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Abstract

The vast amount of data amassed in the electronic health records (EHRs) creates
needs and opportunities for automated extraction of information from EHRs using machine
learning techniques. Natural language processing (NLP) has the potential to substantially
reduce the burden of manual chart reviewing to extract risk factors, adverse events, or
outcomes, that are documented in unstructured clinical reports and progress notes. In
this thesis, an NLP pipeline was built using open-source software to process a corpus of
electronic clinical notes extracted from an integrated health care system in Cancer Care
Manitoba (CCMB) which contains a cohort of women with early-stage incident breast can-
cers. The goal is to identify whether and when recurrences were diagnosed. We developed
and evaluated the system using 117,365 clinical notes from 892 patients receiving EHR-
documented care at CCMB between 2004 to 2007. We used a hierarchical architecture,
where a model is built to provide the patient-level recurrence status, then the NLP pipeline
is used to detect notes which contains information about recurrence and the date of re-
currence. Class imbalance was a significant issue as the proportion of positive to negative
notes was at approximately 1:22 ratio. Various techniques including undersampling and
cost-based classification were used to mitigate this issue. The XGBoost classifier was the
best performing model which achieved a balanced accuracy of 0.924, with sensitivity of
0.867, specificity of 0.981, precision of 0.886 and ROC of 0.924. In addition, more data
was collected from the years 2008 to 2012 in a similar cohort. This dataset was used to
validate the performance of the models, which include 615 patients with 78,460 notes. The
model performed well with a balanced accuracy of 0.909, sensitivity of 0.843, specificity of
0.974, precision of 0.575 and Area Under the ROC Curve (AUC) value of 0.909.

The study has demonstrated the ability to use natural language processing and machine
learning techniques to assist in chart review by 1) excluding a large amount of notes which
contain no relevant information, 2) identifying notes that most likely contain relevant
recurrence information, in order to accurately identify the timing of recurrence.
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Chapter 1

Introduction

1.1 Breast Cancer Recurrence

Cancer is defined as a group of diseases that are a result of some sort or abnormal change
of the cells in the body resulting in abnormal growth of those cells into lumps or masses
[1]. Breast cancer is the abnormal growth of cells in the breast tissue with most breast
cancers starting out in the lobules or milk glands of the breast [1].

Breast cancer is typically considered a very dangerous cancer as there are few to no
signs and symptoms in the beginning stages of tumor development [2], [3]. For this reason,
it is extremely important that efficient early detection methods are set in place. Regular
practices include checking for hard lumps around the breast or swelling in the underarm
area near the lymph nodes [4]. Some less common signs and symptoms include pain in the
breast, swelling or discharge from the breast [5].

Typically, most breast cancer is diagnosed at a physical examination at a physicians
screening or is noticed by the patient once a lumps has formed. A mammogram which is
a machine that compresses the breast and detects the presence of lumps is also used [6].
Most tumors detected during a mammogram tend to be benign (not cancerous). If either
of these detection methods show a positive result, usually, a needle biopsy is completed in
order to confirm the result and suspected positive test.

The most common type of breast cancer is the invasive or infiltrating kind. Invasive
breast cancer is a type of cancer that is characterized when cells have emerged through
the glands in the breast and have now started to invade and spread to the breast tissue
around the gland [7].
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Breast cancer is the umbrella term for a group of cancer related diseases that originate in
the breast tissue. There are 4 different molecular subtypes and a minimum of 21 histological
subtypes [8]. All of these subtypes of beast cancer have a very large range of risk factors,
recurrence rates, and outcomes [8]. Histological subtypes of breast cancer are defined by
the size, shape and cancer cell arrangement. Molecular subtypes of breast carcinoma are
defined based on their gene expression and can be easily recognized by determining their
biological markers like ER, PR, HER2 and more [8].

Treatment for breast cancer varies largely based on the subtype, stage, the patients
preferences, the patients age and the stage the cancer has progressed to. Once diagnosed
with cancer, the goal for a physicians treatment plan is to essentially remove all the cancer
from the patients body. Surgical treatments includes performing a mastectomy which
is surgical removal of the entire breast. However, there are situations in which a partial
mastectomy can be performed in which only the tumor with a reasonable margin of healthy
tissue is also removed. Usually, after the tumor has been removed surgically, multiple
rounds of radiation take place in order to ensure no cancerous cells remain [9]. Radiation
is also beneficial to reduce the chances of a recurrence. Systemic therapies like drugs that
travel through the entire body via the blood stream are also typically administered however
they are likely to cause damage to other parts of the body as well [9]. Chemotherapy is one
of the types of systemic drug therapies that are commonly used to treat cancer usually for
metastatic cancer in younger women [9]. Many more treatments exist such as hormonal
therapy, targeted therapy and immunotherapy to name a few [10].

It was reported by the American Cancer Society in 2019 that 268,600 new cases of
breast cancer are diagnosed with 41,760 death from the disease in the United States itself
[11]. Unfortunately, these numbers only seem to increases as the years go on. This is
undoubtedly a very large amount of deaths making breast cancer related deaths one of the
most common cancer related deaths in women in the United States [11].

Breast cancer has a recurrence rate of 20% to 30% which is a relatively high rate
compared to other cancers, therefore, in order to determine a better treatment plan for
breast cancer and to lower the recurrence rate, it is essential that further research be
completed to completely understand previous patient charts and medical treatments [12],
[13].

A countless number of people have developed methods to detect and understand med-
ical information from medical documents [14]–[17]. cTAKES is and application that does
exactly this by analyzing medical and clinical notes and through this method, this ap-
plication can be very helpful to help flag patients that may show signs of breast cancer
recurrence by identifying the keywords that are important in identifying signs of possible
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breast cancer recurrence.

Recurrence is defined as the occurrence of a second cancer diagnosis of breast cancer
after the primary one was completely treated and considered to be cured. Recurrence of
breast cancer is predominantly due to the presence of residual diseased cells that were
not destroyed during the first treatment of the disease [18]. The prevalence and detection
of recurrence with cancer is a very important topic to study and research because with
research into effective treatments, the measure of recurrence-free survival and cancer treat-
ment control, a better treatment plan can be determined to reduce the rate of recurrence
significantly.

Currently, cancer registries do not have any means to identify cancer recurrences and for
this reason, prior studies conducted their research using chart reviews. However, in order
to do this, charts must be read individually which is a very time consuming and simply a
very expensive process. In order to lessen the time required for this task, administrative
health care data can be used as a way to identify cancer recurrences.

1.2 Natural Language Processing in Breast Cancer

Recurrence Detection

A vast majority of healthcare data is unstructured text. It is extremely challenging for
health researchers to extract insights from this data at scale. Finding the critical informa-
tion in the EMR and extract them into high-quality, research-grade datasets is important
for conducting clinical research, and making clinical and financial decisions for healthcare
providers. Extracting correct information is time-consuming, error-prone and expensive.
Manual chart review by train clinical professionals are the gold standard to extract infor-
mation from unstructured text. Coding errors may rise due to several reasons. First, in
clinical descriptions, abbreviations and synonyms are commonly used, which may cause
ambiguity for interpretation. Second, in many cases, several diagnosis descriptions are
closely related and should be combined into codes, or multiple codes need to be assigned
for a particular procedure. Third, because the codes are organized in a hierarchical struc-
ture, an overly generic code can be assigned instead of a more specific code [19]. Natural
language processing (NLP) is a method of analyzing text in order to achieve language
processing at a human-like level for different applications. A completely functional NLP
System would be able to paraphrase input text, translate test from one language to an-
other, accurately answer questions about the input text, and lastly draw inferences from
the information in the text.
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A study conducted on contralateral breast cancer detection using NLP can be very
effectively applied to the detection of breast cancer recurrence as this study specifically
looked at the recurrence of breast cancer in the opposite breast after the the primary
cancer was already detected and treated [20].

