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Abstract.  
The present work describes an integrated approach that leads to the develop-

ment of a new model capable of describing the tensile behavior (mode I) of fi-

ber reinforced concrete (FRC), considering the orientation of the fibers, the fi-

bers segregation along the cross-section of the FRC members and the pullout 

constitutive model of each fiber bridging the two faces of a crack.  

The possibility of the numerical model to capture the flexural behavior of non-

metallic fiber reinforced concrete members is explored by simulating the re-

sponse of polypropylene fiber reinforced concrete notched beams submitted to 

3-point bending tests. 
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1 Introduction 

The use of short and randomly distributed fibers increases concrete’s post-cracking 

tensile capacity, its ductility, energy absorption capacity and impact resistance when 

compared to plain concrete [1, 2]. Additionally, the restrain to crack opening, provid-

ed by the different fiber reinforcement mechanisms at fracture, enhances the durabil-

ity and integrity of cement based materials. The fundamental reinforcement mecha-

nism of fibers consists in the capacity of ensuring relatively high stress transfer be-

tween the faces of cracks, by restraining the degeneration of micro-cracks in meso- 

and macro-cracks, which increases the stiffness and load carrying capacity of concrete 

structures in their cracking stage, as well as their durability [3–6]. 

The fiber contribution after cracking depends mainly on the content of fibers, their 

orientation and distribution towards the potential cracks [7–10], the material and ge-

ometric characteristics of the fibers [11–13], and the quality of the concrete [14], 

which are designated as the variables that mainly affect the fiber reinforcement mech-

anisms. The present work presents the main aspects of an integrated model to predict 

the tensile behavior (mode I) of fiber reinforced concrete (FRC) by considering these 

variables in the form of a fiber orientation profile model, a fiber segregation model 
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and a fiber pullout constitutive model. It is believed that the followed approach can 

simulate more realistically the post-cracking response of FRC in comparison to the 

already available models, e.g. cohesive stress-crack width constitutive law. 

Considering that the proposed model has already shown good agreement to simu-

late the flexural behavior of steel fiber reinforced concrete elements [15], the present 

work explores the potential of the model to capture the behavior of non-metallic fiber 

reinforcements, as is the case of polypropylene fibers (PP). 

PP fibers have been used mainly in non-structural applications for limiting crack 

width due to shrinkage effects of cement-based materials. Being non-susceptible to 

corrosion, PP fibers can also be regarded as viable discrete reinforcement elements for 

the production of thin concrete elements. The relatively low elasticity modulus, ten-

sile strength and almost frictional-based reinforcing nature of PP fibers have been 

pointed out as the main arguments for preventing their use in structural applications, 

as a total or even partial replacement of conventional steel reinforcements. However, 

significant improvements have been made, not only on the material properties of PP 

fibers, but also on their surface treatment, that provide the means to develop fiber 

reinforced concrete (FRC) with toughness levels capable of being used for structural 

applications, according to the requirements of fib Model Code 2010. 

2 Integrated model for predicting flexural capacity of FRC 

structural elements 

In order to predict the flexural capacity of FRC members, a numerical tool was devel-

oped that considers the influence of the orientation and segregation of fibers along the 

cross-section of the FRC members and the pullout constitutive law of each fiber 

bridging the two faces of a crack. 

The integrated model was implemented in DOCROS, an already existing software 

for the analysis of cross-sections of R-FRC members failing in bending [16]. In 

DOCROS a cross-section is discretized in N  layers, for which is assigned specific 

constitutive laws to describe the material behavior of the layers. In this scope, the 

fiber orientation profile, fiber segregation and fiber pullout constitutive law were 

coupled to form a new material model to simulate the nonlinear material behavior of 

FRC.  

For the simulation of the tensile behavior of the FRC, a linear elastic stress-strain 

response was considered, up to tensile strength, ctf , is reached. For the post-cracking 

tensile response of FRC, the contribution of the fiber pullout resistance,  P w  , was 

added to the post-cracking residual strength of FRC matrix,  ct w , namely: 

 
 

 
j j

j j j

ctj j

P w
w

b t
  


  (1) 
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where jb  and jt  are, respectively, the width and thickness of the generic thj  layer 

that discretizes the cross-section, and jw  is the crack width at the level of the geomet-

ric center of the thj  layer. 

The adopted stress-crack width relationship of the concrete matrix is based on the 

model presented in [20].  

For the usual fiber dosages used in FRC’s, its compressive behavior is similar to 

the one observed in plain concrete. Therefore, the simulation of the behavior of FRC 

in compression was done by adopting the model proposed in [17]. 

