
A Quantum Algorithm for Ray Casting using an
Orthographic Camera

Carolina Alves
Universidade do Minho

Braga, Portugal

a75610@alunos.uminho.pt

Luı́s Paulo Santos
Universidade do Minho & INESC-TEC &

Quantum Software Engineering, INL
Braga, Portugal

psantos@di.uminho.pt

Thomas Bashford-Rogers
University of West of England
Bristol, United Kingdom

Tom.Bashford-Rogers@uwe.ac.uk

Abstract—Quantum computing has the potential to provide
solutions to many problems which are challenging or out of reach
of classical computers. There are several problems in rendering
which are amenable to being solved in quantum computers, but
these have yet to be demonstrated in practice. This work takes
a first step in applying quantum computing to one of the most
fundamental operations in rendering: ray casting. This technique
computes visibility between two points in a 3D model of the world
which is described by a collection of geometric primitives. The
algorithm returns, for a given ray, which primitive it intersects
closest to its origin. Without a spatial acceleration structure, the
classical complexity for this operation is O(N). In this paper, we
propose an implementation of Grover’s Algorithm (a quantum
search algorithm) for ray casting. This provides a quadratic speed
up allowing for visibility evaluation for unstructured primitives
in O(

√
N). However, due to technological limitations associated

with current quantum computers, in this work the geometrical
setup is limited to rectangles and parallel rays (orthographic
projection).

Index Terms—quantum computing, ray casting, Grover’s al-
gorithm, complexity

I. INTRODUCTION

The field of quantum computing has registered huge devel-

opments over the last few years, raising the perspective for

this alternative computing paradigm to become practical and

advantageous in the medium term.

Richard Feynman is believed to have been the first to

propose using quantum mechanics as a model for computation

[1]. Theoretical results soon followed, with, for example, the

proposal of the quantum Turing machine by Deutsch in 1985

[2] and algorithms that lie in the heart of most quantum

programs, including Grover’s for unstructured searching [3],

Shor’s for prime factorization [4] and the Quantum Fourier

Transform [5].

More recently, technological advances made it possible for

some companies to make quantum computers available to

the community. These machines still impose quite demanding

This work was partially financed by National Funds through the Por-
tuguese funding agency, FCT – Fundação para a Ciência e a Tecnologia
– within project: UID/EEA/50014/2019. This work was partially funded by
SmartEGOV/NORTE-01-0145-FEDER-000037, supported by Norte Portugal
Regional Operational Programme (NORTE 2020), under the PORTUGAL
2020 Partnership Agreement, through the European Regional Development
Fund (EFDR).

limitations on the size and execution time of the problems

they can solve, due to limited coherence times, reduced

number of qubits and significant error rates at the gates

level. Nevertheless, the number of researchers, practitioners

and companies experimenting with prototype applications to

solve an ever growing variety of problems has been increasing

exponentially. This rising interest on quantum computing is

largely supported by an huge investment both from private

companies and research funding institutions [6], [7].

An n-qubits quantum computation evolves on an exponen-
tial state space, representing at each instant a linear super-

position of 2n states. Each computing step leads the system
to another superposition, acting on the 2n states simultane-
ously without any resources replication. On the other hand,

a classical n-bits system represents at each instant a single

state out of the 2n possible states and a computing step leads
to a single subsequent state. It is this exponential quantum

parallelism that holds the promise of the quantum advantage

over classical computing. For some problems quantum algo-

rithms have been found which exhibit better complexity than

classical alternatives, allowing for the efficient computation

of otherwise intractable problem sizes. Grover’s algorithm [3]

for searching on a N elements unstructured domain exhibits

O(
√
N) time complexity, as opposed to O(N) in the classical

setting: in the worst case all N elements of the domain have

to be verified.

Ray casting is a well known rendering technique, consisting

on shooting a ray from a point along a given direction to

determine whether i) that direction is occluded (i.e., the ray

intersects at least one geometric primitive), or ii) what is

the visible geometric primitive along the ray’s direction (i.e.,

among all primitives intersected by the ray which one is nearer

to the ray’s origin). If there are N geometric primitives and

if these are not ordered on any manner, then classical ray

casting requires testing intersection against all primitives, with

complexity O(N).
This paper demonstrates the application of Grover’s algo-

rithm to ray casting, addressing both the occlusion and the

visibility problems, with worst-case complexity O(
√
N). Even

though using Grover’s for this purpose has been suggested

before [8]–[10], no implementations and no real results were,

to the best of the authors’ knowledge, ever presented. We978-1-7281-6378-9/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on April 05,2021 at 13:52:05 UTC from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/422721581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

propose concrete implementations and present results obtained

both on a simulator and on a real quantum computer. Advan-

tages and limitations of the proposed approach are discussed.

