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Abstract

This paper studies a game theoretic model where agents choose between two
updating rules to predict a future endogenous variable. Agents rationally choose
between these predictors based on relative performance. Conditions for evolutionary
stability and stability under learning are found for the Nash solutions and corresponding
parameter equilibria. Stability conditions are contingent upon parameter values and
the initial distribution of heterogeneity. However, when the cost of using the more
advanced updating rule is su¢ ciently large, all agents will asymptotically use the
more parsimonious, or Minimum State Variable (MSV), updating rule.
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1 Introduction

Expectations continue to play a key role in macroeconomic research. Since its introduction
by Muth (1961), Lucas (1972, 1973), and Sargent (1973), the Rational Expectations
Hypothesis (REH) has been the dominant paradigm in expectations formation. According
to the REH, agents form expectations using the mathematical expectations operator
conditioned upon available information. In modelling, economists usually assume that
agents posses perfect knowledge of the true stochastic process of the variables they need
to forecast.

Two objections to the REH come from the literature on bounded rationality. First, it
may be a very strong assumption to assume that agents know the true stochastic process
of the variables they need to forecast. A general suggestion from the literature is to allow
agents to form expectations from less sophisticated schemes as in Bray and Savin (1986),
Evans and Honkapohja (2001), and Hommes and Sorger (1998). Another objection
to the REH is that under an environment with heterogeneous expectations, economic
outcomes depend upon expectations of all participants.1 Heterogeneous expectations
may alter the stochastic process of aggregate variables. Thus, if agents with rational
expectations are to know the form of this stochastic process, then they must be able
to observe the expectations of all agents in the economy. The learning literature has
also discussed expectation formation schemes with heterogeneity, e.g. in Evans and
Honkapohja (1997), Evans, Honkapohja, and Marimon (2001), Honkapohja and Mitra
(2005), Giannitsarou (2003), and Guse (2005).

Guse (2005) was the �rst to consider a model where heterogeneous expectations
came from agents using di¤erent forecasting models when learning. In this model,
a proportion of agents, �, used a parsimonious forecasting model while the remaining
(1� �) agents used a forecasting model that corresponded to a "bubble solution." The
stability properties under learning (E-stability) in this model were determined by the
proportion of agents using each forecasting model. When this proportion of agents was
allowed to vary arbitrarily, it turned out that the stability properties guaranteed that
the stable solution was always stationary. Finally, the central result of the paper was
that the two possible equilibria exchange stability properties at the smallest � where the
Mean Squared Errors from the two forecasting models are equal.

The limitation to Guse (2005) is that there is a restrictive assumption that the
proportion of agents using each forecasting model is determined exogenously. Exogenously
determined heterogeneity may produce a result where many agents are using an obviously
ine¢ cient forecasting model due to the form of the equilibrium. Agents who notice this
e¢ ciency disparity could form better expectations by using the most e¢ cient forecasting
model. This paper extends Guse (2005) by incorporating predictor choice into the
model so that the agents will be able to change the forecasting model they use to form
expectations. In this case, the agents are not only learning, but they are also learning

1There are some rational expectation models with heterogeneous information where agents try to
improve upon their information using market data and the actions or expectations of other agents (if
they are observable). In the learning literature, the assumption that other agents� expectations or
actions are observable is not made.
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the best way to learn the equilibrium.
Many papers have recently studied including predictor choice as an economic decision

in models with expectation formation.2 In Evans and Ramey (1992) agents choose
whether or not to use a costly algorithm to update beliefs every period. This is
later extended in Evans and Ramey (1998) where they allow agents to pay a resource
cost for the privilege to use a mechanism that directly calculates expectations. Brock
and Hommes (1997) use an approach they call the Adaptively Rational Equilibrium
Dynamics (A.R.E.D.) to examine predictor decision. Under the setup of a cobweb
model, they conclude that when the set of predictors are a stable predictor, rational
expectations, and an unstable predictor, naive expectations, the dynamics of the system
may not settle down to an equilibrium. However, this result may disappear when the set
of predictors available increases. Branch (2002) examines Brock and Hommes�model
and �nds that the set of predictors available a¤ects the local stability properties of the
system. Sethi and Franke (1995) consider a model where agents have the choice between
using a costless adaptive expectations rule or using rational expectations which incurs
a cost. Predictor decision is then dictated via an evolutionary process. The papers in
the predictor choice literature have focused on deterministic models and not stochastic
models of learning. The main reason for this hole in the literature is that there were no
learning models studied with multiple available predictors prior to Guse (2005).

As agents are acting like econometricians when forming their expectations, it only
makes sense that the predictor choice mechanism should be set up such that agents are
acting like econometricians in testing the available forecasting models. In this paper,
I will follow the work of Sethi and Franke (1995) and use evolutionary learning as a
selection criterion as it is similar to adaptive learning. This is shown by Marimon and
McGrattan (1995) who �nd an isomorphism between adaptive learning and evolutionary
learning. Furthermore, Kandori et. al. (1993) argue that the evolutionary approach
re�ects "limited ability (on the players�part) to receive, decode, and act upon information..."
Predictor choice will be modelled as a game where a proportion � agents are "programmed"
to use the parsimonious forecasting model and (1� �) are "programmed" to use the
"bubble" forecasting model. Agents will then tend to switch to the forecasting model
that awards the highest level of "�tness." As in Kandori et. al., there is limited
information, so only some agents are able to detect the relative �tness di¤erences and
switch to the "better" forecasting model. However, as time goes by, all agents will be
able to detect the di¤erence and the population will change until there is no relative
di¤erence in the �tness levels awarded by the forecasting models.

