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Abstract

This paper introduces a general method to study stability (under learning) of
equilibria resulting from agents with misspeci�ed perceptions of the law of motion of
the economy. This is done by transforming the actual and perceived laws of motion
into the form of seemingly unrelated regressions and then linearly projecting the
actual law of motion into the same class as the perceived law of motion. I study
the New Keynesian IS-LM model with inertia under all possible classes of restricted
perceptions. It turns out that the results found in Bullard and Mitra (2002, 2003)
are robust under misspeci�ed expectations.
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1 Introduction

Rational expectations (RE) was introduced by Muth (1961) and later popularized by
Lucas (1972,1976) and Sargent (1973) in the �eld of dynamic macroeconomics. Although
it is the most widely used equilibrium concept in macroeconomics, it does has several
limitations. One drawback to using RE is that it assumes that agents are aware of
the true distribution of the economy and are able to form conditional expectations
with this information. Therefore, as pointed out by Sargent (1993), an economist
who uses RE is thus assuming that the agents in his model are more intelligent than
he. The adaptive learning literature, discussed in Sargent (1993) and Evans and
Honkapohja (2001), provides an alternative to RE in which one assumes that agents
act as econometricians and estimate unknown parameters in a correctly speci�ed model.
Under certain conditions, it has been found that expectations in these models converge
to the rational expectations equilibrium (REE).

Although adaptive learning may be a more realistic approach to modelling expectations,
the common assumption of learning a correctly speci�ed model may continue to be
quite an abstraction from reality. In practice, econometricians cannot include all
lags and exogenous variables when forecasting due to degrees of freedom restrictions,
computational costs, or informational uncertainties. In fact, it is argued by White
(1994) that all econometric models are necessarily misspeci�ed. This paper will provide
a general technique for a multivariate model in which to study stability, under adaptive
learning, of the resulting equilibria when agents are modelled as econometricians who
use a misspeci�ed forecasting model.

There are many reasons why an agent may use a misspeci�ed forecasting model
to form expectations. Evans and Honkapohja (2001) suggest that agents may lack
the full information set to use a fully speci�ed forecasting model. In a laboratory,
Adam (2002) discovers that agents may prefer to use a univariate forecasting model
due to its simplicity. Such a forecasting model may be misspeci�ed in a multivariate
economic model. Perhaps agents take into account the performance of a forecasting
model versus its costs as suggested in Adam (2005). If a fully speci�ed forecasting
model is too costly, then agents may choose to use a misspeci�ed model that performs
relatively well. Adam (2005) also suggests that another reason for misspeci�cation is
that agents may search for the best forecasting model in the short run. It may take
many observations to discover the best forecasting model, so misspeci�cation may be a
short term phenomenon. Finally, less educated agents may use forecasting models with
even fewer lags and exogenous variables as they may have a poorer understanding of the
economy than a typical econometrician. Therefore, when modelling learning, it may be
useful to further abstract from rationality by assuming that agents must choose their
forecasting model subject to constraints.

In a misspeci�ed model, Evans and Honkapohja (2001) call the resulting equilibria
"restricted perceptions" equilibria (RPE) since agents are not fully aware of the true
stochastic process of the aggregate variables they are forecasting. The RPE are fully
rational in the class of restricted predictors as agents are ignorant of their restricted
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perceptions. This ignorance is due to the orthogonality condition in least squares
where the forecast errors are uncorrelated with the information used in the forecasting
model. In a RPE, agents and their activities exist in economic models, but the agents�
beliefs reside in their forecasting models. Therefore, the expectations are boundedly
rational as if an agent were to step outside of the forecasting model, he would recognize
the misspeci�cation and prefer to use the correctly speci�ed forecasting model. One
limitation of the RPE is that excluded variables that should be included in a forecast
will be correlated with the forecast errors. However, several reasons for misspeci�cation,
discussed above, also lead to agents being unaware of such a correlation.

Representation of the mapping from the perceived law of motion to the "projected"
actual law of motion has so far been done case by case as there is currently no general
tool for such representations. Most papers have considered mainly univariate models
as calculation of more complex models proves to be quite di¢ cult. I believe that since
there is no general technique available for representing a T-mapping for a restricted
perceptions equilibrium, economists have ignored many acceptable alternative equilibria
in popular economic models such as the real business cycle model and the New Keynesian
IS-LM model.

The purpose of this study is twofold. First, I will introduce a general technique
to calculate projected T-maps for RPE�s in order to evaluate the conditions for these
equilibria to be learnable under simple adaptive learning rules. This technique will use
the method of Seemingly Unrelated Regressions (SUR) originally analyzed by Zellner
(1962) and presented e.g. by Hamilton (1994). By representing every regression as a
single regression, the estimation restrictions can be quite general. Second, I will present
an example of a restricted perceptions equilibrium in the New Keynesian IS-LM model
as presented in Woodford (2003) and others. In this paper, I will follow Bullard and
Mitra (2002) and use the T-map in order to evaluate how restricted perceptions will
a¤ect the stability properties of the model under learning.

Under a New Keynesian Monetary model with inertia, I show that the stability
properties, under learning, do not change under a simple restricted forecasting rule. I
show a relationship between determinacy, learnability, and inertia where determinacy
only changes with inertia if the REE and RPE are not stable under learning. As in
Bullard and Mitra (2002), the preferred policy rule is adjusting interest rates more than
one for one (yet not too aggressively) with a change in in�ation. The best policy
to accomplish this, under the policy rules studied, is by following a Taylor rule with
expected values of contemporaneous variables.