2.1 Fiber orientation profile model 

The model for predicting the distribution of orientation angles of the fibers, i , is 

based on the definition of an orientation factor,  . The orientation factor corresponds 

to the average length of the projection of all fibers crossing a crack plane on its or-

thogonal direction, divided by the fiber length [18]. The fiber orientation factor can 

vary between 0.0 and 1.0, corresponding, respectively, to fibers parallel and orthogo-

nal to the analyzed cross-section (herein representing the crack plane) [19]. The fiber 

orientation factor relates the theoretical number of fibers, 
thN , contained in the con-

crete medium with the number of fibers to be encountered in a cross-section, 
fN , 

according to the expression [20]: 

 sec
f th f

f

A
N N V

A
       (2) 

where secA  is the cross-section area of the FRC element, 
fA  is the cross sectional area 

of a fiber, and 
fV  is the fiber volume dosage. 

The fiber orientation profile model is based on the work of [18], where the distri-

bution of the orientation of the fibers in a cross-section is arranged in discrete inter-

vals, n  , and the number of fibers within each orientation angle interval, 
, if

N


 is 

determined according to the expression: 

  , i
i ff

N C N


    (3) 

where  iC   is the ratio between the number of fibers within each interval range 

with a mean orientation angle i  and the total number of fibers in the cross-section. 

The parameter  iC   can be determined by the expression [18]: 

      i i REC f F      (4) 
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where  if   is the frequency of fibers within the interval of orientation angles 

2i i   , 90i n    , considering a Gaussian law to describe the frequency 

distribution, and  REF   is a coefficient to account to the error resultant of adopting 

discrete ranges of fiber orientation angles rather than considering a continuous func-

tion, which is determined with Eq. (5). 

 
1.29 0.38 ; 0.75

1.0 ; 0.75
REF

 



  
 


 (5) 

Based on the orientation factor is possible to determine the average orientation angle 

of the fibers in the cross-section, 
m , and the corresponding standard deviation, 

 m  , using the following equations [18]: 

    arccos 180 ºm     (6) 

      90 1 ºm        (7) 

The methodology adopted to determine the fiber orientation factor,  , is based on the 

work of Krenchel [20] for stiff fibers. Due to the wall effect on the orientation of the 

fibers, the cross-section of the FRC member is divided in three zones with different 

orientation factors (Fig. 1). The fiber orientation factor of the cross-section is deter-

mined by the expression: 

 
        2

1 2 3f f f f f fb l h l l b l h l l

b h

  


            
 




 (8) 

where 
fl  is the length of the adopted fiber type, and  1,2,3z z   is the fiber orien-

tation factor for each zone of the cross-section.  
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Fig. 1. Zones of cross-section for the determination of the fiber orientation factor due to wall 

effect. 

The values of the orientation factor for each zone of the cross-section are based on 

previous research, namely: 
1 0.50   [21, 22]; 

2 2   [22]; 3 0.84   [21].  

2.2 Fiber segregation model 

In order to simulate the fiber segregation phenomena that can occur during FRC cast-

ing, a segregation model is proposed, that assumes a linear variation of the fiber’s 

distribution along the depth of the cross-section. The model solely defines the segre-

gation factor,  , varying between -1.0 to +1.0. Considering the thickness 

 1,...,jt j N  and depth of the geometric center of each layer of the cross-section 

 1,..,jd j N , the number of fibers in each layer is determined by the following 

expression: 

 1 ; 1,...,
j j

j top bot j

f f f

d d
N N N t j N

h h

  
       

  
 (9) 

where h  is the cross-section height, 
top

fN  and 
bot

fN  are, respectively, the number of 

fibers at top and bottom faces of the cross-section that are determined according to: 

  1
ftop

f

N
N

h
     (10) 

  1
fbot

f

N
N

h
    (11) 

where fN  is the total number of fibers in the cross-section. 
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For a homogenous distribution of the fibers in the cross-section, the segregation 

factor assumes a value of 0  , and 
top bot

f fN N . If 1.0   is assumed, 0top

fN  , 

while 0bot

fN   if 1.0   . 

2.3 Fiber pullout constitutive model 

The considered fiber pullout constitutive model is based on the Unified Variable En-

gagement Model (UVEM) proposed by [12, 23, 24] for steel fiber reinforced concrete 

(SFRC). The UVEM combines Mode I and Mode II fracture process of SFRC. The 

present section presents the main aspects of the proposed model, while further details 

can be obtained elsewhere [15]. 

