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A B S T R A C T

Fibre-reinforced polymer (FRP) is free from corrosion problem and is a viable alternative reinforcement material
for concrete structures in lieu of steel reinforcing bars. Since FRP has lower elastic modulus compared to steel,
the serviceability aspect of FRP reinforced concrete (FRP-RC) members should be particularly considered in the
structural analysis and design. This study addresses the deformation analysis of FRP-RC flexural members with
thorough consideration of the tension-stiffening phenomenon in post-cracking state. The approaches for ana-
lyzing the tension-stiffening flexural response of FRP-RC beams are presented. These include the use of empirical
or theoretical models to compute effective flexural stiffness, the use of finite element method in conjunction with
nonlinear constitutive material models, and the use of tensile stress block in combination with member analysis.
Among them, the latter is a relatively simple analysis approach. Aiming for serviceability assessment of FRP-RC
beams in structural engineering practice to circumvent sophisticated theoretical approaches and constitutive
models, parametrized tensile stress block is derived based on tension stress fields computed from finite element
analysis, and is proposed for use in member analysis for prediction of deflections. Four FRP-RC beam specimens
tested in the literature are analyzed to verify the proposed tensile stress block. Close agreement between the
experimental and analytical results is achieved, thereby endorsing the applicability and reliability of the pro-
posed method.

1. Introduction

The use of steel as reinforcement material in reinforced concrete
(RC) structures is widespread in the construction industry, however, the
steel corrosion problem is a major factor impairing the durability of RC
structures, and it invokes costly repair and maintenance works. The
structural effects of corrosion of steel bars are two-folded. Firstly, the
effective area of reinforcement for resisting load will decrease.
Secondly, as the corrosion product is more voluminous than un-cor-
roded steel, the volume expansion will induce bursting stresses in
concrete that leads to cracking, which would allow ingress of moisture
and chemicals, by further accelerating the corrosion. Being corrosion-
free, the use of fibre-reinforced polymer (FRP) reinforcing bars is a
viable alternative reinforcement material option in structural design
and applications [35,83]. Apart from their chemically inert character-
istics, FRP has additional advantages over conventional steel re-
inforcement, including high tensile strength, high strength-to-weight

ratio, magnetic neutrality, and ease of handling. Moreover, with the
increasing popularity of utilising FRP in construction that leads to drop
in material cost, in tandem with the surging of price of steel, the cost
premium of FRP relative to steel is narrowing down and vanishing. This
offers further commercial initiatives of using FRP reinforcement. On the
other hand, there are disadvantages of FRP reinforcement, including
relatively low modulus of elasticity and low ductility that may ad-
versely affect the structural performance, especially in the aspect of
serviceability to which attention should be paid [39].

From practical engineering design viewpoint, though the design
methodology of FRP reinforced concrete (FRP-RC) beams has been es-
tablished and incorporated in dedicated design manuals and standards
such as fib (Fédération international du béton) Bulletin 40 [28] and
American Concrete Institute ACI 440.1R-15 (ACI-440) [3], the design
philosophy is largely based on ultimate strength capacities while fur-
ther research is still needed for the serviceability issues. The deforma-
tion analysis and deflection calculation of FRP-RC beams are relatively
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complicated and these present challenges to structural engineers. It is
understood that upon cracking of a RC member, the tension force is
entirely resisted by the reinforcement at the cracked sections. Never-
theless, the intact concrete between adjacent cracks is still able to carry
certain level of tensile stresses and contribute to the stiffness of concrete
member. Such tension-stiffening phenomenon has been widely in-
vestigated in conventional steel RC flexural members [20,40,79,64,62].
In contrast with steel reinforcement, common FRP reinforcement typi-
cally produced with glass fibre has remarkably lower modulus of elas-
ticity [42], meaning that at the same tensile stress level, the elongation
of FRP reinforcement is much greater than that of steel reinforcement.
Moreover, the bond stiffness and bond strength between FRP re-
inforcement and concrete are considerably lower than those between
steel reinforcement and concrete [4,6]. Therefore, FRP reinforcement is
expected to exhibit larger elongations at cracked sections. This implies
that larger deformations and curvatures would be sustained by the FRP-
RC member. It has been reported in the literature that FRP-RC beams
exhibited lower flexural stiffness compared to steel RC beams [63].

For the purpose of accounting for the tension-stiffening effect in RC
members, sophisticated constitutive material models can be integrated
into finite element analysis, which is versatile and able to account for
the variable nonlinear response of cracked structural members. Various
models had been put forward to simulate the mechanical behaviour of
concrete under multi-axial stress states [29,37], stress-crack width re-
lation taking into account the fracture energy dissipation of crack in-
itiation and propagation [19,1], and bond stress-slip relation taking
into account the stress-transfer along the development length of re-
inforcement [27,18]. Albeit the high accuracy achievable by these
models, they might not be suitable for day-to-day structural design
works due to the large number of parameters required, whose valuation
may require dedicated and specialized laboratory testing and is not
straightforward. Moreover, the finite element method requires sub-
stantial manual effort for pre- and post-processing including estab-
lishing the numerical model and interpreting the numerical results.
Apart from finite element analysis using sophisticated models, there are
mainly two fundamental and practical approaches as described in the
following. The first approach employs empirical or theoretical models
to determine the effective flexural stiffness, which accounts for the
reduction in stiffness of beam due to concrete cracking. The second
approach incorporates the tensile stress block, which represents the
integral tensile deformational characteristics of cracked RC, into
member analysis. Compared to finite element method, member analysis
is a relatively simple approach, and is particularly suitable for structural
engineering practice.

Under the first approach, the flexural stiffness reduction due to
cracking of RC beams can be reflected either by empirical or semi-
empirical equations of effective moment of inertia, or by close-form
tension-stiffening models or moment-curvature relationships such that
the bond slip of reinforcement can be explicitly accounted for. Branson
[16,17] proposed empirical equation of effective moment of inertia for
the prediction of moment-curvature and load-deflection responses. The
equation for effective moment of inertia stipulated in American Con-
crete Institute design code ACI 318M-14 [2] has been based on Bran-
son’s equation. While this approach is able to yield reasonable predic-
tion of deflections in steel RC beams, its applicability to FRP-RC beams
has to be confirmed by research. Experimental results of FRP-RC beams
revealed that Branson’s equation would underestimate beam deflections
after cracking [82,13]. To extend the scope of applications of Branson’s
equation, a number of researchers [11,56,32,12,14,15] had introduced
various parameters to modify Branson’s equation to fit with the ex-
perimental results. However, previous attempts to modify Branson’s
equation had focused on fitting with respective sets of experimental
results in particular, and a more universally applicable equation of ef-
fective moment of inertia of FRP-RC beams has been in lack. To for-
mulate design guideline for FRP-RC beams, a modified version of
Branson’s equation has been recommended by ACI-440 [3].