The technique used in this paper will provide a tool for a test of robustness of
learnability of equilibria under homogeneous expectations. A rational expectations
equilibrium (REE) is commonly considered to be relevant if it is stable under learning,
or expectationally stable (E-stable). However, some models produce multiple equilibria
where many solutions may be E-stable. A natural question would be: If a model
has multiple equilibria (of di¤erent forms) and agents can choose a forecasting model

2The works of Arthur (1992), De Grauwe, DeWachter, and Embrechts (1993), and Sethi (1996) present
numerical results for this type of research.
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(to form expectations) based on past performance, what solution, or solutions, would
be stable under learning?3 Furthermore, would the resulting (stable) Nash solution,
under the predictor choice model, involve homogeneous or heterogeneous expectations?
Conditions for stability under predictor choice and learning may be more strict than
E-stability conditions for homogeneous expectations.

This paper presents a self-referential linear stochastic model with the possibility of
multiple equilibria. Guse (2005) discusses the stability results under learning of such a
model when agents have di¤erent perceptions of the true equilibrium. In this paper, the
model in Guse (2005) is expressed as a game where agents bene�t from using the most
e¢ cient predictor of the economy. I examine the stability properties of the equilibria
in the game under RE and under least squares learning. When the model is expressed
as a game with predictors, only some Nash equilibria are shown to be evolutionary
stable when disturbed by mutant populations. Furthermore, only Nash equilibria with
homogeneous expectations can be evolutionary stable with a corresponding learnable
equilibrium. The central conclusion is that dynamics depend on the initial level of
heterogeneity and parameter values in the model. The stability path dependence
disappears when the cost of using the expensive predictor is su¢ ciently high and leads
to all agents asymptotically using the more parsimonious, or Minimum State Variable
(MSV), updating rule.

2 The Model and E-stability

Guse (2005) considers a self-referential linear stochastic macroeconomic model with the
possibility of multiple REE, as presented in Taylor (1977) and discussed in the learning
literature4, e.g. Evans and Honkapohja (2001) and Heinemann (2000). It is a linear
stochastic model with real balance e¤ects consisting of four parts: aggregate demand,
aggregate supply, money demand, and a �xed money supply. The reduced form is as
follows:

yt = �+ �0E
�
t�1yt + �1E

�
t�1yt+1 + vt (1)

where E� denotes a not necessarily rational expectation and vt is a linear combination of
stochastic shocks where vt � N

�
0; �2

�
. Although it may be any variable that is a¤ected

by expectations, think of the variable yt to be prices at time t. Under a situation of
homogeneous expectations, there are two REE:

PLM1 : yt = a1 + vt (2)

PLM2 : yt = a2 + b2yt�1 + vt. (3)

3These solutions could also involve sunspots, however, Guse (2005) notes that the E-stability
conditions do not change when sunspots are included in the "bubble" equilibrium. I do not include
sunspots in this paper as they complicate the model without adding any interesting results.

4Although the model is ad hoc and not derived based on microfoundations, it continues to be a
workhorse to study learning in a model with the possibility of multiple equilibria.
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The �rst equilibrium represented by equation (2) is commonly referred to as the minimum
state variable (MSV) solution or the "fundamental solution." The second equilibrium
is commonly referred to as the "bubble solution" as it includes an extra state variable
(yt�1) that is not included in equation (1). I will refer to this equilibrium as the AR(1)
REE.

In this model of heterogeneous expectations, assume that agents have the choice
of using one of two forecasting models, corresponding to the two REE (2) and (3),
where agents recursively estimate the coe¢ cients of their forecasting model to form
expectations of yt and yt+1. If a proportion of � agents have a perceived law of motion
(PLM) of equation (2) and the remaining (1� �) agents have a PLM of (3), then the
actual law of motion (ALM) is:

yt = �+ �a1(�0 + �1) + (1� �)a2(�0 + �1 (1 + b2))
+[(1� �)b2(�0 + �1b2)]yt�1 + vt (4)

The above system de�nes a mapping from the PLM to the ALM as follows:

T (�) = T

0@ a1
a2
b2

1A =

0B@ �+�a1(�0+�1)+(1��)a2(�0+�1(1+b2))
1�(1��)b2(�0+�1b2)

�+ �a1(�0 + �1) + (1� �)a2(�0 + �1 (1 + b2))
(1� �)b2(�0 + �1b2)

1CA (5)

The resulting equilibria are expressed as :

a1 =
�

1� �0 � �1
a2 = a1 (1� b2) (6)

b2 =
1� (1� �)�0
(1� �)�1

or

a1 =
�

1� �0 � �1
;

a2 =
�

1� �0 � �1
; and (7)

b2 = 0

Equilibrium (6) is referred to the AR(1) mixed expectations equilibria (MEE).5 In
this equilibrium, the proportion of agents using PLM1 are underparameterizing the
model when they are forming their expectations as they are ignoring the bubble in the
ALM. Therefore, forecast errors from PLM1 will tend to be larger, on average, in this
equilibrium. Equilibrium (7) is referred to as the minimum state variable (MSV) MEE.

5The equilibria are referred to as "mixed" because they are generated from more than one PLM.
Branch and McGough (2004) refer to such an equilibrium as the Heterogeneous Expectations Equilibrium
(HEE). The MEE includes the REE when � = 0 or � = 1.
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In this equilibrium, forecast errors will be the same under each PLM as they produce
the same forecasts.

Under the two MEE�s, economic agents have a great deal of knowledge of the
economy. It is common to ask whether these equilibria are robust when agents form
expectations using less sophisticated schemes than RE. Suppose that the agents act
like econometricians and construct forecasts using their econometric model that they
update every period when new information becomes available. The condition for an
equilibrium to be (locally) stable under such a learning rule is known as Expectational
Stability (E-stability):

De�nition 1: E-stability is the condition of local asymptotic stability of �� under the
di¤erential equation6

d�

d�
= T (�)� �, (8)

where T is the mapping from the perceived law of motion, �, to the implied actual law
of motion, T (�) and � denotes �notional�or �arti�cial� time.

