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A B S T R A C T

In this paper, a new model is developed based on the moment-rotation approach to predict average crack width
and average crack spacing of flexural elements made of fibre reinforced concrete (FRC) that also include
longitudinal steel and/or fibre reinforced polymer (FRP) bars. The post-cracking behaviour of FRC is simulated
by a stress-crack width relationship, while the interaction between concrete and longitudinal reinforcement is
modelled by a multilinear shear stress-sliding diagram based on experimental evidence. For assessing the pre-
dictive performance of the developed model, an experimental program was executed with this type of structural
elements, where the moment versus average crack width and crack spacing were recorded. The good predictive
performance of the model was also demonstrated by using experimental results available in the literature. The
predictive performance was, in general, better than the predictions from RILEM TC 162-TDF and fib Model Code
2010.

1. Introduction

Cracking in concrete is one of the main crucial aspects threaten the
durability and structural performance of reinforced concrete (RC)
structures. This problem is much more pronounced in case of steel re-
inforced concrete (S/RC) structural elements, since they are often
subjected to tensile stress fields. The stiffness and load carrying capacity
of RC elements decrease with the formation and propagation of cracks,
which can compromise their design requisites at serviceability and ul-
timate limit state conditions (SLS and ULS, respectively). Crack pro-
pagation in S/RC elements also increases the permeability of concrete,
facilitating the ingress of environmental adverse agents through the
concrete zones where steel reinforcement is disposed, which promotes
its corrosion as faster as wider are the cracks [1]. This generally results
in a reduction of the cross-section area of the steel reinforcement, de-
terioration of steel-to-concrete bond quality, and concrete spalling and
disintegration, which are all responsible for a reduction of load carrying
capacity of structural S/RC elements.

Substitution of steel reinforcements by non-corrodible ones made of
fibre reinforced polymer (FRP) has been investigated during the last
decades, in an attempt of improving the durability of RC structural
elements [2,3]. Hereinafter these elements will be designated by the
acronym F/RC to distinguish them from those reinforced with steel bars

(S/RC). The use of FRP as internal reinforcement of concrete structures
may have, however, some detrimental consequences in structural de-
sign viewpoint. When compared to steel, the commonly used and cost-
competitive FRPs have lower elasticity modulus and bond performance
to concrete, and their properties are detrimentally affected by high
temperatures. These aspects often lead to a larger deflection and wider
cracks in F/RC elements subjected to flexural loading conditions, such
is the case of beams and slabs, so accomplishing the design requisites at
SLS of F/RC are often predominant [4,5]. Furthermore, due to the
larger crack width, the shear capacity of F/RC beams is smaller than S/
RC beams of the same reinforcement ratio due to its detrimental impact
on the aggregate interlock resisting mechanism [6]. The previously
pointed out drawbacks can be mitigated by adopting hybrid flexural
reinforcement (HFR), where FRP bars are placed with the minimum
possible concrete cover thickness in order to take advantage of their
immunity to corrosion, while steel bars are disposed with higher con-
crete cover thickness for being better protected from corrosion agents
[7]. Elements with HFR are hereinafter abbreviated by the acronym H/
RC, where the high tensile strength of FRPs can be combined with the
elasto-plastic behaviour of steel reinforcements for ensuring adequate
performance at SLS and ULS design conditions. Experimental evidences
revealed that the deflection, crack width, and crack spacing of H/RC
beams are generally smaller than that of F/RC beams, and failure mode
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can be more ductile [7,8]. The potentialities of HFR can be increased
when used with fibre reinforced concrete (FRC) for the development of
hybrid flexurally reinforced FRC (H/FRC) beams [9]. When cracks are
formed in concrete, the discrete fibres bridging these cracks offer re-
sistance to their widening by fibre pull-out mechanisms [9,10], leading
to significant benefits in terms of SLS and ULS design requisites and on
the durability regarding the ones of S/RC, F/RC and H/RC elements.
According to Wang and Belarbi [2], an improvement of 30% of dur-
ability index of RC beams was achieved by the addition of 0.5% volume
fraction of fibres. The influence of fibres for minimising the occurrence
of shear cracks and increasing the shear resistance of FRC beams is
noticeable [11–13]. It has been demonstrated that in shallow reinforced
FRC (R/FRC) beams, steel stirrups can be replaced by fibres with
technical and economic advantages [14]. Discrete fibres have also
contributed to reduce the deflection of R/RC beams under service loads,
and to increase the maximum load carrying capacity [15,16]. Experi-
mental and numerical investigations have revealed that the favourable
fibre reinforcement mechanisms on the post-cracking behaviour of
concrete have effectively improved the tension-stiffening effect due to
stress transference between flexural reinforcements and surrounding
concrete during the concrete cracking process [17,18], resulting in re-
duction in the width and spacing of cracks [19–21], as well as in
maximum stress level in the flexural reinforcement [22].

In the present paper is developed an integrated approach for the
prediction of crack width and spacing in H/FRC flexural elements,
where mechanical properties of intervening materials, the post-cracking
response of FRC in terms of stress-crack opening relationship −σ w( ),
and the shear bond-sliding characteristics of steel- and FRP-to-concrete
interaction, are mobilised in a model developed based on moment-ro-
tation approach [23]. The predictive performance of the proposed ap-
proach is evaluated by using the results from an experimental program
conducted for this purpose, as well as the ones available in the litera-
ture [24–26]. The predictive performance in terms of crack width and
spacing of the formulations proposed by two international organiza-
tions [27,28] is also assessed and commented.

2. Model developed based on the moment-rotation approach

Fig. 1a depicts an idealised crack pattern in a pure bending region
(PBR) of LPBR length of an R/FRC element subjected to bending moment
M( ) and consequent overall rotation θ( ). It is assumed that the geometry
of the beam’s cross-section and reinforcing scheme of the section is
constant along the LPBR. The considered R/FRC element is assumed to
have a symmetric cross-section as shown in Fig. 1b, where the width
can vary along its depth, h. The total height of the cross-section is de-
composed in n layers to take into account the appropriate constitutive
law for each material layer during the loading procedure.