In employing the effective moment of inertia, perfect bond is as-
sumed with respect to the kinematic compatibility between concrete
and reinforcement in any cross-section. Therefore, bond slip is either
neglected or indirectly considered through adjusting the constitutive
stress-strain relationships in the analysis [45]. To explicitly account for
the bond slip of reinforcing bars along cracked sections, close-form
tension-stiffening model and moment-curvature relationships have
been derived by various researchers by taking into account various
idealized bond stress-slip laws. For example, Marti et al. [55] assumed
piece-wise constant bond stress-slip law and derived the tension chord
model for both direct tension and flexural members. Kwak and Kim
[44] assumed constant bond stiffness and incorporated empirical ex-
pression of plastic hinge length to derive a moment-curvature relation
for RC flexural members. Castel et al. [21] assumed plastic bond be-
haviour and derived the effective tension active cross-section of RC
beams. The research results for conventional steel RC members pro-
vided a basis for further extension to FRP-RC members.

Under the second approach, the tensile stress block is incorporated
into member analysis. The tensile stress block for RC beams reflects the
mechanical property of reinforced concrete in flexural tension zone (the
tensile stress block is not a material model of plain concrete) for ac-
counting the tension-stiffening effect [46]. Different tensile stress
blocks have been devised for steel RC beams in the literature, for ex-
ample, Schnobrich [74], Carreira and Chu [20], Beeby et al. [10], and
Ng et al. [64]. However, research of the tension-stiffening phenomenon
of FRP-RC beams is still limited in the sense that tensile stress block for
deflection calculation of FRP-RC beams has not been recommended in
any prevailing design code or standard. It is noteworthy to remark that
Nayal and Rasheed [63] postulated a tensile stress block from adapting
the multi-linear tensile stress block developed by Gilbert and Warner
[33] for concrete slabs reinforced with steel bars, further research is
nevertheless needed to define the geometry of the descending branch
after first cracking.

From practical viewpoint, member analysis with the use of an ap-
propriate tensile stress block is suggested for serviceability assessment
[50,51] to circumvent the use of sophisticated theoretical models and
constitutive models yet to achieve reasonably high accuracy. The pre-
sent study examines the stresses and deformations of FRP-RC beams in
the pre-cracking and post-cracking regime, with the aim to develop
parametrized tensile stress block for analyzing the serviceability of FRP-
RC beams. To verify the proposed tensile stress block, four FRP-RC
beam specimens tested in the literature are analyzed. The numerical
results are found to be in good agreement with the experimental results,
thereby endorsing the applicability of the tensile stress block. Through
this research, the use of the proposed tensile stress block for FRP-RC
beams in conjunction with member analysis is validated and is ad-
vocated to the structural design practice.

2. Effective flexural stiffness

2.1. Empirical or semi-empirical effective moment of inertia

The effective moment of inertia recommended in ACI Committee
318 [2] is based on the semi-empirical equation proposed by Branson
[16] for evaluating the deflection of cracked RC beams. The ACI-318
equation is given by:
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where Ie is the effective moment of inertia, Ig is the transformed gross
section moment of inertia, Icr is the transformed cracked moment of
inertia, Mcr is the cracking moment and Ma is the maximum bending
moment applied to the beam.

Subsequently, Benmokrane et al. [11] introduced two empirical
reduction factors λ1 and λ2 to Branson’s equation in order to correlate
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with their experimental results of FRP-RC beams. The modified equa-
tion is expressed as:
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In Eq. (2), λ1 and λ2 were determined to be 7.0 and 0.84, respec-
tively. The experimental investigation carried out by Al-Sunna et al. [5]
showed that the reduction factor λ1 is dependent on the reinforcement
ratio and could be expressed as an exponential function of the re-
inforcement ratio and the modulus of elasticity of FRP.

Gao et al. [32] further modified Eq. (2) with another reduction
factor to improve its agreement with additional experimental results in
the literature. The modified equation is given by:
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The reduction factor ψd is to account for the differences in the
moduli of elasticity and bond characteristics between FRP and steel
reinforcement. In Eq. (4), ψb is a bond-dependent coefficient and was
proposed to be set as 0.5, Ef is the modulus of elasticity of FRP re-
inforcement and Es is the modulus of elasticity of steel reinforcement.
Theriault and Benmokrane [78] and Masmoudi et al. [56] compared Eq.
(3) with further experimental results and consequently suggested the
value of ψd to be equal to 0.6, so as to achieve good agreement with the
experimentally obtained flexural responses. Bischoff and Gross [15]
recommended the value of ψd to be evaluated as 0.2ρt/ρb, where ρt is the
FRP tension reinforcement ratio and ρb is FRP balanced reinforcement
ratio. On the other hand, Bischoff and Gross [15] further suggested Eq.
(5) for computing the effective moment of inertia, where ψf is equal to
0.44 for FRP-RC beams.

=
− −

⩽
( )( )

I I

ψ
I

1 1
e

cr

f
I
I

M
M

g2
cr
g

cr
a (5)

It is interesting to note that in the 2006 version of ACI-440, Eq. (3)
and Eq. (4) were recommended with the value of ψb suggested to be
equal to 0.5 for all types of FRP reinforcement; whereas in the 2015
version of ACI-440, Eq. (5) was recommended with the value of ψf
suggested to be equal to (1.72–0.72Mcr/Ma). The accuracy of using the
effective moment of inertia to predict deflections of FRP-RC beams is
highly dependent on adopted values of the empirical coefficients. More
complicated expressions of the coefficients have been put forward by
Mousavi and Esfahani [61], who performed regression analysis of load
test results of 55 FRP-RC beams from the literature.

2.2. Theoretical tension-stiffening model

As discussed above, different bond stress-slip laws were employed
by various researchers [55,44,21] to derive theoretical tension-stif-
fening models for RC flexural members. However, there are commonly
encountered challenges in the development of tension-stiffening model
or moment-curvature relation for FRP-RC beams. Since the bond
characteristics of FRP reinforcement and steel reinforcement are dif-
ferent, the theoretical models for conventional steel RC beams are not
directly applicable to FRP-RC beams. Research had been performed
previously on using more realistic yet complicated bond laws to derive
tension-stiffening models for RC axial tension member. For example,
Salem and Maekawa [75] used a bond slip law described by logarithmic
curves and introduced the bond deterioration zone to account for lo-
calized damage in their derivation of tension-stiffening model for axial
members. Noh [71] employed a bond slip law with curvilinear

ascending and descending branches to derive tension-stiffening model
for RC panels. Lee et al. [52] considered the post-yield behaviour and
rupture criterion of reinforcing bars in axial members. These close-form
models have predicted well the stiffness and deformations of steel RC
members. However, it must be pointed out that the tension-stiffening
models for axial tension members are not the same as those for flexural
members, due mainly to the absence of curvature effect in axial ele-
ments, which will be later explained.