2 The Projected ALM

In this section, a technique is presented which may be useful when evaluating stability
of RPE�s under learning. To do this, the ALM must be projected into the same class
of models as the restricted perceived law of motion.
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2.1 The Model, Determinacy, and Rational Expectations

Assume the following model:

zt = A+BE
�
t zt +DE

�
t zt+1 + Fzt�1 +Gvt (1)

where zt is a (n� 1) vector of endogenous variables, vt is a vector of possibly autocorrelated
shocks,1 and E�t represents the not necessarily rational expectation operator at time t.
The model is determinate when there is a unique nonexplosive REE and indeterminate
if there are multiple nonexplosive solutions. Indeterminacy can be undesirable as agents
may coordinate on an equilibrium that exhibits unwanted properties.

A model can be analyzed for determinacy by writing it up as a discrete di¤erence
equation with the associated extraneous noise terms capturing the errors in the agents�
forecasts of the free variables. For the above model (assuming that D�1 exists)2, it
turns out that determinacy can be determined by the matrix U :

U =

�
D�1 (I �B) �D�1F

I 0

�
If the number of eigenvalues outside the unit circle is equal to the number of explanatory
variables, n, then the model is said to be determinate. If the number of eigenvalues
outside the unit circle is greater than n, then the model is explosive. Finally, if the
number of eigenvalues outside the unit circle is equal to n � m, then, following the
terminology of Evans and McGough (2004a), the model is indeterminate of order m.3

A rational expectations equilibrium (REE) of this model can be presented as a
minimal state variable (MSV) solution in a vector autoregression (VAR) form. Agents
with rational expectations who know the correct MSV form will thus form expectations
with the knowledge that zt takes the following form:

zt = a
0 +m0zt�1 + h

�
c0vt�1

�
+ "t (2)

where h (x) = x if vt is autocorrelated and h (x) is not included in the equation (or
matrix) if vt is i.i.d. Under a REE, a0, m0, and h (c0) are such that the stochastic
process represented by equation (2) is consistent with the actual stochastic process of
zt.

Economic agents with RE have a great deal of knowledge of zt. It is common to
ask whether a REE is robust when agents form expectations using less sophisticated
schemes than RE. Assume that agents know the true form of zt represented by equation
(2), but they must learn the parameters a0, m0, and h (c0). Equation (2) is known as
the perceived law of motion (PLM). Expectations from the PLM feedback into the

1 If vt is autocorrelated then assume that vt = �vt�1 + "t where "t � N (0;�) and all the eigenvalues
of � are inside the unit circle.

2 If D is singular, then one must break the general form down to predetermined and non-predetermined
variables and follow Blanchard and Kahn (1980).

3 In Evans and McGough (2004a), all of the eigenvalues must be real for the model to be indeterminate
of order m. As I am not considering sunspots, I just report the number of eigenvalues less than n.
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structural model, equation (1), giving the actual law of motion (ALM):

zt = A+Ba0 +D
�
I +m0� a0 + �Bm0 +Dm02 + F

�
zt�1

+h
��
Bc0 +D

�
m0c0 + c0�

�
+G�

�
vt�1

�
+G"t (3)

or
zt = T

0
a + T

0
mzt�1 + h

�
T 0cvt�1

�
+G"t

One can write the above form as a mapping, or T-map, from the PLM to the ALM:

T

0@ a0

m0

h (c0)

1A =

0@ A+Ba0 +D (I +m0) a0

Bm0 +Dm02 + F
h (Bc0 +D (m0c0 + c0�) +G�)

1A (4)

The condition for an equilibrium to be (locally) stable under a simple learning
rule, such as ordinary least squares, is known as Expectational Stability, or E-stability.
Consider the following ordinary di¤erential equation (ODE):

d�

d�
= T (�)� � (5)

where T is the mapping from the perceived law of motion, �, to the implied actual law
of motion, T (�) and � denotes "notional" or "arti�cial" time. In this case, T (�) is
represented by equation (4) and

� =

0@ a0

m0

h (c0)

1A
Evans and Honkapohja (2001) de�ne an equilibrium (�xed point of the ODE) to be
E-stable if the ODE is stable when evaluated at the equilibrium values.4 For stability,
the eigenvalues of the Jacobian matrix of the ODE must have negative real parts. It is
commonly known that (Marcet and Sargent (1989) and Evans and Honkapohja (2001)),
under least squares learning, an E-stable equilibrium is (locally) learnable. Learnability
of an equilibrium may be regarded as a necessary condition for the relevance of that
equilibrium.

2.2 Constrained Forecasting and the RPE

Agents may be unable, or unwilling, to use the above correctly speci�ed forecasting
model (equation (2)) due to computational costs, degrees of freedom restrictions, poor
information, or just a poor understanding of the economy. In this case, agents may

4To compute the stability conditions, the ODE must be vectorized (See chapter 10 of Evans and
Honkapohja (2001)). For any matrix X, let vec (X) denote the vector obtained by stacking the columns
of X.
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learn using a restricted forecasting model of the following form:

zt = â
0 + m̂0zt�1 + h

�
ĉ0vt�1

�
+ "t (6)

where some, or all of the m̂�s, are equal to zero and the corresponding components of ĉ
are also equal to zero. The expectations from the restricted PLM, equation (6), feedback
into the structural equation (1) to give the ALM:

zt = T
0
a + T

0
mzt�1 + h

�
T 0cvt�1

�
+G"t (7)

where

T 0a = A+Bâ0 +D
�
I + m̂0� â0

T 0m = Bm̂0 +Dm̂02 + F

T 0c = h
�
Bĉ0 +D

�
m̂0ĉ0 + ĉ0�

�
+G�

�
represent the T-maps for a0, m0, and c0 under a correctly speci�ed PLM to the ALM.
Note that the ALM here is in the same form as it is in equation (3), however, some of
the m̂�s and ĉ�s are constrained to be zero. Since this ALM has a complete VAR form,
one cannot present a T-mapping from the restricted PLM to this ALM. This ALM must
be projected into the same form as the restricted PLM. However, at its current form, a
single linear projection of the ALM is impossible, so I will state the PLM in a di¤erent
form.