The width, the thickness and the depth of the generic ith layer
(numbered from the beam’s top surface) are represented by bi, ti, and di,
respectively. The ith layer may also include reinforcing bars of total
cross-sectional area Ari. In this case, the total width of the layer b( )i is
subdivided into the equivalent width of reinforcement bri =A t( )ri i and
the width of concrete bc = −b b( )i ri (see Fig. 1b). By progressively in-
creasing the applied bending moment, the most tensioned concrete
surface (in Fig. 1a is the bottom surface) attains the concrete strain at
crack initiation =ε ε( )ct cr and, consequently, several flexural cracks may
propagate along the PBR, subdividing the LPBR into several R/FRC
prisms of Lcs length. Therefore, in each step of loading Lcs is re-
presentative of spacing between two adjacent cracks. At cracking sta-
bilised stage, i.e., no new more cracks are formed, the minimum value
of Lcs is considered the average crack spacing, srm, at this stage.

Due to the constant bending moment and equal geometry and re-
inforcing scheme of the beam’s cross-section along the PBR, the cracks
geometry (i.e. the width and depth) and spacing are assumed the same.

2.1. Mechanical properties of intervening materials

2.1.1. Compressive behaviour of FRC
The compressive behaviour of FRC can be subdivided into the pre-

peak and the post-peak responses. Imposing strains lower than the one
corresponding to the concrete compressive strength (εcc p, , Fig. 2), only
small isolated and randomly distributed cracks are formed, therefore
the continuous nature of concrete can be assumed valid. When εcc p, is
exceeded, internal microcracks coalesce into macro-cracks leading to
crack localisation. Consequently, the use of strain as a state variable in
constitutive laws for compressive concrete is not valid anymore. [29].
In this case, the post-peak behaviour of concrete in compression can be
analysed by the wedge sliding mechanism [30]. However, since the
present research is aiming to analyse the behaviour of R/FRC flexural
beams during the cracking propagation stage, by estimating the crack
width and average crack spacing for serviceability limit state design
conditions, the maximum concrete compressive strain level is less than
εcc p, . Therefore, and for the sake of simplicity, the stress-strain re-
lationship −σ ε( )cc cc schematised in Fig. 2 was adopted for simulating
the concrete compression behaviour, which is represented by the fol-
lowing equations [31]:
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− − + +

−σ ε f
ε ε
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where εcc p, is the strain corresponding to the concrete compressive
strength f( )cc , Ec,sec is the secant modulus of elasticity of concrete

Fig. 1. (a) Cracking propagation in a pure bending region of R/FRC beams, (b) layer approach to model the cross-section.
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(= f εcc cc p, ), and p is a parameter ranging between 0 and 1. For concrete
reinforced with hooked ends steel fibres the following equations were
adopted for determining εcc p, and p parameters [32]:

= +ε ε V0.000654cc p
SFRC

cc p
PC

f, , (3)

= − −p V1.0 0.919 exp( 1.289 )f (4)

where Vf is the fibre volume percentage, and εcc p
PC

, is the strain at the
compressive strength of the plain concrete of the same strength class of
the FRC [27]. The superscript SFRC and PC in Eq. (3) indicates that the
entity is measured in specimens of steel fibre reinforced concrete and
plain concrete of the same strength class, respectively. For concrete
reinforced with fibres other than of steel material, specific equations for
the εcc p, and p should be derived based on experimental results with the
FRC.

2.1.2. Tensile behaviour of FRC
The constitutive law adopted to simulate the tensile behaviour of

FRC is shown in Fig. 3 which comprises a bilinear pre-cracking stress-
strain relationship (Fig. 3a) and a multi-linear post-cracking con-
stitutive law represented by stress-crack width relationship (Fig. 3b).
The adopted tensile constitutive law enables the model to simulate FRC
of both strain softening and strain hardening nature (SS-FRC and SH-
FRC, respectively). In case of SS-FRC, after crack initiation, at (εcr , fct),
the tensile behaviour is governed by a stress-crack width relationship of

Fig. 3b. Therefore the second branch of the stress-strain diagram of
Fig. 3a is almost inexistent, i.e., =ε εct p cr, and =σ fct p ct, . In the case of
SH-FRC, after crack initiation, several cracks are progressively formed
up to the degeneration of one of these cracks into a macro-crack. This
stage is simulated by the second branch of the −σ εct ct relationship,
whose stiffness depends on the reinforcement mechanisms developed
between fibres and the surrounding matrix.

The stress-strain diagram is simulated by the following equations
(Fig. 3):

= =
⎧

⎨
⎩

⩽ ⩽

+ − < ⩽−
−( )σ ε

E ε ε ε

f σ f ε ε ε
( )

0 (a)

( ) (b)ct ct

c ct ct cr

ct
ε ε

ε ε ct p ct cr ct ct p, ,
ct cr

ct p cr, (5)

where =ε f Ecr ct c is the strain at crack initiation, and fct and Ec are the
tensile strength and Young’s modulus of FRC that can be obtained from
the recommendations of fib Model Code 2010 [27]:

= ⎧
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being fck and fcm the characteristic and average value of compressive
strength of concrete, respectively. In Eq. (5b) σct p, and εct p, are the tensile
strength and corresponding strain of SH-FRC, respectively. Macro-
cracking propagation is described by a stress-crack opening diagram
that can be formed by multi-linear segments (Fig. 3b) to have the po-
tential of capturing, with high accuracy, the behaviour of the softening
response of cement-based materials reinforced with mono- or hybrid
fibre systems [33]:

= ⎡⎣
+ − ⎤⎦
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= = = = =

+
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− ++
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u

1 , 1

0 0 6 6

i
i i1

(8)

where =α σ fi i ct is the normalised stress parameter corresponding to
crack width wi, and wu is the ultimate crack width. The shape of the

−σ w diagram is generally determined by performing uniaxial tensile
tests with notched FRC specimens [34,35], or by inverse analysis by
fitting with a target accuracy the force-deflection registered in notched
FRC beam bending tests [36,37].

2.1.3. Behaviour of longitudinal reinforcing bars
The bilinear stress-strain relationship represented in Fig. 4 is

adopted for the longitudinal reinforcement in both compression and

Fig 2. Stress-strain diagram for simulating the compressive behaviour of an
FRC.

Fig. 3. Tensile behaviour of FRC: (a) stress-strain diagram before macro-cracking localization, (b) post-cracking stress-crack width response.
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tension that can be described by the following equation:

=
⎧

⎨
⎩

⩽
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−( )σ ε
E ε ε ε

f ε ε ε ε ε
( )

(a)
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f f

ε ε ry r ru
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ru ry (9)

where Er, fry, and fru are, respectively, the modulus of elasticity, the
yielding stress, and ultimate strength of the reinforcement, while εry and
εru are the strains corresponding to fry and fru, respectively. The con-
stitutive law of Fig. 4 can also simulate reinforcement of elastic-per-
fectly plastic behaviour, such is the case of some steel bars, by con-
sidering the same value for fry and fru. This diagram is also adaptable for
simulating the behaviour of FRP bars since their linear-brittle nature
can be model by assumingεru = εryand fru = fry.