�� is a �xed point of the ODE which is also a MEE. For stability, the eigenvalues
of the Jacobian matrix of equation (8) must have negative real parts. It is commonly
known that (e.g. Marcet and Sargent (1989) and Evans and Honkapohja (2001)) an
E-stable equilibrium is learnable under ordinary least squares and other similar learning
mechanisms. Learnability of an equilibrium may be regarded as a necessary condition
for the relevance of that equilibrium. Guse (2005) presents the E-stability conditions
for a �xed proportion of heterogeneity, �, in the following proposition:

Proposition 1: E-stability conditions for the above linear stochastic model with heterogeneous
expectations.

1. All MSV MEE in the parameter set

ES1 =

�
(�0; �1) j�0 <

�
1

1� �

�
; �0 + �1 < 1

�
are E-stable. All MSV MEE outside of this set are E-unstable.

2. All AR(1) MEE in the parameter set

ES2 =

�
(�0; �1) j

1

1� � < �0 < 1� �1
�

are E-stable. All AR(1) MEE outside of this set are E-unstable.

For the Taylor (1977) real balance model, the parameter restrictions are �1 =
��0 and �0 6= 0. Therefore, either solution, MSV or AR(1) may be E-stable under
heterogeneous expectations, depending on the parameter values of the model. E-stability

6 In the homogeneous expectations case, � = (a1) if all agents use PLM1 and � =
�
a2
b2

�
if they use

PLM2.
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of the two solutions may change when the level of heterogeneity, � , is allowed to
change. When � is allowed to arbitrarily change, Guse (2005) presents the condition
for E-stability for any �:7

Proposition 2: Let
A = f(�0; �1) j�0 < 1; �0 + �1 < 1g

and
S = f(�0; �1) j�0 > 1; �0 + �1 < 1g .

If (�0; �1) 2 A [ S; then for each � 2 [0; 1] exactly one of the two MEE is E-stable.

Within this set, if � changes for some reason, the other MEE may become E-stable,
but there is no � such that both solutions are E-unstable. The set A is where only
the MSV equilibrium is E-stable for all � 2 [0; 1]. The set S is the set where the two
equilibria exchange E-stability at � = 1� 1

�0
. When determining stability of the system

with predictor choice and learning, I will assume that (�0; �1) 2 A [ S. I focus on the
set S where stability of each equilibrium is determined by the level of heterogeneity, �,
however, I also discuss stability properties when (�0; �1) 2 A.

3 Evolutionary Stability

Next, I will focus on the AR(1) and MSV processes and ignore learning for the time
being. Suppose that the agents have the ability to change their forecasting model
(PLM) if they believe that the other is doing a better job at predicting the economic
variable. In this case, agents may act like econometricians and test the performance of
the available forecasting models.

When testing the existence of omitted or irrelevant variables, a typical econometrician
will compare how well the two forecasting models have performed. One measure of
forecasting usefulness is the mean squared error (MSE). This is obtained by supposing
a quadratic loss function for forecast errors:

MSEi = E (yt+1 � Fi (yt+1))2

where Fi (yt+1) is the forecast of yt+1 obtained using forecasting model i. Since the
agents in this model are concerned with predictability, they would like to use the
forecasting model that gives the smallest MSE.8 In order to incorporate this into a
model of predictor choice, I will assume that agents will receive utility inversely related
to the MSE of the forecasting model they are currently using. Also assume that
agents typically prefer parsimony and thus there is some �xed cost associated with
using the more advanced updating rule (if both predictors give the same MSE, then the

7This proposition is a combination of two propositions presented in Guse (2005).
8One could consider other properties as well, however, predictive performance of the estimated model

(not just estimators) is very natural.
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parsimonious predictor is always preferred). Assume the following utility function for
an agent using predictor i:

Ui =
1

MSEi
� cost of using predictor i

In real-time, MSEi would be the MSE realized in the previous period, however, I will
use the MSE of each predictor that corresponds to the E-stable MEE (MSE realized
under RE) of the current value of � when evaluating for stability. I discuss the reasons
for using these MSE�s below. The MSE�s are written as MSE1 and MSE2 and can be
found in the appendix A. Assume that the cost of using the AR(1) process is greater
or equal to the cost of using the MSV process, so, without loss of generality, the cost of
using the MSV process will be normalized to zero.9

3.1 The Model Expressed as a Game with a Continuum of Players

Assume that there is a continuum of players so that each agent�s decision does not a¤ect
the state of the economy. Let ([0; 1] ;B) be the underlying space where [0; 1] is the player
set and B is the �-algebra of Borel subsets of [0; 1]. Let Si = fPLM1; PLM2g be the
set of strategies for each player.

At the beginning of the period, each agent will form Et�1yt and Et�1yt+1 using the
PLM corresponding to their strategy si. In this arti�cial game, assume that the agents
have RE and thus will know the MEE values based on their given strategy. Later,
learning will be included in the game.

Suppose that each player receives a payo¤ from choosing either strategy in the
following manner:

vi (si; �) =
1

MSE1
= U1 if si = PLM1

=
1

MSE2
� k = U2 if si = PLM2

where k � 0 is the cost of using the AR(1) predictor, MSEi is the MSE realized under
RE using strategy si, and the population state at time t is:

xt = (�t; 1� �t) .