Recall the PLM:
zt = â

0 + m̂0zt�1 + h
�
ĉ0vt�1

�
+ "t

where some, or all, of the coe¢ cients in m̂ are zero. The zero�s in m̂ can be eliminated
by assuming that the agents estimate each variable separately:

zit = âi + w
0
itbi + h

�
v0i;t�1ci

�
+ "it (8)

where wit and vi;t�1 are (ki � 1) vectors of predetermined explanatory variables agents
use to estimate variable i. The vectors bi and ci are correspondingly represented by
the ith column of the matrices m̂ and ĉ where all of the zero�s are removed. The n
regressions can be written as a system of seemingly unrelated regressions (SUR) in the
following manner:

zt = A+W 0
tB + "t (9)

where5

A =
�
â1 â2 � � � ân

�0
W 0
t =

�
W 0
1t; h

�
W 0
2t

��
5 If bi is an empty set, then the ith row of both W 0

1t and W 0
2t is a zero vector. w

0
i+1;t (and v

0
i+1;t�1)

will appear one row below starting in the �rst column that has only zeros in the rows above.
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W 0
1t =

26664
w01t 00 � � � 00

00 w02t � � � 00

...
...

. . .
...

00 00 � � � w0nt

37775

W 0
2t =

26664
v01;t�1 00 � � � 00

00 v02;t�1 � � � 00

...
...

. . .
...

00 00 � � � v0n;t�1

37775
B =

�
B01; h

�
B02
��0

B1 =
�
b01 b02 � � � b0n

�0
and

B2 =
�
c01 c02 � � � c0n

�0
W 0
t is (n� l) ;B is (l � 1), k =

nP
i=1
ki, and l = k + h (k). The vector B is equivalently

represented by
�
vec (m̂)
vec (ĉ)

�
with all the zeros removed. This form is equivalent to the

original form and will help give a T-map from the PLM to the projected ALM.
The next step is to put the ALM into a similar form. Consider the current form of

the ALM:
zt = T

0
a + T

0
mzt�1 + h

�
T 0cvt�1

�
+G"t (10)

This can �rst be put into an alternative form by taking the transpose:

z0t = Ta + z
0
t�1Tm + h

�
v0t�1Tc

�
+ "0tG

0 (11)

One can now vectorize this system of equations to make it similar to the SUR form of
the PLM:

zt = T
0
a + X 0tTx +G"t (12)

where

X 0t =
�
(I 
 zt�1)0 ; h

�
(I 
 vt�1)0

��
Tx =

�
vec (Tm)
h (vec (Tc))

�
Note that X 0t is similar to the matrix W 0

t where here every variable is included in every
separate regression. Now that the PLM and ALM are in SUR form, one can linearly
project this system of seeming unrelated regressions into another class of seemingly
unrelated regressions of the form of the PLM.

It is important to note that the ALM of equation (12) is equivalent to equation (4).
Evans and Honkapohja (2001, pp 140-141) discuss that E-stability is invariant to 1 to
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1 transformations. Therefore, E-stability conditions will not change when the ALM is
put into SUR form. The next step of linearly projecting the ALM into the same class
as the PLM (in SUR form) will also not a¤ect the E-stability conditions.

Suppose that a forecast of some Yt is restricted to be a linear forecast of some matrix,
Xt, which is a partitioned matrix of block diagonal matrices representing the variables
used for each separate regression. Then, the forecast of Yt is the following:

Yt = p (A) +X 0
tp (B) (13)

Using this forecast, it follows that

p (A) = EYt � EX 0
tp (B) (14)

which will prove to be helpful when solving for the T-map of the constant terms. p (A)
and p (B) are chosen such that the forecast errors are uncorrelated with the SUR matrix
of regressors:

E
�
Xt
�
Yt �

�
p (A) +X 0

tp (B)
���

= 0 (15)

This linear projection will produce the least squares orthogonality condition such that
agents using the matrixXt, will be unaware they may not be using all relevant information
when forecasting Yt.

For the PLM and ALM in SUR form, we can write the forecast as follows:

zt = p (A) +W 0
tp (B) (16)

or
T 0a + X 0tTx +G"t = p (A) +W 0

tp (B) (17)

The constants can be solved by using the expectations operator:

p (A) = T 0a + E
�
X 0t
�
Tx � E

�
W 0
t

�
p (B) (18)

Next, the forecast error must be uncorrelated with the SUR matrix Wt:

E
�
Wt

�
T 0a + X 0tTx +G"t � p (A)�W 0

tp (B)
��
= 0 (19)

Using the solution for p (A) from (18) this turns out to be:

E
�
Wt

��
X 0t � E

�
X 0t
��
Tx +G"t �

�
W 0
t � E

�
W 0
t

��
p (B)

��
= 0

Doing some algebra gives

cov
�
Wt;X 0t

�
Tx = var [Wt] p (B) (20)
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and this can be further reduced to6

p (B) = 
�1cov
�
Wt;X 0t

�
Tx (21)

where


 = var [Wt]

The technique used to solve for the moment matrices following Adam, Evans, and
Honkapohja (2005) is presented in appendix A. Equation (21) demonstrates that the
solution to p (B) has the same form as any other linear regression: it is equal to the
inverse of the variance matrix times the covariance of the matrix of regressors and the
endogenous variables which are being estimated. Note that if Wt = Xt, then we have
the following:

p (B) = Tx

p (A) = T 0a

p (B) and p (A) have the same form as the SUR vectors B and A respectively and
represent the projected T-map (or the "p-map") which maps the restricted PLM to the
projected ALM. The Projected ALM is thus the following:

zt = p (A) +W 0
tp (B) + "t (22)

Corallary 1 shows how one can �nd the E-stability conditions of the RPE using the
p-map.