2.2. FRC-to-longitudinal reinforcement interaction

2.2.1. Local bond stress-slip relationship
In the developed model, the multi-linear shear bond stress-slip re-

lationship −τ s( ) represented in Fig. 5 is adopted for simulating the
bond mechanisms between longitudinal reinforcements and sur-
rounding FRC. The adopted configuration for the −τ s is sufficiently

flexible for simulating the bond conditions of FRP bars [38] and steel
bars [39]. This model is based on the one originally developed by Eli-
gehausen et al. [40] to describe the local bond stress-slip behaviour of
deformed bars, as recommended in [27], with the difference of repla-
cing the pre-peak parabolic curve by a linear bond-slip relationship in
order to simplify the numerical approach.
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The adopted shear bond stress-slip relationship includes five dif-
ferent phases; 1) an adhesion stage with a bond strength of τ0 for null
sliding; 2) a linear-elastic response up to attain the slip s1 that corre-
sponds to the occurrence of the shear bond strength τ( )m ; 3) a perfectly
plastic slipping stage up to the slip s2 where bond stress remains con-
stant; 4) a slipping softening phase up to s3; 5) a frictional phase where
a constant residual bond stress τ( )R is considered due to frictional me-
chanisms between reinforcing bar and surrounding concrete. A similar
model was adopted by Bianco et al. [41] to simulate the bond-sliding
response of carbon FRP (CFRP) laminates used in shear strengthening of
RC beams by near surface mounted (NSM) technique, with a difference
that the plastic phase was not considered.

2.2.2. Bond interaction between flexural reinforcement and surrounding
FRC in the cracking process of a R/FRC element

In Fig. 6a, a longitudinal bar of relatively large embedment length is
crossed by a crack at one extremity (Section 1). Slip of the bar in
Section 1 can be assumed equal to half the crack width at the level of
this bar =s w( 2)r r , while it tends to be zero at the other extremity with
perfect bond (Section 2) located at a distance L s( )tr from the crack face
(Section 1).

In Fig. 6a, the internal force of the reinforcing bar and the sur-
rounding concrete at Sections 1 and 2 are designated, respectively, by
F F( , )r ct1 1 and F F( , )r ct2 2 . Note that Fct1 and Fct2 can be determined con-
sidering the constitutive law of concrete in tension, according to the
diagram represented in Fig. 3. In Fig. 6b is depicted the force equili-
brium of reinforcement and surrounding concrete along a finite bond
transference length dx for which, by satisfying equilibrium between
tensile forces, the bond-sliding correlation along the interaction length
can be represented by the following differential equation:

− =d s x
dx

J τ x( ) ( ) 0
2

2 1 (11)

where J1 is a coefficient related to the geometry and modulus of elas-
ticity of reinforcing bar and surrounding concrete:

⎜ ⎟= ⎛
⎝

+ ⎞
⎠

J
L

E A
L

E A
p

r r

p

c c
1

(12)

being Ar and Lp the cross-sectional area and perimeter of the re-
inforcement bar, respectively. = ×A b c( )c eff is also the effective area of
tensile concrete surrounding the bar obtained by following the re-
commendations of fib Model Code 2010 [27]:

= ⎧
⎨⎩

− −
+ −

c
h d h d
c ϕ h d

min[ 2.5( ), ( ) 3 ] (for beams) (a)
min[2.5( 2), ( ) 3] (for slabs) (b)eff

r NA

r NA (13)

being ϕr the diameter of reinforcing bar, c the concrete cover thickness,
and drthe depth of the reinforcement.

The distance between cracked section (Section 1) and the nearest
section with zero sliding (Section 2) in Fig. 6a gives the total bond

Fig. 4. Stress-strain relationship for simulating the tension and compression
behaviour of longitudinal reinforcements.

Fig. 5. Shear bond stress-slip relationship for embedded reinforcement.
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transference length designated by L s( )tr and obtained by solving the
following differential equation:

∫= +ds x
dx

n
E A

τ s x L dx( ) ( 1) ( ( ))
r r

L

p
0

tr

(14)

where =n E A E Ar r c c is the axial stiffness ratio between reinforcement
and surrounding concrete. In Table 1, the total bond transference length
is formulated for the different considered phases of the bond-slip re-
lationship (Fig. 5). In this Table is also included equations to determine
the total load transmitted along the interaction length F( )bond de-
termined by the following equation:

∫=F τ s x L dx( ( ))bond

L

p
0

tr

(15)

By satisfying force equilibrium, the internal force of the reinforce-
ment at the localised crack (Fr1 in Fig. 6a) is determined from the fol-
lowing equation:

= + +F nF n F( 1)r ct bond1 1 (16)

where = =F σ w s A( 2 )ct ct r c1 sec.1 is the tensile contribution of fibre re-
inforced concrete at cracked section. Furthermore, the internal force of

reinforcing bar at Section 2 can be determined from Eq. (17):

∫= −F F τ s x L dx( ( ))r r

L

p2 1
0

tr

(17)

2.2.3. Order of formation and spacing of cracks in flexural elements
In Fig. 7 is depicted a flexural R/FRC beam subjected to four-point

bending load configuration. It is assumed this type of elements has
sufficient shear reinforcement in the critical shear zones in order do not
fail in shear. This can be done by contribution of conventional shear
reinforcement or/and fibre reinforcement [42–44].

In the proposed model, the moment-rotation relationship [23,30] is
used to determine the crack profile in the cross-section for the applied
moment, from which the crack opening evolution is evaluated as well as
the slip and the internal forces in the reinforcements according to the
adopted bond-slip approach. Considering the overall rotation θ( ) pre-
scribed to the extremities of the PBR of LPBR length (see Fig. 1), the
deformation of a generic ith layer D( )i and the corresponding effective
strain =ε D L( )ef i i PBR, is determined. For the layer positioned at the
level of reinforcing bars, hereafter designated by Rlayer, the strain, εef r, ,
is compared to the cracking strain of FRC ε( )cr (see Fig. 3a), and the

Fig. 6. (a) Reinforcing bar and surrounding concrete, (b) force equilibrium of reinforcement and surrounding concrete along an infinitesimal bond transference
length of dx .

Table 1
Sliding, bond transference length, and total bond force determined for the various phases of bond-slip relationship.