All experiments, both simulations and real quantum computer

executions, were performed using IBM’s quantum computing

framework, Qiskit1, and Tokyo, the IBM Q Network 20 qubits

machine.

Current circuit-based quantum computers provide no func-

tional units to perform even the most fundamental arithmetic

operations to mathematical data types, such as integers or

floating point numbers. In fact, the program consists essen-

tially on a list of basic transformations, referred to as gates, to

apply to the qubits. Supporting complex operations, such as

non-integer number representations or trigonometric functions,

requires implementing them at the gate level. Besides the

obvious programming overhead, these additional gates would

dramatically increase the circuit depth and the number of

required qubits, pushing the limits well beyond what is possi-

ble with today’s noisy and limited scale quantum computers.

In order to avoid such overheads this paper deals only with

integers, the view plane is contained within the Z=0 plane,

all geometric primitives are axis-aligned rectangles parallel

to the view plane and the rays are perpendicular to the

view plane and parallel to the Z-axis (thus the orthographic

projection); all coordinates ((x, y) for pixels and rays, (x, y, z)
for points in space) are integers. These restrictions facilitate

the development of the quantum program and make it possible

to use current simulators and real machines. There are, how-

ever, no theoretical reasons why floating point numbers and

trigonometric functions cannot be used. They just wouldn’t be

feasible on current hardware given the limitations imposed by

the technology state of the art.

II. QUANTUM COMPUTING: SHORT OVERVIEW

A. Fundamentals

The basic quantum unit of information is the qubit |b〉,
which allows a linear superposition of two orthogonal basis

states |0〉 and |1〉:
|b〉 = α0|0〉+ α1|1〉, α0, α1 ∈ C, |α0|2 + |α1|2 = 1

With n qubits a superposition |Ψ〉 over N = 2n basis states
can be created:

|Ψ〉 =
N−1∑
i=0

αi|i〉, αi ∈ C,
N−1∑
i=0

|αi|2 = 1

For a uniform superposition all basis states’ weights are equal,

αi = α = 1√
N
. Any operation over a superposition will

act simultaneously on the 2n states, in what is referred to
as exponential quantum parallelism. This means that applying

a function f(·) once to superposition |Ψ〉, effectively results
on a new superposition |Ψ′〉 containing all N = 2n values of
f(|Ψ〉).
1https://qiskit.org/

Even though the quantum computation evolves on an ex-

ponentially large state space, computing all solutions simulta-

neously, this space is not accessible. Upon measurement the

superposition |Ψ〉 collapses onto one basis state |i〉, among
all basis states included on |Ψ〉, with probability |αi|2. Any
posterior measurements will return the same basis state and

the probability with which it was selected (|αi|2) is also
not accessible - all the information on the superposition is

lost with the measurement and the register behaves now as

classical data. The role of quantum algorithms is to maximize

the probability of measuring the desirable states within a

superposition and to postpone measurements (i.e., reading

quantum data) until the last step of the algorithm.

The laws of Quantum Mechanics require that all operations

performed on qubits are unitary and reversible. The former

means that the norm of the vector of basis states coefficients

αi is maintained and is equal to 1 after the transforma-

tion; this is required since the vector of αi’s is in fact a

probability distribution. Reversibility is a consequence of the

unitary requirement and means that given the outputs of the

transformation its inputs can be known: the computation is

reversible. Reversibility has several consequences at the circuit

level: all quantum gates, which operate over qubits, must have

the same number of inputs and outputs; this often results in

circuits with a larger number of gates and more qubits than

would be required for their classical counterpart. Information

is never destroyed, since the computation can be reversed.

According to the Landauer’s principle [11] the erasure of a

bit of information corresponds to the dissipation of energy in

the form of heat to the environment; quantum computing does

not destroy information (up to the final measurements) and

has thus the potential to be more power efficient than classical

computing.