Corollary 1. A RPE is E-stable if the standard E-stability ODE

d�

d�
=

�
p (A)
p (B)

�
�
�
A
B

�
is stable at the RPE.

The proof of this corollary is trivial and thus not given. The proof follows the fact
that the E-stability conditions for an equilibrium are the same under the standard form
or the SUR form. The restricted ALM in the standard form is transformed to SUR form
and then projected to the same form as the PLM in SUR form. The transformation
to the SUR and the linear projection do not change the E-stability conditions as they
are 1 to 1 transformations. As the agents are learning using least squares, the standard
E-stability ODE can be used to determine whether a RPE is locally learnable.

6 It is shown in appendix B, after the moment matrices are de�ned in appendix A, that if the model
is stationary, then 
 is invertible.
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2.3 Cobweb Example

The SUR transformation is most convenient when agents must forecast n > 1 variables.
Using the SUR form, one needs to put the model in the form above and then do one
linear projection to get the projected ALM. One can obtain the projected ALM without
using the SUR technique. However, this can be quite cumbersome with n > 1 variables.
This requires linearly projecting each component of the ALM (n total) separately which
is, in essence, treating each variable as a unrelated regression. Therefore, for many
models, it will be easier for one to put the PLM and ALM into the SUR forms and then
do a single linear projection.

I present a misspeci�cation of a cobweb model as presented in pages 318-320 of Evans
and Honkapohja (2001) as an example of how to use the SUR technique.7 Consider a
simple cobweb model in the reduced form:

pt = �+ �E
�
t�1pt + 

0wt�1 + �t (23)

where wt�1 is a vector of observable exogenous variables and �t is an unobservable white
noise shock independent of the wt process. Furthermore, wt follows a stationary VAR
form. Suppose that agents misspecify this model assuming that pt can be accurately
forecasted using w1;t�1 where w0t = (w

0
1t; w

0
2t) and 

0 = (01; 
0
2). The restricted PLM is

the following:
pt = a+ c

0w1;t�1 + "t (24)

where "t is believed to be white noise. The ALM is obtained by taking expectations of
equation (24), and plugging this into equation (23) to get:

pt = (�+ �a) +
�
�c0 + 01

�
w1;t�1 + 

0
2w2;t�1 + �t

Since wt follows a stationary VAR, the ALM can be put into a VAR form:�
pt
wt

�
=

�
�+ �a
�

�
+

�
(�c0 + 01; 

0
2)

�0

�
wt�1 +

�
�t
�t

�
Notice that I do not include pt�1 on the right hand side and impose zeros as this will
complicate the math and give the same results below. Next, put the ALM into SUR
form: �

pt
wt

�
=

�
�+ �a
�

�
+ (I 
 wt�1)0

0@ �c+ 1
2

vec (�)

1A+ � �t
�t

�
7This is a univariate model, however, it can also be expressed as a multivariate model as shown below.
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Assume that agents know the true process of wt to get the PLM in SUR form:8�
pt
wt

�
=

�
a
�

�
+

�
w1;t�1 0
0 (I 
 wt�1)0

��
c

vec (�)

�
+

�
"t
�t

�
:

The variance of the SUR matrix of regressors is:


 =

�
�11 0
0 (I 
 �)

�
and the covariance matrix of the SUR matrix of regressors and the full information
matrix is:

cov
�
Wt;X 0

�
=

�
�11 �12 0
0 0 (I 
 �)

�
where

V ar

�
w1t
w2t

�
= � =

�
�11 �12
�12 �22

�
Using equation (21), the p-mapping from the PLM to the projected ALM is

p (a) = �+ �a

p (c) = �c+ 1 +�
�1
11 �122

and the RPE is �
�a
�c

�
=

�
(1� �)�1 �

(1� �)�1
�
1 +�

�1
11 �122

� �
as shown in Evans and Honkapohja (2001).

This example shows how the SUR technique may be quite cumbersome and unnecessary
in a univariate model. However, in a multivariate model, the techniques used in Evans
and Honkapohja (2001) and Adam, Evans, and Honkapohja (2005) become increasingly
more computational versus the SUR technique. For example, if the above cobweb model
is multivariate where pt is a vector of prices, then each price could be misspeci�ed in the
following PLM:

pt = a+ ĉ
0wt�1 + "t

where some of the ĉ0s are constrained to be zero. Other projection techniques would
require a linear projection of each separate equation. The SUR technique only requires
transforming the PLM and ALM into a SUR form and then doing a single linear
projection.

8A misspeci�cation on wt would have no e¤ect on the RPE of pt as expectations of wt are not in the
linear model. However, if the structural model also included Et�1pt+1, expectations of wt would enter
the ALM and thus a¤ect the RPE of pt.
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3 Theory

The second purpose of this study is to study restricted perceptions in the New Keynesian
Monetary Model. In this section, I will develop the theory necessary to analyze RPE�s
under several interest rate rules. First, I will present the model of interest.

3.1 Monetary Model

The model used in this paper is the New Keynesian Monetary Model with inertia in
both the IS and AS curves:

IS : xt = �� (it � Et�t+1) + �Etxt+1 + (1� �)xt�1 + gt
AS : �t = � (Et�t+1 + (1� )�t�1) + �xt + ut

where xt is the proportional output gap, �t is the in�ation rate, and gt and ut are
independent, exogenous, stationary, zero mean AR(1) shocks with damping parameters
0 � �g < 1 and 0 � �u < 1 respectively.