Bond phase Sliding Total bond transference length Total bond force
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analysis should proceed according to the following possible scenarios.

2.2.3.1. Pre-cracking stage. As long as εef r, is smaller than εcr , the Rlayer
does not crack. Consequently, the entire PBR is considered as an intact
prism. In this case, interaction between concrete and embedded bar is
considered as ruled by perfect bond conditions. Hence, the internal
force of the bar F( )r is equal to the force originated by the strain of the
reinforcement, designated herein by −Fr σ ε, , which is determined by
multiplying the cross-sectional area of the reinforcing bars A( )r to the
stress corresponding to εef r, , i.e. σ ε( )r ef r, , according to the stress-strain
constitutive law depicted in Fig. 4.

2.2.3.2. Cracking propagation stage. For a certain value of rotation
imposed to the extremities of the PBR, εef r, becomes equal to εcr ,
representing the load configuration to the initiation of the first crack at
Rlayer. Due to the disorder nature of concrete when regarded at micro-
and meso-level because of the presence of micro- and meso-defects, in
reality the first crack may occur at the most pronounced defects in the
PBR. Nevertheless, for the convenience of simulation, in the proposed
model it is assumed that the first crack forms at mid-span of the PBR
(Fig. 8a). In this case, = −F Fr r σ ε, is kept as Fr cr, , which is the internal
force of the reinforcement at crack initiation stage. Fr cr, is utilised for
detecting if new cracks initiate in next steps of loading. Note that, in the
proposed model, the geometric properties of cross-section and
reinforcing scheme of the beam is assumed constant over the PBR,
and therefore, Fr cr, is valid for any other sections of this region. As long
as new crack does not form, further increase in rotation prescribed to
the extremities may lead to widening of the crack with the consequent
increase of sliding in the reinforcing bar =s w( 2)sec r.1 . Therefore, the
internal force of the reinforcement F( )r is determined by adding the
force due to the strain of the reinforcing bar −F( )r σ ε, to the one resulting
from sliding of the bar from the surrounding concrete −F( )r τ s, . The latter
is equal to the internal force of reinforcing bar at cracked section
(Section 1), which is simulated by Fr1 in the approach described in
Section 2.2.3.

In the case the flexural beam is made of strain hardening FRCs, due
to the enhanced post-cracking characteristic of this type of material, the
increase in rotation leads to formation of new micro-cracks [45] as long
as εef r, is smaller than εct p, , which is the strain corresponding to the
tensile peak stress (see Fig. 3a). During the hardening stage, the tensile
deformation of the prism is assumed being represented by the strain
concept [46]. Hence, the internal force of the reinforcement is solely
evaluated from −Fr σ ε, during the tensile strain hardening stage of the
surrounding FRC. When εef r, exceeds εct p, , the critical crack, which is
considered to be the one initiated in Section 1, begins to be widened
which mobilise the contribution of the post-cracking tensile softening
stage of the FRC (Fig. 3b). At this loading stage, the contribution of the
term −Fr τ s, due to the occurrence of sliding will be also contributing to
the total force of the reinforcing bar. Therefore, for tensile strain
hardening FRC, debonding of the reinforcements is only considered for
tensile strain higher than εct p, , due to the relatively small width of the
cracks formed during the tensile strain hardening stage.

Concurrently to the increase of sliding of the reinforcing bar at the

first crack (Section 1), the internal force of reinforcement at Section 2
(Fr2 in Fig. 8a) and the bond transfer length between bar and sur-
rounding concrete L( )tr increase gradually. The latter is determined by
substituting the half the width of crack at Section 1 s( )sec.1 to the cor-
responding equations represented in Table 1. In the developed model, it
is assumed that the length of beam is long enough to provide an infinite
bond transfer length between reinforcing bar and concrete, i.e., Ltr re-
mains less than the half-length of the beam.

In each step of computation, the value of Fr2 determined from Eq.
(17) is compared toFr cr, , which was determined previously, in order to
verify eventual formation of new crack at Section 2. While Fr2 is less
than Fr cr, , the increase in the imposed rotation just leads to the widening
of the actual crack at Section 1 accompanied by the increase of the
elastic deformation of the intact regions. However, if Fr2 attains Fr cr, , a
pair of second cracks (2nd crack in Fig. 8b; due to symmetry only one of
these cracks is represented) forms at a distance Ltr

cr2 from the 1st crack.
Ltr

cr2 is determined by substituting sliding at Section 1 s( )sec.1 into the
equations summarised in Table 1.

From now on and up to the formation of the pair of 3rd cracks, the
actual length of the prism L( )cs is set to Ltr

cr2 . In the new formed prism,
the reinforcing bar is tensioned on both sides by widening of the cracks
located at the extremities. Therefore, due to equilibrium of the internal
forces, the sliding and bond stress tend, necessarily, to zero at a point
positioned along the new formed prism. The zero sliding point is as-
sumed to locate at a distance of k LLcs

m
cs

cr from Section 1, where kLcs
mcr is a

coefficient determined according to the following equation:

=
⎧
⎨
⎩

⩽
>

+ −
sk

ifL L
ifL L

0.5 ( 0.5 ) (a)
( 0.5 ) (b)Lcs

m cs PBR
L

L L L cs PBR
cr

0.5 2
ss

PBR ss cs (18)

where Lss is the length of the beam’s shear span (Fig. 7). Note that in Eq.
(18), Lcs is the actual prism length, which is updated during the pro-
posed computational procedure. Before initiation of the crack mcr (mcr
is a generic identifier for new pair of cracks, 3cr, 4cr, or 5cr in Fig. 8),
if ⩽L L0.5cs PBR it means that the prism is entirely inside the PBR. In this
case, since the widening of the crack and, consequently, sliding of the
reinforcing bar at both extremities of the prism are the same, the zero
sliding point is located right at midst of the prism and, therefore, by
adopting kLcs

mcr of 0.5 from Eq. 18a, the length of prism is set to L0.5 cs by
the formation crack mcr.