The quantum circuit model represents quantum programs as

a series of gates applied to qubits. Each qubit is represented

as a horizontal line and each gate is connected to the qubits

it interacts with. Whereas with classical circuits signals flow

along the circuit, with quantum circuits time flows along

the circuit, from left to right – qubits do not flow, rather

gate operations are applied onto the qubits (for example as

microwaves used in some technologies). Gates can be written

in matrix form, which are applied to the qubits. For example,

the Hadamard H and X (NOT) gates can be expressed as:

H =
1√
2

[
1 1
1 −1

]
, X =

[
0 1
1 0

]
(1)

Figure 1 illustrates one such circuit: the qubits initial state is

|0〉, converted into an uniform superposition using Hadamard
gates; then |q0〉 is negated (the coefficients of basis states |0〉
and |1〉 are swapped) and finally measurement gates are used,
reading one of the basis states present in |q0q1〉 to classical
register c, according to the respective probability (in this case
0.25, since the 4 states are equally probable).

57

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on April 05,2021 at 13:52:05 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. An example quantum circuit.

B. Grover’s Algorithm

For n qubits, and N = 2n, let f : {0 . . . N −1} −→ {0, 1},
such that

f(x) =

{
0←x �= x∗

1←x = x∗

The problem being addressed is finding the value(s) x∗ ∈
{0 . . . N − 1} : f(x∗) = 1. If nothing is known about f(·)
then a classical approach must, in the worst case, evaluate the

function N − t+ 1 ∝ O(N) times (where t is the number of
different x∗ satisfying f(·)). Grover’s algorithm will find x∗

by executing the function only O(
√

N
t) times, thus exhibiting

a quadratic advantage.

Grover’s algorithm starts by creating an uniform superposi-

tion over all basis states, |Ψ〉, by using Hadamard gates. |Ψ〉
can be expressed as a sum of two vectors: |Ψ1〉 contains the
basis states for which f(·) = 1 (referred to as the ”good”
states), and |Ψ0〉 contains the remaining. From Figure 2 left,

it can be seen that |Ψ〉 = sin θa|Ψ1〉 + cos θa|Ψ0〉, thus
the probability of measuring a state in |Ψ1〉 is sin2 θa; this

probability is also t
N , therefore sin θa =

√
t
N . The goal is

to maximize the probability of measuring a state in |Ψ1〉,
which is achieved by applying multiple iterations of Grover’s

operator, Q. The first stage in this operator is the oracle O,
which implements f(·) and negates the sign of the ”good”
states’ coefficients according to O|i〉 = (−1)f(|i〉) ∗ |i〉 (see
Figure 2 center). Marking the ”good” states does not change

their probability; this is achieved by the diffusion operator,

D, which performs a reflection over the average, depicted
in Figure 2, right, as a reflection over the uniform super-

position. After one application of Q = DO the probability

of measuring a ”good” state has increased. It can be shown

that after r iterations of Q the resulting state is |Ψ(r)〉 =
sin ((2r + 1)θa)|Ψ1〉+cos ((2r + 1)θa)|Ψ0〉. Maximizing the
probability of measuring a basis state in |Ψ1〉 amounts to
making sin ((2r + 1)θa) ≈ 1, which for sufficiently large N

results in r ≈ π
4

√
N
t , i.e., O(

√
N
t) Grover iterations are

required, resulting on a quadratic speed up over the classical

case. Performing more iterations than the ideal r actually
reduces the probability of measuring a good state; successful

application of Grover’s depends on the ability to compute r
and, consequently, on the previous knowledge of t.

III. RELATED WORK

In 2001 Andrew Glassner discussed quantum computing

on his notebook [8]–[10] and suggested applying Grover’s

algorithm to the Z-buffer and ray casting problems. For the

former a superposition over all the polygons and respective

depth could be created and Grover used to identify the

minimum depth. For the latter a superposition over all spheres

and respective parameters (a, b, c) could be created; equation
at2 + bt + c = 0 would then be solved simultaneously

for all spheres and Grover used to locate the minimum

positive t. For both problems a quadratic advantage could
be obtained over an unordered classical search. Sadakane et

al. [12] present a theoretical analysis of the complexity of

Grover’s, and a closely related minimum finding algorithm

[13], applied to several geometric applications, including

nearest neighbor, separation and function maximizing queries,

geometric optimization problems (minimum enclosing ball,

common intersection emptiness and convex hull computation)

and intersection detection among large dimensional geomet-

ric elements. Simona Caraiman [14] also proposes applying

Grover’s algorithm to the Z-buffer and ray tracing problems.