In evolutionary game theory, individuals are programmed to make a single strategy
and the population changes depending on relative evolutionary "�tness." In this model,
the proportion of agents using the MSV PLM , �, will adjust as individuals choose to
change their "programmed strategy." If vi (si; �) > vj (sj ; �), then agents will tend
to choose si over sj until vi (si; �) = vj (sj ; �) or when the proportion of those using
strategy sj converges to zero. The replicator dynamics, discussed below, will dictate

9This can be done since agents will only consider di¤erences in utility and not the di¤erences in the
estimated parameter values.
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predictor choice dynamics in this game as it will favor the strategy awarding the highest
utility.

3.1.1 The Nash equilibria of the game

Next, I solve for the Nash equilibria for the above game. The Nash solutions in
evolutionary game theory are the population states where all individuals receive the
same level of �tness regardless of their strategy. In the above game, this is where
v1 = v2 if � 2 (0; 1), v1 > v2 if � = 1, or v2 > v1 if � = 0. Since there are two possible
solutions, MSV and AR(1), I solve for the Nash equilibria associated with each solution.

For the MSV MEE, it turns out that 8� 2 [0; 1], MSE1 = MSE2 = �2. If k = 0,
agents are indi¤erent in which PLM they use, so the Nash equilibria consists of B, the
set of all possible combinations of heterogeneous expectations. If k > 0, the Nash
equilibrium is � = 1 where all of the agents choose to use PLM1.

There are several Nash equilibria for the AR(1) MEE. If k = 0; then there are two
Nash equilibria which are

� = 0

� = 1� 1

�0
= ��:

Guse (2005) shows that �� is where the MSV and AR(1) MEE exchange stability. If
� > ��, then the MSV solution is E-stable and the AR(1) solution is E-unstable and if
� < ��, the stability properties are reversed. Next, if 0 < k � k1, then the three Nash
equilibria are:

� = 0

� = �1

� = �2.

where

�1 = 1� 1

�0 + �1
p
k�2

�2 = 1� 1

�0 � �1
p
k�2

k1 =
(1� �0)2

�21�
2

Note that �1 < �� < �2, so the AR(1) MEE is E-stable for �1 and is E-unstable for �2.
Finally, if k > k1, then there is one Nash equilibrium:

� = �2:
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3.1.2 Evolutionary Stability of the Nash Equilibria

Evolutionary game theory considers a pure or mixed strategy and determines whether
this strategy is stable when the population is disturbed by some �mutant strategy.�
The game described above does not allow mixed strategies, but the population average
of those choosing PLM1, �, will be considered a �mixed strategy.� To determine stability
in the context of the above game, consider all �mixed�(� 2 (0; 1)) and pure equilibria
(� = 0 or � = 1) for the population and determine if it will be bene�cial for a small
proportion of agents to switch from using their current PLM to using the other PLM.
If some �mutant� population strategy is allowed to enter and thus changing �, will
the population return to the given (equilibrium) population strategy when agents are
allowed to change strategies? If so, such a population strategy is an Evolutionary stable
strategy. Following Weibull (1995), Evolutionary Stability is de�ned as follows:

De�nition 2: x 2 � is an evolutionary stable strategy (ESS)10 if for every strategy y 6= x,
there exists some �"y 2 (0; 1) such that

v (x; "y + (1� ")x) > v (y; "y + (1� ")x) (9)

holds for all " 2 (0;�"y).

Under an evolutionary stable strategy, if a small proportion of agents �mutate�from
using one predictor to the other predictor, then they will not receive more utility than
before the mutation. Furthermore, no other agents will wish to follow the �mutants.�
When there exists a selection criterion for the population, the population will tend to
return to the evolutionary stable strategy.

A best response function can be drawn to present evolutionary stability. x 2 � is
evolutionary stable if:11

v (s1; "y + (1� ")x)� v (s2; "y + (1� ")x) 7 0 if y ? x

The only potential strategies that can be evolutionary stable are the Nash equilibria.
The set of ESS will thus be a subset of the Nash equilibria. Formally, �ESS � �NE .

Consider the Nash equilibria for the MSV MEE. For the MSV solution where k = 0,
if �0 is allowed to change, there is equality for equation (9) for any �0 2 [0; 1]. Therefore,
all the Nash equilibria in this case fail to be evolutionary stable strategies. This results
from the fact that utility from each updating rule is the same for all � 2 [0; 1]. I will
assume that k > 0 for the MSV MEE to ignore this uninteresting result. Next, consider
the Nash equilibrium for the MSV solution when k > 0. When a small proportion of
agents use PLM2, inequality (9) always holds. Therefore, the Nash equilibrium of � = 1
for the MSV solution where k > 0 is an evolutionary stable strategy.

10� denotes the set of potential strategies. In this particular continuous framework, x = (�t; 1� �t) 2
[0; 1]2.
11Note that � 2 [0; 1], so for pure strategies, we only have to increase or decrease � depending on

which strategy we are considering.
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Next, consider the Nash equilibria for the AR(1) solution. Figures 1 and 2 depict
the best response functions used to determine evolutionary stability. Figure 1 shows the
best response function when 0 � k � k1. The three Nash equilibria are � = 0, � = �1,
and � = �2 where �1 � �� � �2. The �rst and third of these Nash equilibria are ESS�s,
but the second solution is not an ESS.12 Figure 2 presents the best response function
when k > k1. The Nash equilibrium, � = �2, is ESS.

(Figures 1 and 2 about Here)

These results bring forward a natural question, �Are there any evolutionary stable
Nash equilibria with E-stable MEE�s?� The most interesting candidates are the Nash
MEE de�ned with 0 < � < 1. The following proposition states that these candidates
can never be evolutionary stable with E-stable solutions.

Proposition 3: For any k � 0, there does not exist a Nash equilibrium with � 2 (0; 1)
that is evolutionary stable with an E-stable MEE.

The proof for this proposition is given in appendix B. As we will be interested in
learning in the next section, we can conclude that in the above model with learning,
heterogeneity can only be a short run phenomenon. When learning is included in the
game, the ESS �2 2 (0; 1) can not be considered a relevant equilibrium as its associated
MEE is not E-stable.