However, when Section 2 is outside the PBR, (i.e. >L L0.5cs PBR), the
width of the crack at the extremity of the prism outside the PBR is
smaller than of the one in Section 1 due to relatively lower bending
moment in the adopted four point bending configuration. In this case,
sliding of the bar is not equal in the cracks of the extremities of the
prism, the wider the crack the larger the sliding. Therefore, the zero
sliding point moves toward the extremity located outside the PBR to
provide longer transition length in the part corresponding to the crack
where a larger sliding occurs (1st crack in Fig. 8b) [47]. In such a case,
by assuming a linear correlation between the bond transfer length and
bending moment, kLcs

mcr is obtained by Eq. 18b. Therefore, when the third
crack forms, the length of the prism is set to k LLcs

cr
cs

3 , which is equal to
k LLcs

cr
tr

cr3 2 (Fig. 8b). Similarly, once Fr2 exceeds Fr cr, , new pair of cracks is

Fig. 7. Reinforced concrete beam subjected to four-point bending load configuration.
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detected at the zero sliding point of the prisms. Consequently, as shown
in Fig. 8c and d, the distance between cracks is reduced to k k L( )Lcs

cr
Lcs

cr
tr

cr4 3 2

and k k k L[ ( )]Lcs
cr

Lcs
cr

Lcs
cr

tr
cr5 4 3 2 , when the fourth and the fifth cracks are formed,

respectively. The possibility of forming new cracks is successively
evaluated, being the minimum crack spacing limited to half the height
of cross-section [48].

3. Algorithm to predict the moment-rotation response of H/FRC
element

In the developed incremental-iterative algorithm, the rotation of the
extremities of the PBR of LPBR length in a kth generic step of the com-
putation is increased by considering a constant increment of θΔ :

=θ k θΔk (19)

Accordingly, the axial elongation of an ith layer D( )i
k is determined

by considering its position along the depth of cross-section d( )i , and
depth of the neutral axis (dNA in Fig. 1):

= −D θ d d( )i
k k

i NA (20)

It should be noted that dNA is determined iteratively through bi-
sectional approach by satisfying the force equilibrium according to the
adopted tolerance of 10 N. The corresponding effective strain of the
PBR is obtained from the following equation:

Fig. 8. Crack propagation and bond stress-slip distribution between two adjacent cracks just before initiation of a (a) second crack, (b) third crack, (c) fourth crack,
and (d) fifth crack.
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=ε
D

Lef i
k i

k

PBR
, (21)

For the layers located above the neutral axes, where <d di NA, the
compressive force of concrete F( )cc i

k
, is determined by the following

equation:

=F σ ε b t( )cc i
k

cc ef i
k

i i, , (22)

where σ ε( )cc ef i
k

, is the compressive constitutive low of concrete depicted
in Fig. 2. Tensile force F( )ct i

k
, of the layers positioned below the neutral

axis >d d( )i NA is determined by the following equation:

Fig. 9. Flowchart of the algorithm of the model.
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k
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k

cr

ct i
k

i i ef i
k

cr

cr cr ct

cr cr ct p
,

, ,

, ,

(23)

where σ ε( )ct ef i
k

, is the pre-cracking (pre-macrocracking localisation in
case of SH-FRC) tensile stress of concrete obtained from the constitutive
law represented in Fig. 3a, while the crack width of the ith layer (wi

k)
and corresponding post-cracking tensile stress (softening stage) of
concrete σ w( ( ))ct i

k is obtained by adopting the diagram represented in
Fig. 3b.

Considering the effective tensile strain of the layer along a char-
acteristic length of Lch is a superimposition of the equivalent strain due
to the average widening of the crack w L( )i

k
ch and the elastic strain of

the prism in the vicinity of the crack σ w E( ( ) )ct i
k

c , wi
k is determined by

solving the following equation through performing an iterative proce-
dure:

− − =ε
σ w

E
w
L

( )
0ef i

k ct i
k

c

i
k

ch
, (24)

The characteristic length L( )ch in Eq. (24) is taken equal to the
prisms length when cracking is stabilised s( )rm , which is unknown at the
beginning of calculation, and should be determine iteratively. For this
aim, in the developed model Lch is firstly initiated as the length of PBR
L( )PBR , by which the average crack spacing in cracking stabilised stage is
obtained through the developed model, to which is attributed the
designation srm

1 . For the second iteration, =L sch rm
1 is substituted in Eq.

(24), resulting a new value for the average crack spacing s( )rm
2 . This

procedure is repeated up to convergence in terms of − −s s s( )rm
k

rm
k

rm
k1 in a

certain kth iteration is attained (a tolerance of 1% of adopted).
In case the ith layer includes a longitudinal reinforcing bar, the in-

ternal force of the reinforcement F( )r i
k
, is a superimposition of the force

due to the elongation of reinforcing bar along the PBR −F( )r σ ε i
k
, , and the

ones originated from sliding of the bar in the cracked section
=−F F( )r τ s i

k
r i
k

, , 1 ,

= +− −F F Fr i
k

r σ ε i
k

r τ s i
k

, , , , , (25)

=−F b t σ ε( )r σ ε i
k

r i i r ef i
k

, , , , (26)

= = + +−F F nF n F( 1)r τ s i
k

r i
k

ct i
k

bond, , 1, , (27)

In Eq. (26), σ ε( )r ef i
k

, is the stress of the bar determined regarding the
constitutive law schematised in Fig. 4. The intervening parameters in
Eq. (27) can be obtained according to the formulation described in
Section 2.2.3. If the reinforcement is not crossed by a crack
(i.e. ⩽ ∗ε εef i

k
cr, ), a null value is adopted for −Fr τ s i

k
, , in Eq. (25). Once εef i

k
,

attains ∗εcr , value of −Fr σ ε i
k
, , determined by Eq. (26) is allocated to Fr i

cr
,

which is representative of force of the reinforcing bar at the ith layer
when the layer is onset by the crack. From now on, Fr i

k
1, , Fr i

k
2, and Ltr i

k
,

are determined regarding slippage of reinforcement at the crack section
by using the formulation described in Section 2.2.3. Once Fr i

k
2, exceeds

Fr i
cr
, , a new crack is formed, and the prism length is updated accordingly.

For a ith layer positioned in the compressive zone (i.e. <d di NA), Eq. (26)
provides a negative value for −Fr σ ε i

k
, , , while −Fr τ s i

k
, , in Eq. (25) is null. It

should be remarked that when the cross-section comprises both FRP

and steel bars, crack spacing is determined based on steel bar layer. The
equilibrium of the axial forces in the cross-section is determined from
the following equation:

∑ ∑ ∑ ∑= + +
= = =

F F F F
i

n

cc i
k

i

n

ct i
k

i

n

r i
k

1
,

1
,

1
,

L
c

L
t

L
r

(28)

where nL
c and nL

t are, respectively, the number of concrete layers posi-
tioned in the compressive and tensile zone, and nL

r is the number of
layers with longitudinal reinforcing bars. When the correct value of the
depth of neutral axis d( )NA is determined for which the equilibrium
condition of internal forces is satisfied, the following bending moment
of the kth loading step is determined:

∑ ∑ ∑= + +
= = =

M F d F d F dk

i

n

cc i
k

cc i
i

n

ct i
k

ct i
i

n

r i
k

r i
1

, ,
1

, ,
1

, ,

L
c

L
t

L
r

(29)

Eqs. (19) and (29) define a point of the moment-rotation relation-
ship −θ M( )k k . The developed model is described in the flowchart
depicted in Fig. 9.