Additionally, she proposes addressing photon mapping, using

Grover’s for k-nearest neighbor queries, besides the photon

shooting and the ray tracing stages. Lanzagorta and Uhlmann

[15] propose using Grover’s algorithm for a number of com-

putational geometry problems, including nearest neighbour

queries, object-object intersection, Z-buffering, ray tracing,

radiosity and level of detail, among others. A detailed time

and space complexity analysis is used to argue that quantum

search is asymptotically advantageous over classical search for

large domains (large N) and domain dimensionality d >= 3.
Classical spatially ordering the search space in such conditions

requires O(N logd−1 N) space for a query time complexity
of O(logd N), but since N and d are large, such spatial

ordering in not feasible. Classical computing has thus to resort

to unsorted search, which is O(N) in both space and time;
quantum searching under such conditions is O(

√
N) in time

and O(N) in space, thus presenting a quadratic speedup.

All the above cited works maintain the discussion at the

algorithmic and complexity analysis levels. No simulation,

implementation or execution of the proposed algorithms is

performed and no real experimental results are presented. This

paper presents an actual implementation and real results for

the ray casting problem.

A different problem is addressed by Johnston [16]. The

author performs pixel level supersampling by resorting to the

quantum amplitude estimation algorithm to numerically inte-

grate sub pixel samples through a combination of a quantum

algorithm and a classical lookup table. Experimental results

show improvements, compared to those obtained with classical

Monte Carlo integration for the same number of samples.

These results are obtained using a simulator, a IBM five

qubit machine, and a photonic quantum computer. This paper

focuses on supersampling pixels based on a known underlying

signal, whereas our work computes this signal from a scene

58

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on April 05,2021 at 13:52:05 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Grover’s algorithm. Left: Uniform superposition. Center: the oracle negates the sign of the ”good” states’ coefficients. Right: the diffusion operator
reflects the quantum state over the uniform superposition; the probability of measuring a basis state in |Ψ1〉 increased from sin2 θa to sin2 (3 ∗ θa).

description.

IV. RAY CASTING: SINGLE SOLUTION CASE

This section addresses the case where no more than one

primitive projects to each pixel. For each primary ray, and

thus for each quantum query, there is only zero or one solution.

The important points are: i) the number of solutions is known

(t = 1), which is fundamental for calculating the number of
Grover’s iterations (t = 0 will be handled as a failure to find a
solution) and ii) the occlusion and visibility problems are the

same, since the ray intersects only one primitive.

A. Geometric Setup

Current quantum computers do not include functional units

to perform any kind of arithmetic operation over any data

type (integers, floating point, etc.). To overcome such hand-

icap an orthographic projection is used, with all coordinates

being positive integers. The view plane is contained in plane

Z = 0, primitives are rectangles parallel to the view plane

(constant positive Z) and primary rays are parallel among
themselves and the Z axis (X,Y constant); there is a one

to one correspondence between pixels in the image plane and

primary rays. Primitives are characterized by five parameters:

(minX ,maxX ,minY ,maxY , Z); the latter is not relevant for
the non-overlapping case addressed on this section, since at

most one primitive projects onto a pixel (x, y). A ray intersects
a primitive if minX ≤ x ≤ maxX ∧ minY ≤ y ≤ maxY ,

dispensing with any numerical calculations. Figure 3 presents

Fig. 3. Geometric setup for the non-overlapping case.

the non-overlapping setup for the 2D/3D case (Z is not

relevant).

B. Quantum Algorithm

Grover’s algorithm is used to identify intersections between

a given ray (x, y) and the geometric primitives. A detailed

description is given in Algorithms 1 and 2. These algorithms

assume there are N = 2n primitives indexed from 0 . . . N −1
using a n qubit quantum register labelled as |p〉; quantum
register |c〉 is prepared with the coordinates of the primi-
tives, requiring nc qubits, nc = log2(max(maxX ,maxY))�.
Transforms {m|M}{X|Y } generate the minimum (resp. max-
imum) X (resp. Y) coordinates of a primitive from its index;

these are functions of the IDs of the primitives defined for

each scene and the circuit is derived using basic Boolean

simplification techniques.