As far as the tension-stiffening model for FRP-RC members is con-
cerned, Sooriyaarachchi et al. [77] conducted experimental study of
FRP-RC tensile specimens and explored the feasibility of adapting ten-
sion-stiffening models for steel RC members to FRP-RC members. Baena
et al. [7] referred to the bond law by Eligehausen et al. [25] and pro-
posed a tension-stiffening model for FRP-RC members subjected to axial
tension. Mazaheripour et al. [60] employed multi-linear bond stress-
slip relation in combination with exponential functions for describing
the spatial variations of bond slip along different stages of debonding,
and derived a theoretical tension-stiffening model. The model is com-
prehensive and is applicable to hybrid FRP and steel reinforced normal
concrete and steel fibre-reinforced concrete members. However, as
discussed above, the tension-stiffening models for axial FRP-RC mem-
bers cannot be directly applied to flexural FRP-RC members. Such
curvature effect is illustrated with a beam section as shown in Fig. 1.
Even if the beam is subjected to pure bending, the intact concrete be-
tween cracks would sustain a shearing effect that contributes to the
tension-stiffening of the member. This is visualized by considering the
concrete element in Fig. 1. When subjected to curvature, the top and
bottom fibres of the concrete element would deform to different
lengths. In the cross-section in Fig. 1, the concrete element is depicted
as a slice, over which interfacial shear stress is developed to equilibrate
the difference in tension forces across the vertical height of the concrete
element. Therefore, dedicated research on the tension-stiffening phe-
nomenon in flexural FRP-RC members is necessary, as aimed in this
study.

3. Constitutive model for finite element analysis

3.1. Model for concrete

Concrete is modelled as a biaxial material with the tensile and
compressive strengths in the principal directions determined from the
biaxial strength envelope formulated by Kupfer and Gerstle [43]. The
dual-directional fixed smeared crack model is adopted [31,76,23]. Be-
fore cracking, the principal material axes coincide with the principal
directions. After cracking, the principal material axes are frozen with
the major and minor principal axes set respectively as being orthogonal
and tangential to the crack plane. The attainment of cracking tensile
strain and fracture energy of concrete, whichever is greater after
transforming in terms of tensile stress, is adopted as the cracking cri-
terion [68,54]. Through the use of equivalent uniaxial strains that in-
corporate the Poisson effect, the biaxial behaviour of concrete can be
considered in terms of two independent uniaxial stress-strain relations
[24]. The equivalent uniaxial strains are computed from the principal
strains as given by the following equations, which cater for the inter-
action between two principal axial directions [54,84].
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−
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ε ν ε1
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( )e1
1 2

1 2 2 (6a)

=
−

+ε
ν ν
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( )e2
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where εe1 and εe2 are the equivalent uniaxial strains, ε1 and ε2 are the
principal strains, ν1 and ν2 are the Poisson’s ratios, and subscripts 1 and
2 denote quantities in the major and minor principal axes, respectively.
Through the notion of equivalent uniaxial strains, each of the principal
stresses σ1 and σ2 can be represented as a single variable function of εe1
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and εe2, respectively.
Along the principal axes with respect to the equivalent uniaxial

representation, the stress-strain relation of concrete in compression
follows that proposed by Saenz [73], whereas the stress-strain relation
of concrete in tension is according to that proposed by Guo and Zhang
[36]. Eq. (7) expresses the Saenz’s equation that describes the re-
lationship between concrete compressive stress σc and concrete com-
pressive strain εc. In this equation, E0 is the initial elastic modulus, Eco is
the secant modulus at peak compressive stress, and εco is the strain at
peak compressive stress.
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Eq. (8) expresses the equation given by Guo and Zhang [36], where
fto is the peak tensile stress, and εto is the strain at peak tensile stress.
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The principal stresses (or more precisely, the stresses along the di-
rections of principal material axes) σ1 and σ2 are obtained by sub-
stituting the corresponding equivalent uniaxial strain into the re-
spective stress-strain relation of Eq. (7) or (8), so that the secant moduli
Ec1 and Ec2 can be respectively evaluated as σ1/εe1 and σ2/εe2. The
constitutive matrix ′D[ ]c of concrete element in the local coordinate
system is formulated as per Darwin and Pecknold [24], as given by:
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In Eq. (9), for uncracked concrete, the Poisson’s ratios ν1 and ν2 can
be taken as the initial Poisson’s ratio ν0. For cracked concrete, the
Poisson’s ratio along the major principal material axis is taken as zero,

and that along the minor principal material axis is dependent on the
biaxial stress state as follows. If the minor principal material axis is in
tension, ν2 is taken as ν0; whereas if the minor principal material axis is
in compression, ν2 is evaluated per Eq. (10) recommended by Darwin
and Pecknold [24]. In any case, the Poisson’s ratio is no greater than 0.5
for incompressible material.
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Regarding the element coordinates, it should be noted that the local
coordinate system follows the principal material axes as discussed
above. Since the directions of principal material axes are fixed upon
cracking, shear stresses can develop in cracked concrete elements. In
Eq. (9), G denotes the shear modulus. Before cracking, the shear
modulus is taken as the initial elastic shear modulus G0= E0/2(1+ ν0).
After cracking, the shear modulus is taken as βG0, where β is a di-
mensionless shear retention factor to account for the effect of aggregate
interlock as expressed in Eq. (11) [38,49]. In the equation, β0 can be
taken as 0.4, as suggested by Walraven [80] based on test results of
shear transfer.
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The above material modelling of concrete is implemented with the
use of plane stress constant strain triangular finite elements. The con-
stitutive matrix D[ ]c of concrete in the global coordinate system is ob-
tained by coordinate transformation.
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where [T] is the transformation matrix, c denotes θcos , s denotes θsin ,
and θ is the angle between the global and the local coordinate systems.

Fig. 1. Curvature effect on tension-stiffening.
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3.2. Model for FRP reinforcement

The FRP reinforcement is regarded as behaving in a linearly elastic
manner up to failure. The compressive strength of FRP reinforcement is
generally lower than the tensile strength [41]. Therefore, the stress-
strain relations of FRP reinforcement subjected to tension and subjected
to compression are considered separately. Denoting Eft and Efc be re-
spectively the modulus of elasticity of FRP reinforcement under tension
and compression, ffut and ffuc be respectively the ultimate tensile and
compressive strengths of FRP reinforcement, the constitutive modelling
of FRP reinforcement is formulated as follows:
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FRP materials exhibit brittle behaviour. Beyond reaching the ulti-
mate tensile or compressive strength, the FRP reinforcement is con-
sidered as failed, and the stiffness will be assigned an extremely small
value to while the element topology and connectivity with the bond
interface element are preserved. The above material modelling of FRP
reinforcement is implemented with the use of two-node discrete bar
finite elements. The constitutive matrix of FRP reinforcement ′D[ ]f in the
local coordinate system is formulated from the secant modulus Ef and is
given by Eq. (14), and then the constitutive matrix D[ ]f of FRP re-
inforcement in the global coordinate system is obtained by coordinate
transformation.
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3.3. Model for bond