The proposed model adopts an uniform bond strength, b , along the fiber embed-

ded length that is a function of the slip displacement of the fiber. The adopted bond 

strength vs. slip model (
,0b  ), illustrated in Fig. 2a, is idealized for the pullout 

response of an aligned fiber ( 0º  ). The bond strength vs. slip model is defined by 

the following four parameters (Fig. 2a and Eq. (12)): the peak bond strength, 
, ,b o p ; 

the slip corresponding to the peak bond strength, 
p ; and the exponents   and  , 

which define the 
,0b   variation in its pre-peak and post-peak stage. 
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p
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


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



  
      

 
 
    

  

 (12) 
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Fig. 2. a) Idealized bond stress vs. slip ( ,0b  ) for the pullout response of an aligned fiber. 

b) Definition of fiber bending angle,  . 

In order to consider the snubbing effect in the pullout resistance of the fiber, the ex-

pression presented in [24] is adopted: 
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     3

,0 0.25b b        (13) 

where   is the fiber bending angle, being defined as the angle between the fiber lon-

gitudinal axis and pullout force direction (Fig. 2b). For Mode I fracture, fiber bending 

angle is equal to the fiber orientation angle (   ). 

The model admits that all the fiber slippage from the matrix occurs from the short-

er embedded length of the fiber, and the slip between the longer embedded part of the 

fiber and its surrounding matrix is negligible. This assumption leads to the slip of the 

shorter embedded length being equal to the crack opening displacement of the cimen-

titious matrix. As illustrated in Fig. 3, the pullout force of a fiber with an orientation 

angle i , 
i

P , corresponding to a crack opening displacement, w , is equal to: 

      ,,
i f b i bf oP w d w L w           (14) 

where 
fd  is the diameter of the fibers; 

b  is the average fiber bond strength deter-

mined according to Eq. (13), function of the crack width and orientation angle of the 

fiber; 
,bf oL  is the fiber embedment length that is equal to its initial value minus the 

crack opening displacement. For the initial value of the fiber embedment length, 

which corresponds to a crack width equal to zero ( 0w  ), it is assumed that 

,bf oL = 4fl  for the shortest embedment side, considering that it has been verified to 

be the average length of embedment of the fibers according to the work of [25]. 

P

b
i


i

L bf,o

w

df
 

Fig. 3. Pullout force of a fiber with the orientation 
i . 

During the pullout process, fibers may be susceptible to rupture, particularly in the 

case of the most inclined fibers. The present model considers that a fiber rupture if the 

tensile stress, 
f , reaches the effective ultimate tensile strength of the fiber, fu . The 

effective ultimate tensile strength of the fibers is determined through the expression 

considered in the UVEM model, namely [24]: 

 
max2

fu fu


 


 


  (15) 

where fu  is the fiber tensile strength. 
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The failure criterion of the fibers with circular (or equivalent circular in case o non 

perfectly circular, such is the case of the adopted PP fibers in the present work) cross-

section is verified by the following expression: 

 
 ,4 b bf o

fu f

f

L w

d


 

 
    (16) 

Considering that the cross-section of a FRC member is discretized in N  layers 

( 1,...,j N ), and that the fiber orientation domain is divided into n   intervals, at 

the thj  cracked layer, the pullout resistance is equal to: 

    
1

i

n
j j

i

P w P w








  (17) 

    , ,,i i

j j

f bu i bf of
P w N d L w
 

       (18) 

where  
i

jP w


 is the pullout resistance of the 
, i

j

f
N


 fibers with a mean orientation 

angle i  at the thj  cracked layer, determined according to the fiber orientation and 

segregation models. 

3 Assessment of the predictive performance of the model 

The predictive performance of the proposed model is assessed by comparing the flex-

ural response of polypropylene fiber reinforced concrete (PPFRC) notched beams 

submitted to 3-point bending tests, according to [26], with the numerical response 

determined with software DOCROS. Although the proposed numerical model was 

originally proposed to simulate the flexural behavior of steel fiber reinforced concrete 

elements, this research work verifies if it has potential to be applicable to other non-

metallic discrete fibers reinforcements in concrete. 

The PPFRC composition presented in Table 1 was considered, while two mixes 

with different fiber reinforcement dosages were studied: 6.0 and 3.0kg/m3. 

A new type of PP fibers for structural reinforcement that is being developed in the 

scope of a R&D project carried out by Exporplás and CiviTest, is used, which has 

0.7mm of equivalent diameter, length equal to 54mm, modulus of elasticity of 6GPa 

and ultimate tensile strength of 500MPa. 