Algorithm 1 Q RayCast: quantum algorithm for ray (x, y),
N primitives and r iterations

Superposition over the primitives IDs: |p〉 = H⊗n|0〉⊗n

for r iterations do
Grover’s oracle {Algorithm 2}
Grover’s diffusion operator

end for
ID ← Measure |p〉
return ID

Algorithm 2 Oracle for ray (x, y) intersection with N prim-

itives

|Hint〉 ← |1〉; |Vint〉 ← |1〉
minX : |p〉|c〉 = mX|p〉|0〉⊗nc

Negate Hint if x ≥ c; revert |c〉
maxX : |p〉|c〉 = MX|p〉|0〉⊗nc

Negate Hint if x ≤ c; revert |c〉
minY : |p〉|c〉 = mY|p〉|0〉⊗nc

Negate Vint if y ≥ c; revert |c〉
maxY : |p〉|c〉 = MY|p〉|0〉⊗nc

Negate Vint if y ≤ c; revert |c〉
|intersect〉 = |Hint〉 ∧ |Vint〉
Flip the primitive’s coefficient sign if intersect = 1: |p〉 =
(−1)intersect ∗ |p〉
Revert |Hint〉, |Vint〉 and |intersect〉

After execution of Algorithm 1 the probability of reading

the ID of the primitive that intersects the ray, i.e., ps, the suc-

59

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on April 05,2021 at 13:52:05 UTC from IEEE Xplore. Restrictions apply.

TABLE I
r, ps AND ps,c=2 FOR GROVER’S WITH A SINGLE SOLUTION

N
4 8 16 64 256 1024

1/N 0.250 0.125 0.063 0.016 0.04 0.01
r 1 2 3 6 12 25
ps 1.000 0.945 0.961 0.997 1.000 0.999

ps,c=2 1.000 0.997 0.999 1.000 1.000 1.000

cess probability, is sin2((2r+1)θa) with θa = sin−1(1/
√
N).

For N > 4 this probability is close to, but less than, 1.
Table I presents ps for different numbers of primitives. Upon
measurement three different cases can occur:

1) the intersecting primitive is measured;

2) a non-intersecting primitive is measured, but in fact the

ray intersects one primitive;

3) a non-intersecting primitive is measured and in fact

there is no intersection (all primitives have a uniform

probability = 1/N of being measured).

Algorithm 3 Hybrid algorithm for the non overlapping case

(single solution)

for all pixels (x, y) on the image plane do
intersected = False

iteration = 0

r = �π4
√
N�

while not intersected and (iteration < c) do
ID = Q RayCast (x,y,primitives,r) {Algorithm 1}
intersected = intersect (x,y, ID)

iteration ++

end while
end for

Algorithm 3 calls quantum Algorithm 1 and then verifies

whether the ray intersects the measured primitive – this is

an hybrid algorithm, since the classical code calls a quantum

program. If the measured primitive is not intersected the

quantum algorithm is executed again. If after c such iterations
no measured primitive intersects the ray, then that pixel is not

occluded with probability

ps,c = ps +
c−1∑
j=1

ps(1− ps)
j

according to the geometric distribution. The last row of Table

I presents ps,c=2 for different numbers of primitives. Note

that within this paper’s context, verifying whether a given ray

intersects a specific primitive is O(1): the goal of the quantum
approach is to reduce the number of evaluations of the intersect

function, not the cost of each such evaluation.

C. Circuit

Figure 4 presents the quantum circuit for a setup with 4

primitives and max(x, y) = 3, which requires up to 2 qubits
to represent maxX and maxY (|b〉 on the circuit). The H

subcircuit uses Hadamard gates to prepare |p〉 onto an uniform
superposition. Only 1 Grover iteration is required (r = 1, see
Table I) together with 5 ancillary qubits logically organized

onto 2 registers: |aux〉 and |aux2〉. Finally, measurement gates
measure the quantum state and store the result on classical

register |c〉.

Fig. 4. Geometric setup for the non-overlapping case.

Figure 5 depicts the oracle. Each of the {m|M}{X|Y }
operators generates the minimum (resp. maximum) X (resp.