The IS curve is obtained from a linearized model of consumer optimization amended
to include inertia. Inertia is included as it has been argued9 that consumption smoothing
is not perfect and does not follow a random walk as suggested by Hall (1978). Inertia
can be captured via habit formation as in Fuhrer (2000) and Smets (2003) or from
the existence of rule of thumb consumers as in Cambell and Mankiw (1989), Mankiw
(2000), and Amato and Laubach (2003). Here, � relates to the intertemporal elasticity
of substitution of the representative household and 0 < � < 1 is the inertial term due to
backward looking consumers.

The AS curve is the forward looking Phillips curve amended to include inertia as it
has been found by Fuhrer and Moore (1995) and Gali and Gertler (1999) to be important
when estimating the Phillips curve.10 This can be captured from habit formation as in
McCallum and Nelson (1999a) and Fuhrer (2000), rule of thumb price setters as in Gali
and Gertler (1999) and Amato and Laubach (2003), or price indexation as in Christiano
et al. (2001). Here, 0 < � < 1 is the discount factor, � is the degree of price stickiness,
and 0 <  < 1 is the inertial term due to backward looking price setters.

The above structural model is closed by specifying a policy rule describing how
interest rates are set. It has been shown that the region and nature of a model�s
indeterminacy depends on the nature of this policy rule. I will analyze three of the
four policy rules as presented in Bullard and Mitra (2002) in this hybrid New Keynesian

9A long list of papers include Mankiw et al. (1985), Deaton (1992), Shea (1995), and Parker (1999).
10The existence of backward looking agents in the Phillips curve is a controversial topic as several

authors including Wolman (1999) and Dotsey (2002) show the estimated model used by Gali and Gerler
(1999) was biased for a positive result of backward looking behavior.
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Model:11

PR1 : it = a��t�1 + �xxt�1

PR2 : it = ��Et�t+1 + �xEtxt+1

PR3 : it = ��Et�t + �xEtxt

In each policy rule, �t can be interpreted as the deviation from its target. As usual
the intercepts of the above equations have been omitted for convenience. I assume
throughout that ��; �x � 0 so that the a��t�1 term in PR1 is the degree to which the
monetary policy authority raises nominal interest rates in response to a upward deviation
of �t�1 from its target.

4 Results

The model under the three policy rules will be analyzed using three di¤erent calibrations
of the parameters in the IS-AS curves, however, the discussion will be concerned with
"areas" which each calibration has in common (discussed below). Consider the following
calibrations:

Table 1. Calibrations
Author(s) � �

W 1=:157 :024

CGG 4 :075

MN :164 :3

These calibrations are due to Woodford (1999), Clarida, Gali, and Gertler (2000),
and McCallum and Nelson (1999b). Several papers have discussed determinacy and
learnability of this model under Rational Expectations (Bullard and Mitra 2002, 2003)
and Stationary Sunspot Equilibria (Honkapohja and Mitra 2004, Evans and McGough
2004a, 2004b), however, the learnability of RPE�s in such a model has not yet been
discussed.

Evans and McGough (2004b) assume that the parameters for backward looking
behavior, � and , are set to 0.5. However, it turns out that the characteristics of the
below described areas changes with the level of backward looking behavior.12 Therefore,
I consider several combinations of these two parameters. Following Evans and McGough,
I also set � = 1.

11Taylor�s original policy rule where the central bank adjusts the nominal interest rate due to
contemporaneous data is not included as McCallum (1999) argues that this rule is non-operational.
Stability results for this Taylor rule are equivalent to the results under PR3.
12Bullard and Mitra (2003) discuss varying these parameters, however, they only consider the

determinate region D (discussed below). They �nd that these parameters do not a¤ect the E-stability
results in this region.
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Previously, papers have looked at the calibrations separately, however, it turns
out that this is not necessary. Consider the following �gures that show a change in
determinacy as the policy parameters, �x and ��, vary for each calibration.

Figures 1, 2, 3 about here

It turns out that, for the 3 calibrations above, the areas labeled A-D usually share
the same determinacy and learnability properties for any given policy rule and level of
backward looking agents.13 Therefore, to simplify matters, I will discuss the determinacy
and learnability properties that these calibrations share for each area.

There are a few general results that occur under all three policy rules. First, the main
result is that all 16 possible classes of equilibria (REE and 15 possible forms of RPE)
generally share E-stability properties.14 Therefore, under the above model, forecast
misspeci�cation does not cause instability under learning and the results of Bullard and
Mitra (2002, 2003) are robust under model misspeci�cation. Second, if an REE is
stable under learning with no inertia, then determinacy properties of the REE do not
change when there are backward looking agents. Third, if there is no learnable REE in
a determinate or indeterminate area, then the determinacy properties of the REE will
change as more agents become backward looking.

4.1 Misspeci�ed Forecasting Rule

Previous literature has assumed that agents learn the equilibrium using a forecasting
model consistent with the REE. Why should we assume that agents take into account
the relationship between in�ation and the output gap when forecasting these variables?
It is possible that agents may choose to make their forecast without using all the variables
due to lack of information, poor speci�cation testing abilities, or the fully speci�ed
forecasting rule may be too costly. For this section, I will follow the results in Adam
(2002) and assume that agents form expectations of each variable using a univariate
AR(1) forecasting rule of the form:

xt = â1 + m̂1xt�1 + v̂1t

�t = â2 + m̂2�t�1 + v̂2t

As the results for every class of RPE only di¤ers in the non-learnable regions (some
solutions may be explosive while others may have a non-learnable stationary solution),
I discuss this particular class as a general result. The above technique will be used to
form the T-map and ODE in order to determine E-stability of the RPE.