It has been determined that women have a 2-6 times higher risk of developing con-
tralateral breast cancer after a primary one has already been treated or detected [20].
Understanding the set of causes that result in the recurrence of breast cancer can help
devise a better understanding of how breast cancer actually develops and a more effective
treatment plan as well in order to prevent recurrence all together. Studies have been com-
pleted in order to determine the relationship between the primary and secondary diagnosis
of breast cancer by analyzing information such as family history, exposure from the en-
vironment, and possible genetic mutations. However, in order to get accurate results in
these studies, it is important that medical records and notes be accurately and efficiently
analyzed. Electronic Health Records (EHRs) have allowed for very large groups of medical
information to be accessed and used for studies including studies conducted for breast can-
cer recurrence [20]. However, even with the presence of the EHRs, the amount of reports
and clinical notes a researcher would have to sort through and analyze is astronomical. For
this reason, applications of NLP are very helpful as a method to help sort through large
cohorts of medical documentation effectively.

A problem does occur when trying to use NLP as a way to analyze medical records as
it is required that the medical reports like pathology reports be well completed but in a
standard format. However, machine learning and NLP models are a good alternative to
solve this problem as this algorithm learns patterns from free text that have been labeled
and then later applies those algorithms to other further text that is not labeled [20].

1.3 Challenges of Breast Cancer Recurrence Identifi-

cation

Based on the importance of studying long-term outcomes for cancer patients, the inefficien-
cies of chart reviews, and the limitations of previous recurrence algorithm development, our
goal is to develop cancer-site specific algorithms that use high quality, complete data. We
have access to administrative health data (i.e., data that is generated through the routine
administration of health care programs) and electronic medical record (EMR) data (i.e.,
the computer-based CancerCare Manitoba (CCMB) cancer patient chart). The EMR data
includes structured data and unstructured data found in the health care provider’s notes.
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We hypothesize that recurrence algorithms which utilize unstructured data from the EMR
health care provider’s notes will have higher sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) compared to algorithms that include only ad-
ministrative health data and structured EMR data. Our objective is to develop algorithms
using administrative health data and EMR data that can accurately capture recurrence in
breast cancer and colorectal cancer cohorts.

This study will access multiple sources of population-based, complete, high-quality ad-
ministrative health data and information from an EMR. The developed algorithms have
the potential to increase the efficiency and reduce the costs of epidemiological and health
services research on cancer treatment effectiveness and outcomes. The recurrence algo-
rithms will be specific to Manitoba and will be useable by future research teams enhancing
CCMB research productivity and quality of care assessments. One limitation is that recur-
rences that are not followed-up with contact with medical, surgical, or radiation oncology
at CancerCare Manitoba may not be captured. However, we expect that this impact will
be minimal as the cancers selected for this study have high survival rates and the usual
practice pattern of referring almost all patients with recurrent disease to oncologists.

1.4 Motivation and Contribution

The motivation for this research is to improve automatic identification of breast cancer
recurrence. By using a tool to identify positive-recurrence patient notes, many hours of
manual charts review can be saved and more time can be dedicated to other research en-
deavours using these identified notes. The current process is completely manual, if the
tool can assist in charts review by screening cases it has the potential to be very useful to
researchers. However, the data that is available to train models for the recurrence identi-
fication poses some challenges such as class imbalance and unstructured/semi-structured
information. Intelligent techniques are required to handles these challenges and provide a
useful model with minimal misclassifications.

1.5 Thesis Outline

In Chapter 2 the relevant literature is reviewed include the technology and software used
for NLP and ML. Chapter 3 discusses the methods which includes data collection, the NLP
software used to analyze clinical notes and the hierarchical machine learning approach. In
this section, the dataset characteristics and patient cohorts are presented. The architecture

5



and steps for the hierarchical machine learning approach are explained. In Chapter 4 an in
depth analysis of the NLP is explored. The components of the NLP engine are discussed
as well as examples of clinical notes processed by the NLP engine. Chapter 5 explains the
machine learning algorithms that are used and the internal mechanisms of these models.
In addition, modelling techniques that are used to improve classification on imbalanced
datasets are discussed. The experimental results are shown in Chapter 6. Finally, Chapter
7 and 8 contain the discussions and conclusions.
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Chapter 2

Literature Review

2.1 cTAKES Package and Its Application in Process-

ing Clinical Text

cTAKES stands for Clinical Text Analysis and Knowledge Extraction System. This system
was created by the Mayo Clinic [21]. cTAKES is a natural language processing system
created as a way to highlight important information from electronic medical and pathology
reports. cTAKES was derived from and build upon already existing technology called the
Unstructured Information Management Architecture framework and OpenNLP toolkit [21].

cTAKES combines both rule-based and machine learning techniques to perform infor-
mation extraction of clinical text. cTAKES was developed with gold standard datasets
that consist of linguistic labels and clinical concepts from the Mayo Clinic’s electronic
health records (EMR). Standard evaluation metrics were used to measure and improve
performance of cTAKES, this includes sensitivity, positive predictive value (PPV), F-score
and accuracy.

EMR is the main source of medical and clinical information, with the majority of
data captured as unstructured free text, such as discharge summaries, radiology notes and
progress notes. This information is essential for clinical decision making, yet it is hard
to go through the huge amount of free text for clinical care, and for extracting data for
research or regulatory reporting. The gold standard of data extraction from these free
text is through chart review, where researchers have to manually read every report. Chart
review is an extremely time consuming process and is also prone to errors. Using a natural
language processing tool specifically adjusted to handle medical text, such as the cTAKES
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package, we are capable of identifying facts or entities of interest. This is very helpful
for the clinicians and researchers to navigate through a large amount of text. It helps to
improve quality of care and support clinicians to make more effective treatment decisions
[22]–[24].

One notable research paper from Harvard Medical School examined the use of natural
language processing and machine learning approaches to classify clinical notes into med-
ical subdomains (i.e. Cardiology, Gastroenterology, Neurology, Psychiatry, Pulmonary
and Nephrology) [25]. The developed pipeline was tested on two datasets, a public clinical
dataset called iDASH (integrating data for analysis, anonymization and sharing) and a hos-
pital dataset from MGH (Massachusetts General Hospital). The paper achieved promising
results, AUC of 0.957 and 0.964, and F1 scores of 0.932 and 0.934 for the iDASH and MGH
datasets, respectively. The research group had also published the vocabulary dictionary
that was used with Apache cTAKES for medical term extraction from clinical notes. Since
this was a curated dictionary specifically for clinical notes it proved to be a very useful
starting point for extracting terminology from clinical notes in the breast cancer recurrence
subdomain.

cTAKES was compared to other NLP application such as MetaMAP [26], with a rela-
tively comparable performances. It is noteworthy that both algorithms were shown to be
more effective compared to manual searches and extraction of information [27].

2.2 Classification using Machine Learning

Machine Learning (ML) methods have attracted significant attention in health research
over the past decade. There have been some successful applications using ML methods
in disease detection [24], precision medicine [28] and risk of readmission prediction [29].
Benefits of using ML include minimal domain assumptions, flexibility of model selection
and automation of the model construction and evaluation. Significant improvements in
performance of ML classifiers have encouraged wide-spread exploration of ML for breast
cancer recurrence predication.

2.2.1 Decision Tree

Breiman first introduced the decision tree algorithm [30]. Decision tree uses a simple tree
structure to classify data points into a predefined set of categories(classes). Each tree node
represents a feature and each branch represents a possible split of the feature value. For
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example, for a tree node with a numerical feature the branches may split the feature by
some finite number which is learned during training. Classification of a sample is a simple
process once the decision tree structure is learned. The decision tree is traversed starting
from the root node and following the branches corresponding to the provided sample. The
tree is traversed until a leaf node is reached, at which point a class is predicted for that
sample.

A decision tree classifier is built in two stages, namely tree building and tree pruning.
At the first stage, the training dataset is recursively divided based on a locally criterion
until each of the branches contains the same , or almost the same class label. Generally, the
smaller each partition is, the more likely all data points in this partition has the same label.
However, too many branches in a decision tree could lead to overfitting, thus pruning is
performed to reduce the size of the decision tree. Careful pruning can improve the model’s
generalizability. Starting from the bottom of the tree, we exam each non-leaf subtree. If
we replace a subtree with a leaf, or with its most frequently used branch, a lower predicted
error rate is achieve, then we will prune the tree [31]. One of the commonly used decision
tree algorithms is C4.5 [32], this algorithm is first performs tree building to construct the
decision tree then follows up with pruning to remove branches and replace them with leaf
nodes.