Y) bounds of each primitive onto |b〉. The ge and le operators
compare the bounds with the ray’s coordinates (x, y), which
are hardwired into the circuit; comparison results for y (resp.
x) are stored onto |aux21〉 (resp. |aux22〉), referred above
as |Vint〉 (resp. |Hint〉). These are then anded together onto
|aux20〉 (|intersect〉), using a reversible Toffoli gate. The latter
will thus be |1〉 for the primitives intersected by the ray and
|0〉 for the remaining (the whole circuit is on a superposition
over all possible states of |p〉: 4 basis states in this example).
After each of the comparison operators the bounds generator

operator appears again: this is required to reverse the state

computed onto |b〉, resetting its value to |00〉 before it is
used again for the next computation. Such is the nature of

quantum reversible computing: all computations have to be

undone before the qubits can be used again by some other

operator. The detailed circuits for each of the bounds generator

and the magnitude comparison operators are not shown since

these are just basic Boolean operations implemented using

reversible quantum gates. Finally, a rotation over the Z axis is
applied to |p〉 conditioned to |aux20〉 being |1〉, thus flipping
the sign of the coefficients of those primitives which intersect

ray (x, y).

After the above described circuit the state of |aux2〉 hasn’t
been reversed to |000〉. However, all anciliary have to be
reversed into the original state, which implies repeating the

whole circuit in reversed order (or in fact in some order

guaranteed to be the inverse of the state preparation circuit).

The last Toffoli gate in Figure 5 reverses the state of |aux20〉;
this is followed by a complete repetition of the remaining of

the circuit, in order to reverse |aux21〉 and |aux22〉 – these
are not depicted here due to space constraints.

60

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on April 05,2021 at 13:52:05 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Oracle for ray casting.

D. Results

Figure 6 presents the images obtained with the Qiskit

simulator for two geometric configurations (scenes) with 4

and 8 primitives, respectively. The dots depicted in each pixel

represent the number of iterations required to evaluate the

pixel with c = 2. For the single solution case the probability
of measuring a non intersecting primitive is not significant;

the intersecting primitive was always measured on the first

iteration of Algorithm 3. When there is no intersection the

algorithm will run c iterations.

(a) 4x4 image and scene with 4
primitives

(b) 8x8 image and scene with 8
primitives

Fig. 6. Reference images obtained with the Qiskit simulator for the no
overlapping case. Numbers identify the primitive; the number of dots indicates
algorithm 3 iterations due to measuring a non intersecting primitive.

Table II presents the total number of gates, total number

of qubits and circuit depth (length, in gates, of the longest

path) for an exemplary pixel (x = 1, y = 2) for both scenes
(4 and 8 primitives). Even for the simpler scene the circuit

depth is 33; this is well above what can be reliably executed

on current quantum machines at the time of writing. In fact,

noise is additive over the gates and, additionally, execution

times must be kept short due to qubits dephasing and limited

coherence times. The situation is even worse in practice since

these circuits have to be mapped onto the real machine, which

has limited connectivity among physical qubits and supports

a limited set of gates; the executable circuit gate count and

depth is therefore significantly larger. The results of such a

large quantum circuit are therefore noisy to the point where

TABLE II
NUMBER OF GATES, TOTAL NUMBER OF QUBITS AND CIRCUIT DEPTH FOR

BOTH SCENES

Scene Gates Depth Qubits
4 primitives 83 33 9
8 primitives 195 68 15

no significant conclusion can be extracted from them. Figure

7 presents an histogram of the measured primitives for pixel

(x = 1, y = 2), with a single iteration of Algorithm 3 and 256
trials, for both the simulated and the real machine. While the

former is 100% accurate, the latter is overwhelmed by noise,

resulting in an almost uniform distribution of probability over

all possible measured states.

Fig. 7. Histogram: primitive measurements for simulator and real machine.

To allow execution on a real machine a simpler circuit was

prepared for the scene depicted in Figure 8(a); each primi-

tive has coordinates equal to its ID, therefore the operators

{m|M}{X|Y } that generate the primitive bounds are not re-
quired. The ray coordinates can be compared directly with the

primitive ID and the bounds representation |b〉 is not required
(compare with Figure 5). The circuit for pixel (x = 2, y = 2)
requires 7 qubits and 48 gates for a maximum depth of 19.

Figure 8(b) presents the histogram for the execution of a single

iteration of Algorithm 3, 256 trials with the simplified circuit.

The correct primitive is measured with probability ≈ 0.5 while
the second most probable measurement is |00〉 – this is due to
qubit decoherence (the state relaxes towards |00〉) and can be

61

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on April 05,2021 at 13:52:05 UTC from IEEE Xplore. Restrictions apply.

corrected (eventually not using state |00〉 as a primitive ID and
treating it as an error). These results suggest that real quantum

computers can be used in the future, as qubits coherence times

increase and gate errors decrease.

