds to equation (15) in Harris and Laibson (2004) for
the case in which consumers are not liquidity constrained.

Derivation of (14):
Each self s faces the same infinite-horizon optimization problem
without credit market imperfections. Let λ denote the fraction of
life-time wealthW (s) that is consumed by self s. It is shown below
that λ is constant for iso-elastic utility (2). Using (28) and C (t) =
λW (t), life-time wealth is described by

W (t) =W (s) e−(λ−r)(t−s)

Substituting into (30) and differentiating with respect toW (s) gives

V 0 (W (s)) = λ
Z ∞
s
e−(γ+λ−r)(t−s)u0 (C (t)) dt

So, the optimality condition (31) becomes

u0 (C (s)) = βλ
Z ∞
s
e−(γ+λ−r)(t−s)u0 (C (t)) dt

Differentiating with respect to s yields

u00 (C (s))
dC

ds
= −βλu0 (C (s)) + (γ + λ− r)βλ

Z ∞
s
e−(γ+λ−r)(t−s)u0 (C (t)) dt

= − [βλ− (γ + λ− r)]u0 (C (s))
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Rearrange, assuming iso-elastic utility (2) with coefficient of rela-
tive risk aversion −u00(C)Cu0(C) = ρ, to get

Ċ

C
=
1

ρ
[r − γ − (1− β)λ] (32)

where Ċ ≡ dC (s) /ds. Using C = λW and Ẇ = (r − λ)W gives
Ċ/C = r − λ. Substituting into (32) and solving for λ yields14

λ =
(ρ− 1) r + γ

ρ− (1− β)
(33)

The consumption rate is increasing in the long run discount rate γ
and decreasing in the degree of self control β. Note that β = 1

gives the exponential result λ =
µ
1− 1

ρ

¶
r + 1

ργ. For log utility
(ρ = 1), λ = γ/β and the consumption rate is independent of the
interest rate because of the offsetting income and substitution ef-
fects.15 Substitute (33) into (32) and simplify to get the growth rate
of consumption:

Ċ

C
=

βr − γ

ρ− (1− β)
≡ g (34)

Note that β = 1 yields the exponential outcome gE = 1
ρ (r − γ). Dif-

ferentiating (34) with respect to r and further rearranging produces
(14):

σ̄c =
dĊ/C

dr
=

β

ρ− (1− β)
=

1

ρ+ (ρ− 1) (1− β) /β

Derivation of (15):
First, consider a temporary change in the real interest rate r such
14 Alternatively, the intertemporal budget constraint W (s) =R∞
s e

−r(t−s)C (t) dt =
R∞
s e

−(r−g)(t−s)C (s) dt = 1
r−gC (s) could be used to

get λ = r − g, which also yields (33). Note that the condition for life-time
wealth W (s) to be bounded is r > g, or equivalently λ = γ−(1−ρ)r

β−(1−ρ) > 0,
which holds because of the assumptions that γ > (1− ρ) r and β > 1− ρ.
15This is consistent with Barro (1999) who finds that λ ≈ γ/β for log utility using a

different solution approach relying on several approximations.
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that r (t) = rs for t ∈ [s, τ ], and r (t) = r for t > τ . The computation
of the instantaneous elasticity of intertemporal substitution σc is
based on the limiting case τ → s. Note that C (s) = λW (s), (34)
and (33) still hold for all selves t > τ . However, during t ∈ [s, τ ],
dW = (rsW (t)− C (t)) dt. Using C (t) = λ (t)W (t) and W (t) =

W (s) e−(λ(t)−r(t))(t−s), the optimality condition becomes

u0 (C (s)) = β
Z ∞
s
e−(γ+λ(t)−r(t))(t−s)λ (t)u0 (C (t)) dt

Differentiating with respect to s, rearranging and assuming iso-
elastic utility (2) produces

Ċ

C
=
1

ρ
[r (s)− γ − (1− β)λ (s)] (35)

To compute λ (s), substituteC (t) = C (s) e
R t
s g(υ)dυ into the intertem-

poral budget constraint:

W (s) =
Z ∞
s
e−

R t
s r(υ)dυC (t) dt =

Z ∞
s
e−

R t
s (r(υ)−g(υ))dυC (s) dt

=
·Z τ

s
e−

R t
s (rs−g(υ))dυdt+ e−

R τ
s (rs−g(υ))dυ

Z ∞
τ
e−(r−g)(t−τ)dt

¸
C (s)

Taking the limit as τ → s gives the consumption rate λ (s) for an
infinitesimally short change in the interest rate:

λ (s) = C (s) /W (s) =
1R∞

τ e−(r−g)(t−τ)dt
= r − g

This implies that dλ (s) /drs = 0. Although the consumption rate
λ (s) is not affected, the growth rate g (s) changes in line with the
temporary interest rate change. Substituting λ (s) into (35), simpli-
fying and using (34) yields

Ċ

C
=
1

ρ
(rs − r) + g ≡ gs

Differentiating with respect to rs gives (15):

σc =
dĊ/C

drs
=
1

ρ
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Table 1: Permanent Elasticity of Intertemporal Substitution
for Sophisticated Hyperbolic Discounters

σ̄S β = 0.2 β = 0.4 β = 0.6 β = 0.8 β = 1
ρ = 2

δ = 0.8 0.192 0.308 0.390 0.451 0.500
δ = 0.9 0.180 0.298 0.383 0.448 0.500
δ = 1 0.170 0.289 0.377 0.446 0.500

ρ = 3
δ = 0.8 0.100 0.177 0.239 0.290 0.333
δ = 0.9 0.097 0.173 0.236 0.288 0.333
δ = 1 0.093 0.169 0.233 0.287 0.333

ρ = 5
δ = 0.8 0.051 0.095 0.134 0.169 0.200
δ = 0.9 0.050 0.094 0.133 0.168 0.200
δ = 1 0.049 0.093 0.132 0.168 0.200
Note: Author’s calculations based on (7) for r = 4%.

Table 2: Permanent Elasticity of Intertemporal Substitution
for Naive Hyperbolic Discounters

σ̄N β = 0.2 β = 0.4 β = 0.6 β = 0.8 β = 1
ρ = 2

δ = 0.8 0.030 0.262 0.377 0.449 0.500
δ = 0.9 -0.029 0.240 0.367 0.446 0.500
δ = 1 -0.091 0.218 0.358 0.442 0.500

ρ = 3
δ = 0.8 -0.067 0.125 0.223 0.287 0.333
δ = 0.9 -0.094 0.114 0.218 0.285 0.333
δ = 1 -0.119 0.104 0.213 0.282 0.333

ρ = 5
δ = 0.8 -0.074 0.053 0.121 0.167 0.200
δ = 0.9 -0.083 0.049 0.119 0.166 0.200
δ = 1 -0.091 0.045 0.117 0.165 0.200
Note: Author’s calculations based on (11) for r = 4%.
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Table 3: Permanent Elasticity of Intertemporal Substitution
for Sophisticated Hyperbolic Discounters in Continuous Time

σ̄c β = 0.2 β = 0.4 β = 0.6 β = 0.8 β = 1
ρ = 2 0.167 0.286 0.375 0.444 0.500
ρ = 3 0.091 0.167 0.231 0.286 0.333
ρ = 5 0.048 0.091 0.130 0.167 0.200
Note: Author’s calculations based on (14).
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