2.2.2 AdaBoost

AdaBoost is one of the ensemble learning methods that aims to improve classification
performance by variance and bias reduction. The base learner for AdaBoost are decision
stumps. These are decision trees with one step from the root node to the terminal nodes.
The decision stumps have high bias but low variance. In order to improve classification
performance once such technique that can be applied is called boosting. In this approach,
a weak learner is sequentially trained across the dataset while using weights for individual
observations. These weights are adjusted (increased for misclassification and decreased for
correct classification) as the training progresses, the idea is that subsequent trained models
iteratively improve upon the errors of previous models. The training algorithm chooses a
cut-off at which it accepts a learner in the ensemble. The AdaBoost algorithm [33] is one
such method that implements the boosting technique with decision trees most commonly
used as the base learner. When we have an highly imbalanced dataset, standard learning
methods often fail to achieve an acceptable performance on the rare class due to the bias
in the dataset. AdaBoost is capable in reducing learning bias, thus often performs better
when dealing with imbalanced datasets.
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2.2.3 Random Forest

A random forest [34] algorithm is an ensemble of decision trees, where each tree is built
with an independent set of random vectors of a dataset.

There are four steps in the random forest algorithm:

1. Generate a random bootstrap, i.e. select a subset of n data points

2. Grow a decision tree from this bootstrap by a) randomly select k features without
replacement and b) partition the node using the features that provides the best split
according to the optimal function

3. Repeat the steps 1-2 m times

4. Assign the class label by majority vote

The size of the bootstrap n can impact the correlation of the trees in the random
forests. The smaller n tends to make trees less correlated. Therefore the algorithm is
superior when training with a dataset that contains a very large number of input variables.
This algorithm also requires less run time since only a subset of the features needs to be
examined at each node. In addition, a individual tree may suffer from high variance, but
averaging multiple trees will result in a more robust model that performs better, and is
less susceptible to overfitting.

2.2.4 Gradient Boosting

Gradient boosting is a machine learning technique that produces prediction models in the
form of decision trees for regression and classification problems. The models are built stage-
wise similar to other boosting methods. It does this by optimizing arbitrary differentiable
loss functions.

Jerome H. Friedman developed explicit regression gradient boosting algorithms which
can be explained to be iterative functional gradient descent algorithms [35]. Iterative
functional gradient descent algorithms include algorithms that optimize a cost function over
function space. This is accomplished by repetitively choosing a function (weak hypothesis)
that points in the negative gradient direction. The development of boosting algorithms via
the functional gradient concept has allowed for enhancements in areas of machine learning
and statistic in not just regression and classification but much more.
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2.3 Modeling with Highly Imbalanced Datasets and

Performance Evaluation of Clinical Models

The class imbalance problem is an issue present in many datasets in the healthcare field.
There are a few approaches to dealing with class imbalance such as maniuplating the data
using sampling techniques to improve the class balance ratio while maintaining integrity of
the dataset. Alternatively, machine learning algorithms can introduce bias to a particular
class in order to mitigate issues from class imbalance. This bias can be used to help adjust
the algorithm such that it performs better on the minority class.

To deal with the imbalance of datapoints a number of sampling methods were utilized
as given below:

1. Random Undersampling

2. Oversampling SMOTE

Random Undersampling includes sampling the majority class such that the number of dat-
apoints are in comparison with the minority class. Near miss Undersampling is about sam-
pling the datapoints from the majority class which aid in discriminating between classes.
Oversampling SMOTE (Synthetic Minority Over-sampling Technique) synthetically gen-
erates samples by interpolating between samples and the original dataset.
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Chapter 3

Methods

3.1 Study Design

The study includes two phases: an algorithm development phase and a validation phase.
During the algorithm development phase (I), there are two steps as the following:
Step 1: Chart Review. The data collected to develop the algorithm includes individuals
diagnosed with breast cancers from 2004 to 2007 at the Cancer Care Manitoba since the
information contained in the EMR has remained stable from 2004 onward. The cohort
of breast cancer includes stage I to III cases that are estrogen receptor (ER) negative,
progesterone receptor (PR) negative, or human epidermal growth factor receptor 2 (HER2)
positive. These factors are related to poorer outcomes including recurrence. Charts were
reviewed by trained research assistants. Recurrences were recorded as any recurrence as
well as loco-regional (reappearance of cancer in the same region or in the lymph nodes) or
distant (reappearance of cancer in another part of the body). Recurrence label and dates
from the chart review are considered the “gold standard”.
Step 2. Model development. The recurrent prediction models are developed using machine
learning algorithms (details of the model development are presented in Chapter 5). In
addition, any mis-classification of recurrences predicted from the selected model, including
false positive and false negative, are investigated further to verify that chart information
was not missing or misinterpretated. During the validation phase, we determine if the
algorithms developed are generalizable to new cancer cases that are not included in the
dataset for training the model. The validation dataset is extracted via a chart review of
cases diagnosed from 2008-2012 with stage I, II, and III cancer.

To ensure the quality of the chart review process, a second experienced Cancer Registrar
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was included to independently review 10% of the cancer cases randomly selected (in both
phases) to provide inter-rater reliability.

3.2 Dataset

The training dataset (Phase I) was collected from breast cancer patients in Manitoba, from
the years 2004 to 2007. The validation set (Phase II) was collected from breast cancer
patients from 2008 to 2012, also from Cancer Care Manitoba [36]. The dataset consists of
clinical notes throughout the patients’ medical journey and several administrative variables
collected for each patient. In the training dataset there are 916 patients analyzed with
233,715 notes. The validation dataset consists of 615 patients and 159,107 notes. Using
several preprocessing steps the number of total notes were reduced by combining them
per patient, per day. This allowed for easier identification of the first date of recurrence
without confusion of multiple notes for the same patient on the same day. The resulting
number of notes for the training set was 38,372 combined notes and the validation set had
78,460 combined notes.

The following administrative health data sources are included: the Manitoba Cancer
Registry (MCR), Manitoba Health Medical Claims, Hospital Abstracts, and Drug Pro-
gram Information Network (DPIN), Diagnostic Services Manitoba (DSM) data, and the
Manitoba Health Population Registry (MHPR). The MCR will be used to identify the
cohorts and will include diagnosis dates, cancer sites, treatment (date and type of every
surgery, the date of the first systemic anti-cancer therapy within the calendar year, and
the date of the first radiation treatment per line of radiation treatment). Medical Claims
and Hospital Abstracts will be used to identify diagnostic and treatment procedures and
provider type. DPIN data will be used to identify systemic anti-cancer therapies (eg.
Capecitabine, Tamoxifen, and aromatase inhibitors). DSM data will be used to identify
carcinoembryonic antigen (CEA) and Ca15-3 blood test results. The source of EMR data
is the CCMB cancer patient chart. The CCMB cancer patient chart includes the follow-
ing structured data: dates and types of first-line treatment, systemic anti-cancer therapy
administration dates, drug identification information, systemic anti-cancer therapy cycles,
dose for each systemic anti-cancer therapy cycle, radiotherapy administration dates, ra-
diation dose, radiation fraction number, radiation site treated, CEA and Ca15-3 blood
test results. Since the CCMB EMR does not have a mandatory structured field to docu-
ment recurrences, unstructured data from the health care provider’s notes are reviewed to
identify the presence of recurrence and recurrence details (whether additional treatment
was provided, type of treatment, the diagnostic procedures that were involved and dates,
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clinical breast examination findings).