4. Model appraisal

The predictive performance of the proposed model was evaluated
simulating the moment versus average crack width and estimating the
average crack spacing for cracking stabilised stage registered in ten
series of R/SFRC beams, designated by B1 to B10, tested experimentally
by the authors (B1 to B6, each one including three samples), and tested
by other researchers (B7 to B10) under four-point bending configura-
tion, as schematised in Fig. 10. The designation of the SFRC, the geo-
metric properties of the beams, and the beams longitudinal reinforcing
schemes are indicated in Table 2. Except B4, B5 and B6, which were
hybrid reinforced with a GFRP and a steel bar, the remaining beams
were reinforced solely with longitudinal steel bar. The mechanical
properties of the reinforcing bars are summarised in Table 3.

In the case of specimens tested in the present research (B1 to B6),
the average crack spacing at cracking stabilised stage (when no new
more cracks were formed) was determined by dividing the distance
between two furthest crack at the level of steel reinforcement in PBR,
by the number of uncracked segments between these two cracks. The
crack patterns of the tested beams (B1 to B6) are shown in Fig. 11. The
average crack width was determined by dividing the deformation of the
pure bending region at the steel bar level, measured by the LVDT shown
in Fig. 10 mounted at this level, by the total number of cracks that have
crossed the concrete at this level. In case of the remaining beams, the
values reported in the literature were taken into consideration.

According to Table 2, the beams are made of seven types of SFRCs,
designated by SFRC-1 to −7, which are distinguished by the concrete
strength class and volume content and geometry of hooked-end steel
fibres, as detailed in Table 4. In case of SFRC-1 to −3 the mean com-
pressive strength at 28 days ( fcm) was obtained by executing uniaxial
compressive tests with cylinders according to EN 206-1 [49], while for
the SFRC4 to SFRC7 the fcm is the value indicated in the corresponding
publication. The tensile strength f( )ctm and modulus of elasticity E( )cm of

Fig. 10. Four-point bending test setup.
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the SFRCs were determined by Eq. (6) and (7), respectively. In case of
SFRCs developed by the authors (i.e. SFRC-1 to −3), the post-cracking
responses were evaluated by inverse analysis of the force-deflection
relationship registered in three-point notched beam bending tests exe-
cuted according to the recommendations of fibModel Code 2010 [27], a
subject that is described in detail in [34].

The adopted post-cracking responses for the SFRC-6 and−7, are the
ones provided in [26]. In case of SFRC-4 and −5, however, due to lack
of information, the post-cracking response of SFRCs was estimated by

following the recommendations of fib Model Code 2010 [27], according
to which a linear stress-crack width diagram represented in Fig. 12 is
adopted for modelling the FRC in tension.

In this figure fFts m, and fFtu m, are, respectively, the average service-
ability and ultimate residual strength of FRC determined from the fol-
lowing equations:

=f f0.45Fts m R m, 1, (30)

= − − + ⩾f f w
CMOD

f f f( 0.5 0.2 ) 0Ftu m Fts m
u

Fts m R m R m, ,
3

, 3, 1, (31)

being fR m1, and fR m3, the average residual flexural tensile strength of
FRC at a CMOD1 = 0.5 mm and CMOD3 = 2.5 mm evaluated from the
force-CMOD relationship determined in three-point notched beam
bending tests carried out according to the recommendations of fib
Model Code 2010 [27]. In Eq. (31) wu is the ultimate value of crack
width that depends on the level of required ductility, which is con-
sidered equal to 2.5 mm for elements failing in bending [27]. Since the
flexural residual strength parameters are not available for SFRC-4 and
−5, they were estimated according to the following equations, whose

Table 2
Geometry and reinforcing scheme of the beams (G represents GFRP; dimensions are in mm).

Beams series SFRC type Geometrical prop. Steel bar GFRP bar

×b h L Lss PBR type number and diameter [mm] cs [mm] type number and diameter [mm] cG [mm]

B1 SFRC-1 150 × 100 900/500 S1 1 Φ 8 40 – – –
B2 SFRC-2 150 × 100 900/500 S1 1 Φ 8 40 – – –
B3 SFRC-3 150 × 100 900/500 S1 1 Φ 8 40 – – –
B4 SFRC-1 150 × 100 900/500 S1 1 Φ 8 40 G1 1 Φ 8 20
B5 SFRC-2 150 × 100 900/500 S1 1 Φ 8 40 G1 1 Φ 8 20
B6 SFRC-3 150 × 100 900/500 S1 1 Φ 8 40 G1 1 Φ 8 20
B7 [24] SFRC-4 200 × 350 750/1750 S2 2 Φ 20 45 – – –
B8 [25] SFRC-5 100 × 125 600/600 S2 2Φ 10 25 – – –
B9 [26] SFRC-6 400 × 300 900/600 S3 2Φ 16 50 – – –
B10 [26] SFRC-7 400 × 300 900/600 S3 2Φ 16 50 – – –

Table 3
Mechanical properties of the reinforcing bars.

Steel/GFRPbar type Er fry εry fru εru

[GPa] [MPa] [‰] [MPa] [‰]

S1 205 575 2.8 575 32
S2 200 500 2.5 500 15
S3 200 400 2.0 400 15
G* 58 – – 1058 18

* Grooved surface.