4 The Replicator Dynamics and Evolutionary E-stability

Next, assume that agents do not have RE in the game and must form expectations using
least squares learning from their given strategy. Now, their are two possible problems
for stability: stability of the Nash equilibria and E-stability of the MEE given the Nash
population. Before moving to stability analysis, however, I will �rst de�ne the replicator
dynamics which will dictate predictor choice.

There are two elements of evolutionary game theory: a mutant mechanism which
provides variety and a selection criterion that favors one variety over another. The
replicator dynamics provides the role of selection. Following Weibull (1995), a discrete
version of the replicator dynamics can be de�ned as follows:

�t =

�
� + U1

� + �t�1 � U1 + (1� �t�1) � U2

�
� �t�1 (10)

where � is a non-negative constant13 and Ui is a measure of utility for using forecasting

12When k = 0, there are only two Nash solutions, � = 0 and � = �1 = �2 = ��. In this case, � = 0 is
the ESS.
13� is included in the replicator dynamics for two reasons. First, it determines the speed of convergence

for real time dynamics. Second, it can be used to guarantee that both the numerator and denominator
of the replicator dynamics are positive.
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model i in period t � 1. The replicator dynamics directs the population to use the
forecasting model that awards a higher utility, or �tness level, at time t� 1.

For testing the econometric model, the replicator dynamics can be attained. Following
Kandori et. al. (1993) I will assume agents may not react instantaneously to their
environment and they are myopic when they do react. As agents may not react
instantaneously, assume that agents tend to imitate others in the use of their forecasting
model which is seen in the �t�1 term outside of the brackets on the right side of equation
(10). This means that agents will decide not to test their econometric model if most
agents are using the same one. Next, as agents are testing the two econometric
models, they will compare the MSE�s which is shown inside the brackets of equation
(10). According to the replicator dynamics (and our assumption), not all agents will
choose to change forecasting models all at once.14 This can be explained by assuming
heterogeneity within the testing procedure. For instance, some agents may require
a larger sample size to do the test, or there may be heterogeneity in the critical test
statistic to reject one�s current forecasting model. The type of learning procedures may
be heterogeneous as in Giannitsarou (2003) such that some agents may not learn very
quickly causing a heterogeneous arrival time for testing. Finally, one could assume an
environment of imperfect knowledge. Since agents are only using one forecasting rule,
they must get the information of the MSE of the other process from an outside source.
Assume that the quality of this information is dependent upon the distance (on the [0; 1]
line) between an agent and the last agent who uses the other forecasting model. The
agents located at the poles of the [0; 1] player set may have very poor information on
the other MSE and thus would not wish to run a speci�cation test unless the majority
of the agents are using the other forecasting model. As heterogeneity is expressed as a
proportion of agents in this paper, it is only natural to use evolutionary learning as the
mechanism for econometric testing in the dynamic system.

Brock and Hommes (1997) and others assumed that the role of selection was dictated
by a multinomial logit law of motion. With a multinomial logit, convergence to a
single predictor is not necessarily attainable unless the expected value of utility from
each predictor, except one, is equal to zero. The replicator dynamics will provide
a tool to produce the possibility of convergence to homogeneous expectations due to
the asymptotic nature of the replicator dynamics. However, this does not guarantee
convergence to a single predictor as it may be that U1 = U2 for some �t�1 2 (0; 1).

4.1 Fast-Slow Dynamics

Econometric tests for goodness of �t tend to require a large set of observations before
the test can produce meaningful results. Furthermore, an econometrician may not be
too keen to changing to another forecasting model if the MSE of that model has a large
variability. It makes more sense for the econometricians to test the two models when
they have a large information set and a pair of relatively stable MSE�s. Therefore,
14Agents simultaneously choosing the same forecasting model can only occur if � can take on negative

values. Agents will all at once choose to use the MSV predictor if � = �U1 and will all use the AR(1)
predictor if � = �U2 for all �t�1 2 [0; 1].
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the speed of learning will be much faster than the population dynamics as a result of
econometric testing. For mathematical purposes, I will assume that the MSE that
agents observe will be the MSE corresponding to the MEE for the current value of �.
This will be from a process of fast learning dynamics with slow replicator dynamics, or
�fast-slow�learning. The agents will fully learn the MEE corresponding to the current
value of � before each period when � is updated by the replicator dynamics. Therefore,
the speed of the learning is in�nitely faster than the speed of the replicator dynamics.
Under real-time, when agents compute the MSE as

MSEi;t =MSEi;t�1 + t
�1((yt � z0t�1�i;t)2 �MSEi;t�1)

(no assumption of "fast-slow" dynamics), simulations show that the results are comparable
to the results discussed below.15 The plausible assumption of fast-slow dynamics is used
in order to theoretically evaluate for evolutionary E-stability de�ned below.

4.2 Evolutionary E-stability

Now, I will examine when a Nash solution is stable given �0; �1; �; and a cost parameter,
k. Here, I introduce a concept I will call evolutionary E-stability:

De�nition 3: Assume that the model is updated using fast parameter learning dynamics
with slow replicator dynamics. An MEE or REE, � (��), is Evolutionary E-stable, under
the de�ned game above, if for all � 2 [0; 1] su¢ ciently close to �� (1) �t ! �� under the
replicator dynamics and (2) � (�t) is E-stable for all �t.

Here, � (�) refers to an E-stable MEE that is determined by the level of heterogeneity,
�, and therefore, � (��) is the MEE determined by the Nash solution of ��. Under
evolutionary E-stability, if a mutation occurs to the level of heterogeneity to slightly
change �, then the system will return to the evolutionary E-stable MEE or REE, � (��).
Furthermore, at each � in the neighborhood of ��, the corresponding MEE is E-stable.