Variables Positive Patients, n(%) Negative Patients, n(%) All Patients, n(%)

Recurrence 53 (5.91) 844 (94.09) 897 (100)

Radiation Therapy
Yes 23 (2.56) 84 (9.36) 107 (11.93)
No 30 (3.34) 760 (84.73) 790 (88.07)

Chemotherapy
Yes 28 (3.12) 70 (7.80) 98 (10.93)
No 25 (2.79) 774 (86.29) 799 (89.07)

Breast Surgery
Yes 25 (2.79) 25 (2.79) 50 (5.57)
No 28 (3.12) 819 (91.30) 847 (94.43)

Other Surgery
Yes 6 (0.67) 22 (2.45) 28 (3.12)
No 47 (5.24) 822 (91.64) 869 (96.88)

Palliation
Yes 7 (0.78) 36 (4.01) 43 (4.79)
No 46 (5.13) 808 (90.08) 854 (95.21)

CEA Test
Yes 7 (0.78) 59 (6.58) 66 (7.36)
No 46 (5.13) 785 (87.51) 831 (92.64)

CA 15-3 Test
Yes 17 (1.90) 77 (8.58) 94 (10.48)
No 36 (4.01) 767 (85.51) 803 (89.52)

Table 3.1: Characteristics of the patients in the training dataset stratified by administrative
variables and recurrence.

The administrative variables and the primary phrases used in the NLP are shown in
Table 3.2. The administrative variables were collected as part of the data collection initia-
tive. The primary phrases used for NLP were identified with domain experts (oncologists
and clinical researchers from CancerCare Manitoba). These primary phrases were recorded
with the corresponding Concept Unique Identifier (CUI) from the UMLS metathesaurus.
The CUIs are presented for the primary phrases in the table as an alphanumeric identifier
beginning with the letter “C” followed by the numeric ID. The complete dictionary of CUIs
and phrases that were used in this study can be found in the Appendix.
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Administrative Variables (7)
Radiation Therapy
Chemotherapy
Breast Surgery
Other Surgery
Palliation
CEA Test
CA 15-3 Test

Primary Phrases for NLP (24)
C0438204 Axillary Recurrence
C0006142 Breast Cancer
C0438105 Chest Wall Recurrence
C0015726 Concern about Recurrence
C0069515 HER-2
C0007099 Intraductal Carcinoma
C1134719 Infiltrating Breast Cancer
C0205281 Invasive
C0441989 Ipsilateral Recurrence
C0343834 Lesion
C1268990 Lobular
C0851238 Lumpectomy
C0024881 Masectomy
C0027627 Metastatic
C0278488 Metastatic Breast Cancer
C0034897 Recurrence
C0278489 Spread Ductal
C0027628 Spread to Lung
C0441771 Stage III
C0441772 Stage IV
C2348819 Triple Negative
C0438105 Tumor Recurrent
C0278488 Tumor Spread

Table 3.2: Table of administrative variables and primary phrases used in NLP.
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3.3 Hierarchical Machine Learning (HML) Approach

The HML approach allows for the classification model to train on a smaller subset of
patients that are identified as positive for having recurrence. This approach helps deal
with the class imbalance by reducing the number of negative recurrence notes by removing
them at the patient level.

Other approaches that were considered and tested include undersampling techniques
and balanced bagging techniques. In both these cases we noticed significantly less perfor-
mance compared to using the HML approach to reduce the class imbalance and focus the
model for identifying the positive recurrence notes.

The HML architecture is seperated into two levels, the patient level and the note level.
The purpose of this division is to separate the tasks of predicting if a patient is positive
and the task of identifying if a note mentions that the patient has recurrence.

Figure 3.1: The architecture of the hierarchical machine learning pipeline.
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3.4 Natural Language Processing (NLP) for Analyz-

ing Clinical Notes

cTAKES is the base for the NLP pipeline used in this thesis. cTAKES accepts plain text
input. In our pipleline, we used the following cTAKES components/annotators:

• Sentence boundary detector

• Tokenizer

• Normalizer

• Part-of-speech (POS) tagger

• Named entity recognition (NER) annotator (including negation annotators)

The cTAKES tokenizer is made up of two components. The first divides the internal
text stream of a sentence based on space and punctuation. The context-dependent tok-
enizer, on the other hand, merges tokens to produce date, fraction, measurement, person
title, range, roman numeral, and time tokens by applying rules (implemented as finite state
machines) to each of these forms.

Normalization is a process of mapping several instances of the same word in the in-
put data that don’t have the same string representations. The cTAKES normalizer is a
wrapper around the SPECIALIST Lexical Tools component “norm,” which generates a
representation for each word in the input text that is normalised with respect to a variety
of lexical properties, such as “alphabetic case,” “inflection,” “spelling variants,” “punc-
tuation,” “genitive markers,” “stop words,” “diacritics,” “symbols,” and “ligatures.” This
off-the-shelf normalizer is used to boost the recall of the NER annotator. Every word in
the text is normalized, and the dictionary look-up mentioned below uses both normalised
and non-normalized forms [21].

Within a noun-look-up window, the cTAKES NER component implements a terminology-
agnostic dictionary look-up algorithm. Each named entity is mapped to a terminology def-
inition using the dictionary look-up. We use a dictionary that is a subset of UMLS, version
2008AB, with SNOMED CT and a controlled vocabulary unique for breast cancer recur-
rence that is used by BR oncologists and clinicians after detailed consultations with CCMB
researchers and practitioners. As described in the dictionary, each word is a member to one
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of the semantic types: disorders/diseases with a separate group for signs/symptoms, pro-
cedures, anatomy, the latter includes terms from the Orange Book that have an RxNORM
code [21].

Synonyms from UMLS and a list of customized words were added to this dictionary.
The algorithm seeks all noun phrases based on the shallow parser’s output, which becomes
the look-up window. To allow for non-lexical differences, the dictionary is searched for
permutations of variations of the head and modifiers within the noun sentences. When
defining several words in the same text span, the NER component does not overcome
ambiguities. The NegEx algorithm, which is a pattern-based method for identifying terms
and phrases indicating negation close to named entities mentioned is implemented by the
negation annotator. For identifying appropriate terms and phrases that signify the state
of a named entity, the status annotator takes a similar approach.

Each named entity discovered belongs to one of the dictionary semantic categories and
has attributes for (1) the text span associated with the named entity (“span” attribute),
(2) the terminology/ontology code the named entity maps to (“concept” attribute), (3) if
the named entity is negated (“negation” attribute), and (4) the text span associated with
the named entity (“concept” attribute) (4) the status associated with the named entity
with a value of current, history of, family history of, possible (“status” attribute) [21].

These semantic types and their characteristics were chosen in conjunction with clinical
researchers and physicians who are investigating a set of clinical questions and retrieval
queries, which may include diseases, clinical drugs, signs and symptoms, and procedures
which were the most frequently used UMLS types and classes. Since every potential oc-
currence is regarded as speculative, the status value will be set to “possible.” Allergies of
a certain drug are treated by setting the medication’s negation attribute to “is negated.”

3.5 Patient Level Modelling

The purpose of the patient level modelling was to reduce the scope for downstream clas-
sification tasks to only the patients who had cancer recurrence. This tiered modelling
approach helps to reduce some of the class imbalance by removing non-cancer recurrent
patients from the cohort. One of the main concerns with using patient level modelling is
that misclassifications of a positive patient as negative is detrimental since that patient
will not be seen in downstream classification tasks and removes vital information. There-
fore, the main consideration for the patient level modelling is to ensure that false negatives
are avoided as much as possible. This can be enforced using multiple methods such as
imposing high costs for false negatives or using data sampling techniques.
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3.6 Note Level Modelling

The purpose of the note level modelling was to predict if a clinical note mentions the
patient was positive for cancer recurrence. This model was used to find the data of cancer
recurrence for a particular patient by analyzing all of their notes and finding the first note
mentioning positive cancer recurrence. In this modelling task, the performances for both
positives and negatives must be adequate in order to identify the date of cancer recurrence
accurately.

3.7 Model Evaluation Procedure

The model evaluation is separated into two categories. Firstly, the model is trained and
evaluated on the training dataset using stratified 10-fold cross validation. In this method
we divide the dataset into 10 subsets with equal class balance in relation to the overall
training dataset. Then, the training is performed on nine of these subsets and the model
is tested on the final subset. This procedure is conducted ten times such that each subset
has been used as a testing subset once.