The bond between FRP reinforcing bar and concrete is modelled
with the use of bond interface elements with duplicated nodes, each
represents the degrees of freedom for FRP reinforcement and the de-
grees of freedom for concrete, respectively. The difference in dis-
placements among the duplicated nodes in the longitudinal direction of
FRP reinforcement represents the bond slip. The same technique has
been applied to the modelling of steel RC elements by Ng et al. [66,67].
The concrete-FRP reinforcement bond behaviour has been studied by
various researchers such as Cosenza et al. [22], Achillides [4], Focacci
et al. [30], Baena et al. [6], Mazaheripour et al. [57–59], Pepe et al.
[72], Lin and Zhang [53], Fava et al. [26] and Yan et al. [81]. A number
of bond stress-slip models have been put forward based on pull-out test
results of FRP reinforcement bar. For example, the bond model by
Cosenza et al. [22] consists of nonlinear ascending branch and linear
descending branch with cut-off equal to the frictional resistance of
bond. The bond model is formulated as:
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where τ is the bond stress, s is the bond slip, τp is the peak bond stress, sr
is the slip at peak bond stress, r is the exponential index of ascending
curve, p is a parameter for softening behaviour of bond, sf is the slip at
transition between softening and remaining frictional resistance of
bond, and τf is the frictional resistance of bond. The valuation of
parameters is based on curve-fitting of experimental data. As examples

of parameter values, for sand particles-coated glass fibre-reinforced
polymer bars, the average values of sr, r and p reported by Cosenza et al.
[22] were 0.07, 0.14 and 3.11, respectively. The frictional resistance of
bond is taken as 0.3(fc)0.5 and the initial bond stiffness is taken as
200MPa/mm which was approximately the average value measured
from pull-out tests by Mazaheripour et al. [57,59].

Upon bond slip occurs, the bond stress τ is obtained by substituting
the bond slip s into Eq. (15) and the secant bond stiffness kb is evaluated
as τ/s. The above material modelling of concrete-FRP reinforcement
bond is implemented with the use of four-node Goodman-type bond
interface finite elements with infinitesimal thickness [34]. Each ele-
ment has two duplicated nodal pairs that share the same un-deformed
coordinates but possess independent degrees of freedom to cater for
bond slip. The bond element stiffness matrix ′K[ ]b in the local coordinate
system is derived as:

′ = ⎡
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in which the submatrices are given by:
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In the above, pf is the total perimeter of the FRP reinforcing bars, a is
half of the length of bond element along its longitudinal direction, kn is
the normal stiffness between concrete and FRP reinforcement. Suppose
kc is the contact stiffness of concrete and kf is the contact stiffness of
FRP reinforcement at the concrete-FRP interface evaluated based on the
bearing area, the normal stiffness kn is computed as:

⎜ ⎟= ⎛
⎝

+ ⎞
⎠

−

k
k k
1 1

n
c f

1

(18)

Subsequently, the bond element stiffness matrix in the global co-
ordinate system can be obtained by coordinate transformation with
respect to the direction cosine and direction sine. For brevity, the
mathematical formulae for coordinate transformation are not contained
here. Readers may consult dedicated text [8] for the detailed for-
mulation.

3.4. Numerical approach

The constitutive models presented in the foregoing have been for-
mulated in the nonlinear finite element programme developed and re-
ported elsewhere [68,70]. Direct iteration is adopted for the solution
process based on secant stiffness of the elements. The sign convention is
taken as tension-positive and compression-negative. The loading is
applied in small increments as prescribed displacement, with the full
range of loading divided into approximately 100 incremental steps. In
each incremental step, direct iteration is performed until the change in
secant modulus in every finite element relative to the preceding itera-
tion is no greater than 2%. Specific modules for mesh generation and
for capturing the tension stress field of structural members have been
computerised [65,48] to automate the pre-processing and post-proces-
sing. The accurate and reliable performance of the nonlinear finite
element programme in analyzing RC structural members have been
fully verified and demonstrated in the previous publications
[46,47,54,67,70]. Detailed description of the capturing of tension stress
field, which is an essential step for the derivation of tensile stress block,
is contained in the next section.
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4. Determination of tensile stress block

4.1. Finite element simulation of FRP-RC beams

A series of simply-supported FRP-RC beams with different re-
inforcement ratios are analyzed by means of finite element method to
reflect their tension-stiffening behaviour. The beams have uniform
cross-section of 300mm (breadth)× 600mm (depth). The effective
depth from top of beam to the centroid of tension reinforcement is
550mm and the span is 6000mm. The FRP tension reinforcement ratio
ρft varies among 0.5%, 1.0%, 1.5% and 2.0%. Steel shear reinforcement
is provided with the ratio fixed at 0.4%. The shear reinforcement is
modelled using the smeared approach (unlike the tension reinforcement
which is modelled using the discrete approach) where its stiffness is
integrated with the concrete elements. The beams are either subjected
to single point load at its mid-span or two-point load at its third points.
Fig. 2 depicts the layout of the beams. The beams are discretised into
ten layers of finite elements over the beam height in the mesh gen-
eration process. To verify the adequacy of the mesh fineness, the ana-
lysis has been repeated with the beam height discretised into eight, ten
and twelve layers of finite elements. The resulting load versus deflec-
tion responses are basically identical (therefore only the load-deflection
response from a single mesh fineness is shown in Fig. 3) and the re-
sulting tension stress fields are highly similar. For illustration, the stress
contours in direction of major principal material axis for the beam with
0.5% FRP reinforcement ratio subject to two-point load from different
mesh refinement at 25% of peak load are depicted in Fig. 4. Dedicated
studies were also performed by Ng et al. [68] and Ma et al. [54], where
convergent results of load–displacement response and crack patterns
were obtained. Overall speaking, the mesh fineness has attained con-
vergence and the computed structural response is not altered by further
reducing the mesh size.

The properties of materials considered are typical values as follows.
For concrete, the uniaxial tensile strength ft and uniaxial compressive
strength fc are respectively 3.0MPa and 30.0MPa. The initial elastic
modulus E0 and initial Poisson’s ratio ν0 are 30.0 GPa and 0.2, re-
spectively. For FRP reinforcement, the ultimate tensile strength ffut and

Fig. 2. Layout of FRP-RC beams (dimensions in mm).

Fig. 3. Load-deflection curves from finite element analysis.
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tensile elastic modulus Eft are respectively 700MPa and 50 GPa (typical
values for glass fibre-reinforced polymer). For the bond between con-
crete and FRP reinforcement, the bar diameter and total perimeter are
back-calculated from geometry based on the assumption that the re-
quired reinforcement area is provided by two reinforcing bars of sui-
table size; the parameters sr, r and p are taken as 0.07, 0.14 and 3.11,
respectively. The peak bond stress τp is taken as 2fc0.5 and sf is taken as
sr.

The load versus mid-span deflection curves of the beams analyzed
are plotted in Fig. 3. For beams subject to two-point load, the sum of
applied loads at the two loading points is plotted. Typically, the load-
deflection curves are linear from the beginning to approximately 15%
of the peak load. Afterwards, the flexural stiffness decreases due to
cracking of the beams. Upon further increase in applied load, the gra-
dient of the curve becomes fairly constant. At approximately 80% to
85% of the peak load, the beams soften and may exhibit a moderate
(1% to 4%) drop of load resistance, as a result of extensive cracking of
concrete in the tension zone. Afterwards, the load resistance regain and
further increase at a more gentle gradient. This is followed by brittle
rupture of the FRP reinforcement at the peak load, and the beams lose
the flexural capacity. Among all beams, the peak load increases with the
tension reinforcement ratio, and the peak load of beams subjected to
single point load is approximately 67% to 72% of that of beams sub-
jected to two-point load.