Table 1. PPFRC mix composition. 

Portland cement CEM I 

52.5R 

[kg/m3] 

Fly ash 

[kg/m3] 

Aggregate 

6/14mm 

[kg/m3] 

Aggregate 

0/4mm 

[kg/m3] 

Aggregate 

0/2mm 

[kg/m3] 

Superplasticizer 

[l/m3] 

Water 

[l/m3] 

330.0 20.0 750.0 885.0 300.0 7.2 140.0 
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In order to characterize the relevant mechanical properties of both PPFRC mixes that 

were considered in this study, an experimental program was carried out to determine 

the concrete compressive strength (NP EN 12390-3:2009[27]), modulus of elasticity 

(NP EN 12390-13:2013 [28]) and post-cracking residual flexural strength (EN 

14651:2005 [26]) at the age of 28 days. The results of the mechanical characterization 

of the PPFRC are summarized in Table 2. 

Table 2. Average values of the mechanical properties of the PPFRC mixes (Legend: † - Coeffi-

cient of variation). 

Mixture 
cmf  

[MPa] 

cmE  

[GPa] 

Lmf  

[MPa] 

1R mf  

[MPa] 

2R mf  

[MPa] 

3R mf  

[MPa] 

4R mf  

[MPa] 

Mix with 6kg/m3 

of PP fibers 

35.1 

(1%)† 

24.9 

(4%)† 

3.25 

(7%)† 

1.88 

(20%)† 

1.97 

(26%)† 

2.04 

(27%)† 

2.07 

(27%)† 

Mix with 3kg/m3 

of PP fibers 

33.4 

(1%)† 

25.6 

(1%)† 

3.70 

(7%)† 

1.48 

(21%)† 

1.41 

(30%)† 

1.44 

(34%)† 

1.40 

(31%)† 

Since at the present stage of the research activities, the local bond-slip relationship 

(Fig. 2a) of the used PP fibers are not yet available from experimental tests (by adopt-

ing inverse analysis with the results from fiber pullout tests), the parameters that de-

fine this local law were obtained by a fitting procedure implemented in DOCROS, 

that resorts to the nonlinear least squares fitting routine MPFIT [29]. The data consid-

ered in the fitting procedure corresponded to the average of the moment vs. crack tip 

opening displacement (CTOD) relationship that was derived from the experimental 

results of 3 samples submitted to the bending tests. 

Fig. 4a and 4b present the comparison between the experimental and numerical re-

sponse of the force vs. CTOD relationship of the PPFRC prisms submitted to 3-point 

bending, while Fig. 4c presents the bond stress vs. slip relationship, 
,0b  , for the 

pullout response of the aligned PP fibers obtained by the fitting procedure, for each 

PPFRC mix. As demonstrated in Fig. 4, the proposed model captures with very good 

agreement the flexural behavior of the PPFRC prisms.  

To be noticed that the derived peak bond strength of pullout response of fibers is 

dependent on the fiber dosage of the PPFRC, with the peak bond strength being in-

versely proportional to the employed fiber dosage. This phenomenon points to a det-

rimental effect of the increased number of fibers on the pullout response of each indi-

vidual fiber. 
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Fig. 4. Experimental and numerical model comparison of force vs. CTOD relationship for 

PPFRC with: a) 6kg/m3 of PP fibers; b) 3kg/m3 of PP fibers; c) Derived bond stress vs. slip 

( ,0b  ) of the pullout response of the aligned PP fibers. 

4 Conclusions 

This study presents a new integrated model capable of describing the flexural behav-

ior of 1D type FRC members considering the orientation of the fibers, the fiber segre-

gation along the cross-section of these members, and the pullout constitutive model of 

each fiber bridging the two faces of a crack. 

Nonetheless the proposed numerical model has been originally developed to simu-

late the behavior of steel fiber reinforced concrete, it is shown that it can also capture 

with very satisfactory accuracy the behavior of concrete reinforced with non-metallic 

discrete fibers, as is the case of the studied PP fibers. 

The accuracy of the model would greatly benefit from the characterization of the 

pullout response of aligned and inclined fibers, including a more in-depth study re-

garding the influence of the number of fibers bridging a crack on the pullout response 

of each individual fiber. 

For the particular case of members made by concrete reinforced with flexible fibers 

such is the case of PP fibers), an upgrade to the fiber orientation and distribution 

model is under development, which will also contribute to improve the predictive 
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performance of the integrated model to simulate the flexural behavior of PPFRC 

members. 
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