13For some levels of backward looking behavior, there can be multiple determinacy results within a
single area. This is discussed below.
14When  and � are near zero, there is a small sliver near �� = 1 and �x = 0 in area D (under policy

rules 1 and 3) where the REE and several other RPE are explosive and other RPE are E-stable.
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4.2 Policy Rule 1

Recall that policy rule 1 is a backward looking Taylor rule of the following form:

PR1 : it = a��t�1 + �xxt�1

This policy rule has been analyzed by Bullard and Mitra (2002,2003) and Evans and
McGough (2004a). The �gure in Bullard and Mitra (2002) is similar to Figures 1-3
except the vertical line at �� = 1 is replaced by the line (where � = :99)

�� +
(1� �)
�

�x = 1

representing the Taylor Principle with � = :99.15 Under a situation where no agents
are backward looking, areas A and D are determinate, however, the REE is learnable
only within area D. Therefore, Bullard and Mitra �nd that such a rule would not be
advisable as agents may fail to coordinate on the equilibrium, even though it is unique.
As area B is explosive, following the Taylor principle does not guarantee existence or
learnability.

Tables 2 shows the determinacy and stability results under several combinations of
 and � for the REE while table 3 shows the E-stability results16 for the RPE. For the
REE, the text shows determinacy for each given (; �) and the superscript shows if there
is a learnable equilibrium. The text in table 3 shows learnability results for the RPE.
Det means that the REE is determinate and therefore, there is a unique stationary REE.
EX means that there is exist no stationary REE or RPE. 1 or 2 means that the model is
indeterminate of order 1 or 2 respectively. In some cases, there may be two determinacy
results in one area for some (; �). I denote "1; EX" for the model being indeterminate
of order 1 for small �x and explosive for larger levels of �x within a particular area.
"EX;Det" is the explosive "sliver" discussed in Evans and McGough (2004b) where no
stationary solution exists in area D near �� = 1 and �x = 0 and a unique stationary
solution exists when these two parameters are slightly increased. This "sliver" is quite
small relative to the size of area D. U means that there is no learnable equilibrium while
E is where there exists an E-stable REE or RPE.

Table 2. Results of REE under Policy Rule 1

15 In this model with inertia, the Taylor Principle is represented by �� > 1 as � = 1. When � = :99
the two �gures are the same, however, there are no major changes in the results below.
16There is no general method to determine determinacy under misspeci�ed expectations. This is a

topic of current research.
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 � Area A Area B Area C Area D
0:1 0:1 EX EX EX EX;DetE

0:1 0:5 EX EX 1U ; EX DetE

0:1 0:9 EX EX 1U ; EX DetE

0:5 0:5 DetU EX 1U DetE

0:9 0:1 DetU EX 1U DetE

0:9 0:5 DetU EX 1U DetE

0:9 0:9 DetU EX 1U DetE

Table 3. Results of RPE under Policy Rule 1
 � Area A Area B Area C Area D
0:1 0:1 EX EX EX E

0:1 0:5 EX EX EX E

0:1 0:9 EX EX EX E

0:5 0:5 EX EX EX E

0:9 0:1 EX EX U E

0:9 0:5 EX EX U E

0:9 0:9 EX EX U E

The stability results in Bullard and Mitra (2002) continue to follow in the model
with inertia as shown in Bullard and Mitra (2003).17 It turns out that these results
are also robust when we are considering RPE rather than REE. For areas A and C, by
increasing inertia in the AS (increasing ), one can see that the REE becomes explosive.
The determinate and learnable equilibrium in area D continues to be learnable for all
(; �) except for a small area when  = � = 0:1. The RPE within this explosive "sliver"
discussed in Evans and McGough (2004b) not only exists, but is learnable. For the given
restricted forecasting model, the RPE is learnable for any (; �) and (��; �x) within area
D.18

4.3 Policy Rule 2

Recall that policy rule 2 is forward looking Taylor rule of the form:

it = ��Et�t+1 + �xEtxt+1

Here, the central bank adjusts the interest rate based on its expectations of next period�s
in�ation and output gap. Under least squares learning, private agents are assumed to
recursively estimate the parameters of their PLM and form expectations of in�ation and
output given these estimates. One could assume that the private agents and central

17The results are only reported under policy rule 2 as the general result is the same for all 3 policy
rules. They did not, however, report that determinacy changes as inertia increases.
18This is not a general result for all RPE. This explosive sliver exists in 6 of the 16 di¤erent classes

of equilibria.
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bank have di¤erent expectations as the assumption of rational expectations has been
relaxed.19 To simplify matters, I will assume that the expectations of private agents
and the central bank are homogeneous as it has been done in Bullard and Mitra (2002).
This can be justi�ed as the central bank setting interest rates as a reaction to private
sector forecasts as in Bernanke and Woodford (1997).

When there are no backward looking agents, Bullard and Mitra (2002) showed that
the REE is determinate in area D and indeterminate in areas A, B, and C. The REE
are learnable in area D and area B. Honkapohja and Mitra (2004) and Evans and
McGough (2004a) have also shown that there are learnable sunspot equilibria in area B.
This suggests that if the central bank is too aggressive with the output gap, agents may
coordinate to an undesirable equilibrium.

The determinacy and learnability results of the REE and RPE under policy rule 2
are shown in tables 4 and 5. Here, as indeterminacy does not imply non-learnability,
1E is entered when the model is indeterminate of order one and there is a learnable
equilibrium. Once again, the stability results in Bullard and Mitra (2002) are robust to
model misspeci�cation under policy rule 2. Increasing inertia leads to area C becoming
explosive and area A becoming determinate. Determinacy properties of the areas with
learnable solutions (B and D) do not change with inertia changes. Here, the RPE and
REE share E-stability properties as it was in policy rule 1.