To illustrate the computed structural behaviour, Fig. 5 displays the
crack pattern, reinforcement stress distribution, and bond slip variation
for the beam with ρft=0.5% subjected to two-point load at 25% of
peak load. Flexural crack first formed at mid-span and hence the cracks
are more developed there, as shown in Fig. 5(a). Both the reinforcement
stress distribution as shown in Fig. 5(b) and the variation of bond slip
along the FRP reinforcement as shown in Fig. 5(c) correspond to the
crack locations. At every cracked section, the reinforcement stress

reaches a local maximum, and the bond slip exhibits reversal in di-
rection. The above indicates the validity of the finite element analysis
results.

4.2. Tension stress field from finite element analysis

The procedures for derivation of the tensile stress block for steel RC
beams in Ng et al. [64] with proven rationality and reliability are
adopted in this study. Basically, the procedures are to determine the
representative relationship between tensile stresses and tensile strains
across different beam sections and under different service load levels.
As the first step, the tension stress field for each analyzed beam is ob-
tained. At different sections along the FRP-RC beam, the variations of
tensile stresses in concrete with the distance from neutral axis are ob-
tained from the finite element analysis. These variations of tensile
stresses can be consolidated to the tensile stress block, by plotting the
tensile stress against the theoretical tensile strain. Here, the theoretical
tensile strain refers to tensile strain value evaluated from the effective
flexural stiffness of the beam sections, in other words, with the cracks
smeared so that the flexural stiffness of the beam section changes
smoothly with the mean curvature. In theory, the theoretical tensile
strain may be evaluated as the mean curvature ϕ multiplied by the
depth from neutral axis z. However, for a cracked beam, the curvature
fluctuates between adjacent cracks. To evaluate the mean curvature of a
beam section, a short region of the beam extending one beam depth
from each side of the section is considered. The local fluctuation of
curvature over the short region with length equal to two times the beam
depth is smoothed. Firstly, the deflected shape within the short region is
fitted with a cubic polynomial curve. Secondly, the cubic polynomial is
differentiated twice with respect to the length to obtain the smoothed
curvature value as the mean curvature at the beam section considered.
Thirdly, the theoretical tensile strain is obtained as the product of mean

Fig. 4. Stress contours in direction of major principal material axis (unit in MPa).
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curvature and neutral axis depth. This yields the diagram of concrete
tensile stress versus the theoretical tensile strain.

Dependent on whether a section is cracked or uncracked as well as
its distance from the nearest cracked section, the variation of the tensile
stress with the theoretical tensile strain is rather different along the
beam. Fig. 6 schematically illustrates the stress and strain distributions
in the tension zone of beam. To obtain a representative variation of
tensile stresses, the mean tensile stress is evaluated as the smoothed
tensile stress with local fluctuations in the longitudinal direction re-
moved by considering a truncated block of the cracked beam with
length equal to the crack spacing. Suppose there are totally n-long-
itudinal sections of finite elements within the block. Firstly, the

variations of the tensile stress from finite element analysis with the
theoretical tensile strain are plotted for the n sections within the block.
Secondly, the mean tensile stress at each theoretical tensile strain level
is evaluated as the root-mean-square of the tensile stress values of the n
sections at the theoretical tensile strain level being considered. Root-
mean-square is adopted as the mean because this will result in the same
strain energy after the stress smoothing. For a beam with multiple
cracks of different heights, the theoretical tensile strain contours would
be a family of undulating curves, as depicted in Fig. 6.

The diagram of mean tensile stress versus the theoretical tensile
strain are obtained using the above method for each beam at each load
level equal to 15%, 20%, 30%, 40%, 50% and 60% of the respective

Fig. 5. Crack pattern and stress distributions.

Fig. 6. Stress and strain distributions in tension zone.
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peak load. These load levels encompass scenarios ranging from slightly
loaded condition to the entire service condition. To illustrate the result,
the mean tensile stress versus the theoretical tensile strain diagrams for
the FRP-RC beams with ρft equal to 1.5% subject to single point load
and two-point load are plotted in Fig. 7. It can be seen that at 15% of
peak load (basically uncracked), the mean tensile stress-theoretical
tensile strain curve is a straight line ascending from the origin to ap-
proach the tensile strength of concrete (due to very slight cracking, the
mean tensile stress does not reach the tensile strength but starts to
descend; nevertheless, if the element stresses are captured at the load
level right before first cracking, the resulting curve will only be a
straight line from the origin to very close to the tensile strength). At
20% of peak load, when the beam has cracked slightly, the linear as-
cending branch of the curve reaches a stress level lower than the pre-
vious peak value, and there is a short descending branch.

From 30% to 60% of the peak load, where the beam is under service
regime, the tension-stiffening phenomenon is more apparent. At 30% of
peak load, the ascending branch becomes more nonlinear and it reaches
a peak value approximately equal to less than half or half of the tensile
strength of concrete, while the descending branch has the geometry of a
concave curve and ends at a theoretical tensile strain of one order larger
than the cracking strain. The trend continues for higher load levels,
with the descending branch extends to form longer tail ending at larger
theoretical tensile strain. Attempt is made to combine the four diagrams
for 30%, 40%, 50% and 60% of peak load by arithmetic averaging into
one single diagram for the post-crack state. Such averaging is performed
for all FRP-RC beams in the series. Fig. 8 plots the averaged diagrams,

which appear to be affected by the FRP reinforcement ratio (compare
the diagrams in the same graph in Fig. 8(a) or Fig. 8(b)) and the type of
load (compare the diagrams across different graphs in Fig. 8(a) and
Fig. 8(b)). Relatively, the type of load plays a more important role (this
will be discussed in greater depth in the subsequent section). From
Fig. 8, it can be seen that the diagrams for beams under single point
load tend to have slightly lower peaks and longer tails, whereas the
diagrams for beams under two-point load tends to have slightly higher
peaks and shorter tails.

4.3. Proposed parametrized tensile stress block

As discussed above and shown in Fig. 7, typically the diagram of
mean tensile stress versus the theoretical tensile strain before cracking
is a straight line from the origin ascending towards the tensile strength
of the concrete, while the diagram after cracking comprises a nonlinear
ascending branch approaching about half the concrete tensile strength
and a nonlinear descending branch in the form of a concave curve with
a long tail. These two distinct layouts of the diagrams before and after
cracking are shown schematically in Fig. 9(a). For use in deformation
analysis of FRP-RC beams, it is proposed to integrate the two distinct
layouts of diagrams into one combined tensile stress block, as shown in
Fig. 9(b). For simple practical implementation by engineers, the con-
cave curve descending branch is approximated by two straight line
segments. Similar approximation of descending branch by multi-linear
segments was devised by Barros [9] in the modelling of fibre-reinforced
concrete.