The second evaluation method employed is to test on the external validation dataset
which is a dataset collected at another time period from the training dataset from the
same site. This dataset has some nuances that make it challenging for prediction when
only the training dataset is used to build the model. In this evaluation method, the best
model and hyperparameters are selected using the stratified 10-fold cross validation from
the training dataset. This model is then trained on all of the training dataset and tested
on the external validation dataset. The approach reduces bias in the model performance
and improves our confidence in the reproducibility of the results [37].
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Chapter 4

Natural Language Processing (NLP)
Architecture for Breast Cancer
Recurrence Detection

4.1 NLP Pipeline

The NLP system consists of three main modules: prepossessing module; NLP module
and Rule module. The process pipeline is depicted in Fig 4.1.

The function of the prepossessing module is to remove the information that was not
tagged as correct due to the semi-structured format of the notes. We tracked the number
of repetitions of the sentences between the patients and only removed the sentences that
were not connected with a filled box and can be observed for multiple patients. The logic
behind this policy is that, in structured data, the sentences need to be repeated between
the patient forms and cannot change over multiple patients. Therefore, unique sentences
are intentionally added by a physician for a specific patient.

For the extraction of information from the unstructured notes, we developed an NLP
module with the open-source Apache clinical Text Analysis and Knowledge Extraction
System (cTAKES) [21]. cTAKES is a natural language processing tool, whose components
are specifically trained for the clinical domain. Our NLP pipeline was composed of (i) A
concept coding module where we tried to identify terms of interest for which a concept
unique identifier (CUI) exists in UMLS [38]. In this module, the sentences were split into
tokens and the tokens were normalized to their based form. A POS tagging sub-module was
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Figure 4.1: Pipeline of the NLP system

then used to tag the normalized tokens to their part-of-speech and finally a named-entity
recognition algorithm used this information to identify terms of interest that exist in the
UMLS library. (ii) An assertion status annotation module where additional information
for each CUI were discovered in the texts, such as whether a term is negated or whether it
expresses uncertainty (iii) A coreference annotation [39] module which provides information
about whether the person of interest for a specific CUI is the patient or a family member
or someone irrelevant. Finally, after reviewing the initial results with only the terms from
the UMLS dictionary, our expert examined the notes of patients that were flagged as false-
negative and he provided new terms that are indicators of a specific risk factor. We created
a new custom dictionary with the additional CUI that were determined to be relevant to
the identification of different risk factors.

In the Rule module, different rules were created in order to determine the existence of
a connection between a patient and a specific risk factor. Our first rule was that a patient is
diagnosed with a specific risk factor only if all the conditions below were true: (i) A term/s
that was/were connected to this risk factor was found in his notes (ii) The term/s was/were
not negated (iii) The term/s did not express uncertainty (iv) The subject of the term/s
was/were the patient. Finally, we investigated if a term was connected to the following
sentences by using the dependency parser, which was provided by cTAKES: (i) can cause,
(ii) risk of, (iii) voicing concerns about, (iv) raising concerns about, (v) no prior history
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of, and (vi) free. We chose these sentences as they express uncertainty or negation but
cTAKES failed to identify them. By analyzing the structure of the dependency tree, our
system could understand the terms that were connected to the above sentences and if they
were indeed connected to one of them, then we did not consider these terms as proof that
a patient is connected to a specific risk factor. Python 3.7 was used for the creation of this
module and the prepossessing module.

The NLP architecture uses the Apache cTAKES as the core processing engine to gener-
ate counts of tags present in the clinical notes. In order to use the Apache cTAKES engine
there are several preprocessing steps used to arrange the data for processing. Afterwards,
the pre-processed data is sent to the Apache cTAKES engine in a sequential order. Each
note is processed and the output of the NLP engine is stored in an xml file that contains
the tags identified, uncertainty information for each tag and polarity information for each
tag (i.e., negation of a tag).

The Apache cTAKES engine comprises modular components that can be included or
excluded depending on the requirements. Some of these components include identification
of subject, polarity and negation. In addition, included phrases from a custom dictionary
is possible to extend the tagging capabilities and provide unique tags that may benefit
downstream classification tasks. All components that are added to the Apache cTAKES
engine are processed individually for each note and the output of that component is added
to the xml output for each processed note.

Once all notes have been processed the xml files are analyzed to generate a datas t
that can be used to build a classification model. The post-processing procedure consists
of parsing the xml files and generating a tabular dataset with one patient per row and the
counts for each tag for the columns. This procedure has several steps to ensure the integrity
of the tags including identifying negation of individual tags, filtering phrases that have high
uncertainty (e.g., “risk of” or “concerns about”) and verifying the tag is relevant to the
patient (i.e., differentiate family history compared to patients’ current medical condition).

4.2 Custom Dictionary of Phrases for Breast Cancer

Recurrence

Custom dictionaries were used to extend the vocabulary for breast cancer recurrence. These
phrases in the custom dictionaries were collected from medical experts that analyze notes
on a regular basis. The appearance of these phrases were tracked using Concept Unique
Identifiers (CUIs). Multiple phrases can be assigned to a single CUI such that various forms

22



of a phrase can be linked to a single CUI. For example, the CUI breast cancer recurrence
can be used to track multiple phrases such as “breast cancer recurrence”, “breast cancer
recurrent” or “br ca recur.”

Table 4.1 shows some of the custom dictionary terms that were used. The first column
indicates the CUI and the second column indicates the phrases identified for that particular
CUI.
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Concept Unique Identifiers (CUIs) Custom Phrases

C0007097: cancer
adenoca
adenocarc
adenocarcinoma
ca
cancer
carc
carcinoma

C0006142: breast cancer
adenoca br
adenoca breast
adenoca dctl
adenoca ductal
adenoca lobular
adenocarc br
adenocarcinoma br
br ca
br cancer
ductal adenoca
ductal adenocarc
ductal adenocarcinoma
lobular adenoca

C0027627: metastatic
met
metastatic
metastases
metastasis
metastasize

C0034897: recurrence
recur
recuring
recurrence
recurrent
recurring
recured
recurred
recurrnet
re currnet

Table 4.1: Examples of CUIs and custom phrases used in the NLP tagging, the complete
dictionary can be found in the Appendix.
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4.3 Identifying Negation, Uncertainty and Relation

One of the concerns in the NLP tagging process is identifying certain status modifiers that
may change the interpretation of the sentence. For example, some of these status modifiers
are negation of phrases, uncertainty (probabilistic keywords such as “likely” or “possibly”)
and relation of phrases (if the phrase pertains to family, patient or other). These status
modifiers can completely change the understanding of a sentence, therefore it is critical to
record and handle them appropriately. To indicate a negated tag, “∼” is prepended to the
CUI. For cases with probabilistic keywords or relationship of phrases to members other
than the patient, the CUI is not recorded.

COMMUNITY CANCER PROGRAM NOTE Oct 13, 2006 Patient of Dr.
X with a T3 N0, ER/PR positive, HER-2 positive left breast carcinoma
completing FEC/Taxotere in May 2006 and then radiation because of the T3
tumor size in August 2006.
“HER-2” generic for patient

Receptor
C0069515 HER-2 C0069515

“breast carcinoma” for patient
Disorder

C0006142 breast cancer C0006142
“breast” generic for patient

Body Location
C1268990 breast C1268990

“carcinoma” for patient
Disorder

C0007097 cancer C0007097
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Chapter 5

Classification of Breast Cancer
Recurrence

5.1 Classification Algorithms

5.1.1 Algorithm Level Techniques

There are several approaches to dealing with the class imbalance problem at the algorithm
level. One commonly used strategy is to apply bias to improve the classification perfor-
mance on the minority class [40]. Each algorithms has different hyper-parameters that can
be adjusted to improve the performances for the class imbalance scenarios. For example,
decision trees can apply different technique for pruning to improve performance on the
minority class. Similarly, methods based off the decision tree such as AdaBoost, XGBoost
and Random Forest can benefit from these techniques.

5.1.2 Data Level Techniques

The data-level techniques to improve performance in the class imbalance scenario, a number
of sampling methods were utilized as the following:

1. Random Undersampling [41]

2. Synthetic Minority Over-sampling Technique (SMOTE) [42]
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Undersampling includes sampling the majority class such that the number of datapoints
are in comparison with the minority class. Near miss Undersampling is about sampling
the datapoints from the majority class which aid in discriminating between classes [41].