Table 4. Results of REE under Policy Rule 2
 � Area A Area B Area C Area D
0:1 0:1 DetU 1E EX DetE

0:1 0:5 DetU 1E 1U ; EX DetE

0:1 0:9 DetU 1E 1U ; EX DetE

0:5 0:5 2U 1E 1U DetE

0:9 0:1 2U 1E 1U DetE

0:9 0:5 2U 1E 1U DetE

0:9 0:9 2U 1E 1U DetE

Table 5. Results of RPE under Policy Rule 2
 � Area A Area B Area C Area D
0:1 0:1 EX E EX E

0:1 0:5 EX E EX E

0:1 0:9 EX E EX E

0:5 0:5 EX E EX E

0:9 0:1 U E U E

0:9 0:5 U E U E

0:9 0:9 U E U E

19Honkapohja and Mitra (2005) studies this model without inertia when the central bank and private
agents have di¤erent expectations.
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4.4 Policy Rule 3

Recall that policy rule 3 is a Taylor rule where the central bank looks at expectations of
contemporaneous variables:

it = ��Et�t + �xEtxt

I will continue to assume that the central bank uses the private sectors forecasts in this
rule. Bullard and Mitra (2002) show that this policy rule, with no backward looking
agents, is the only one in which following the Taylor principle will guarantee determinacy
and learnability. Therefore, this may be the best rule for a central banker to follow as
the other rules may lead to no equilibria (policy rule 1) or learnable sunspot equilibria
(policy rule 2). Given the results below, I believe that this policy rule continues to be
the best rule even under inertia and restricted perceptions. The results for the policy
rule are shown in Tables 6 and 7.

Table 6. Results of REE under Policy Rule 3
 � Area A Area B Area C Area D
0:1 0:1 EX DetE EX EX;DetE

0:1 0:5 EX DetE 1U ; EX DetE

0:1 0:9 EX DetE 1U ; EX DetE

0:5 0:5 1U DetE 1U DetE

0:9 0:1 1U DetE 1U DetE

0:9 0:5 1U DetE 1U DetE

0:9 0:9 1U DetE 1U DetE

Table 7. Results of RPE under Policy Rule 3
 � Area A Area B Area C Area D
0:1 0:1 EX E EX E

0:1 0:5 EX E EX E

0:1 0:9 EX E EX E

0:5 0:5 EX E EX E

0:9 0:1 U E U E

0:9 0:5 U E U E

0:9 0:9 U E U E

Increasing inertia leads to the areas of non-learnable equilibria changing determinacy
results. In this case, areas A and C become explosive as  is decreased. Determinacy
properties of the areas with learnable REE, with the exception of the explosive sliver
at (; �) = (0:1; 0:1), do not change with inertia change. E-stability of the REE and
RPE are quite similar here like it was in the previous cases: the REE and RPE share
stability results except in the explosive sliver where the RPE is learnable and the REE
is explosive.20

20This explosive sliver only exists in 6 of the 16 di¤erent classes of models.
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5 Conclusion

Model misspeci�cation is another way to model bounded rationality. Here agents are
boundedly rational as their beliefs reside in their forecasting model even though their
activities exist in the economic model. This bounded rationality is due to the fact that
forecast errors are uncorrelated with information used in a forecasting model. Therefore,
an agent that stepped outside of their incorrectly speci�ed forecasting model could see
that they are not using enough information. As no econometric model is ever fully
speci�ed, it may be useful to study a further abstraction from rationality where agents
learn about economic variables by using incorrectly speci�ed forecasting models.

E-stability, a condition of local learnability of an equilibrium, is found by forming an
ordinary di¤erential equation using a mapping from the perceived law of motion (PLM)
to the actual law of motion (ALM). However, in a standard form, when the PLM is
incorrectly speci�ed, the ALM is not in the same form of the PLM. As there is no
mapping from the PLM to the ALM of the same form, the ALM must be projected into
the same class of the PLM. I showed that under a fully speci�ed model, the standard
form of the ALM can be transformed into a Seemingly Unrelated Regression form by
taking the transpose of the ALM and then vectorizing it. It turns out that the E-stability
conditions under this form do not change which is important in the transformation of
the incorrectly speci�ed PLM. To project the ALM of the incorrectly speci�ed PLM,
the PLM is put in the form of a SUR. The ALM is then transformed to this form.
Next, the ALM is projected into the same class as the incorrectly speci�ed PLM using
a simple linear projection. As agents are still using least squares to learn, the standard
E-stability ODE may be used to determine whether equilibria are locally learnable.

Next, I presented an example of Restricted Perceptions in a standard New Keynesian
IS-LMmodel with inertia under three di¤erent Taylor rules. The E-stability results given
by Bullard and Mitra (2002) are robust under restrictive perceptions. Furthermore,
in the policy areas of E-stability, determinacy (for a correctly speci�ed model) does
not change when backward-looking behavior increases, and determinacy changes in the
non-explosive, E-unstable policy areas when backward looking behavior increases. This
suggests that there may be a relationship between determinacy, E-stability, and inertia
in the New Keynesian IS-LM model.

In the above model, it turns out that restrictive perceptions are not important for
learnability when considering policy making. However, the actual laws of motion of
an RPE and REE are di¤erent. This will be important when one considers optimal
policy as this will be di¤erent under the two expectational regimes. In future work,
I aim to study optimal monetary policy when the central banker is unaware of which
expectational regime is being used by the private agents.

Appendix A. The Moment Matrices
Next, one must solve for the moment matrices in order for calculation of the T-map.