Fig. 7. Diagram of mean tensile stress versus theoretical tensile strain.
Fig. 8. Averaged diagrams of mean tensile stress versus theoretical tensile
strain.
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The proposed combined tensile stress block is a multi-linear dia-
gram. It has a linear ascending branch and a bilinear descending
branch. Along the ascending branch, the tensile stress increases linearly
from zero to the tensile strength of the concrete ft at a gradient equal to

the initial elastic modulus of concrete. This is followed by an abrupt
drop of the tensile stress from ft to a reduced level denoted as ft′. Along
the descending branch, since the rate of decrease of the concave curve is
not constant, an intermediate point is defined so that the curve can be

Fig. 9. Tensile stress block for FRP-RC beams.

Fig. 10. Projection of tensile stress block along longitudinal direction.
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idealised to two straight line segments. The tensile stress first decreases
linearly from ft′ to an intermediate value of 0.2ft at an intermediate
tensile strain εti, then further decrease linearly from 0.2ft to zero at an
ultimate tensile strain εtu. The values of ft′, εti and εtu are expressed in
terms of three dimensionless coefficients, α1, α2i and α2, as given by the
following equations:

′ =f α ft t1 (19a)

=ε α εti i ct2 (19b)

=ε α εtu ct2 (19c)

where εct is the tensile strain at which the peak tensile stress occurs and
is regarded as the cracking strain. Mathematically, εct is computed as ft/
Eco. In contrast to the tensile stress block for steel RC beams proposed
earlier [64], where the descending branch is linear and the stress block
is defined by two parameters namely α1 and α2, an additional parameter
α2i is introduced to define the tensile stress block for FRP-RC beams that
has a bilinear descending branch. Fig. 10 schematically illustrates the
projection of tensile stress block in cracked and uncracked sections
along the longitudinal direction of a beam. It is seen that due to dif-
ferent ranges of tensile strains at different cracked and uncracked sec-
tions, the stress block is projected to different scales. The equations for
the proposed tensile stress block are presented below:
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= <σ α ε ε0 for ct2 (20d)

The values of α1, α2i and α2 may be determined by referring to Fig. 8
for each beam. The obtained values of stress block parameters are listed
in Table 1. For beams subjected to single point load, α1 ranges from
0.39 to 0.47 with a mean of 0.43, α2i ranges from 10.0 to 25.0 with a
mean of 16.0, and α2 ranges from 45.8 to 116.7 with a mean of 69.7.
For beams subjected to two-point load, α1 ranges from 0.45 to 0.47 with
a mean of 0.46, α2i ranges from 10.4 to 26.7 with a mean of 15.7, and α2
ranges from 39.2 to 52.5 with a mean of 45.7. From the numerical
values, it is observed that α1 is not very sensitive to the FRP re-
inforcement ratio, while both α2i and α2 decrease when the FRP re-
inforcement ratio increases. Besides, the type of load has a stronger
influence on α2 than on α1, while α2i is not sensitive to the type of load.

An attempt is made to generalise the stress block parameters for
different structural configurations and load configurations, in order to
enhance the applicability of the proposed method for practical usage.
Further information regarding the stress block parameters can be re-
vealed by comparing with the parametric values for steel RC beams
reported elsewhere [64,66]. From these two references, it was sug-
gested that α1 can be taken as 0.4 for single point load and 0.5 for two-

point load and distributed load. Apparently, α1 is not influenced by the
reinforcement material. From the two references, it was further sug-
gested that α2 can be taken as 18 for single point load, while α2 gra-
dually reduces with the shear span for two-point load and reaches a
value of 14 for uniformly distributed load. In view of the difference in
elastic moduli between steel and FRP, comparison is made after di-
viding by the modular ratio mr, which is designated as the ratio of
elastic modulus of reinforcement to elastic modulus of concrete. Con-
sidering the elastic modulus of steel Es to be 200 GPa and the typical
value of modular ratio for steel RC member to be Es/Ec=6.67, the
above values of α2 for steel RC beam could be stated as 120/mr and 93/
mr, in lieu of 18 and 14, respectively. Likewise, considering the typical
value of modular ratio for FRP-RC member to be Ef/Ec=1.67 (again,
typical value of Ef of glass fibre-reinforced polymer is taken), the above
mean values of α2 for FRP-RC beam could be stated as 116/mr and 76/
mr, in lieu of 69.7 and 45.7, respectively. It appears possible to unify the
expression of α2 for steel RC and FRP-RC beams, by introducing mr as
the denominator. Besides, there is possible dependence of α2i and α2 on
the FRP tension reinforcement ratio. Further investigation on this as-
pect to enhance the accuracy of deformation analysis and to extend the
applications to other types of FRP (such as carbon fibre and aramid
fibre-reinforced polymer) is recommended.

5. Incorporation of tensile stress block in member analysis

The tensile stress block derived in the above is incorporated into
member analysis, which is described in this section. There are three
basic assumptions made in the analysis: (1) plane sections remain plane
after bending; (2) the bond slip between concrete and FRP reinforce-
ment is indirectly accounted for via the tensile stress block; and (3) the
cracking criterion of concrete is solely based on the cracking tensile
strain. Regarding the second assumption, though the member analysis
does not reflect physical slip movement between concrete and FRP
reinforcement, the derivation of tensile stress block has taken into ac-
count the bond slip as part of the constitutive model. This is because the
transfer of tension force between concrete and FRP reinforcement takes
place through the bond action, which is characterised by the bond
stress-slip relation. Therefore, the effect of bond slip is included in the
mechanical model. Regarding the third assumption, uncracked concrete
becomes cracked only if the cracking tensile strain is attained. In other
words, there is no provision of any shear crack in the model, and the
tension cracks (inclusive of flexural tension crack) are fully accountable
for the tension-stiffening behaviour of the member. Compared to the
nonlinear finite element analysis presented in the preceding section, the
member analysis is simpler and more suitable for practical applications.

In conducting the analysis, the structural member is divided into
multiple segments. Each segment is treated as a frame element with two
nodes, and each node possesses translational and rotational degrees of
freedom. The stiffness matrix [K] for each frame element is a 12×12
matrix, which can be simplified to a 6×6 matrix by considering the
two-dimensional plane frame instead of the three-dimensional space

Table 1
Parametric values of tensile stress block for FRP-RC beams.