Generating synthetic data points of the minority class is another approach to improving
the class balance. Oversampling SMOTE (Synthetic Minority Over-sampling Technique)-
synthetically generates samples by interpolating between samples and original dataset[42].

An important issue in this kind of resampling techniques is what is or how to decide
the optimal class distribution in a given dataset. Weiss and Provost studied the effect of a
training set’s class ratio on a classifier’s performance [43]. According to their study, With
respect to the classification performance evaluated by AUC, a balanced class distribution
with a 1:1 ratio could achieve a good performance, yet not necessarily optimal. Optimal
class distributions differ from data to data, and in some cases, depends on the perceived
cost of mis-classification of a certain class.

Another important issue is how to effectively re-sample the training data. Random
sampling is straightforward to implement, yet may not be sufficient in many cases. In
our case of a bi-class classification (i.e.recurrence or no recurrence), the recurrence class
is the minority class, and the vast number of “no recurrence” class is the majority class.
The characteristics of recurrence is far more important in the modelling, thus a randomly
under sampling of the majority class is deemed more favorable solution. However, such
an informative resampling process increases the cost for data analysis. With a very large
number, and variation of notes that contains no recurrence information (no recurrence
class), it is difficult to set the criterion in selecting samples.

We experimented techniques including random oversampling the minority class, and
random undersampling the majority class and using a combination of both these methods.
The undersampling technique produced the best results, and the model performance using
this technique is included in Chapter 6.

5.2 Design and Training of Patient-Level and Note-

Level Models

The modelling started with data preprocessing to understand the class distribution of the
clinical notes. The positive recurrence patients are of higher significance since the objec-
tive is to identify breast cancer recurrence. The dataset was filtered to examine positive
recurrence patients, followed by stratification on note level recurrence (i.e., positive and
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negative notes). The stratification is show in Table 5.1. This table shows that 20.62%
and 15.93% of patients were identified as positive for recurrence in the training and vali-
dation datasets, respectively. Among these groups the positive notes make up a very small
fraction of 4.33% and 3.80% of the total number of notes for the training and validation
datasets, respectively.

Dataset Number of Patients, n(%) Number of Notes, n(%)

Training Dataset 897 (100) 117365 (100)
Positive Patients 185 (20.62) 38372 (32.69)

Positive Notes - 5082 (4.33)
Negative Notes - 33290 (28.36)

Validation Dataset 615 (100) 78460 (100)
Positive Patients 98 (15.93) 21071 (26.86)

Positive Notes - 2985 (3.80)
Negative Notes - 18086 (23.05)

Table 5.1: The training and validation dataset statistics stratified by recurrence status.

Due to the low number of positive notes relative to the total number of notes, data
level and algorithm level class imbalance techniques were utilized to improve performance
of prediction on the minority class. In addition, appropriate trade-offs were made to
minimize the number off false negatives at the cost of false positives. One such example of
implementing the trade-offs is the use of specific performance metrics such as the F-2 score
for model selection. The F-2 score places higher importance on the sensitivity over precision
compared to the F-1 score. In the case of breast cancer recurrence identification, the cost
of failing to identify a positive case (false negative) outweighs the cost of misidentifying
a negative case as positive (false positive). These concerns were taken into consideration
and the results are described in Chapter 6.
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Chapter 6

Results

6.1 Model Training and Selection

The testing method used was stratified holdout testing with 80% for training and 20% for
testing. The distribution and class balance for the training and testing sets are shown in
Figure 6.1. The orange represents the positive recurrence notes and the blue represents
the negative recurrence notes. Since the sets are stratified they both have the same class
balance ratio of 1:6.5 (positive to negative ratio).
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Figure 6.1: The train test distribution with 80% of the dataset used in training and 20%
holdout for testing.

The performances of the machine learning models were assessed using a set of standard
classification metrics. These metrics include balanced accuracy, sensitivity, specificity,
AUC, PPV and NPV. The classification models that were evaluated are Decision Tree,
Random Forest, AdaBoost, XGBoost and Logistic Regression. These classification algo-
rithms have some hyperparameters that need to be tuned based on the dataset to achieve
good performances. In order to perform this task, the stratified 10-fold cross validation
technique is used on the training set. This strategy splits the training set into 10 splits
that have equally proportional class balance. One split is used as the test set while the
other nine sets are used for training. The performances are computed on the test set then
repeated again 10 times, in each iteration a different set is used for testing until each set
has been used at least once for testing. The benefit of this method is that it minimizes
overfitting on the training dataset by using multiple different subsets of the training dataset
to find appropriate hyperparameters.

The stratified 10-fold cross validation is repeated with different sets of hyperparame-
ters for each of the classification algorithms. To select the best hyperparameters a selected
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classification metric is used to compare performances between the different sets of hyper-
parameters. In this case, the f-beta measure is used with beta=2. The f-beta metric takes
into consideration the sensitivity and precision which are two important metrics in breast
cancer recurrence classification. The beta value is used to control the weight of sensitivity
over precision or vice versa. Beta values between 0 and 1 put greater weight for preci-
sion whereas beta values higher than 1 place higher weight on sensitivity. Once the best
hyperparameters are selected from the training set the model is evaluated on the test set
(unseen data).

The classification performances of the models using the training dataset with holdout
of 20% is shown in Table 6.1. Finally, the best model is chosen using the f-beta measure
with beta=2. This model performs well across the other classification metrics as well.

Model Bal. Acc. Sens. Spec. PPV NPV AUC F-1 F-2

DT 0.924 0.889 0.959 0.785 0.981 0.924 0.833 0.866
RF 0.915 0.861 0.970 0.825 0.977 0.915 0.842 0.853

XGB 0.924 0.867 0.981 0.886 0.978 0.924 0.876 0.871
LR 0.932 0.902 0.961 0.795 0.983 0.932 0.845 0.878

AdaBoost 0.931 0.890 0.972 0.840 0.981 0.931 0.864 0.879
Undersampling XGB 0.940 0.969 0.911 0.644 0.994 0.940 0.774 0.880

ROSE XGB 0.932 0.954 0.909 0.636 0.992 0.932 0.764 0.868

Table 6.1: Balanced Accuracy, Sensitivity, Specificity, Positive Predictive Value (PPV),
Negative Predictive Value (NPV), ROC AUC, F-1 and F-2 classification measures of the
models tested on the 20% holdout of the training dataset. Bolded are the best perfor-
mances for each measure.
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Figure 6.2: The confusion matrix for the XGBoost model on the 20% holdout of the
training dataset.

The XGB classifier was further analyzed with the use of ROC AUC curves. This plot
is shown in Figure 6.3. This plot was generated using 10-fold stratified cross-validation,
the result from each iteration of the train-test splits is shown in the light colours and the
mean AUC is represented by the thicker blue line.

The calibration curve is one method to indirectly measure the performance of the
model with respect to the population. Figure 6.4 shows the calibration curve for the
XGBoost classifier. There were two calibration techniques applied to the XGBoost classifer
to improve the prediction probability outputs from the model, these techniques are Isotonic
Regression and Platt scaling with Sigmoid function.
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Figure 6.3: The AUC plot for the XGBoost classifier.
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Figure 6.4: The calibration plot for the XGBoost classifier.
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6.2 Model Interpretability and Explainability

In order to better understand the models, several model interpretability techniques were
used. These techniques aim to provide clarity in which features are most significant for
prediction and to understand the relative contributions of individual features for model
predictions [44]–[47].

The first model interpretability technique used is a model specific method where the
XGBoost classifier is used to generate feature importances. In this method, the feature
importances are based on the internal model structure of the XGBoost classifier. The
XGBoost classifier is an ensemble technique that utilizes groups of decision trees. Decision
trees are considered inherently interpretable in the literature, whereas ensemble methods
such as the XGBoost model is not. However, since the XGBoost model is a combination
of decision trees, there are methods to compute the average contribution of each feature
to the prediction. One such metric is called gain, this is computed by comparing the
improvement in accuracy when a new split is created on a feature in each decision tree.
The feature importance based on the XGBoost model is reported in Figure 6.5.

Figure 6.5: The feature importance plot created using the XGBoost classifier.