Fig. 11. Typical crack patterns in the tested beams (Fpeak
avg is the average peak load of the corresponding series of beams).
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adequate predictive performance was demonstrated elsewhere [50]:

=f V l d7.5( )R m f f f1,
0.8 (32)

=f V l d6.0( )R m f f f3,
0.7 (33)

being Vf , lf and df the volume percentage, length and diameter of the
used fibres, respectively. The values of the parameters that define the
local bond-slip constitutive law (Fig. 5) are indicated in Table 5. In case
of steel bar, the maximum bond stress τ( )m and corresponding slippage
s( )1 (see Fig. 5) were determined by the following equations [51]:

= +τ c ϕ f[1.77 0.49 ( )]m s cm (34)

= +s c c(0.0035 0.006)1 0 0 (35)

where cs is the concrete cover thickness in mm, ϕ is the diameter of the
bar in mm, fcm is the concrete compressive strength in MPa, and c0 is the
clear rib spacing of the steel bars and taken equal to 5.7, 6.5, 9.6, and
11.5 mm, respectively, for the 8, 10, 16, and 20 mm diameter bars
according to the DIN 488 [52]. Furthermore, regarding the re-
commendations of fib Model Code 2010 [27], s2 and s3 are taken equal
to 2 mm and c0, respectively, and τR is considered τ0.4 m. The values of
the parameters that define the local bond-slip relationship of GFRP bar
are also included in Table 5. In the case of SFRC-1 and −2, these
parameters were determined by Pepe et al. [53] by inverse analysis of
pull-out bending test results of the same GFRP type and concrete
strength class. In case of SFRC-3, however, due to lack of information,
the bond-slip constitutive law of the GFRP bar was linearly extrapolated
regarding the results presented in [53].

The moment-average crack width relationships predicted by the
model are compared with the ones recorded in the experimental pro-
grams in Fig. 13. In these figures is also indicated the adopted value of
the characteristic length L( )ch determined by the developed algorithm of
Fig. 9. Fig. 13 shows the excellent predictive performance of the de-
veloped model.

5. Predictive performance of available design guidelines

5.1. Recommendations of RILEM TC 162-TDF

According to RILEM TC 162-TDF [33], up to the yield initiation of
the steel reinforcement the design value of the crack width w( )d for R/
FRC members subjected principally to flexure or tension is estimated by
the following equation:

=w k s εd rm sm1 (36)

where k1 is a coefficient relating the average crack width to the design
value, equal to 1.3 or 1.7 depending on the minimum dimension of the
cross-section and loading type inducing cracking. In the experimental
program composed of beams B1 to B6 (Table 1), since the minimum
dimension of the cross-section of these beams (100 mm) is less than
300 mm, k1 is considered 1.3, which used for converting design value to
the average value for comparing the crack width determined by the
model to those registered experimentally. In Eq. (36) srm is the average
final crack spacing (at cracked stabilised stage) calculated from the
following equation:

Table 4
Relevant properties of the used SFRCs.

SFRC1 SFRC2 SFRC3 SFRC4 SFRC5 SFRC6 SFRC7

fcm [MPa] 13.12 23.57 43.99 37.50 34.50 46.90 63.20

fctm [MPa] 0.89 1.87 3.27 2.86 2.67 3.44 4.22
Ecm [GPa] 23.54 28.62 35.23 33.40 32.50 36.00 39.75
f fR R1 3 [MPa] 4.02/3.20 7.36/6.44 11.59/9.70 3.52/3.10 2.86/2.58 5.22/4.37 6.27/5.13
Vf [%] 0.6 0.8 1.1 0.6 0.5 1.0 1.0

lf [mm] 35 35 35 35 30 35 60

df [mm] 0.55 0.55 0.55 0.54 0.50 0.55 0.75

α1 [–] 1.90 1.45 1.35 0.55 0.48 0.62 0.49
α2 [–] 1.60 1.22 1.27 0.50 0.44 0.68 0.61
α3 [–] 1.33 0.96 1.14 0.45 0.40 0.65 0.75
α4 [–] 1.00 0.69 0.87 0.40 0.35 0.33 0.76
α5 [–] 0.67 0.20 0.60 0.30 0.27 0.58 0.47
w1 [mm] 0.01 0.10 0.20 0.00 0.00 0.01 0.01
w2 [mm] 0.20 1.00 0.50 0.50 0.50 0.11 0.05
w3 [mm] 1.00 2.00 1.00 1.00 1.00 0.45 0.26
w4 [mm] 2.00 3.00 2.00 1.50 1.50 0.86 0.67
w5 [mm] 3.00 4.90 3.00 2.50 2.50 2.78 2.32
wu [mm] 5.00 5.00 5.00 2.55 2.55 5.00 6.00

Fig. 12. Tensile stress versus crack opening diagram recommended by fib
Model Code 2010 [27].

Table 5
Bond-slip parameters adopted in the simulations.

Type
of bar

SFRC τ0 [MPa] τm [MPa] s1 [mm] s2 [mm] τR [MPa] s3 [mm]

GFRP SFRC-1 1.00 12.50 0.11 1.80 5.10 7.00
SFRC-2 1.00 14.90 0.11 1.20 5.96 8.60
SFRC-3 1.00 17.30 0.11 0.60 6.92 10.20

Steel SFRC-1 0.00 16.40 0.15 2.00 6.56 5.70
SFRC-2 0.00 20.49 0.15 2.00 8.20 5.70
SFRC-3 0.00 28.13 0.15 2.00 11.25 5.70
SFRC-4 0.00 14.59 0.93 2.00 5.84 15.50
SFRC-5 0.00 15.54 0.30 2.00 6.22 8.40
SFRC-6 0.00 21.56 0.38 2.00 8.62 9.60
SFRC-7 0.00 25.03 0.38 2.00 10.01 9.60
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In this equation k2 is a coefficient to take into account the bond
properties of the longitudinal bars, equal to 0.8 and 1.6 for the high
bond and plain bars, respectively, while k3 is a coefficient equal to 0.5
for bending. In Eq. (37) ϕs is the bar diameter, l df f is the fibre aspect
ratio, being lf and df the fibre length and diameter, respectively. Fur-
thermore, ρs ef, is the effective flexural reinforcement ratio determined
from the following equation:

=ρ A
c b2.5s ef
s

s
, (38)

where As is the cross-sectional area of the longitudinal reinforcement
contained within the effective SFRC area in tension ( =A c b2.5c ef s, ). In
Eq. (36) εsm is the average strain in the reinforcement determined from
the following equation:
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⎥ε σ

E
k k σ
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(39)

where k4 is equal to 1.0 and 0.5 for, respectively, high bond and plain

Fig. 13. Predictive performance of the model for the moment-crack width of (a) B1, (b) B2, (c) B3, (d) B4, (e) B5, (f) B6, (g) B7, (h) B8, (i) B9, and (j) B10.
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bars, while k5 is equal to 1.0 and 0.5 for single, short term loading and
for sustained and repeated loading, respectively. In Eq. (39) =σ E ε( )st s s is
the stress in the steel reinforcement up to the yield initiation, where

= −ε χ d d( ( ))s s NA is the strain of the steel reinforcement, being χ and
dNA, respectively, the corresponding curvature and the depth of the
neutral axes, and ds the depth of this reinforcement. Furthermore σsr is
the maximum steel stress at the crack section in the crack formation
stage obtained from the following equation:

=
−

+σ
f f

ρ
n ρ

( )
·(1 )sr

ctm Fts m

s ef
s s ef

,

,
,

(40)

being =n E Es s c, fctm is the average value of the tensile strength and
fFts m, is determined by Eq. (30). In the application of this approach the
following values were adopted: k1=1.3; k2=0.8; k3=0.5; k4=k5 = 1.0.