Type of load ρt ft' (MPa) εti (με) εtu (με) α1 α2i α2

Single point load 0.5% 1.42 3000 14,000 0.47 25.0 116.7
1.0% 1.26 2050 8100 0.42 17.1 67.5
1.5% 1.26 1450 5850 0.42 12.1 48.8
2.0% 1.17 1200 5500 0.39 10.0 45.8
Mean values of α1, α2i, and α2 0.43 16.0 69.7

Two-point load 0.5% 1.35 3200 6300 0.45 26.7 52.5
1.0% 1.38 1800 5850 0.46 15.0 48.8
1.5% 1.40 1300 5100 0.47 10.8 42.5
2.0% 1.41 1250 4700 0.47 10.4 39.2
Mean values of α1, α2i, and α2 0.46 15.7 45.7

Note: The single point load is applied at mid-span; the two-point load is applied at third points.
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frame. The formulation of [K] matrix is given by:

∫=K B S B dl[ ] [ ] [ ][ ]T
(21)

where [B] is the strain-displacement matrix, [S] is the section stiffness
matrix, and the integration is performed over the length of the frame
element. The frame element is a Timoshenko-type beam with inclusion
of shear deformation in its stiffness matrix. Denote the two nodes of a
frame element by node i and node j, at any location within the frame
element, the axial strain εA, curvature about x-axis κx, and curvature
about y-axis κy can be expressed as:
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in which [δi] and [δj] are respectively the nodal degrees of freedom at
nodes i and j. The section stiffness matrix [S] is given by Eq. (23), where
Ec and Ef are respectively the elastic moduli of concrete and FRP re-
inforcement, dAc is the part of sectional area being considered, and Af is
the area of FRP reinforcement. It is noteworthy to remark that at sec-
tional level, based on the third assumption above which implies the
absence of any shear crack, only the axial translational and rotational
degrees of freedom are present in the matrix equation at sectional level
for analyzing the tension-stiffening effect.
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To achieve accurate results, the division of member should yield
sufficiently short segments, such that the section stiffness matrix can be
assumed as constant and representative of the constitutive matrix of
each frame element. In this study, the beam is divided into not less than
60 segments, nevertheless, from experience, division of a beam member
into 20 segments would already yield satisfactorily accurate results
[50,69]. For each of the segments, sectional analysis is employed to
determine the stress and deformation states [51]. The section stiffness
matrix [S] is assembled based on Eq. (23). It should be noted that fol-
lowing the previous discussions on constitutive model of materials, Ec

and Ef are variables dependent on the strain states of the concrete and
FRP reinforcement. For concrete in compression, the stress-strain rela-
tion as given by Saenz [73] in Eq. (7) is used for evaluating Ec. For
concrete in tension, the tensile stress block as formulated in Eq. (20) is
used for revaluating Ec. For FRP reinforcement, the stress-strain relation
as given in Eq. (13a) or Eq. (13b) is used for evaluating Ef, depending on
whether the FRP reinforcement is under tension or compression.

In the solution process of member analysis, an incremental-iterative
technique with secant stiffness formulation is adopted. The use of se-
cant stiffness formulation ensures numerical stability at post-crack and
post-peak stages of segments. The load is applied in small increments,
which theoretically can be in the form of prescribed forces or prescribed
displacements at the loading points. In the present study, the load is
simulated by means of prescribed displacements. Within each incre-
mental step, an iterative process of solution based on Newton-
Raphson’s method is adopted. For each segment, the entries of the
section stiffness matrix [S] are updated with respect to the computed
strain states, and the stiffness matrix of frame element [K] is in turn
updated based on the section stiffness matrix, subsequently the updated
[K] matrices are assembled into the stiffness matrix of the structural
member. Iteration is repeated until the convergence criterion is met,
where the changes in the secant stiffness of all frame elements are no
greater than 2%. The analysis then proceeds to the next increment step
and above numerical procedures are repeated, until the required load
level is reached. From the force and displacement results in the series of
incremental steps, moment-deflection curve of the beam can be eval-
uated. The computation procedures presented in the above have been
formulated in the nonlinear member analysis programme developed
and reported previously [50,69].

6. Analysis of experimental FRP-RC beams

A total of four FRP-RC beams, 2 of which being tested by
Benmokrane et al. [11] and 2 of which being tested by Masmoudi et al.
[56], are analyzed by means of the equation of effective moment of
inertia pursuant to ACI-440 [3], nonlinear finite element analysis, and
member analysis using the tensile stress block depicted in the above.

6.1. Beams ISO1 and ISO3 tested by Benmokrane et al. [11]

Beam specimens ISO1 and ISO3 tested by Benmokrane et al. [11]
are selected for analysis. Figs. 11 and 12 depict the layout of the beams,
whose geometric and material characteristics are summarised in the
second and third columns of Table 2. The beams had length of 3300mm
and span of 3000mm. They were simply supported and subjected to
symmetrical two-point loads at third points. The sectional size of beams
ISO1 and ISO3 were 200×300mm and 200×550mm (breadth
b×depth h), respectively. Both beams were reinforced with two
19.1 mm diameter FRP tension reinforcement and two 6.0 mm diameter
FRP compression reinforcement. The surface of the FRP reinforcing bars
was finished with a coating of sand particles to improve the bond be-
tween concrete and reinforcement. The ultimate tensile strength, ulti-
mate compressive strength, modulus of elasticity under tension, and
modulus of elasticity under compression of the FRP reinforcement were
respectively 690MPa, 540MPa, 45 GPa, and 40 GPa. Steel stirrups of
6mm diameter at 100mm spacing were provided within the shear
spans of the beams. The stirrups had yield strength of 300MPa and
modulus of elasticity of 200 GPa. The concrete had compressive
strength of 43MPa and modulus of elasticity of 33 GPa.

The variations of flexural moment in the pure bending zone with
deflection at mid-span of beams ISO1 and ISO3 obtained from experi-
ment are depicted in Figs. 13 and 14. According to the reported results
by Benmokrane et al. [11], the failure mode of beam ISO1 was shear-
compression failure of concrete, and the failure mode of beam ISO3 was
tensile rupture of FRP reinforcement. In the same figures, the moment-
deflection responses evaluated using the ACI-440 equation of effective

Fig. 11. Layout of beam ISO1 (dimensions in mm).
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moment of inertia and finite element analysis are plotted. It can be seen
that after cracking, at given level of flexural moment, the calculated
deflection per ACI-440 is notably smaller than the experimental de-
flection. In other words, the ACI-440 provisions underestimate the
flexural deflection. This is non-conservative from the serviceability as-
sessment viewpoint. For beam ISO3 whose FRP tension reinforcement
ratio ρft is lower than beam ISO1, the underestimation of deflection is
more pronounced. The same observation is also noted from the other
two beams tested by Masmoudi et al. [56], as detailed later. Never-
theless, the accuracy could be improved by suitable adjustment of the
empirical coefficient in Eq. (3).

Since both beams ISO1 and ISO3 are subjected to two-point load
applied at third points, the load configuration is identical to four of the
beams analyzed in the preceding section for derivation of the tensile
stress block. With reference to the values of stress block parameters in
Table 1 for beams under two-point load configuration, the values of
stress block parameters α1, α2i and α2 are taken as 0.5, 16 and 50, re-
spectively. Using the tensile stress block with such parametric values,
member analysis is carried out to determine the moment-deflection
response of the beams. As shown in Figs. 13 and 14, the member ana-
lysis results are in excellent agreement with the experimental results.
Furthermore, the two beams are analyzed by means of finite element
method using the same materials constitutive models and procedures
presented in Section 3 of this paper, and the computed moment-de-
flection response is also plotted in Figs. 13 and 14. It can be seen that
the finite element analysis results are in excellent agreement with the
experimental results as well. In comparison with the finite element
method, member analysis is less complicated to implement, yet it can
yield similarly high accuracy.