One of the model agnostic methods for interpretability is called Shapley Additive Ex-
planations (SHAP) [48]. The SHAP framework calculates the contribution of each feature
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to the prediction of individual samples (patient notes). Shapely values are used to indicate
the contribution of a feature to the model output. Negative values indicate a feature that
on average “pushes” the model output towards negative and positive values indicate the
opposite. These Shapely values are calculated based on the average marginal contribution
of a feature value over all possible coalitions. The SHAP feature effects plot is shown in
Figure 6.6. This plot is generated by plotting the Shapely values for each sample by feature
(along the horizontal). The colours along the horizontal indicate presence of the feature
(red) and absence of the feature (blue). The features are ranked based on mean absolute
value of SHAP values which is an indicator of overall feature importance.

Figure 6.6: The SHAP feature effects plot that indicate contribution to positive (red),
negative (blue) outcome based on each feature.

The overall feature importance based on the SHAP framework is presented in Figure
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6.7. The overall importance is computed by using the mean absolute average of Shapely
values. This plot provides an idea of the relative feature importance among the ten most
significant features.

Figure 6.7: The SHAP feature importance summary plot computed by using the mean
absolute Shapely values.

Permutation Feature Importance (PFI) [49] is the importance of a specific feature
measured by calculating the increase in the prediction error of the model after the feature’s
values are permuted. First, the dataset is split into training-testing split of 80%/20%. The
training set is used to train the model and find the best hyperparameters using stratified
10-fold cross validation. Next, by using the trained model with all the features, we calculate
the baseline accuracy as the average prediction score in the specified test set. Afterwards,
iteratively, the values of different chosen features are shuffled on the test set and the average
prediction score of the previously trained model on the modified dataset is calculated.
Finally, the importance of each feature is calculated as the reduction of their score to the
baseline accuracy. The results of the analysis of the PFI algorithm on the features of the
dataset are reported in the Table 6.2.
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Feature PFI Weight
metastatic c0027627 0.0370 ± 0.0023

lobular c1268990 0.0177 ± 0.0029
metastasize c0027627 0.0152 ± 0.0012
recurring c0034897 0.0152 ± 0.0012

lobular carcinoma c0006142 0.0119 ± 0.0017
metastatic carcinoma c1384494 0.0033 ± 0.0004

spread bony c0153690 0.0019 ± 0.0008
spread ductal c0278489 0.0015 ± 0.0006

Table 6.2: The Permutation Feature Importance (PFI) ranking of the ten most significant
features in descending order.

The various interpretability techniques used were combined and the features ranking
of each of these methods were compared to understand the similarities and differences.
The feature rank table is shown in Table 6.3. The ten most important features for each
method are displayed. The most important feature that was consistent across all methods
was metastatic c0027627 (except for logistic regression). The importance of this feature
is known intuitively as the mentioning of metastatic cancer is an indication of breast
cancer recurrence and therefore is a very strong predictor if this tag is identified in the
note. Other features that were found to be strong predictors include recurring c0034897
and lobular carcinoma c0006142. These also make intuitive sense because the presence or
absence of these terms indicate if the notes are discussing the patients conditions relating
to breast cancer recurrence.
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Features DT RF XGB LR AdaBoost SHAP PFI

metastatic c0027627 1 1 1 6 1 1 1
lobular c1268990 5 5 7 - 2 3 2

recurring c0034897 3 8 4 1 4 4 4
lobular carcinoma c0006142 2 3 2 - 3 2 5

metastatic carcinoma c1384494 - - - 2 - - 6
spread bony c0153690 - 9 8 4 7 7 7

spread ductal c0278489 6 2 3 5 6 6 8
her 2 c0069515 - - - - - 8 -

metastatic lobular carcinoma c0278488 - 4 10 - 9 - 9
mastectomy c0024881 - 10 - - 10 9 -

invasive c0205281 - - - 7 8 10 10
in breast recurrence c0438110 - - 6 8 - - -

neg carcinoma c0007097 - - 9 3 - - -
carcinoma c0007097 - 6 - - - - -

Table 6.3: Ranking of the most important feature for each model and interpretability
methods. The SHAP interpretability method was run using the XGB model. Bolded is
the most significant feature across most methods.
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6.3 Model Evaluation on Validation Dataset

The model constructed on the original dataset is evaluated on an unseen external validation
dataset. This approach is used to ensure that the model constructed on the training set
is capable of performing with similar results on unseen data that may be encountered if
the model is deployed in a working environment. The main objective is to determine if the
model can perform consistently on the external validation set.

In order to determine if the model performs consistently, several techniques are used.
The classification metrics computed in Chapter 5 are reported for the external validation
set. The confusion matrix is reported to identify proportions of misclassifications. The
ROC AUC plot and calibration curves are used to visualize the performance of the models.
In particular, the calibration curve is used to get a better understanding of how well the
prediction score output from the model translates to a confidence level of its predictions.

6.4 Results on Validation Dataset

The external validation dataset was collected from a different time period from the same
institution. There are slight differences to these notes in comparison to the original dataset.
Primarily, the formats of these notes vary slightly as the structure of some of these notes
have changed. Some of these notes have semi-structured information with headings indi-
cated within the text such as “FAMILY HISTORY:” or “PAST MEDICAL CONDITION:”.

This external validation dataset provides a way to test whether the model constructed
on the original dataset is capable of performing well on brand new data that may contain
previously unseen concepts. This form of validation is commonly used in the medical
research field to ensure that models are capable of performing in new environments without
major issues in performance.

The best performing model that was found on the training dataset was used on the
validation dataset to observe how well it performs on unseen data. The results are shown
in Table 6.4.

40



2689P

P

1946

N total

4635

436N

total 3125

73389 73825

75335

actual
outcome

prediction outcome

Figure 6.8: The confusion matrix for the evaluation of the XGBoost model on the valida-
tion dataset.

Model Bal. Acc. Sens. Spec. PPV NPV AUC F-1 F-2

DT 0.915 0.887 0.943 0.392 0.995 0.915 0.544 0.708
RF 0.876 0.788 0.964 0.475 0.991 0.876 0.593 0.697

XGB 0.909 0.843 0.974 0.575 0.993 0.909 0.684 0.771
LR 0.919 0.890 0.948 0.416 0.995 0.919 0.567 0.725

AdaBoost 0.921 0.880 0.962 0.489 0.995 0.921 0.628 0.758
Undersampling XGB 0.927 0.919 0.935 0.368 0.996 0.927 0.526 0.707

ROSE XGB 0.925 0.897 0.953 0.440 0.996 0.925 0.590 0.743

Table 6.4: Balanced Accuracy, Sensitivity, Specificity, Positive Predictive Value (PPV),
Negative Predictive Value (NPV), ROC AUC, F-1 and F-2 classification measures of the
models tested on the entire validation dataset. Bolded are the best performances for
each measure.
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Chapter 7

Discussion

This study developed the model for breast cancer recurrence detection using a hierarchical
architecture, combining natural language processing (Apache cTAKES) and machine learn-
ing classification techniques. This study’s strength partially lies in the training datasets
that combine administrative data and expert chart-reviewed clinical notes with large size.
Notably, the algorithms consider syntactic and semantic variations of documenting cancer
recurrence in a real-world clinical setting. Most deep learning NLP models are difficult
for a modeller or a clinician to understand how the classification of recurrence or non-
recurrence is determined. On the contrary, our algorithms can identify the most impactful
UMLS concepts and controlled vocabulary. We can easily exam the confusion matrix and
identify specific language variables or clinical decision logic in the real-world practices that
cause the model to perform poorly. Thus the algorithms can be engineered to adopt local
variance better.

7.1 HML Approach to Breast Cancer Recurrence Iden-

tification

The HML approach proves to be successful in providing higher quality predictions however
it does have some drawbacks. The HML approach introduces a two step process to the
prediction, firstly the patient based on all their notes is predicted as positive or negative
for recurrence. If the patient is positive, then their notes are assessed to identify which of
their notes mention information about positive breast cancer recurrence. If the patient is
predicted as negative no further predictions are made on that patient. Due to this definitive
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boundary between positive and negative recurrence patients, it is vital to achieve very high
sensitivity in the patient prediction model. If patients are misclassified as negative, it incurs
a very high penalty on the overall performance.