(Figure 3 about here)

4.3 AR(1) Evolutionary E-stability

First, consider the AR(1) REE where all agents use the AR(1) predictor. For the AR(1)
REE to be E-stable, it must be that

(�0; �1) 2 S

Figure 3 presents the replicator dynamics for the AR(1) REE16 when there is a deviation
to �0 < ��. If the population begins at a � to the left of the intersection point of �t = �1
15Simulations are not included as they do not provide any additional conclusions.
16Recall that �� = 1� ��10 is the point where the two MEE exchange stability.
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of the replicator dynamics, then the replicator dynamics will direct the entire population
to using the AR(1) predictor. If � is to the right of this intersection point, then the
replicator dynamics will direct the agents away from using the AR(1) predictor. This
result will be explained later with MSV Dominance. The following proposition presents
the conditions for stability for the AR(1) REE under the replicator dynamics:

Proposition 4: Assume that (�0; �1) 2 S. Under fast-slow dynamics, the AR(1) REE
is stable under the replicator dynamics for all

0 � �0 < �1

if
0 � k < k1.

The proof is given in Appendix C. Note that this stability result is path dependent.
It must be that the initial level of heterogeneity must be contained in the above limits
stated in the proposition. Evolutionary E-stability conditions for the AR(1) REE (the
E-stable REE when � = 0) come from the previous proposition.

Corollary 1: If (�0; �1) 2 S. The AR(1) REE is Evolutionary E-stable for

0 � k < k1.

The proof is given in Appendix D.

4.4 MSV Evolutionary E-stability

(Figure 4 about Here)

Next, I examine when the MSV REE is evolutionary E-stable. It turns out that it
can not be Evolutionary E-stable when the cost of using the AR(1) forecasting model
is zero since both of the MSE�s are equal to �2. The replicator dynamics in this case
would be �t+1 = �t. Since the MSV predictor is easier to use, suppose that there is
a preference of using the MSV predictor so that k > 0. Figure 4 shows the replicator
dynamics for MSV evolutionary E-stability which gives us the following proposition:

Proposition 5: Under Fast-slow dynamics, the MSV REE is Evolutionary E-stable if
k > 0. Furthermore, the solution is always stable under the replicator dynamics for all

1� 1

�0
< �0 � 1 if �0 > 1

0 < �0 � 1 if �0 < 1

if k > 0:

14



The proof of this proposition is given in Appendix E. Figure 4 shows the replicator
dynamics for the case where �0 < 1, i.e. where (�0; �1) 2 A. For (�0; �1) 2 S, one
can look at �gure 3 to the right of � = �� = 1 � 1

�0
. When the MSV MEE is E-stable,

both updating rules provide the same MSE. Therefore, as long as k > 0, the replicator
dynamics will direct the population to all use the MSV predictor. As the cost of using
the AR(1) predictor, k, increases, the replicator dynamics becomes more bowed out from
the line �t = �t�1. This will create a result of MSV dominance which is discussed below.

4.5 MSV Dominance

There is one more question to answer. From proposition 4, if k is large enough, then the
AR(1) REE, is not evolutionary E-stable and there is no evolutionary E-stable AR(1)
MEE. What happens in this case? It turns out that the solution converges to the MSV
REE as all agents switch to using the MSV predictor. I refer to this phenomenon as
minimum state variable dominance.

De�nition 4: Minimum state variable (MSV) dominance is said to occur if a model begins
at an AR(1) E-stable MEE and converges to an MSV E-stable REE with homogenous
expectations under the replicator dynamics.

MSV dominance is shown in �gure 3. If �1 < �0 < ��, the AR(1) MEE is E-stable
and the MSV MEE is E-unstable. Due to the cost, k, of using the AR(1) forecasting
model, the MSV forecasting model awards more utility even though it has a larger MSE.
The replicator dynamics, therefore, directs the population away from using the AR(1)
forecasting model. As more agents use the MSV updating rule, the AR(1) MEE solution
becomes more like the MSV MEE. In fact, when � = ��, both solutions are the same
where17

a1 = a2 =
�

1� �0 � �1
b2 = 0:

At � > ��, the MSV MEE replaces the AR(1) MEE as the E-stable solution. Now the
population is in the area of MSV evolutionary E-stability and the replicator dynamics will
continue to direct all agents to use the MSV predictor. Therefore, the relevant branch
for the replicator dynamics in �gure 3 is the one corresponding to the MSV solution.
The E-stable MEE was initially the AR(1) solution, but due to the replicator dynamics,
all agents asymptotically switched to the MSV updating rule which corresponds to the
new E-stable MEE. The following proposition gives the conditions for MSV dominance:

Proposition 6: Assume (�0; �1) 2 S. If

0 < k � k1
17The solution is, however, not E-stable. Simulations suggest this does not present a problem as long

as b2 is su¢ ciently near zero when � = ��.
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and
�1 < �0 < 1�

1

�0
= ��,

and the MEE is an E-stable AR(1) solution, then MSV dominance will occur. If

k > k1

and
0 < �0 < 1�

1

�0

and the MEE is an E-stable AR(1) solution, then MSV dominance will always occur.
The proof is given in Appendix F.

4.6 Global Stability, MSV Dominance, and Path Dependence

(Figure 5 about Here)

Above, convergence to a Nash equilibrium was dependent upon the initial population
level, �0. Figure 5 presents the Nash solution for every corresponding �0 and k for
�0 > 1. The curve in the �gure represents �1 for the corresponding cost, k. Recall that
these Nash solutions did not exist for some (�0; �1; k) : This curve will shift to the left as
�0 decreases and disappear when �0 < 1, the case where the MSV REE is evolutionary
E-stable for all �0 2 [0; 1].