(a) 4x4 image and scene
with 4 primitives

(b) Histogram for 256 trials, pixel (2, 2)

Fig. 8. Simplified setup for execution on the real quantum machine.

V. RAY CASTING: OCCLUSION WITH MULTIPLE

SOLUTIONS

By adding a third dimension to the primitives it becomes

possible that more than one primitive projects into the same

pixel; the number of solutions to Grover’s algorithm, t, can
now range from 0 (no occlusion) to the total number of

primitives, N . As long as t is known and less than N/2 the
problem can still be solved using the algorithm proposed in the

previous section by setting the number of Grover’s iterations

r ← �π4
√

N
t �. But in real cases the number of primitives

projecting onto a given pixel is unknown, therefore r cannot
be set a priori to the ideal number of iterations.

A. Algorithm

We use an algorithm proposed by Boyer et al. [17] based on

exponential search and demonstrated to converge in O(
√

N
t)

iterations; the case t = 0 is handled by terminating after a
constant number of iterations, c. At each iteration, Algorithm
4 exponentially increases the maximum number of possible

Grover iterations S and then randomly selects r from 1 . . . S.
At each iteration the primitives are also randomly sampled,

which will succeed with probability t
N .

B. Results

A scene with 8 primitives at 3 different depths (Figure

9) is used to empirically verify Algorithm 4. Simulation

results show 100% convergence, with an occluding primitive

being measured for all pixels where such a primitive exists

Algorithm 4 QSearch: Quantum exponential search algorithm
for the overlapping case - pixel (x, y)

intersected = False; iteration = 0
l = 0 ; g = 1.3
while not intersected and (iteration < c) do
ID = Q SampleUniformDistribution (primitives)
intersected = intersect (x,y, ID)
if not intersected then

l = l + 1
S = max(gl,

√
N)

r = rand(1 . . . S)
ID = Q RayCast (x,y,primitives,r)
intersected = intersect (x,y, ID)
iteration++

end if
end while

Fig. 9. 8 primitives scene with 3 different depths.

– see Figure 10. The probabilistic nature of the algorithm

and the importance of the random sampling step are clearly

demonstrated by the number of iterations required to find

an occluding primitive. For example, pixels (2, 1), (1, 2) and
(3, 2) results are found with 0 iterations by random sampling
and other pixels require arbitrarily 1 or 2 iterations (with an

unreported number of Grover iterations).

Fig. 10. 4x4 occlusion image with 8 primitives and multiple possible solutions
per pixel.

VI. RAY CASTING: VISIBILITY WITH MULTIPLE

SOLUTIONS

In order to compute which primitive, if any, is visible

along each pixel the minimum depth (Z coordinate) has to

be evaluated. We use an approach based on Durr et al. [13]

and given as Algorithm 5. The minimum depth is initialized

with some maximal value. The exponential search described

in Algorithm 4, augmented with the current minimum depth,

is then executed; if a primitive is found and if its depth is

less than the current minimum then the latter and associated

primitive are updated. Augmenting Algorithm 4 consists of

62

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on April 05,2021 at 13:52:05 UTC from IEEE Xplore. Restrictions apply.

Algorithm 5 QMin: Quantum minimum algorithm
p = −1; pZ = maxZ; visible = False
while iteration < c do
intersected, ID = Q Search Min (x, y, pZ, primitives)
if intersected then
visible = True
if depth[ID] < pZ then

pZ = depth[ID]; p = ID
end if

end if
iteration ++

end while

augmenting the oracle given in Algorithm 2 (Figure 5) with

depth data. Besides generating the primitives’ bounds and

comparing with the ray coordinates, now also the primitives

depths are generated and compared with the current minimum

depth; the oracle will only flip a primitive’s coefficient sign if

the 5 conditions (bounds and depth) are satisfied. The quantum

circuit is now adaptive, being redesigned at each iteration of

Algorithm 5 to account for the current minimum depth.

A. Results

Simulation results (see Figure 11) show that although oc-

clusion is always correctly computed, there are a few pixels

where the primitive with correct minimum depth was not

found. The histogram in Figure 12 shows, for pixel (0,0), that

the correct primitive is found ≈ 80% of the trials, which is

also confirmed by the presented images: 8 out of 10 pixels

are correctly measured. A more thorough evaluation of the

probabilities is required to increase the effectiveness of the

proposed approach.