One of the benefits of this approach is that it is easier to filter negative patients from
the cohort since many of their notes do not typically include keywords for breast cancer
recurrence patients. However, in such cases where negative recurrence patients do have
some mentioning of recurrence keywords that are out of context of the patient (ex. doctor’s
explanation of medical terms to patient, past medical history or family history), the patient
level model may misclassify them as positive but the note level model may handle these
cases better as it is trained to perform better on the individual notes and with greater
precision.

7.2 Performances of the Classification Models

Overall many of the decision tree based classification models performed well. The ensemble
techniques improved the performances, particularly on the external validation dataset in
which the model was tested on unseen data. These results are promising since they indicate
potential use of these models in new environments where the data the model was trained
with is different from the data used for prediction.

Using the Isotonic Regression technique with the ensemble tree based methods, the
classifiers are able to provide prediction scores that are more useful for the end users. The
prediction scores can potentially be used as a proxy to judge the classifiers confidence level
in its predictions. For example, considering the relative prediction score for a positive
recurrence note of 0.8 to a note with score of 0.95. The latter score indicates higher level
of confidence in the estimate compared to the former. In both situations the final output
would be positive for recurrence however these scores help to understand how confident
the model is in the prediction.

7.3 Identifying Inconsistencies

Many datasets have some noise due to errors in data collection or other limitations that
prevent perfect data collection. One of the benefit of using the cTAKES and traditional
machine learning approach is that it is easier to identify data inconsistencies. The approach
used in this thesis has transparent outputs at every stage, aiding in identification of errors
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and anomalies. For example, the outputs from the cTAKES processing of the clinical
notes is human readable and easy to process, this helps to get an idea of underlying data
patterns prior to running classification models. This capability is leveraged to identify
inconsistent patterns in the dataset collection regarding breast cancer recurrence. Several
types of inconsistencies were found with the definition of recurrence and labelling practices.
Since these were found and corrected prior to running the machine learning algorithms, it
saved time for debugging and improved the quality of the dataset. These inconsistencies
are summarized in Table 7.1.

Since multiple coders were involved in the initial data collection phase, there was a
misunderstanding of the labeling metastatic cases during the data collection phase. Some of
the clinical notes had metastatic breast cancer cases labelled as non-recurrent however these
cases should have been labelled recurrent. Using cTAKES the clinical notes were analyzed
and those that mentioned phrases related to “metastatic” were filtered and reviewed again
to ensure data consistency. Table 7.1 lists the types of inconsistencies found and the counts,
using Apache cTAKES.

Dataset Inconsistencies Number of Notes, n(%)

Training Dataset 117365 (100)
Metastatic Cases 3838 (3.27)
Recurrence Mislabelling 1033 (0.88)

Table 7.1: The types of dataset inconsistencies found using the cTAKES and traditional
machine learning approach.

7.4 Comparison with the State of the Art (BERT

Model)

The original BERT model [50], based on multi-layer bidirectional transformers [51], can
generate contextualized word representations. Incorporating information from bidirectional
representations allows the BERT model to capture more accurately the meaning of a word
based on its surrounding context (sentence).

In recent years, there have been significant improvements in the field of NLP. In partic-
ular the current state of the art is the BERT model which is a transformer-based machine
learning model. The BERT model can train on massive amounts of public data to build
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a pre-trained model that is capable of performing many downstream tasks. Several other
advantage of the BERT model includes ease of scalability as the terminology for BERT
models are not pre-programmed but rather trained by provided large number of samples
such as biomedical research articles (ex. PubMED) or de-identified patient notes from
large public dataset (ex. MIMIC dataset).

The classical classification techniques used in this paper do still hold some advantages
over the new BERT model architecture. Since the BERT model involves using neural
networks, the model is not inherently interpretable. There are current research efforts to
building interpretable techniques to better understand outputs from neural networks such
as BERT. Also, classical NLP and machine learning methods allow some more flexibility
in terms of pre-programing some custom phrases or to handle consistent semi-structure
information that may not be easy to train on.

Model Bal. Acc. Sens. Spec. PPV NPV AUC F-1

BERT (0.02) 0.959 0.962 0.955 0.458 0.998 0.985 0.620
BERT (0.1) 0.949 0.929 0.969 0.543 0.997 0.985 0.686
BERT (0.25) 0.940 0.906 0.974 0.579 0.996 0.985 0.706
BERT (0.5) 0.929 0.879 0.978 0.611 0.995 0.985 0.721
BERT (0.75) 0.912 0.843 0.981 0.643 0.994 0.985 0.729
BERT (0.9) 0.882 0.777 0.986 0.687 0.991 0.985 0.729

XGB 0.909 0.843 0.974 0.575 0.993 0.909 0.684
Undersampling XGB 0.927 0.919 0.935 0.368 0.996 0.927 0.526

Table 7.2: Comparison of the BERT model performances with the traditional ML methods.
The number in brackets for the BERT models indicate the cut off values. The table shows
the classification metrics: Balanced Accuracy, Sensitivity, Specificity, Positive Predictive
Value (PPV), Negative Predictive Value (NPV), ROC AUC and F-1 on the validation
dataset.
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Chapter 8

Conclusion

This thesis has demonstrated the ability to use Natural Language Processing and Machine
Learning techniques to assist in chart review by 1) excluding a large amount of notes
which contain no relevant information, 2) identifying notes most likely contains relevant
recurrence information, in order to accurately identify the timing of recurrence. Given
the severely imbalanced ratio (1:10) of notes with and without recurrence information, the
algorithm is deemed useful for assisting chart review, but not replacing the chart reviewing,
nor use as a diagnostic tool for recurrence detection.

Despite high sensitivity and specificity, the model performed at a substantially lower
positive predictive value (PPV). This less satisfactory PPV can be attributed to the low
prevalence of recurrence in the test data at the note level. One of the future works in this
study is to improve the model’s PPV. Possible strategies include: 1) continuously enhancing
the techniques to identify ambiguous terms and implicit logics when clinicians document
their statement or suspicion of a recurrence event in the clinical notes, and 2) incorporating
meta-data of the document types to filter out noisy data in the training set. Our clinical
collaborators at CCMB observed that certain types of clinical reports/notes, such as those
documented by oncology specialists, could contain more comprehensive information with
consistent terms when referring to recurrence. This has been identified as the next step to
improve the performance and utility of this model in CCMB’s practice.

Another limitation of the current approach is the transferability of the model. In addi-
tion to the standard UMLS vocabulary, the NLP algorithm utilizes a vocabulary specific
to breast-cancer recurrence, with some terms specific for CCMB clinicians. This additional
“localized” vocabulary is very helpful to improve the performance of the BCR model, but
it also makes the model less performant on a dataset with different diseases, for example,
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colorectal cancer or lung cancer. Our initial experiment on a BERT-based NLP algorithm
has demonstrated superior transferability on different disease datasets. This is a promising
new algorithm development venture already started with the CCMB researchers at the
time of this writing.

Given the great demand for reliable, population-based measures of cancer outcomes
from professional, governmental and researchers, robust recurrence detection algorithms
represent a significant advance. To foster adoption of the Breast Cancer Recurrence De-
tection algorithms as presented in this thesis, we have published the terms specific for
breast cancer recurrence identification 1. This is only one example of many “big data” ini-
tiatives for “liberating” information from unstructured data with AI and machine learning
techniques to create broader and clinically enhanced real world datasets for research and
evidence-based policymaking. These advances are essential because administrative datasets
do not encompass all important clinical information about the patient, the context of treat-
ment and disease progression, thus with limited generalizability and lack of relevant cancer
outcomes. The machine-learning algorithms and disease-specific vocabularies developed
in this study have a potential to become a useful tool in processing real-world data at
scale in healthcare. The appropriate application and wider adaptation of machine-learning
techniques in healthcare could accelerate system transformation in real-world evidence and
personalized healthcare.

1The complete dictionary of breast cancer recurrence specific terminology was uploaded to
https://github.com/sujan-suzbe/bcr-terminology/.
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