When (�0; k) is below this curve, the resulting Nash solution of the system is � = 0
for 0 � k � k1. Therefore, the corresponding Evolutionary E-stable equilibrium is the
AR(1) REE. When (�0; k) is above this curve, the resulting Nash solution is � = 1
with the corresponding MSV parameter equilibrium. The resulting Nash solutions are
path dependent when the cost of using the AR(1) predictor is below k1. However, when
k > k1, for all � 2 (0; 1], the model is MSV dominant. Therefore, path dependence of
the Nash solution no longer exists when the cost of the AR(1) predictor is su¢ ciently
high.

With MSV dominance, even the existence of a single agent who believes that the
law of motion is MSV, will provide a result of asymptotic homogeneity of the MSV
predictor provided the cost parameter is large enough. This result provides a reasonable
situation where the MSV solution may be the relevant solution even when it is not
initially learnable due to heterogeneous expectations.

5 Conclusion

This paper introduces the use of evolutionary dynamics to further evaluate REE under
learning. Furthermore, it investigates the possibility of more equilibria de�ned under
heterogeneous expectations. Evolutionary and adaptive learning are combined so agents

16



not only learn the parameter values of a perceived equilibrium, they also learn which
forecasting model will be the "best" to learn the equilibrium.

The paper investigates a well discussed model with the possibility of multiple equilibria
and shows that each solution may be stable under the combined evolutionary-adaptive
learning dynamics. In these equilibria, one of the two predictors is always superior to
the other, so the superior predictor is used by all agents. It turns out that if the cost of
using the AR(1) forecasting model is su¢ ciently large, then the parsimonious forecasting
model becomes the unambiguously preferred forecasting model. This results in a global
convergence of the minimum state variable (MSV) REE as long as at least one individual
initially believes the equilibrium to be of this form. This result suggests that the MSV
solution, of the above model, may be the universally relevant solution even when it is
not initially learnable.

Appendix A. Calculation of the MSE for both of the PLM�s

MSE for the �rst PLM

PLM1:

MSE1 = E(y � a1)2

= E (y � E (y))2

= var (y)

=
�2

1� b2

If b=0 then the MSE from the �rst predictor becomes:

MSE1 = �
2 (11)

When we enter the AR(1) MEE values in for the MSE1 we get the following solution:

MSE1 =
(1� �)2�2�21

(1� �)2�21 � (1� (1� �)�0)2
(12)

MSE for the second PLM

PLM2:

MSE2 = E(y � a2 � b2yt�1)2

= E(Ta2 + Tb2yt�1 + vt � a2 � b2yt�1)2

= �2 (13)

The mean square error for the second predictor will always be �2 as long as y follows
a stationary process. This means that the MSE1 � MSE2 for all E-stable stationary
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values of �, �0, and �1. This intuitively makes sense because the AR(1) predictor is
always unbiased while the MSV predictor is unbiased only when b2 = 0.

Appendix B. Proof of Proposition 3

For k � 0 the only evolutionary stable Nash MEE with � 2 (0; 1) is the AR(1) Nash
solution � = �2. For this value of �, we �nd that �0 <

1
1�� . Proposition 1 shows that

The AR(1) solution is not E-stable at this value.

Appendix C. Proof of Proposition 4

When 0 � k < k1, solutions to the replicator dynamics are:

�t = 0

�t = �1

�t = �2

�t = 1

For �1 and �2, we must see when these solutions are between zero and one. For k = 0,
it turns out that

�1 = �2 = 1�
1

�0
,

so here both solutions are between zero and one. For k = k1, we see that

�1 = 0

1� 1

�0
< �2 < 1

Since �1 is strictly decreasing for k 2 [0; k], it turns out that �1 2
�
0; 1� 1

�0

�
and

therefore, �2 > �1 for all k 2 (0; k1). For any k 2 [0; k1),the slope of the replicator
dynamics evaluated at � = 0 and � = �1 are:

0 <
@�t
@�t�1

j�=0 < 1

and
@�t
@�t�1

j�=�1 > 1.

So if �0 < �1, then the system will converge to � = 0 and if �0 > �1, the system will
diverge away from � = 0. Therefore the replicator dynamics are stable under the above
conditions.

Appendix D. Proof of Corollary 1

Proposition 1 shows the E-stability properties for AR(1) Equilibrium. For the AR(1)
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solution to be E-stable, it must be that:

1

1� � < �0 < 1� �1
�1 < 0.

We have assumed that (�0; �1) 2 S, so that

�0 + �1 < 1

and
�0 > 1.

Also note that 0 < �1 � 1 � ��10 , so for any �0 su¢ ciently close to � = 0, it must be
that �0 >

1
1��0

. Therefore, the AR(1) REE is evolutionary E-stable for

0 � k < k1.

Appendix E. Proof of Proposition 5

The only solution to the replicator dynamics under the MSV MEE is

� = 1.

It can be shown that
@�t
@�t�1

j�=1 < 1,

so the replicator dynamics are stable here. Also, as long as

�0 > 1�
1

�0
,

the MEE, for all �t, is E-stable. Therefore, the MSV REE is Evolutionary E-stable and
the replicator dynamics are always stable for all

1� 1

�0
< �0 � 1 if �0 > 1

0 < �0 � 1 if �0 < 1

if k > 0.

Appendix F. Proof of Proposition 6

There is only one Nash solution in this case, � = �2. The derivative of the replicator
dynamics is

@�t
@�t�1

j�=�2 < 1.
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In this case the replicator dynamics move � toward � = �2 > 1� 1
�0
. We also see that

the MEE solutions as �! 1� ��10 are:

lim
�!(1���10 )�

1� (1� �)�0
(1� �)�1

= 0

lim
�!(1���10 )�

�

1� �0 � �1
(1� b2) =

�

1� �0 � �1

This means that as � ! 1 � ��10 , the MEE goes from the AR(1) solution to the MSV
solution. Since we assumed fast-slow dynamics, the replicator dynamics move � slow
enough, and b2 and a2 will be such that b2 2 nbhd(b2 = 0) and a2 2 nbhd(a2 = �

1��0��1
).