6.2. Beams CB2B-1 and CB3B-1 tested by Masmoudi et al. [56]

Beam specimens CB2B-1 and CB3B-1 tested by Masmoudi et al. [56]
are selected for analysis. Fig. 15 depicts the layout of the beams. The
geometric and material characteristics of the beams are listed in the
fourth and last columns of Table 2. The beams had length of 3300mm
and span of 3000mm. They were subjected to symmetrical two-point
loads with shear span of 1250mm. The beams had uniform cross-sec-
tion of 200×300mm (breadth b×depth h). Beam CB2B-1 was re-
inforced with two 14.9mm diameter FRP tension reinforcement and
two 10mm diameter steel compression reinforcement. Beam CB3B-1
was reinforced with three 14.9mm diameter FRP tension reinforcement
and two 10mm diameter steel compression reinforcement. The FRP
bars had ultimate tensile strength and modulus of elasticity of 773MPa
and 38 GPa, respectively. For both beams, steel stirrups of 10mm
diameter at 80mm spacing were provided throughout the length of
beam except the region of 200mm at both sides from the mid-span. The

Fig. 12. Layout of beam ISO3 (dimensions in mm).

Table 2
Geometric and material characteristics of FRP-RC beam specimens.

Beam specimen ISO1 ISO3 CB2B-1 CB3B-1

Breadth of beam section, b (mm) 200 200 200 200
Depth of beam section, h (mm) 300 550 300 300
Effective depth, d (mm) 260 510 253 253
Span length, L (m) 3.0 3.0 3.0 3.0
Shear span, L1 (m) 1.0 1.0 1.25 1.25
FRP tension reinforcement ratio, ρft (%) 1.10 0.56 0.56 0.91
Compressive strength of concrete, fc (MPa) 43 43 52 52
Modulus of elasticity of concrete, E0 (GPa) 33 33 33 33
Ultimate tensile strength of FRP, ffut (MPa) 690 690 773 773
Ultimate compressive strength of FRP, ffuc

(MPa)
540 540 – –

Modulus of elasticity of FRP in tension, Eft
(GPa)

45 45 38 38

Modulus of elasticity of FRP in compression, Efc
(GPa)

40 40 – –

Fig. 13. Moment-deflection curves of beam ISO1.

Fig. 14. Moment-deflection curves of beam ISO3.
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steel compression reinforcement and stirrups had yield strength of
480MPa, ultimate strength of 600MPa, and modulus of elasticity of
200 GPa. For concrete, the compressive strength and modulus of elas-
ticity were respectively 52MPa and 33 GPa.

Figs. 16 and 17 present the experimental and analytical moment
versus mid-span deflection curves of beam specimens CB2B-1 and
CB3B-1. According to the reported results by Masmoudi et al. [56], both
specimens were failed by crushing of concrete. Similar to the observa-
tion from beams ISO1 and ISO3, the ACI-440 equation of effective
moment of inertia predicts higher post-crack flexural stiffness than the
experimental results, and hence underestimates the deflection. The
discrepancy is more apparent for beam specimen CB2B-1 with lower ρft.
Thus, the ACI-440 equation tends to overestimate the post-crack flex-
ural stiffness of FRP-RC beams, especially for beams with lower FRP
tension reinforcement ratio. It should be borne in mind that such
overestimation is not on the conservative side. Nevertheless, the accu-
racy could be improved by suitable adjustment of the relevant empirical
coefficient.

Though both beams CB2B-1 and CB3B-1 are subjected to two-point
load, the distance between load application points is approximately
16.7% rather than one-third of the span length, and therefore the load
configuration is not the same as the beams analyzed in the preceding
section for derivation of the tensile stress block. Nonetheless, it would
be highly desirable from practical design viewpoint if the same set of
parametric values can be used for different load configurations that are
frequently encountered. To explore the feasibility of adhering to use a

representative set of parametric values, with reference to the compu-
tation for beams ISO1 and ISO3, the values of stress block parameters
α1, α2i and α2 are taken as 0.5, 16 and 50, respectively, for conducting
member analysis of beams CB2B-1 and CB3B-1. The resulting moment-
deflection curves as shown in Figs. 16 and 17 again demonstrate ex-
cellent agreement with the experimental response, when the same set of
parametric values is used. Furthermore, the two beams are analyzed by
means of finite element method in the same manner as for beams ISO1
and ISO3, and the computed moment-deflection response is also plotted
in Figs. 16 and 17. Once again it is seen that the finite element analysis
results are in excellent agreement with the experimental results.
Overall, the use of member analysis method in combination with the
tensile stress block is accurate and simple to implement, and is re-
commended for deformation analysis of FRP-RC beams. Further ana-
lysis and valuation of stress block parameters for FRP-RC beams of a
wider range of structural configurations are recommended for future
research, in order to refine and extend the applicability of the proposed
tensile stress block.

7. Conclusions

Fibre-reinforced polymer (FRP) offers discernible advantages over
conventional steel reinforcement that justify its usage as alternative
reinforcement material in concrete structures. This study has addressed
the deformation analysis of FRP reinforced concrete (FRP-RC) beams.
Tension-stiffening of cracked FRP-RC beams has been considered via
the use of semi-empirical equations to compute effective flexural stiff-
ness, nonlinear finite element analysis, and the use of tensile stress
block in conjunction with member analysis. In structural engineering
practice, member analysis in combination with tensile stress block is an
effective means for serviceability assessment that can circumvent the
use of sophisticated theoretical models and constitutive laws. Based on
the tension stress fields obtained from nonlinear finite element analysis
for a series of FRP-RC beams, parametrized tensile stress block for de-
formation analysis of FRP-RC beams has been derived, and mathema-
tical equations defining the stress block have been proposed. The stress
block consists of a linear ascending branch and a bilinear descending
branch, which respectively represent the behaviour of uncracked and
cracked flexural tensile reinforced concrete elements. The geometry of
the stress block is defined by three parameters, whose values have been
determined for various FRP tension reinforcement ratios and types of
load.

Experimental FRP-RC beam specimens tested in the literature have
been analyzed by means of the effective moment of inertia as per the
codified equation in ACI (American Concrete Institute) Committee 440,
by means of nonlinear finite element method, and by means of the
proposed tensile stress block in combination with member analysis.
From the results of moment-deflection response, it has been found that

Fig. 15. Layout of beams CB2B-1 and CB3B-1 (dimensions in mm).

Fig. 16. Moment-deflection curves of beam CB2B-1.

Fig. 17. Moment-deflection curves of beam CB3B-1.
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the ACI codified equation of effective moment of inertia generally un-
derestimates the deflection of cracked FRP-RC beams, and is non-con-
servative from the serviceability assessment viewpoint. On the other
hand, excellent agreement between the experimental results, member
analysis results and finite element analysis results has been achieved,
thereby endorsing the applicability and reliability of the proposed
tensile stress block for FRP-RC beams. The authors advocate the use of
member analysis in combination with the tensile stress block for pre-
diction of deformational behaviour of FRP-RC beams.
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