(a) Reference (b) Trial 1 (c) Trial 2

Fig. 11. Reference and visibility results for 2 simulation trials.

Fig. 12. Histogram: visibility for pixel (0,0) in 265 simulation trials.

VII. CONCLUSIONS

Practical algorithms and implementations of ray casting for

visibility testing and occlusion from an orthographic camera

based on quantum algorithms are proposed. These have been

evaluated both via simulation of a quantum machine, indicative

of future quantum computing capabilities, and in a simplified

form on a real quantum computer. While these implementa-

tions are not yet fully fledged and further work is required to

increase the probability of selecting intersecting primitives,

the results show the potential of quantum computation for

computer graphics through a reduction of time complexity for

core operations in a rendering pipeline. Challenges, w.r.t. ray

casting, include improvements on size and reliability at the

hardware level and handling of more general geometric setups

at the algorithmic level.

As future work, we intend to investigate quantum counting

schemes to estimate the number of iterations required for

Grover’s algorithm. We aim to support generalised geometric

setups, such as triangles and arbitrary ray directions. However,

this will likely require more qubits and deeper circuits, and,

consequently, noise tolerance in quantum algorithms for graph-

ics, which might, eventually, be achieved by using quantum

error correction schemes.

REFERENCES

[1] R. P. Feynman, “Simulating Physics with Computers,” International
Journal of Theoretical Physics, vol. 21, no. 6, pp. 467–488, 1982.

[2] D. Deutsch, “Quantum theory, the Church-Turing principle and the
universal quantum computer,” Proceedings of the Royal Society of
London, vol. 400, pp. 97–117, 1985.

[3] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proc. of the 28th Annual ACM Symposium on Theory of
Computing, STOC ’96, pp. 212–219, ACM, 1996.

[4] P. W. Shor, “Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer,” SIAM Journal on Computing,
vol. 26, pp. 1484–1509, 1997.

[5] D. Coppersmith, “An approximate fourier transform useful in quantum
factoring,” Tech. Rep. RC19642, IBM Research Division, 1994.

[6] A. de Touzalin, C. Marcus, F. Heijman, I. Cirac, R. Murray, and
T. Calarco, “Quantum manifesto: A new era of technology,” tech. rep.,
European Commission, 2016. http://qurope.eu/manifesto.

[7] E. Grumbling and M. Horowitz, “Quantum computing: Progress and
prospects,” tech. rep., Nat. Acad. of Sciences, Eng. and Medicine, 2019.

[8] A. Glassner, “Andrew Glassners Notebook: Quantum Computing - Part
1,” IEEE Computer Graphics and Applications, no. 4, 2001.

[9] A. Glassner, “Andrew Glassners Notebook: Quantum Computing - Part
2,” IEEE Computer Graphics and Applications, no. 5, 2001.

[10] A. Glassner, “Andrew Glassners Notebook: Quantum Computing - Part
3,” IEEE Computer Graphics and Applications, no. 6, 2001.

[11] R. Landauer, “Irreversibility and heat generation in the computing
process,” IBM Journal of Research and Development, vol. 5, 1961.

[12] K. Sadakane, N. Sugawara, and T. Tokuyama, “Quantum Computation
in Computational Geometry,” Interdisciplinary Information Sciences,
vol. 8, no. 2, pp. 129–136, 2002.

[13] C. Durr and P. Hoyer, “A quantum algorithm for finding the minimum,”
in in LANL e-print quantph/9607014, http://xxx.lanl.gov, 1996.

[14] S. Caraiman, “Quantum computer graphics algorithms,” Buletinul Insti-
tutului Politehnic din Iasi, Sectia Automatica si Calculatoare, vol. 62,
no. 4, pp. 21–38, 2012.

[15] M. Lanzagorta and J. Uhlmann, Quantum Computer Science. Synthesis
Lectures on Quantum Computing, Morgan & Claypool, 2009.

[16] E. R. Johnston, “Quantum supersampling,” in ACM SIGGRAPH 2016
Talks, SIGGRAPH ’16, pp. 38:1–38:1, ACM, 2016.

[17] M. Boyer, G. Brassard, P. Hayer, and A. Tapp, “Tight bounds on
quantum searching,” Fortschritte der Physik, vol. 46, no. 5, 1998.

63

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on April 05,2021 at 13:52:05 UTC from IEEE Xplore. Restrictions apply.