5.2. Recommendations of fib model Code 2010

According to the fib Model Code 2010 [27] the average crack spa-
cing s( )rm in R/FRC members is estimated by multiplying by a factor of
1.5 the length over which slip between concrete and steel occurs, which
is determined from following equation:

= +
−

l k c
f f

τ
ϕ

ρ
( )

4s s
ctm Fts m

bm

s

s eff
,max 6

,

, (41)

where k6 is an empirical coefficient for simulating the influence of
concrete cover thickness that can be assumed equal to 1.0 for the
present simulations, and τbm is the average bond strength between re-
inforcing bars and surrounding concrete:

=τ f1.8bm ctm (42)

Eq. (41) is applicable for FRCs when the average residual strength at
serviceability limit states f( )Fts m, is less than the crack strength of con-
crete matrix f( )ctm . For the other cases =l k cs s,max 6 is assumed. Con-
sidering the fib Model Code 2010 [27] recommendation, the average
crack width w( )m is determined by dividing the design value of crack
width, obtained from Eq. (43), by a factor of 1.7:

= − −w
l
E

σ k σ k ε E
2

( )d
s

s
st sr sh s

,max
7 8 (43)

In this equation, σst and εs are the stress and strain of steel re-
inforcement in the cracked section, and σsr is determined by Eq. (40). In
the evaluation of the σst and εs the SFRC in tension was considered re-
sisting to a constant value of fFts m, , with a linear stress-strain diagram in
the compression zone.

In Eq. (41) ρs ef, is the effective reinforcement ratio equal to the
maximum of −A h d(2.5( ))s s and −A h d(( ) 3)s NA , being h the total
height of cross-section (see Fig. 7). Furthermore, in Eq. (43) k7 is also an
empirical coefficient to assess the mean strain over ls,max, considered
equal to 0.6 for short-term loading, and k8 is a coefficient for con-
sidering the shrinkage contribution, which can be considered equal to
zero for the short-term loading, and εsh is the shrinkage strain.

The predictive performance of the RILEM TC 162-TDF [33] and fib
Model Code 2010 [27] approaches is also assessed in Fig. 13 by com-
paring the moment-average crack width determined by the models and
ones registered experimentally. This figure shows that when the RILEM
TC 162-TDF [33] was applied to B1 to B6 tested beams, a crack width
larger than the one obtained with the other approaches and registered

Fig. 13. (continued)
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experimentally was estimated. Note that B1 to B6 are the beams made
of FRCs whose average residual strength at serviceability limit states
f( )Fts m, is greater than the crack strength of concrete matrix f( )ctm .
Therefore, the term −f fctm Fts m, in Eq. (40) is taken null, which
meansσsr = 0. In case of B7, B9 and B10, however, RILEM approach has
predicted satisfactorily the test results. In particular, predictive per-
formance of this approach is excellent in case of B8. These beams are
made of FRCs for which fFts m, is smaller than fctm and, accordingly, a
non-zero value of term −f fctm Fts m, is utilised in Eq. (40).

The fib Model Code 2010 [27] approach predicted generally ac-
ceptable crack width versus applied bending moment response in case
of B1 to B6, where −f fctm Fts m, of zero is used in Eq. (41), i.e.

=l k cs s,max 6 . However, relative larger crack width is determined by the
fib approach for the hybrid reinforced beams (i.e. B4 to B6).

In case of B7 to B10, a relative smaller average crack width was
obtained with the fib Model Code 2010 [27] approach, where a non-
zero value of term −f fctm Fts m, is utilised. This means that the con-
tribution of the post-cracking of FRC in the fib Model Code 2010 [27]
formulation is overestimated.

Table 6 compares the average crack width registered experimentally
and predicted by the fib and RILEM approaches, as well as the proposed
model, at a bending moment of 80% of the maximum moment recorded
experimentally, at which cracking was verified to be stabilised (no new
more cracks are formed).

If beam B3 is excluded, deviation of the prediction of the proposed
model in terms of crack width = −Error w w w( | | )Model

Modelexp exp varies
between 0 and 32%, whereas fib Model Code 2010 approach resulted in
a larger error, ranging between 20% and 42%. When using the RILEM
approach, deviation is between 0 and 529%. Note that in case of B4 to
B6 beams, at the bending moment of 80% of the flexural capacity of
these beams =M M( 0.8)max

exp the steel bar has already yielded, therefore
the fib Model Code 2010 and RILEM approaches are not capable of
predicting the crack width at this yielding stage. It is notable that in
case of B3 beam, although the model prediction of crack width is about
two times the one registered in the experimental test, the other two
approaches have also provided the highest deviations (i.e. 67% and
700% in case of fib and RILEM approaches, respectively), suggesting an
eventual error on the experimental measuring process of the average
crack width in this beam. Regarding Table 6, for the considered

=M M 0.8max
exp , the model predicted the crack spacing in the tested

beams (B1 to B6) with a deviation
= −Error L L L( | | )Model

cs cs Model cs,exp , ,exp of 11% to 33% when compared
with the experimental results, while the approaches recommended by
the fib Model Code 2010 and RILEM resulted in errors of 10% to 27%
and 174% to 315% , respectively.

6. Conclusions

In the present paper, a new model was developed based on the
moment-rotation response of FRC elements reinforced flexurally with
conventional steel and/or FRP bars, which were designated by R/FRC
members. The model considers the constitutive laws of FRC in com-
pression and tension, as well as the bond-slip behaviour between flex-
ural reinforcement and surrounding FRC to predict the cracking beha-
viour of R/FRC elements failing in bending. The predictive performance
of the proposed model was assessed simulating experimental tests
conducted on R/FRC beams of different geometry, FRC material prop-
erties, and flexural reinforcing schemes, including the ones executed by
the authors in a parallel research, as well as some experimental tests
reported in the literature. The model has predicted with high accuracy
the moment- average crack width and the average crack spacing at
cracking stabilised stage. This predictive performance was better than
the ones obtained by applying the approaches recommended by RILEM
TC 162-TDF and fib Model Code 2010.
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