Consider the implied ALM from equation (10):

zt = T
0
a + T

0
mzt�1 + h

�
T 0cvt�1

�
+G"t
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To solve for the variance and covariance matrices above, the �rst step is to put this
equation in a VAR(1) form as follows:�

zt
h (vt)

�
=

�
T 0a
h (0)

�
+

�
T 0m h (T 0c)
h (0) h (�)

��
zt�1

h (vt�1)

�
+

�
G
h (I)

�
"t

or
Yt = T

0
A + T

0
Y Yt�1 + T

0
G"t

Under the assumption that zt follows a stationary process, the variance is:

var (Yt) = T
0
Y var (Yt)TY + T

0
Gvar ("t)TG: (25)

The variance can then be solved using one of two methods. First, following the method
used in Adam, Evans, and Honkapohja (2005), the variance can be vectorized in the
following manner:

vec (var (Yt)) =
�
I � T 0Y 
 T 0Y

��1
vec

�
T 0Gvar ("t)TG

�
(26)

Knowing the dimension of var (Yt), one can unvectorize equation (26) in order to get
var (Yt) which will be used in order to calculate var (Wt) and cov [Wt;X 0]. For many
models, if the number of variables in Yt is greater than 2, the above method becomes
computationally impossible. For more complex models, as equation (25) is Lyapunov,
the variance and RPE can be estimated numerically. This is a two step process where
the RPE is updated using equation (21), and then the variance matrix is updated using
equation (25). It will be helpful to write up the variance matrix in a partitioned form:

var (Yt) =

�
var (zt) h (cov (zt; vt))

h (cov (zt; vt)) h (var (vt))

�
The variance matrix of the SUR information matrix, Wt, can be represented in the

following manner. It is a partitioned matrix consisting of components of the matrix
var (Yt) and can be represented in the following manner:


 =

�
var (W1t) h (cov (W1t;W2t))

h (cov (W1t;W2t)) h (var (W2t))

�
or


 =

�

11 
12

12 
22

�
All the components of this symmetric matrix can be expressed using components of
the matrix var (Yt). Each partitioned matrix is a block diagonal matrix consisting of
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components of var (Yt). Each matrix takes the following form:21


jk =

26664

jk;1 0 � � � 0
0 
jk;2 � � � 0

0 0
. . . 0

0 0 � � � 
jk;n

37775
Now let (N)�i represent the matrix N where all of the rows and columns of the variables
not considered in the regression of variable i are removed from N . The blocks of each
matrix in the partitioned matrix above thus can be represented in the following manner:


jk;i =
�
var (Yt)jk

�
�i

The covariance matrix, cov [Wt;X 0], can be represented in a similar manner. Let
(N)r�i represent the matrix N where all of the rows of the variables not considered in
the regression of variable i are removed from N . This covariance matrix can also be
represented by a symmetric partitioned matrix consisting of components of the matrix
var (Yt) in the following form:

cov
�
Wt;X 0

�
=

�
�11 h (�12)

h (�12) h (�22)

�
Each matrix in the partitioned matrix can be represented like above:22

�jk =

26664
�jk;1 0 � � � 0
0 �jk;2 � � � 0

0 0
. . . 0

0 0 � � � �jk;n

37775
If all variables are included in the regression for variable i, then �jk;i = var (Yt)jk.
However, if not all of the variables are included, then

�jk;i =
�
var (Yt)jk

�r
�i

By calculating all of the �jk;i�s, we can get the representation for cov [Wt;X 0].

Appendix B. Proof of invertibility of 

For the T-map to be well de�ned, it must be that the matrix 
 is invertible. Consider

the matrix var (Yt) as de�ned above. Assume that this matrix is invertible so that the

21 If bi is the empty set, then 
jk;i is the empty set as well. Therefore, the number of blocks in this
block diagonal matrix is equal to the number of forecast equations that include lagged variables.
22The number of blocks in this matrix is also equal to the number of forecast equations that include

lagged variables.
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system is stationary. If (var (Yt))
�1 exists, then we know that

det (var (Yt)) 6= 0:

Call � = var (Yt). This positive de�nite, symmetric matrix has a unique representation
of the following:

� = ADA0

where A is a lower diagonal matrix with 1�s on the diagonal and D is a diagonal matrix.
Therefore, the determinant of � can be represented as follows:

det� = detA � detD � detA0

= 1 � detD � 1
= detD

Since D, is a diagonal matrix,

det� =

nY
j=1

djj

Now, consider, 
 which recall is represented as follows:


 =

�

11 
12

21 
22

�
Recall that a matrix is singular if and only if a subset of its rows (or columns) is
linearly dependent. Therefore, one way to prove invertability of a matrix is to perform
elementary operations on the rows and columns of the matrix and show that the resulting
matrix is not singular (See Horn and Johnson (1985)). As all the blocks of this matrix
are block diagonal matrices of the same dimensions, the matrix can be arranged in the
following manner:23


̂ =

26664

̂1 0 � � � 0

0 
̂2 � � � 0

0 0
. . . 0

0 0 � � � 
̂n

37775
where


̂i =

�

11;i 
12;i

21;i 
22;i

�
which is equivalent to


̂i = (�)�i

Here, (N)�i represents the original matrix where the rows and columns of the non-represented
variables (in the regression for variable i) are excluded. Since � is a symmetric matrix,

23The number of blocks in this matrix is actually equal to the number of forecast equations that
include lagged variables. This does not a¤ect this proof.
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the triangular factorization is similar. We can represent 
̂i in the following manner:


̂i = (A)�i (D)�i
�
A0
�
�i

Therefore, it clearly follows that

det 
̂i = det (D)�i

Since detD 6= 0, it follows that det (D)�i 6= 0 and

det 
̂i 6= 0

for all i. Therefore,

det 
̂ =
nY
i=1

det 
̂i

6= 0

Since 
̂ is not singular, it follows that 
�1 exists.
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Figure 1. Woodford Calibration

Figure 2: CGG Calibration

Figure 3: MN Calibration

26



27