When the dynamics move us to � > 1 � ��10 , we are in the area of MSV E-stability.
The fast-slow dynamic assumption leads us to know that b2 2 nbhd(b2 = 0) and a2 2
nbhd(a2 =

�
1��0��1

), so the MSV solution is E-stable. The inequality above implies
that k > 0, so the MSV REE is stable under the replicator dynamics. Therefore, MSV
dominance has occurred.

20



References

[1] Arthur, B. (1992) �On Learning and Adaption in the Economy�, Santa Fe Institute
Paper 92-07-038.

[2] Branch, W. (2002) �Local Convergence Properties of a Cobweb Model with
Rationally Heterogenous Expectations�, Journal of Economic Dynamics and
Control 27, 63-85.

[3] Branch, W., McGough, B. (2004) �Multiple Equilibrium in Heterogeneous
Expectations Models�, Contributions to Macroeconomics, BE-Press, Vol. 4, Issue
1, Article 12.

[4] Bray, M.,Savin, N. (1986) �Rational Expectations Equilibria, Learning, and Model
Speci�cation�, Econometrica 54, 1129-1160.

[5] Brock, W., Hommes, C. (1997) �A Rational Route to Randomness�, Econometrica
65, 1059-1095.

[6] De Grauwe, P.,Dewachter, H.,Embrechts, M. (1993) Exchange Rate Theory: Chaotic
Models of Foreign Exchange Markets. Blackwell Publishers, Oxford, UK.

[7] Evans, G., Honkapohja, S. (1997) �Least Squares Learning with Heterogenous
Expectations�, Economic Letters 52, 197-201.

[8] Evans, G., Honkapohja, S. (2001) Learning and Expectations in Macroeconomics,
Princeton University Press, Princeton, NJ.

[9] Evans, G., Honkapohja, S.,Marimon, R. (2001) �Convergence in Monetary In�ation
Models with Heterogenous Learning Rules�, Macroeconomic Dynamics 5, 1-31.

[10] Evans, G.,Ramey, G. (1992) �Expectation Calculation and Macroeconomic
Dynamics�, American Economic Review 82, 207-224.

[11] Evans, G.,Ramey, G. (1998) �Calculation, Adaptation and Rational Expectations�,
Macroeconomic Dynamics 2, 156-182.

[12] Giannitsarou, C. (2003) �Heterogeneous Learning�, Review of Economic Dynamics
6, 885-906.

[13] Guse, E. (2005) �Stability Properties for Learning with Heterogeneous Expectations
and Multiple Equilibria�, Journal of Economic Dynamics and Control 29,
1623-1642.

[14] Heinemann, M. (2000) �Convergence of Adaptive Learning and Expectational
Stability: The Case of Multiple Rational Expectations Equilibria�, Macroeconomic
Dynamics 4, 263-288.

21



[15] Hommes, C., Sorger, G. (1998) �Consistent Expectations Equilibria�,
Macroeconomic Dynamics 2, 287-321.

[16] Honkapohja, S., Mitra, K. (2005) �Learning Stability in Economics with
Heterogeneous Agents�, Working Paper.

[17] Kandori, M., Mailath, G., Rob, R. (1993) �Learning, Mutation, and Long Run
Equilibria in Games�, Econometrica 61, 29-56.

[18] Lucas, R. (1972) �Expectations and the Neutrality of Money�, Journal of Economic
Theory 4, 103-124.

[19] Lucas, R. (1973) �Some International Evidence on the Output-In�ation Trade-o¤s�,
American Economic Review 63, 326-334.

[20] Marcet, A., Sargent, T. (1989) �Convergence of Least-Squares Learning Mechanisms
in Self-Referential Linear Stochastic Models�, Journal of Economic Theory, 48,
337-368.

[21] Marimon, R., McGrattan, E. (1995) �On Adaptive Learning in Strategic Games�,
In: Kirman, A.,Salmon, M., (Eds.), Learning and Rationality in Economics, Basil
Blackwell Ltd., Oxford, UK, pp. 63-101.

[22] Muth, J. (1961) �Rational Expectations and the Theory of Price Movements�,
Econometrica 29, 315-335.

[23] Sargent, T. (1973). �Rational Expectations, the Real Rate of Interest and the
Natural Rate of Unemployment�, Brookings Papers on Economic Activity 2,
429-472.

[24] Sethi, R. (1996) �Endogenous Regime Switching in Speculative Markets�, Structural
Change and Economic Dynamics 7, 99-118.

[25] Sethi, R., Franke, R. (1995) �Behavioural Heterogeneity Under Evolutionary
Pressure: Macroeconomic Implications of Costly Optimisation�, Economic Journal
105, 583-600.

[26] Taylor, J. (1977) �Conditions for Unique Solutions in Stochastic Macroeconomic
Models with Rational Expectations�, Econometrica 45, 1377-1386.

[27] Weibull, J. (1995) Evolutionary Game Theory. The MIT Press, Cambridge, MA.

22



FIGURE 1. Best Response Function for AR(1) Solution when 0 � k � k1.
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FIGURE 2. Best Response Function for AR(1) Solution when k > k1.
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FIGURE 3. The Replicator Dynamics for an AR(1) Evolutionary E-stable REE.
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FIGURE 4. The Replicator Dynamics for an MSV Evolutionary E-stable REE.
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FIGURE 5. Evolutionary E-stability Conditions

27


